JP3281147B2 - Method for predicting deterioration of metal materials and remaining life - Google Patents

Method for predicting deterioration of metal materials and remaining life

Info

Publication number
JP3281147B2
JP3281147B2 JP27683493A JP27683493A JP3281147B2 JP 3281147 B2 JP3281147 B2 JP 3281147B2 JP 27683493 A JP27683493 A JP 27683493A JP 27683493 A JP27683493 A JP 27683493A JP 3281147 B2 JP3281147 B2 JP 3281147B2
Authority
JP
Japan
Prior art keywords
softening
creep
stress
temperature
hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27683493A
Other languages
Japanese (ja)
Other versions
JPH07128328A (en
Inventor
一成 藤山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP27683493A priority Critical patent/JP3281147B2/en
Publication of JPH07128328A publication Critical patent/JPH07128328A/en
Application granted granted Critical
Publication of JP3281147B2 publication Critical patent/JP3281147B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、高温で使用される機
器、例えば、蒸気タービン、ボイラ等の部材の使用に伴
う金属材料の劣化・損傷を非破壊的に検出し、余寿命を
予測する金属材料の劣化および余寿命予知方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention non-destructively detects deterioration and damage of metallic materials due to use of equipment used at high temperatures, such as steam turbines and boilers, and predicts the remaining life. The present invention relates to a method for predicting deterioration and remaining life of a metal material.

【0002】[0002]

【従来の技術】従来、構造物のクリープ損傷を非破壊的
に評価する方法の一つとして、硬さを用いた方法が提案
されている(特開平1−284732)。この方法は、
部材の使用中の硬さと初期硬さの比が、温度、時間、応
力のパラメータで表わされることを利用して、温度・応
力解析結果を元に、現時点での硬さからクリープ破断曲
線を作成し、解析的にクリープ損傷を計算し、余寿命を
求めようとするものである。また、化学成分による軟化
の補正法も述べられている。
2. Description of the Related Art Conventionally, a method using hardness has been proposed as one of the methods for non-destructively evaluating creep damage of a structure (Japanese Patent Laid-Open No. 1-284732). This method
Creates a creep rupture curve from the current hardness based on the results of temperature and stress analysis using the fact that the ratio between the in-use hardness and the initial hardness of the member is expressed by temperature, time, and stress parameters. Then, the creep damage is calculated analytically to obtain the remaining life. It also describes a method for correcting softening due to chemical components.

【0003】しかし、実機構造物のクリープ解析は、一
般に費用・時間がかかるという難点があり、また、境界
条件の設定に極めて多くの正確な情報を必要とするた
め、必ずしも簡便な方法といいがたい。また、運用の途
中で運転パターンの変化があり、温度や応力が変化した
場合、この方法では簡便でかつ正確な評価は困難であ
る。
[0003] However, creep analysis of a real machine structure generally has the drawback that it is costly and time-consuming, and requires a great deal of accurate information for setting boundary conditions. I want to. In addition, when the operation pattern changes during operation and the temperature and stress change, it is difficult to perform simple and accurate evaluation with this method.

【0004】また、Larson−Millerパラメ
ータを始めとする温度・時間パラメータは、極端な外挿
はできないともいわれており、実験室で得られる加速デ
ータの最適近似にもとづくマスターカーブの実機条件へ
の外挿については限界があると考えられる。
Further, it is said that extreme extrapolation of temperature and time parameters such as the Larson-Miller parameter cannot be performed, and the master curve based on the optimal approximation of the acceleration data obtained in the laboratory is not suitable for actual machine conditions. There is a limit to the insertion.

【0005】[0005]

【発明が解決しようとする課題】そこで、従来の温度・
時間パラメータを利用した外挿法によらず、劣化・損傷
の物理的な根拠に基づいた劣化・損傷予測法を提供する
必要があると共に、複雑な解析や高度な材料調査によら
ない簡便な評価法を提供する必要がある。また、不明の
場合の多い温度・応力等の実機使用条件も同時に精度良
く推定できる方法でなければならない。
Therefore, the conventional temperature / temperature
It is necessary to provide a method for predicting deterioration / damage based on the physical basis of deterioration / damage without using an extrapolation method using time parameters, and it is simple to evaluate without complicated analysis or advanced material investigation. Need to provide law. In addition, the method must be capable of accurately estimating operating conditions such as temperature and stress, which are often unknown, at the same time.

【0006】本発明の目的は、設計計算以上の大規模な
解析や高度な材料調査を前提とせず、また、金属物理法
則に基づいた方法で使用温度・応力の推定とクリープ余
寿命の推定を精度良く簡便に行い、かつ途中で使用条件
の変化する場合にでも適用できる金属材料の劣化および
余寿命予測法を提供することにある。
An object of the present invention is to assume a large-scale analysis beyond design calculation and a high-level material investigation, and to estimate a working temperature and stress and a remaining creep life by a method based on the laws of metal physics. It is an object of the present invention to provide a method for predicting deterioration of a metal material and remaining life which can be performed accurately and simply, and can be applied even when use conditions change on the way.

【0007】[0007]

【課題を解決するための手段】上記発明の目的を達成す
るために、請求項1の発明は、高温で使用される構造部
材の析出物元素含有量と設計温度・応力と使用時間とか
ら硬さを求める式を予め作成しておき、実測硬さから使
用温度・応力の補正を行い、補正された使用温度・応力
と今後の運転パターンにもとづき将来の時効軟化および
クリープ軟化特性を予測し、クリープ軟化が予め求めた
限界値を達するまでのクリープ余寿命を推定して部品の
使用可否を判定することを特徴とする。請求項2の発明
は、高温で使用される構造部材の材質の初期状態と温度
・応力と使用時間とから時効軟化およびクリープ軟化履
歴を推定する工程と、硬さ実測値から、時効軟化または
クリープ軟化特性にもとづき使用温度・使用応力を最適
値に補正する工程と、補正された使用温度・応力と今後
の運転パターンにもとづき将来の時効軟化およびクリー
プ軟化特性を予測する工程とを有し、クリープ余寿命を
推定して部品の使用可否を判定することを特徴とする。
In order to achieve the object of the present invention, the invention of claim 1 is based on the fact that the structural element used at a high temperature is hardened based on the precipitate element content, the design temperature / stress and the use time. Formula is calculated in advance, the operating temperature and stress are corrected from the measured hardness, and the future aging softening and creep softening characteristics are predicted based on the corrected operating temperature and stress and future operating patterns. It is characterized by estimating the remaining creep life until the creep softening reaches a predetermined limit value to determine whether or not the part can be used. The invention according to claim 2 is a step of estimating the aging softening and creep softening history from the initial state of the material of the structural member used at a high temperature, the temperature / stress, and the use time, and aging softening or creeping from the measured hardness value. A step of correcting the operating temperature and operating stress to an optimum value based on the softening property, and a step of predicting future aging softening and creep softening properties based on the corrected operating temperature and stress and a future operation pattern, It is characterized by estimating the remaining life and determining whether the component can be used.

【0008】請求項3の発明は、高温で使用される析出
強化型合金に対して、析出物構成元素の含有量と製造時
の熱処理温度・時間とから、前記合金の硬さおよび析出
物平均寸法を算出するとともに、使用前析出物寸法、使
用温度、使用時間および応力の関数として表わされる軟
化曲線と、無応力での軟化曲線に対して一定量の硬さだ
け低下させたクリープ寿命限界線とに基づいて、クリー
プ損傷並びにクリープ余寿命を推定することを特徴とす
る。
[0008] The invention of claim 3 is based on the precipitation hardening type alloy used at a high temperature, the hardness of the alloy and the average of the precipitates are determined from the content of the constituent elements of the precipitates and the heat treatment temperature and time during the production. A creep life limit line that calculates the size and is a function of the precipitate size before use, the use temperature, the use time, and the stress as a function, and the softness curve under no stress reduced by a certain amount of hardness. Based on the above, the creep damage and the remaining creep life are estimated.

【0009】請求項4の発明は、請求項1から3までの
いずれかに記載の実測値である硬さに代え、レプリカの
顕微鏡観察による析出物寸法計測値、分極計測値、超音
波計測値または電磁気計測値を用いることを特徴とす
る。
According to a fourth aspect of the present invention, there is provided a method for measuring a precipitate size, a polarization measurement, and an ultrasonic measurement by microscopic observation of a replica, in place of the hardness which is the actual measurement according to any one of the first to third aspects. Alternatively, an electromagnetic measurement value is used.

【0010】[0010]

【作用】本発明によれば、部材の析出物元素含有量と製
造時時効処理温度・時間と評価部位の硬さまたは析出物
寸法を測定するだけで、評価部位の温度・応力を最適に
補正してクリープ余寿命を直接実時間ベースで精度良く
予測することができ、部品の継続使用の可否を事前に判
定することができる。また、過去または将来に運転パタ
ーンが変わる場合についても、正確なクリープ余寿命予
測が可能である。
According to the present invention, the temperature and stress at the evaluation site can be optimally corrected by merely measuring the content of the precipitate element of the member, the temperature and time of the aging treatment during production, and the hardness or the size of the precipitate at the evaluation site. Thus, the remaining creep life can be directly and accurately predicted on a real-time basis, and it is possible to determine in advance whether or not the component can be continuously used. In addition, even when the operation pattern changes in the past or the future, it is possible to accurately predict the remaining creep life.

【0011】[0011]

【実施例】以下、本発明の一実施例を、蒸気タービン、
ボイラ、高温配管等に使用される低合金鋼のクリープ余
寿命推定に適用した場合について、図面を参照して説明
する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to a steam turbine,
The case where the present invention is applied to estimation of the remaining creep life of low alloy steel used for boilers, high-temperature pipes, and the like will be described with reference to the drawings.

【0012】本実施例では大別して、図1に示すよう
に、材質初期状態設定工程(1)と、時効軟化・クリー
プ軟化履歴推定工程(2)と、硬さ計測工程(3)と使
用条件補正工程(4)と、時効軟化・クリープ軟化予測
工程(5)と、クリープ余寿命判定工程(6)とから構
成される。
In this embodiment, as shown in FIG. 1, the material initial state setting step (1), the aging softening / creep softening history estimating step (2), the hardness measuring step (3), and the use conditions It comprises a correcting step (4), an aging softening / creep softening predicting step (5), and a remaining creep life determining step (6).

【0013】次に各工程について図2を参照して詳細に
説明する。
Next, each step will be described in detail with reference to FIG.

【0014】まず、材質初期状態設定工程(1)では、
金属材料の析出物元素含有量Ccと製造時の時効熱処理
条件(温度・時間)とから使用に供する前の硬さHvs
および析出物の平均寸法rsを次式により決定する。こ
の式は、小さな析出物が基材に再固溶し、大きな析出物
に吸収されて大きな析出物が成長するオストワルド成長
[例えば、日本金属学会編「金属便欄」丸善]を仮定し
ている。
First, in the material initial state setting step (1),
The hardness Hvs before use for use is determined from the content of the precipitate element Cc of the metal material and the aging heat treatment conditions (temperature and time) during production.
And the average size rs of the precipitate is determined by the following equation. This formula assumes Ostwald ripening in which small precipitates re-dissolve in the base material and are absorbed by the large precipitates to grow large precipitates [for example, “The Metal Toilet Column” Maruzen, edited by the Japan Institute of Metals). .

【0015】[0015]

【数1】 (Equation 1)

【0016】時効軟化・クリープ軟化履歴推定工程
(2)では、この析出物寸法rsを初期値として、設定
温度T1、設定応力σ1(例えば設計値)における材料
の硬さHv1の時間変化曲線が次式によって計算され
る。
In the aging softening / creep softening history estimating step (2), the time change curve of the hardness Hv1 of the material at the set temperature T1 and the set stress σ1 (for example, the design value) is defined as Calculated by formula.

【0017】[0017]

【数2】 (Equation 2)

【0018】硬さ計測工程(3)では、実機の評価部位
の硬さを計測するが、適用される装置としては、携帯用
硬さ計(ショア硬さ計、超音波硬さ計、エコーチップ硬
さ計等)で十分である。
In the hardness measuring step (3), the hardness of the evaluation part of the actual machine is measured. As a device to be applied, a portable hardness meter (Shore hardness meter, ultrasonic hardness meter, echo tip) Hardness tester) is sufficient.

【0019】使用条件補正工程(4)では、実測硬さH
v22を用いて、次式で表わされる評価関数δを最小とす
るように、温度T2、応力σ2を補正して決定し、これ
を現時点での最適値とする。
In the use condition correcting step (4), the measured hardness H
Using v22, the temperature T2 and the stress σ2 are corrected and determined so as to minimize the evaluation function δ represented by the following equation, and this is set as the optimum value at the present time.

【0020】[0020]

【数3】 (Equation 3)

【0021】補正後の温度・応力により前記時効軟化・
クリープ軟化履歴推定工程(2)において式(2)で示
した軟化履歴評価式を次式に補正する。
Due to the temperature and stress after correction, the aging softening
In the creep softening history estimating step (2), the softening history evaluation formula represented by the formula (2) is corrected to the following formula.

【0022】[0022]

【数4】 (Equation 4)

【0023】なお、(2)式から(4)式への補正は、
検査を行って硬さを実測するごとに行い、補正精度を向
上させるとともに、適切なデータが得られる場合は種々
の運転パターンに応じた温度・応力推定も可能である。
The correction from equation (2) to equation (4)
The inspection is performed every time the hardness is actually measured, and the correction accuracy is improved. In addition, when appropriate data is obtained, it is possible to estimate the temperature and stress according to various operation patterns.

【0024】次に、時効軟化・クリープ軟化予測工程
(5)では、混合の運転パターンに従い、式(4)によ
って将来の軟化を予測する。今後の温度T3および応力
σ3がこれまでの履歴から最適値として決定されている
ときはその値を用い、決定されていない場合は、例えば
T1からT2への補正と同じ割合で補正する。
Next, in the aging softening / creep softening prediction step (5), future softening is predicted by equation (4) according to the mixing operation pattern. If the future temperature T3 and stress σ3 have been determined as the optimal values from the history so far, the values are used, and if not determined, the correction is performed at the same rate as the correction from T1 to T2, for example.

【0025】ここで、式(4)で応力ゼロの場合の時効
軟化曲線から一定値だけ硬さが低下した曲線をクリープ
寿命限界線とし、式(4)で予測した硬さがこの限界線
と交わる時間tr3とt1の差がクリープ余寿命とな
る。この値が次の補修または交換可能な時期よりも短い
ときは、継続使用が不可能と判定する。継続使用が可能
なときは、再度運転に供し、次の検査時期に硬さを測定
して、使用温度・応力の再補正とクリープ余寿命の予測
を行う。
Here, a curve in which the hardness has decreased by a certain value from the aging softening curve in the case of zero stress in the equation (4) is defined as a creep life limit line, and the hardness predicted by the equation (4) corresponds to this limit line. The difference between the intersecting times tr3 and t1 is the remaining creep life. If this value is shorter than the next repair or replaceable time, it is determined that continuous use is impossible. If it can be used continuously, it will be operated again, the hardness will be measured at the next inspection time, and the temperature and stress will be corrected again and the remaining creep life will be predicted.

【0026】以下、本実施例をさらに詳細に説明する。
材質初期状態設定工程(1)および時効軟化・クリープ
軟化履歴推定工程(2)の作用を図3に示す。
Hereinafter, this embodiment will be described in more detail.
FIG. 3 shows the operation of the material initial state setting step (1) and the aging softening / creep softening history estimating step (2).

【0027】製造時の材料データとして、炭素含有量C
cおよび焼入れ後に行う時効処理として焼戻し温度T
t、同時間ttおよび焼きなまし温度Ts、同時間ts
が必要であるが、これらは受入材料試験成績書から容易
に知ることができる。これらの情報を用いて、焼戻し焼
きなまし後の硬さHvsおよび析出物平均半径rsを次
式により計算する。
As material data at the time of production, carbon content C
and tempering temperature T as aging treatment performed after quenching
t, same time tt, annealing temperature Ts, same time ts
However, these can be easily known from the received material test report. Using these information, the hardness Hvs after tempering and the average radius of precipitates rs are calculated by the following equation.

【0028】[0028]

【数5】 (Equation 5)

【0029】ただし、製造時時効熱処理前の析出物半径
rnは、
However, the precipitate radius rn before the aging heat treatment during production is:

【数6】 (Equation 6)

【0030】ただし、Σは熱処理履歴をすべて考慮した
和をとる。また、
Here, Σ is the sum taking into account all the heat treatment histories. Also,

【数7】 (Equation 7)

【0031】次に、経年軟化・クリープ軟化履歴推定工
程(2)の作用について説明する。設定応力σ1、設定
温度T1(例えば設計値)におけるクリープ軟化は次式
により推定できる。
Next, the operation of the aging / creep softening history estimation step (2) will be described. The creep softening at the set stress σ1 and the set temperature T1 (for example, a design value) can be estimated by the following equation.

【0032】[0032]

【数8】 (Equation 8)

【0033】この式でσ1=0とおくと時効軟化曲線が
得られる。現時点t=t1で式(8)により計算した硬
さHv11が現時点での推定値である。
If σ1 = 0 is set in this equation, an aging softening curve is obtained. The hardness Hv11 calculated by the equation (8) at the current time t = t1 is an estimated value at the current time.

【0034】次に、使用条件補正工程(4)の作用につ
いて図4をもとに説明する。現時点t=t1において、
実測硬さHv22が得られたとし、Hv11≠Hv22とする
とき、Hv22を用いて温度、応力の最適補正を行う。そ
の候補値をT2,t2とする。このとき、次式の補正評
価関数δを最小とするために、次の停留条件を設定す
る。
Next, the operation of the use condition correcting step (4) will be described with reference to FIG. At the present time t = t1,
Assuming that the measured hardness Hv22 is obtained, and Hv11 ≠ Hv22, the optimum correction of the temperature and the stress is performed using Hv22. The candidate values are T2 and t2. At this time, the following stopping condition is set to minimize the correction evaluation function δ in the following equation.

【0035】[0035]

【数9】 (Equation 9)

【0036】[0036]

【数10】 (Equation 10)

【0037】[0037]

【数11】 [Equation 11]

【0038】式(9)、(10)、(11)から最適のT2
およびσ2を求め、補正値とする。次に、クリープ余寿
命判定工程(6)の作用について、図5をもとに説明す
る。
From equations (9), (10) and (11), the optimum T2
And σ2 are obtained and used as correction values. Next, the operation of the remaining creep life determining step (6) will be described with reference to FIG.

【0039】現時点をt=t1とすると、ここでの補正
温度・応力条件T2、σ2に対応する軟化曲線が式
(8)により得られるが、ここで応力をゼロとおくと時
効軟化曲線が得られる。クリープ寿命限界線は、この時
効軟化曲線から一定値だけ硬さを低下させた曲線として
得られる。
Assuming that the present time is t = t1, a softening curve corresponding to the corrected temperature / stress conditions T2 and σ2 is obtained by the equation (8). If the stress is set to zero, an aging softening curve is obtained. Can be The creep life limit line is obtained as a curve obtained by lowering the hardness by a certain value from the aging softening curve.

【0040】現時点で、実測硬さHv22がクリープ寿命
限界硬さより大きい値であれば余寿命評価を行う。この
とき、Hv22を初期値として、これに対応する初期炭化
物半径r22を式(8)に用い、今後の運転条件(温度T
3、応力σ3、時間はt−t1)に対応するクリープ軟
化曲線が得られる。
At this time, if the measured hardness Hv22 is larger than the creep life limit hardness, the remaining life is evaluated. At this time, Hv22 is used as an initial value, and the corresponding initial carbide radius r22 is used in equation (8) to determine the future operating conditions (temperature T
A creep softening curve corresponding to 3, stress .sigma.3, and time is t-t1) is obtained.

【0041】また、このとき応力ゼロとおいて得られた
時効軟化曲線に対して一定量だけ硬さを低下させたクリ
ープ寿命限界線も得られる。クリープ余寿命は、クリー
プ軟化曲線とクリープ寿命限界線の交わる時間t3−t
1として決定される。この値が次の補修または交換可能
な時期よりも短いときは、継続使用が不可能と判定す
る。継続使用が可能なときは、再度運転に供し、次の検
査時期に硬さを測定して、使用温度・応力の再補正とク
リープ余寿命の予測を行う。
At this time, a creep life limit line is also obtained in which the hardness is reduced by a certain amount with respect to the aging softening curve obtained at zero stress. The remaining creep life is the time t3-t at which the creep softening curve intersects the creep life limit line.
Determined as 1. If this value is shorter than the next repair or replaceable time, it is determined that continuous use is impossible. If it can be used continuously, it will be operated again, the hardness will be measured at the next inspection time, and the temperature and stress will be corrected again and the remaining creep life will be predicted.

【0042】以上の本実施例によれば、部材の炭素含有
量と製造時時効処理温度・時間と評価部位の硬さを測定
するだけで、評価部位の温度・応力を最適に補正してク
リープ余寿命を直接実時間ベースで精度良く予測するこ
とができ、部品の継続使用の可否を事前に判定すること
ができる。また、過去または将来に運転パターンが変わ
る場合についても、正確なクリープ余寿命予測が可能で
ある。
According to the present embodiment described above, the creep is obtained by optimally correcting the temperature and stress of the evaluation part by merely measuring the carbon content of the member, the temperature and time of the aging treatment, and the hardness of the evaluation part. The remaining life can be accurately predicted directly on a real-time basis, and it is possible to determine in advance whether the component can be used continuously. In addition, even when the operation pattern changes in the past or the future, it is possible to accurately predict the remaining creep life.

【0043】なお、本発明は以上の実施例で述べた低合
金鋼に止まらず、同様の析出機構をもつ析出強化合金全
般に広く適用できる。また、硬さの変化する高温条件で
使用される部品であれば、どのような部品にも適用でき
る。
The present invention is not limited to the low alloy steels described in the above embodiments, but can be widely applied to all precipitation strengthened alloys having the same precipitation mechanism. In addition, the present invention can be applied to any components that are used under high-temperature conditions where the hardness changes.

【0044】また、本発明では実測値である硬さに代
え、析出物寸法をレプリカの顕微鏡観察によって直接計
測しても良く、さらに析出物の変化を検出できる分極
法、超音波法または電磁気法などを適用することも可能
である。
In the present invention, the precipitate size may be directly measured by microscopic observation of a replica instead of the actually measured value of hardness, and a polarization method, an ultrasonic method or an electromagnetic method capable of detecting a change in the precipitate may be used. It is also possible to apply such as.

【0045】[0045]

【発明の効果】本発明によれば、部材の析出物元素含有
量と製造時時効処理温度・時間と評価部位の硬さまたは
析出物寸法を測定するだけで、評価部位の温度・応力を
最適に補正してクリープ余寿命を直接実時間ベースで精
度良く予測することができ、部品の継続使用の可否を事
前に判定することができる。また、過去または将来に運
転パターンが変わる場合についても、正確なクリープ余
寿命予測が可能である。
According to the present invention, the temperature and stress at the evaluation site can be optimized only by measuring the content of the precipitate element of the member, the temperature and time of the aging treatment, and the hardness or the size of the precipitate at the evaluation site. , And the remaining creep life can be directly and accurately predicted on a real-time basis, and it is possible to determine in advance whether the component can be used continuously. In addition, even when the operation pattern changes in the past or the future, it is possible to accurately predict the remaining creep life.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示す工程図。FIG. 1 is a process chart showing one embodiment of the present invention.

【図2】同実施例の作用説明図。FIG. 2 is an operation explanatory view of the embodiment.

【図3】同実施例における材料初期状態設定工程と時効
軟化・クリープ軟化推定工程の作用を示す図。
FIG. 3 is a view showing an operation of a material initial state setting step and an aging softening / creep softening estimating step in the embodiment.

【図4】同実施例における使用条件補正工程の作用を示
す図。
FIG. 4 is a view showing an operation of a use condition correcting step in the embodiment.

【図5】同実施例における時効軟化・クリープ軟化予測
工程とクリープ余寿命判定工程の作用を示す図。
FIG. 5 is a diagram showing the effects of an aging softening / creep softening prediction step and a remaining creep life determining step in the embodiment.

【符号の説明】[Explanation of symbols]

1 材質初期状態設定工程 2 時効軟化・クリープ軟化履歴推定工程 3 硬さ計測工程 4 使用条件補正工程 5 時効軟化・クリープ軟化予測工程 6 クリープ余寿命判定工程 1 Material initial state setting process 2 Age aging softening / creep softening history estimating process 3 Hardness measuring process 4 Use condition correction process 5 Age aging softening / creep softening prediction process 6 Creep remaining life judgment process

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 藤山、犬飼、村上、岡部,材料とプロ セス,1993年9月20日,第126回(秋季) 講演大会 第6巻,p.1817 岡部、吉岡、藤山、福田、村上、斎 藤,日本機械学会材料力学部門講演会講 演論文集,1992年9月25日,第920−72, p.441−442 (58)調査した分野(Int.Cl.7,DB名) G01N 17/00 G01M 19/00 G01N 3/32 G01N 33/20 JICSTファイル(JOIS)────────────────────────────────────────────────── ─── Continuation of the front page (56) References Fujiyama, Inukai, Murakami, Okabe, Materials and Processes, September 20, 1993, 126th (Autumn) Lecture Meeting Volume 6, p. 1817 Okabe, Yoshioka, Fujiyama, Fukuda, Murakami, Saito, Proceedings of the JSME Material Mechanics Division, September 25, 1992, 920-72, p. 441-442 (58) Field surveyed (Int. Cl. 7 , DB name) G01N 17/00 G01M 19/00 G01N 3/32 G01N 33/20 JICST file (JOIS)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 高温で使用される構造部材の析出物元素
含有量と設計温度・応力と使用時間とから硬さを求める
式を予め作成しておき、実測硬さから使用温度・応力の
補正を行い、補正された使用温度・応力と今後の運転パ
ターンにもとづき将来の時効軟化およびクリープ軟化特
性を予測し、クリープ軟化が予め求めた限界値を達する
までのクリープ余寿命を推定して部品の使用可否を判定
することを特徴とする金属材料の劣化および余寿命予知
方法。
1. A formula for calculating hardness from the content of precipitate elements of a structural member used at a high temperature, a design temperature / stress, and a use time is created in advance, and the correction of the use temperature / stress from the measured hardness is performed. To predict future aging softening and creep softening characteristics based on the corrected operating temperature / stress and future operating patterns, estimate the remaining creep life until creep softening reaches a predetermined limit value, A method for predicting deterioration and remaining life of a metal material, characterized by determining whether the metal material can be used.
【請求項2】 高温で使用される構造部材の材質の初期
状態と温度・応力と使用時間とから時効軟化およびクリ
ープ軟化履歴を推定する工程と、硬さ実測値から、時効
軟化またはクリープ軟化特性にもとづき使用温度・使用
応力を最適値に補正する工程と、補正された使用温度・
応力と今後の運転パターンにもとづき将来の時効軟化お
よびクリープ軟化特性を予測する工程とを有し、クリー
プ余寿命を推定して部品の使用可否を判定することを特
徴とする金属材料の劣化および余寿命予知方法。
2. A process of estimating aging softening and creep softening history from the initial state of material of a structural member used at high temperature, temperature / stress, and use time, and aging softening or creep softening characteristics from actually measured hardness. The process of correcting the operating temperature and operating stress to the optimum value based on the
A step of predicting the future aging softening and creep softening characteristics based on the stress and future operating patterns, and estimating the remaining creep life to determine whether or not the component can be used. Life prediction method.
【請求項3】 高温で使用される析出強化型合金に対し
て、析出物構成元素の含有量と製造時の熱処理温度・時
間とから、前記合金の硬さおよび析出物平均寸法を算出
するとともに、使用前析出物寸法、使用温度、使用時間
および応力の関数として表わされる軟化曲線と、無応力
での軟化曲線に対して一定量の硬さだけ低下させたクリ
ープ寿命限界線とに基づいて、クリープ損傷並びにクリ
ープ余寿命を推定することを特徴とする金属材料の劣化
および余寿命予知方法。
3. For a precipitation-strengthened alloy used at a high temperature, the hardness of the alloy and the average size of the precipitate are calculated from the content of the constituent elements of the precipitate and the heat treatment temperature and time during production. Based on a softening curve expressed as a function of pre-use precipitate size, working temperature, working time and stress, and a creep life limit line reduced by a certain amount of hardness relative to the softening curve under no stress. A method for predicting deterioration and remaining life of a metal material, comprising estimating creep damage and remaining creep life.
【請求項4】 請求項1から3までのいずれかに記載の
実測値である硬さに代え、レプリカの顕微鏡観察による
析出物寸法計測値、分極計測値、超音波計測値または電
磁気計測値を用いることを特徴とする金属材料の劣化お
よび余寿命予知方法。
4. The method according to claim 1, wherein a measured value of precipitate size, a measured value of polarization, a measured value of ultrasonic wave, or a measured value of electromagnetic wave is obtained by microscopic observation of the replica. A method for predicting deterioration of a metal material and remaining life, characterized in that the method is used.
JP27683493A 1993-11-05 1993-11-05 Method for predicting deterioration of metal materials and remaining life Expired - Fee Related JP3281147B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27683493A JP3281147B2 (en) 1993-11-05 1993-11-05 Method for predicting deterioration of metal materials and remaining life

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27683493A JP3281147B2 (en) 1993-11-05 1993-11-05 Method for predicting deterioration of metal materials and remaining life

Publications (2)

Publication Number Publication Date
JPH07128328A JPH07128328A (en) 1995-05-19
JP3281147B2 true JP3281147B2 (en) 2002-05-13

Family

ID=17575058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27683493A Expired - Fee Related JP3281147B2 (en) 1993-11-05 1993-11-05 Method for predicting deterioration of metal materials and remaining life

Country Status (1)

Country Link
JP (1) JP3281147B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110286045A (en) * 2019-05-09 2019-09-27 长沙理工大学 Asphalt fatigue properties temperature dependency characterizing method under three-dimensional stress constraint

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002302052B2 (en) * 2000-04-14 2004-11-11 Kabushiki Kaisha Toshiba Method and equipment for assessing the life of members put under high in-service temperature environment for long period
JP5506771B2 (en) * 2011-12-22 2014-05-28 株式会社日立製作所 Long-term creep strength estimation method, remaining life estimation method, and remaining life evaluation apparatus for precipitation strengthened heat resistant alloys
CN103366841B (en) * 2013-08-06 2015-12-09 苏州热工研究院有限公司 The assessment method of a kind of CPR1000 unit reactor pressure vessel reactor core cylinder district defect
JP6430220B2 (en) * 2014-11-18 2018-11-28 株式会社東芝 Structure life diagnosis method and structure life diagnosis apparatus
JP6565656B2 (en) * 2015-12-15 2019-08-28 日本製鉄株式会社 Hardness prediction method for high strength steel

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
岡部、吉岡、藤山、福田、村上、斎藤,日本機械学会材料力学部門講演会講演論文集,1992年9月25日,第920−72,p.441−442
藤山、犬飼、村上、岡部,材料とプロセス,1993年9月20日,第126回(秋季)講演大会 第6巻,p.1817

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110286045A (en) * 2019-05-09 2019-09-27 长沙理工大学 Asphalt fatigue properties temperature dependency characterizing method under three-dimensional stress constraint

Also Published As

Publication number Publication date
JPH07128328A (en) 1995-05-19

Similar Documents

Publication Publication Date Title
Garcı́a et al. Effects of prior cold work and sensitization heat treatment on chloride stress corrosion cracking in type 304 stainless steels
Dean et al. Creep crack growth behaviour of Type 316H steels and proposed modifications to standard testing and analysis methods
CN107843510B (en) Method for estimating residual endurance life of supercritical unit T/P91 heat-resistant steel based on room-temperature Brinell hardness prediction
US5140528A (en) Method for evaluating relationship between the size of discontinuity indications from non-destructive examination of a turbine rotor, stress applied to the rotor and remaining life of the rotor
JP3281147B2 (en) Method for predicting deterioration of metal materials and remaining life
CN112504863B (en) Method for quantitatively evaluating service life of material
Cheng et al. Geometric discontinuity effect on creep-fatigue behaviors in a nickel-based superalloy hole structure considering ratcheting deformation
JP3332971B2 (en) Diagnosis method for deterioration of ferritic heat-resistant steel
JPH1123776A (en) Composite diagnostic system of reactor internal equipment
RU2759313C1 (en) Method for assessing the quality of a welded joint of a metal structure
JPH0712709A (en) Deterioration diagnostic method and device for gas turbine coating vane
JPH11237912A (en) Method and device for maintenance and management of high-temperature structural member
Okpa et al. The Development of a Cavitation-Based Model for Creep Lifetime Prediction Using Cu-40Zn-2Pb Material
JP2627925B2 (en) Remaining life evaluation method for metallic materials
JP2003294880A (en) Irradiation damage evaluation method
JP2003065978A (en) Method for assessing remaining life of heat resisting material
JPH06148062A (en) Method for evaluating service life of metallic material
JP2914254B2 (en) Evaluation method of damage degree and remaining life of metal members
JPH10227754A (en) High temperature damage evaluation method for temper martensite stainless steel
Woodford Accelerated high temperature performance evaluation for alloy optimization, embrittlement, and life assessment
Tahir Creep-Fatigue Damage Investigation and Modeling of Alloy 617 at High Temperatures
JP4522828B2 (en) Remaining life diagnosis method for Cr-Mo heat resistant steel
EP1726381A1 (en) Method for predicting damage of dies
JPH0635971B2 (en) Method for predicting remaining life of metallic materials
JPH06148049A (en) Service life evaluation of metallic material

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090222

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees