JP3278908B2 - Control method of commutatorless motor - Google Patents

Control method of commutatorless motor

Info

Publication number
JP3278908B2
JP3278908B2 JP18788992A JP18788992A JP3278908B2 JP 3278908 B2 JP3278908 B2 JP 3278908B2 JP 18788992 A JP18788992 A JP 18788992A JP 18788992 A JP18788992 A JP 18788992A JP 3278908 B2 JP3278908 B2 JP 3278908B2
Authority
JP
Japan
Prior art keywords
motor
current
torque
power
controlling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18788992A
Other languages
Japanese (ja)
Other versions
JPH0638577A (en
Inventor
昇 梓沢
隆 ▲すけ▼川
正衛 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP18788992A priority Critical patent/JP3278908B2/en
Publication of JPH0638577A publication Critical patent/JPH0638577A/en
Application granted granted Critical
Publication of JP3278908B2 publication Critical patent/JP3278908B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Motor And Converter Starters (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は無整流子電動機の制御方
法に係り、特にガスタービン発電プラントの発電機を無
整流子電動機として始動する制御において、電動機に流
れる電流を断続させずに速度制御して始動することによ
り無整流子電動機となる高速回転の同期発電機へのスト
レスを低減する無整流子電動機の制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling a commutatorless motor, and more particularly to a control for starting a generator of a gas turbine power plant as a commutatorless motor without interrupting a current flowing through the motor. The present invention relates to a control device for a commutatorless motor that reduces a stress on a high-speed synchronous generator that becomes a commutatorless motor by being started.

【0002】[0002]

【従来の技術】従来、無整流子電動機の制御方法は、特
公昭59−47956 号の公知例で示されるように、電動機側
電力変換器の制御角を転流に必要な限界値でかつ発生ト
ルク係数が最大となる値に調整し、速度制御に必要な発
生トルクは交流電源側電力半導体変換器の制御角調整で
の電流制御により制御している。また、上記公知例で示
されるように、力行運転から回生運転、あるいは目的運
転から力行運転へのトルク方向反転時に、順変換器領域
にある一方の電力変換器の制御角を逆変換領域に切換
え、逆変換領域運転に入ったことを確認したのち、他方
の逆変換領域にある電力半導体変換器の制御角を順変換
領域に切換え、電源側の電力変換器と負荷側の電力半導
体変換器との動作をそれぞれ入れ替えることにより電流
を零にすることなくトルク方向を反転し、スムーズな力
行運転モードと回生運転モードとの切替を実現してい
る。このように従来は発生トルクの制御は交流電源側の
電力半導体変換器の制御角調整による電流制御をしてい
るため、負荷トルクが小さな時の速度制御においては電
動機に流れる電流が連続するための限界電流値以下で制
御され、すなわち電流が断続モードでの運転となる。
2. Description of the Related Art Conventionally, a method for controlling a commutatorless motor has been disclosed in Japanese Patent Publication No. 59-47956, in which the control angle of a motor-side power converter is set to a limit value necessary for commutation. The torque coefficient is adjusted to a maximum value, and the generated torque necessary for speed control is controlled by current control in adjusting the control angle of the power semiconductor converter on the AC power supply side. Further, as shown in the above-described known example, when the torque direction is reversed from the power running operation to the regenerative operation or from the target operation to the power running operation, the control angle of one power converter in the forward converter region is switched to the reverse conversion region. After confirming that the operation is in the reverse conversion region, the control angle of the power semiconductor converter in the other reverse conversion region is switched to the forward conversion region, and the power converter on the power supply side and the power semiconductor converter on the load side are switched. By switching the operations of the above, the torque direction is reversed without reducing the current to zero, and a smooth switching between the powering operation mode and the regenerative operation mode is realized. As described above, conventionally, the generated torque is controlled by adjusting the control angle of the power semiconductor converter on the AC power supply side, so that in the speed control when the load torque is small, the current flowing through the motor is continuous. Control is performed below the limit current value, that is, the current is operated in the intermittent mode.

【0003】しかし、ガスタービン発電プラントの発電
機を無整流子電動機として始動するなどの高速回転でか
つ長軸の回転機の場合、回転子が円筒構造でかつ、円筒
回転子スロットとそれにうめこまれる回転子コイルとの
関係は、流れる定格電流での回転子コイル温度上昇によ
る熱膨脹を考慮して、始動時にはすき間が生じている。
そのため、無整流子電動機として始動時に電流断続運転
をすると、そのときの発生トルクの急変により、回転子
スロットと回転子コイルとのすきまのある回転子コイル
に加わる力が変化し、回転子スロットとそれの中に入る
回転子コイルのぶつかりが生じることがあり、回転子に
ストレスを与えるという欠点がある。そのため、従来は
発電機とトルクコンバータを介して接続される電動機に
より始動していた。この方式も大容量化に対しトルクコ
ンバータの製作が困難となっている。
However, in the case of a high-speed and long-axis rotating machine such as starting a generator of a gas turbine power plant as a commutatorless motor, the rotor has a cylindrical structure, and a cylindrical rotor slot and a hollow are inserted therein. Regarding the relationship with the rotor coil, there is a gap at the time of starting in consideration of thermal expansion due to a rise in the rotor coil temperature at the rated current flowing.
Therefore, when the current intermittent operation is performed at the time of starting as a non-commutator motor, the force applied to the rotor coil with a clearance between the rotor slot and the rotor coil changes due to a sudden change in the generated torque at that time, and the rotor slot and the There is a drawback that the rotor coil that hits inside may be hit and stresses the rotor. Therefore, conventionally, the motor was started by an electric motor connected to a generator via a torque converter. This method also makes it difficult to produce a torque converter for increasing the capacity.

【0004】[0004]

【発明が解決しようとする課題】以上のような、高速回
転でかつ長軸の回転機となるガスタービン発電機等を無
整流子電動機として始動する場合の電流断続運転に伴な
う回転子へのストレスを与えるという制御方式の欠点を
解決しないと、発電機を無整流子電動機として始動する
制御方式を使用できなくなる。そこで、本発明では、電
動機電流が継続しない連続限界電流(I1 )以上での速
度制御運転とすることを目的としている。また、速度制
御運転は、力行運転,回生運転を必要とするため、力行
運転及び回生運転のいずれでも連続限界電流(I1 )以
上での速度制御運転のできる制御方法を提供することを
目的としている。
SUMMARY OF THE INVENTION As described above, when a gas turbine generator or the like, which is a high-speed rotating and long-axis rotating machine, is started as a commutatorless motor, the rotor accompanying the current intermittent operation is used. Unless the drawback of the control method of applying the above-mentioned stress is solved, the control method of starting the generator as a non-commutator motor cannot be used. Therefore, an object of the present invention is to provide speed control operation at a continuous limit current (I 1 ) or more at which the motor current does not continue. In addition, since the speed control operation requires a power running operation and a regenerative operation, an object of the present invention is to provide a control method capable of performing the speed control operation at a continuous limit current (I 1 ) or more in both the power running operation and the regenerative operation. I have.

【0005】[0005]

【課題を解決するための手段】本発明では上記目的を達
成するための電動機制御方法として、交流電源が電源側
かつ無整流子電動機である同期電動機が負荷側となる力
行運転時には順変換動作を行い、上記交流電源が負荷側
かつ上記同期電動機が電源側となる回生運転時には逆変
換動作を行う電源側電力半導体変換器を交流電源側に接
続し、上記力行運転時には逆変換動作を行い、上記回生
運転時には順変換動作を行う電動機側電力半導体変換器
を同期発電機側に接続し、速度検出器で検出した上記同
期電動機の回転速度信号と電流検出器で検出した上記交
流電源からの電流値信号を制御回路に入力し、上記同期
電動機電流が断続しない連続限界電流I 1 に必要な下限
発生トルクをT 1 としたとき、上記入力信号から算出さ
れる発生トルクが、−T 1 〜T 1 間以外では上記電動機
側電力半導体変換器の制御角を発生トルク係数が最大と
なるように制御し、上記発生トルクが−T 1 〜T 1 間で
は下限発生トルクT 1 以上となるように発生トルク係数
を小さくするように上記電動機側電力半導体変換器を制
御して速度制御する方法とする。他の制御方法として、
発生トルクが−T 1 〜T 1 間では、電動機側変換器の制
御角を転流限界で発生トルク係数が最大となる値にした
ままで、界磁電流を減少させ発生トルク係数の減少制御
により電動機の電流を断続させずに速度制御する方法
する。
According to the present invention, as an electric motor control method for achieving the above object, an AC power supply is connected to a power supply.
Force of synchronous motor, which is a non-commutator motor, on the load side
During line operation, a forward conversion operation is performed, and the AC power
Also, during regenerative operation when the synchronous motor is on the power supply side,
The power-side power semiconductor converter that performs the switching operation is connected to the AC power supply.
During the power running operation, the reverse conversion operation is performed
Motor-side power semiconductor converter that performs forward conversion operation during operation
To the synchronous generator side, and the same
Rotation signal of the starting motor and the above
Input the current value signal from the power supply to the control circuit, and
Lower limit required for continuous limit current I 1 where motor current is not interrupted
When the generated torque was T 1, it is calculated from the input signal
Generation torque is the motor except between -T 1 through T 1
Generate the control angle of the side power semiconductor converter.
Controlled to be, the generated torque between -T 1 through T 1
Torque coefficient generation as is the lower limit torque above T 1
Control the above-mentioned motor-side power semiconductor converter to reduce
Speed control method. As another control method,
In between generated torque -T 1 through T 1, the braking of the motor-side converter
The angle is set to a value that maximizes the generated torque coefficient at the commutation limit
As it is, the field current is reduced and the generated torque coefficient is reduced.
To control the speed without interrupting the current of the motor .

【0006】[0006]

【作用】本発明の上記制御方法によれば、電動機の電流
を連続限界電流(I1 )以上に保つ制御をしながら、発
生トルクを電動機側電力半導体変換器の制御角調整によ
り発生トルク係数制御し速度制御できる。または、発生
トルクを界磁電流の調整により発生トルク係数制御し速
度制御できる。したがって、ガスタービン発電プラント
の発電機ような高速回転、長軸な回転機と無整流子電動
機として始動する場合に問題となる低負荷時生じる電流
断続による回転子へのストレスを防止できる電流連続運
転の速度制御ができる効果がある。
According to the above control method of the present invention, the generated torque is controlled by adjusting the control angle of the motor-side power semiconductor converter while controlling the motor current to be equal to or higher than the continuous limit current (I 1 ). Speed control. Alternatively, the generated torque can be speed-controlled by controlling the generated torque coefficient by adjusting the field current. Therefore, current continuous operation that can prevent stress on the rotor due to current discontinuity that occurs at low load, which is a problem when starting as a high-speed rotating, long-axis rotating machine such as a generator of a gas turbine power plant and a non-commutator motor, There is an effect that speed control can be performed.

【0007】[0007]

【実施例】図1は、本発明に係る無整流子電動機の制御
方法の一実施例を用いた制御装置を示すブロック図であ
る。図において、1は交流電源、2は電流を検出するC
T、3はサイリスタ変換器で力行時順変換動作、回生時
逆変換動作をする。4は電流を平滑するDCL、5のサ
イリスタ変換器は力行時逆変換動作、回生時逆変換動作
する。6は遮断器、7は無整流子電動機となる同期発電
機、8は同期発電機の界磁巻線、9は同期電動機に直結
されるガスタービン、10は発電機の回転子と電機子の
相対位置を検出する位置検出器、11は速度検出器、1
2はCT2で検出された交流電流により直流電流を検出
する電流検出器、ゲート回路13はサイリスタ変換器3
のサイリスタの点弧制御、すなわち電源側制御角αを制
御し、ゲート回路14はサイリスタ変換器5のサイリス
タの点弧制御、すなわち電動機側制御角βを制御し、ゲ
ート回路9,24は無整流子電動機7の零〜定格周波数
で動作する可変周波自動パルス移相器(特公昭61−4835
3 号等)を内蔵している。15は界磁電流制御回路、制
御回路16は本発明の特徴とする回路で、その詳細は後
述する。次に本発明の特徴とする制御回路16の詳細な
動作を図2,図3のブロック図、図4に示す動作タイム
チャート及び図5〜図7に示す動作説明図を用いて説明
する。
FIG. 1 is a block diagram showing a control apparatus using one embodiment of a method for controlling a commutatorless motor according to the present invention. In the figure, 1 is an AC power supply and 2 is a C for detecting a current.
T and 3 are thyristor converters which perform a forward conversion operation during power running and an inverse conversion operation during regeneration. Reference numeral 4 denotes a DCL for smoothing current, and a thyristor converter 5 performs an inverse conversion operation during power running and an inverse conversion operation during regeneration. Reference numeral 6 denotes a circuit breaker, 7 denotes a synchronous generator serving as a non-commutator motor, 8 denotes a field winding of the synchronous generator, 9 denotes a gas turbine directly connected to the synchronous motor, and 10 denotes a rotor and an armature of the generator. A position detector for detecting a relative position, 11 a speed detector, 1
Reference numeral 2 denotes a current detector for detecting a DC current based on the AC current detected by CT2, and a gate circuit 13 includes a thyristor converter 3
, Control of the thyristor of the thyristor converter 5, that is, the motor-side control angle β, and the gate circuits 9, 24 are non-rectified. Variable frequency automatic pulse phase shifter operating from zero to rated frequency of the slave motor 7 (Japanese Patent Publication No. 61-4835)
No. 3). Reference numeral 15 denotes a field current control circuit, and control circuit 16 denotes a circuit characteristic of the present invention, the details of which will be described later. Next, a detailed operation of the control circuit 16 which is a feature of the present invention will be described with reference to block diagrams of FIGS. 2 and 3, an operation time chart shown in FIG. 4, and operation explanatory diagrams shown in FIGS.

【0008】速度演算回路101は指令回路17の出力
R と速度検出器11の出力SF を入力し、無整流子電
動機7の速度がSR となるように演算する。反転回路1
02は速度演算回路101の出力の極性を反転しその出
力は逆トルク発生時使用される。切換回路103は、正
トルク時速度演算回路101の出力を、逆トルク時反転
回路102の出力を切換えて出力する。その切換は切換
信号により行なわれる。下限回路104は切換回路10
3の出力の値を電流連続するに必要な最下限電流(I1 )
以上を流すようにするための下限制限する。切換回路1
05は力行運転と回生運転との切換わり時に切換回路1
03の出力を、その他では下限回路104の出力を切換え
て出力し、電流指令とする。その切換は切換信号TC
より行なわれる。電流演算回路106は切換回路105
の出力の電流指令信号と電流検出回路12の出力IFB
が入力され、電動機7に流れる電流が電流指令信号とな
るように演算され、ゲート回路13の入力信号であるV
を出力する。107は電流連続に必要な下限発生ト
ルク(T1 )を設定する設定器、108は切換回路10
3の出力とは設定器107の出力の偏差を演算する演算
器、109は演算器108の出力が負の時すなわち、切
換回路103の出力が下限トルク(T1 )より小さいと
きにその偏差の負の値(−VP )を出力する演算器、1
10は極性反転回路、関数発生回路111はSF を入力
し、V0+k・SF を出力する。ここでV0 はサイリス
タ変換器5が無整流子電動機7の逆起電力で転流可能な
最小進み制御角を与えるための値(kは比例定数)、1
12は極性反転回路、113は進み制御角β=0に相当
するバイアス(−V1 )を設定する設定器、114は進
み制御角β=180°(遅れ制御角α=0)に相当する
バイアス(−V2 )を設定する設定器、115は加算回
路で正トルク時のサイリスタ変換器5の制御角を演算
し、(V0+k・SF−V1+VP )の値を出力するここ
で(V0 +k・SF−V1 )は連続限界で最大発生トル
ク係数となるサイリスタ変換器5の制御角相当値、VP
は必要発生トルクが限界発生トルク(±T1 )以下のと
きに発生トルク係数を小さくするための調整信号、11
6は加算回路で逆トルク時のサイリスタ変換器5の制御
角を演算し、(V2−V0−k・SF−VP )の値を出力
する、切換回路117は正トルク時加算回路115の出
力を、逆トルク時加算回路116の出力を切換えて出力す
る。その切換は切換信号Tβにより行なわれる。演算回
路118は切換回路17の出力を入力し、ゲート回路1
4の入力信号Vを出力する。図3は図2の切換信号
α ,Tβ ,TC を発生するための切換信号発生部で
制御回路16に含まれる。図3において、波形整形回路
201は速度演算回路101の出力T1 の正負を検出す
る回路で正トルク時“1”のTを発生する。202,2
03,204は信号反転回路、検出回路205は電流演
算回路106の出力Vがサイリスタ変換器3の逆変換
運転領域に相当する制御角に相当する−e1 以下になっ
た時“1”となる検出信号Aを出力する。検出回路20
6はVがサイリスタ変換器5の順変換領域に相当す
るe2 以上になった時“1”となる検出信号β1 を出力
する。検出回路207はVが−e3 以下(逆変換領
域に相当)になった時“1”となる検出信号B2を出力す
る。OR回路208は信号T,A,B1,B2をORする回
路で図4のt2〜t3の間“0”となる信号を発生し、切
換回路209を反転回路202の出力信号に切換えt3
〜t6の間“0”となる信号Tβを発生するNOR回路
211は反転回路203,204の信号をNORし、図
4のt6〜t8の間“1”となる信号を発生する。NOR
回路210はt5 〜t8 の間“0”となる信号Tαを発
生する。EOR回路212は信号TとTβのEORし、
正トルク/逆トルク切替時“1”の信号を発生するOR
回路213は、発生トルクを停止する指令T0 と上記E
OR回路212の出力をORし、切換信号TC を発生す
る。電流連続に制御する方式について図5〜図7を用い
て詳細に説明する。サイリスタ変換器5の制御角が一定
で発生トルク係数が一定のときの電動機電流(モータ電
流)と発生トルクの関係は図5に示す特性となり、電流
連続に必要な限界電流I1 以上とすると発生トルクはT
1 以上となる。サイリスタ変換器5の制御角と発生トル
ク係数の関係は図6に示す特性となる。図7(a)に示
す負荷トルクに必要な発生トルクにモータ電流をI1
上に流して制御するため、サイリスタ変換器3によりモ
ータ電流を図(c)に示すように制御し、発生トルクを
図(b)のように制御する。発生トルク−T1 〜T1
間はサイリスタ変換器5の制御角調整により図(d)に
示すように制御し、−T1〜T1 間以外では一定値にす
ることにより発生トルクは図(b)と図(d)の種とな
るため図(a)に示す発生トルクに制御することができ
る。
The speed calculation circuit 101 receives the output S R of the command circuit 17 and the output S F of the speed detector 11 and calculates so that the speed of the non-commutator motor 7 becomes S R. Inverting circuit 1
Numeral 02 inverts the polarity of the output of the speed calculation circuit 101, and the output is used when a reverse torque is generated. The switching circuit 103 switches the output of the speed calculation circuit 101 for positive torque and the output of the reversal circuit 102 for reverse torque and outputs the output. The switching is performed by a switching signal. The lower limit circuit 104 is the switching circuit 10
Minimum current (I 1 ) required to make the output value of 3 continuous
The lower limit for flowing the above is restricted. Switching circuit 1
05 is a switching circuit 1 when switching between powering operation and regenerative operation.
In the other cases, the output of the lower limit circuit 104 is switched and output in other cases, and is used as a current command. Its switching is performed by switching signal T C. The current calculation circuit 106 is a switching circuit 105
, And the output I FB of the current detection circuit 12 are input, the current flowing through the electric motor 7 is calculated to be a current command signal, and the input signal V
Outputs . 107 is a setter for setting a lower limit generated torque (T 1 ) necessary for continuous current, and 108 is a switching circuit 10
The output of 3 is an arithmetic unit for calculating the deviation of the output of the setting unit 107. The output 109 is a calculation unit when the output of the arithmetic unit 108 is negative, that is, when the output of the switching circuit 103 is smaller than the lower limit torque (T 1 ). calculator for outputting a negative value (-V P), 1
10 is a polarity inversion circuit, and the function generation circuit 111 inputs S F and outputs V 0 + k · SF. Here, V 0 is a value (k is a proportional constant) for giving the minimum advance control angle at which the thyristor converter 5 can commutate with the back electromotive force of the non-commutator motor 7, 1
12 is a polarity inversion circuit, 113 is a setter for setting a bias (−V 1 ) corresponding to the advance control angle β = 0, and 114 is a bias corresponding to the advance control angle β = 180 ° (lag control angle α = 0). A setter 115 for setting (−V 2 ), an adder circuit 115 calculates a control angle of the thyristor converter 5 at the time of positive torque and outputs a value of (V 0 + k · SF−V 1 + V P ). (V 0 + k · SF−V 1 ) is a value corresponding to the control angle of the thyristor converter 5 which becomes the maximum generated torque coefficient at the continuous limit, and V P
Is an adjustment signal for reducing the generated torque coefficient when the required generated torque is equal to or smaller than the limit generated torque (± T 1 );
Reference numeral 6 denotes an adder circuit for calculating the control angle of the thyristor converter 5 at the time of reverse torque and outputting a value of (V 2 −V 0 −k · SF−V P ). Is output by switching the output of the reverse torque addition circuit 116. Its switching is performed by switching signal T beta. The arithmetic circuit 118 receives the output of the switching circuit 17 and
And outputs a fourth input signal V C.beta. FIG. 3 shows a switching signal generator for generating the switching signals T α , T β , and T C of FIG. In FIG. 3, a waveform shaping circuit 201 detects whether the output T 1 of the speed calculation circuit 101 is positive or negative, and generates a T of “1” when the torque is positive. 202, 2
03,204 The signal inversion circuit, the detection circuit 205 is "1" when it becomes -e 1 below corresponds to the control angle output V C alpha of the current operation circuit 106 corresponds to the inverse transform operation region of the thyristor converter 3 Is output. Detection circuit 20
6 outputs a detection signal β 1 which becomes “1” when V becomes equal to or more than e 2 corresponding to the forward conversion region of the thyristor converter 5. Detection circuit 207 outputs a detection signal B 2 becomes "1" when V C.beta becomes -e 3 below (corresponding to the inverse transform domain). The OR circuit 208 is a circuit that performs an OR operation on the signals T, A, B 1 and B 2 , generates a signal that becomes “0” between t 2 and t 3 in FIG. Switching t 3
~t NOR circuit 211 for generating the composed signals T beta between "0" of 6 to NOR signal inversion circuits 203 and 204, generates a signal which becomes "1" during t 6 ~t 8 in FIG. 4 . NOR
Circuit 210 generates a signal T alpha which is between "0" of the t 5 ~t 8. EOR circuits 212 EOR signals T and T beta,
OR that generates "1" signal when switching between forward torque and reverse torque
The circuit 213 has a command T 0 for stopping the generated torque and the E
And OR output of the OR circuit 212, generates a switching signal T C. The method of controlling the current continuously will be described in detail with reference to FIGS. Relationship generated torque and motor current (motor current) of the control angle is when in generated torque coefficient constant is constant thyristor converter 5 becomes a characteristic shown in FIG. 5, occurs when the critical current I 1 or more necessary to the continuous current Torque is T
1 or more. FIG. 6 shows the relationship between the control angle of the thyristor converter 5 and the generated torque coefficient. Figure 7 of the motor current to generate torque required to load torque shown in (a) to control flow to I 1 or more, the motor current is controlled as shown in FIG. (C) by a thyristor converter 3, the generated torque Control is performed as shown in FIG. Between the generated torque -T 1 through T 1 is controlled as shown in (d) of FIG under the control angle adjustment of the thyristor converter 5, except between -T 1 through T 1 is the torque generated by a constant value Figure (B) and the seed of FIG. (D), the torque can be controlled to the generated torque shown in FIG.

【0009】他の実施例を図8に示す、図2の実施例と
異なるのは、発生トルクT1 以下となった時に発生する
偏差信号である109の出力信号を界磁設定値をかえる
設定器119より減算器120で減算し界磁電流指令値
Cfを作成しサイリスタ変換器5を制御し発生トルク係
数を制御するかわりに界磁電流を制御し発生トルク係数
(界磁電流と発生トルク係数の関係は図9に示す関係)
を調整し、電流を連続電流以上に制御し、図10に示す
ように負荷トルクに対応した発生トルクに制御する。
[0009] showing another embodiment in FIG. 8, differs from the embodiment of FIG. 2, the setting changing the field磁設value 109 output signal is an error signal generated when a torque T 1 or less A subtractor 120 subtracts the field current command value V Cf from the converter 119 to control the thyristor converter 5 to control the generated torque coefficient instead of controlling the generated torque coefficient. The relationship between the coefficients is shown in FIG. 9)
, The current is controlled to be equal to or greater than the continuous current, and the generated torque is controlled to correspond to the load torque as shown in FIG.

【0010】[0010]

【発明の効果】図2〜図7の実施例で記述した無整流子
電動機の制御方法によれば、ガスタービン発電プラント
の発電機を無整流子電動機としてサイリスタ始動する
時、問題となる高速回転用回転子への電流断続によるス
トレスを、サイリスタ変換器5の発生トルク係数を調整
することで電動機電流が連続となる限界電流以上で速度
制御できるのでなくすことができるという効果がある。
また、力行運転,回生運転においても限界電流以上で速
度制御可能で回転子へのストレスをなくすことができ
る。
According to the method for controlling a commutatorless motor described in the embodiments of FIGS. 2 to 7, when a thyristor of a gas turbine power plant is started as a commutatorless motor, a problem arises when a high-speed rotation becomes a problem. By adjusting the generated torque coefficient of the thyristor converter 5, the stress caused by the intermittent current to the rotor can be eliminated because the speed can be controlled at or above the limit current at which the motor current becomes continuous.
Further, even in the power running operation and the regenerative operation, the speed can be controlled with the current exceeding the limit current, and the stress on the rotor can be eliminated.

【0011】図8〜図10の実施例で記述した無整流子
電動機の制御方法によれば、電動機電機子電流を電流連
続限界電流値以上に制御しながら、負荷トルクが小さい
時は界磁電流を小さくし発生トルク係数を小さくする速
度制御ができるので回転子へのストレスをなくすことが
できる。
According to the control method of the commutatorless motor described in the embodiments of FIGS. 8 to 10, the motor armature current is controlled to the current continuous limit current value or more, and when the load torque is small, the field current is controlled. Speed can be controlled so as to reduce the generated torque coefficient, so that stress on the rotor can be eliminated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の全体ブロック図。FIG. 1 is an overall block diagram of one embodiment of the present invention.

【図2】本発明の制御回路の詳細回路図。FIG. 2 is a detailed circuit diagram of a control circuit of the present invention.

【図3】図2の切換信号発生部の詳細図。FIG. 3 is a detailed view of a switching signal generator of FIG. 2;

【図4】動作タイムチャート。FIG. 4 is an operation time chart.

【図5】モータ電流と発生トルクの関係図。FIG. 5 is a diagram showing the relationship between motor current and generated torque.

【図6】サイリスタ変換器の制御角と発生トルク係数の
関係図。
FIG. 6 is a relationship diagram between a control angle of a thyristor converter and a generated torque coefficient.

【図7】電流連続限界の負荷トルク±T1 範囲内と±T
1 範囲外での発生トルク制御動作図。
FIG. 7: Load torque of continuous current limit within ± T 1 range and ± T
FIG. 4 is a diagram illustrating generated torque control operation outside one range.

【図8】他の実施例。FIG. 8 shows another embodiment.

【図9】界磁電流と発生トルク係数の関係図。FIG. 9 is a relationship diagram between a field current and a generated torque coefficient.

【図10】図8の実施例の発生トルク制御動作図。FIG. 10 is a diagram illustrating the generated torque control operation of the embodiment of FIG. 8;

【符号の説明】[Explanation of symbols]

1…交流電源、3,5…サイリスタ変換器、7…無整流
子電動機となる同期発電機、9…ガスタービン、13,
14…ゲート回路、16…本発明の制御回路。
DESCRIPTION OF SYMBOLS 1 ... AC power supply, 3,5 ... Thyristor converter, 7 ... Synchronous generator which becomes a non-commutator motor, 9 ... Gas turbine, 13,
14: gate circuit, 16: control circuit of the present invention.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平3−32400(JP,A) 特開 昭58−99274(JP,A) (58)調査した分野(Int.Cl.7,DB名) H02P 6/20 H02P 1/46 ────────────────────────────────────────────────── ─── Continuation of front page (56) References JP-A-3-32400 (JP, A) JP-A-58-99274 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H02P 6/20 H02P 1/46

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】交流電源が電源側かつ無整流子電動機であ
る同期電動機が負荷側となる力行運転時には順変換動作
を行い、上記交流電源が負荷側かつ上記同期電動機が電
源側となる回生運転時には逆変換動作を行う電源側電力
半導体変換器を交流電源側に接続し、上記力行運転時に
は逆変換動作を行い、上記回生運転時には順変換動作を
行う電動機側電力半導体変換器を同期発電機側に接続
し、速度検出器で検出した上記同期電動機の回転速度信
号と電流検出器で検出した上記交流電源からの電流値信
号を制御回路に入力し、上記同期電動機電流が断続しな
い連続限界電流I1 に必要な下限発生トルクをT1 とし
たとき、上記入力信号から算出される発生トルクが、−
1 〜T1 間以外では上記電動機側電力半導体変換器の
制御角を発生トルク係数が最大となるように制御し、上
記発生トルクが−T1 〜T1 間では下限発生トルクT1
以上となるように発生トルク係数を小さくするように上
記電動機側電力半導体変換器を制御して速度制御するこ
とを特徴とする無整流子電動機の制御方法。
1. A forward conversion operation is performed during a power running operation in which an AC power supply is on the power supply side and a synchronous motor that is a non-rectifier motor is on the load side, and a regenerative operation in which the AC power supply is on the load side and the synchronous motor is on the power supply side. Sometimes, the power-side power semiconductor converter that performs the reverse conversion operation is connected to the AC power supply side, performs the reverse conversion operation during the power running operation, and performs the forward conversion operation during the regenerative operation. To the control circuit, and inputs the rotation speed signal of the synchronous motor detected by the speed detector and the current value signal from the AC power supply detected by the current detector to the control circuit, and the continuous limit current I in which the synchronous motor current is not interrupted. when the lower limit torque was T 1 required for one generation torque calculated from the input signal, -
T 1 through T other than between 1 controls so generated torque coefficient control angle of the motor-side power semiconductor converter is maximized, the lower limit torque T 1 is the torque generated between -T 1 through T 1
A method for controlling a commutatorless motor, comprising controlling the speed of the motor-side power semiconductor converter so as to reduce the generated torque coefficient as described above.
【請求項2】請求項1記載の無整流子電動機の制御方法
において、力行運転から回生運転へ、あるいは回生運転
から力行運転へのトルク方向反転時に、上記電源側電力
半導体変換器と電動機側電力半導体変換器のうち順変換
動作側にある電力半導体変換器の制御角を逆変換動作
切換え、かつ出力電圧あるいは出力電圧を制御するため
の位相信号が逆変換動作になったことを確認してから
変換動作側にあった電力半導体変換器の制御角を順変
動作に切換えて、上記電源側電力半導体変換器と上記
動機側電力半導体変換器との動作をそれぞれ入れ替えて
トルク方向が反転するように制御することを特徴とする
無整流子電動機の制御方法。
2. The method for controlling a commutatorless motor according to claim 1, wherein the power supply-side electric power is supplied when the torque direction is changed from a power running operation to a regenerative operation or from a regenerative operation to a power running operation.
Forward conversion of semiconductor converter and motor-side power semiconductor converter
Conversely from the control angle of the power semiconductor converter in the operating side switched to the inverse transform operation, and to confirm that the phase signal for controlling the output voltage or the output voltage is reversed varying over operation
The control angle of a power semiconductor converter conversion operation side forward conversion
It is switched to the operation, the power source side power semiconductor converter and the collector
A method for controlling a commutatorless motor, characterized in that the operation with a motor- side power semiconductor converter is exchanged with each other to control the torque direction to be reversed.
【請求項3】請求項1記載の無整流子電動機の制御方法
において、発生トルクが−T 1 〜T 1 では、電動機側変
換器の制御角を転流限界で発生トルク係数が最大となる
値にしたままで、界磁電流を減少させ発生トルク係数の
減少制御により電動機の電流を断続させずに速度制御す
ることを特徴とする無整流子電動機の制御方法。
3. A method of controlling a Brushless DC electric motor according to claim 1, wherein, in between generated torque -T 1 through T 1, torque coefficient control angle commutation limit of the motor-side converter is maximum A method for controlling a commutatorless motor, wherein the speed is controlled without interrupting the current of the motor by reducing the field current and reducing the generated torque coefficient while keeping the value.
【請求項4】請求項2記載の無整流子電動機の制御方法
において、発生トルクが−T 1 〜T 1 では、電動機側変
換器の制御角を転流限界で発生トルク係数が最大となる
値にしたままで、限界電流を減少させ、発生トルク係数
の減少制御により電動機の電流を断続させずに速度制御
することを特徴とする無整流子電動機の制御方法。
4. A method of controlling a Brushless DC electric motor according to claim 2, in between generated torque -T 1 through T 1, torque coefficient control angle commutation limit of the motor-side converter is maximum A method for controlling a commutatorless motor, characterized in that the limit current is reduced while keeping the value, and the speed is controlled without interrupting the current of the motor by reducing the generated torque coefficient.
JP18788992A 1992-07-15 1992-07-15 Control method of commutatorless motor Expired - Fee Related JP3278908B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18788992A JP3278908B2 (en) 1992-07-15 1992-07-15 Control method of commutatorless motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18788992A JP3278908B2 (en) 1992-07-15 1992-07-15 Control method of commutatorless motor

Publications (2)

Publication Number Publication Date
JPH0638577A JPH0638577A (en) 1994-02-10
JP3278908B2 true JP3278908B2 (en) 2002-04-30

Family

ID=16213970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18788992A Expired - Fee Related JP3278908B2 (en) 1992-07-15 1992-07-15 Control method of commutatorless motor

Country Status (1)

Country Link
JP (1) JP3278908B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002354106A1 (en) 2001-12-07 2003-06-30 Ebara Corporation Turbine generator start method and turbine generation system

Also Published As

Publication number Publication date
JPH0638577A (en) 1994-02-10

Similar Documents

Publication Publication Date Title
JPH08182398A (en) Driving device for permanent magnet-type synchronous motor
JP2005045849A (en) Wind power generator
WO2006034236A1 (en) Power converter controlling apparatus and method applying a fault protection scheme in a motor drive system
JP2007037274A (en) Control unit for synchronous motor
JP2014003783A (en) Power converter controller and multiplex winding-type motor drive unit
JP3259571B2 (en) PWM control device and system using the same
JP3765437B2 (en) Control system for synchronous motor for machine tool spindle drive
JPH0974800A (en) Control apparatus for ac motor
JP3279457B2 (en) Control device for permanent magnet synchronous motor
JP4542797B2 (en) Control device for synchronous machine
Vaez et al. Adaptive loss minimization control of inverter-fed IPM motor drives
JP3796556B2 (en) Method and apparatus for controlling magnet-embedded synchronous motor
JP3053611B2 (en) Pumped storage generator
JP3278908B2 (en) Control method of commutatorless motor
JP3788925B2 (en) Wind power generator using permanent magnet type synchronous generator and its starting method
JP3395814B2 (en) Drive device for permanent magnet type synchronous motor
JPH0880098A (en) Vector controller of motor
JP4766361B2 (en) Initial magnetic pole estimation device for AC synchronous motor
JP3290099B2 (en) Control device for reluctance type synchronous motor
Hu et al. Direct torque control of induction motor for railway traction in whole speed range
JP3716278B2 (en) AC motor speed control device
WO2021224976A1 (en) Power conversion device and control method thereof
WO2024057633A1 (en) Power regeneration converter
KR102133181B1 (en) Apparatus for controlling inverter
JPH11164597A (en) Vector controller for induction motor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090222

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090222

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100222

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100222

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees