JP3278712B2 - Multi-room air conditioner - Google Patents
Multi-room air conditionerInfo
- Publication number
- JP3278712B2 JP3278712B2 JP23939195A JP23939195A JP3278712B2 JP 3278712 B2 JP3278712 B2 JP 3278712B2 JP 23939195 A JP23939195 A JP 23939195A JP 23939195 A JP23939195 A JP 23939195A JP 3278712 B2 JP3278712 B2 JP 3278712B2
- Authority
- JP
- Japan
- Prior art keywords
- indoor
- room air
- air conditioner
- outdoor
- air temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Air Conditioning Control Device (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、一台の室外機と一台ま
たは複数台の室内機によって、利用部の空気の過熱や冷
却を行う多室空気調和機に関し、特に、利用部の空気温
度等を低消費電力で制御する多室空気調和機に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multi-room air conditioner in which one outdoor unit and one or more indoor units heat and cool air in a use unit. The present invention relates to a multi-room air conditioner that controls temperature and the like with low power consumption.
【0002】[0002]
【従来の技術】このような従来の多室空気調和機として
は、省エネルギ制御をするもの、すなわち低消費電力化
を図ったものとして特開昭63−25446号公報等に
記載されているものがある。2. Description of the Related Art Such a conventional multi-room air conditioner is described in Japanese Patent Application Laid-Open No. 63-25446 or the like for controlling energy saving, that is, for reducing power consumption. There is.
【0003】また、システム同定を用いた制御技術を有
する多室空気調和機としては、特開昭62−12881
6号公報、特開昭63−282441号公報、特開平3
−13754号公報等に記載されている技術がある。A multi-room air conditioner having a control technique using system identification is disclosed in Japanese Patent Application Laid-Open No. 62-12881.
No. 6, JP-A-63-282441, JP-A-Hei 3
There is a technology described in JP-A-13754.
【0004】そして、従来の多室空気調和機における運
転制御技術では、その制御量や外乱等の状態量を確定的
な変数として考慮していた。例えば、ある室外空気温度
が、空調負荷として印加した場合に、その特定の室外空
気温度条件のもとで希望の室温等の状態に制御できるよ
う様々な考慮がなされていた。[0004] In the conventional operation control technology for a multi-room air conditioner, the controlled variable and the state variable such as disturbance are considered as deterministic variables. For example, various considerations have been made so that when a certain outdoor air temperature is applied as an air conditioning load, a state such as a desired room temperature can be controlled under the specific outdoor air temperature condition.
【0005】[0005]
【発明が解決しようとする課題】しかしながら上述の従
来の多室空気調和機では、その室外空気温度が確率的に
出現し、どのような頻度で出現するか、また、その確率
分布が分かった場合に、如何にすれば希望の状態が統計
的に好都合に維持できるか等の考慮はなされていなかっ
た。However, in the above-mentioned conventional multi-room air conditioner, when the outdoor air temperature appears stochastically, at what frequency it appears, and when the probability distribution is known. In addition, no consideration has been given to how to keep the desired state statistically favorable.
【0006】また、システム同定に関する従来の制御技
術では、制御定数を設計段階で決めるので、予め多室空
気調和機の特性を調べておく制御方式であるオフライン
システム同定が用いられている。これにより、従来の多
室空気調和機では、空気調和の対象となる利用家屋の空
調負荷等のような、多室空気調和機が設置されるまで未
知なパラメータについてまで対応した運転制御をするこ
とができなかった。In a conventional control technique relating to system identification, an off-line system identification, which is a control method in which characteristics of a multi-room air conditioner are checked in advance because a control constant is determined at a design stage, is used. As a result, in the conventional multi-room air conditioner, it is necessary to perform operation control corresponding to unknown parameters until the multi-room air conditioner is installed, such as an air-conditioning load of a house to be air-conditioned. Could not.
【0007】一方、上述したように、実際の現象は、何
らかの不確定要素を含む確率事象である。ここで、確率
事象とは、例えば、図5に示すような、ある冷房期間中
における冷房を必要とする各温度(室外空気温度)の発
生頻度をあげることができる。従って、その不確定要素
を認識して設計を行なわなければ、統計的に良好な制御
が行えない。On the other hand, as described above, an actual phenomenon is a stochastic event including some uncertain factor. Here, the probability event can be, for example, an occurrence frequency of each temperature (outdoor air temperature) requiring cooling during a certain cooling period as shown in FIG. Therefore, unless the design is performed by recognizing the uncertain element, statistically good control cannot be performed.
【0008】ところが多室空気調和機についての全ての
状態量に関する確率分布を入手することは不可能であ
り、また、可能だとしても、全ての確率現象を取り扱う
と非常に煩雑になり、それが最適であるとは限らない。However, it is impossible to obtain the probability distributions of all the state quantities of the multi-room air conditioner, and even if it is possible, handling all the probability phenomena becomes very complicated. Not always optimal.
【0009】ただ、図5に示す室外空気温度のように、
出現頻度分布という過去のデータが豊富で、しかも重要
な事象に関しては、予めその事象自体の不確定性や、統
計的性格を考慮にいれた制御手法が有効である。However, like the outdoor air temperature shown in FIG.
For important events that have abundant past data, such as the appearance frequency distribution, a control method that takes into account the uncertainty of the event itself and the statistical characteristics in advance is effective.
【0010】例えば、多室空気調和機の効率に関して、
多室空気調和機のエネルギ消費効率COPは、下記数式
1として定義される。For example, regarding the efficiency of a multi-room air conditioner,
The energy consumption efficiency COP of the multi-room air conditioner is defined as Equation 1 below.
【0011】[0011]
【数1】 (Equation 1)
【0012】ここで、Φは多室空気調和機能力、Pは多
室空気調和機の消費電力である。ところが、このCOP
は、標準空気温度条件と呼ばれるある特定の室外空気温
度(空調負荷)条件における値であって、必ずしも多室
空気調和機の性能を表したものとはいえない。Here, Φ is the power of the multi-room air conditioner, and P is the power consumption of the multi-room air conditioner. However, this COP
Is a value under a specific outdoor air temperature (air conditioning load) condition called a standard air temperature condition, and does not necessarily represent the performance of the multi-room air conditioner.
【0013】近年、その欠点を補うために、年間エネル
ギ消費効率(APF)と呼ばれる、{(冷房・暖房各期
間の空調負荷×頻度)の合計}/{(冷房・暖房の各期
間の消費電力×頻度)の合計}が多室空気調和機の性能
を表す成績係数として使用されるようになった。このA
PFは、各期間の空調負荷及び消費電力に統計的な考え
方を考慮にいれたもので、実際に近いより実用的な効率
を表している。In recent years, in order to make up for the drawback, an annual energy consumption efficiency (APF), which is a sum of {(air-conditioning load in each period of cooling / heating × frequency)} / {(power consumption in each period of cooling / heating) × frequency) has been used as a coefficient of performance indicating the performance of a multi-room air conditioner. This A
The PF takes into account the statistical concept of the air-conditioning load and power consumption in each period, and represents a more practical efficiency that is close to actual.
【0014】しかし、従来の多室空気調和機における様
々な制御法は、室内空気温度、室外空気温度等の状態
量、及びその制御法のための評価関数に対しても確定的
な取り扱いをする制御法であり、このAPFに代表され
るような統計評価関数に対しては、考慮していなかっ
た。[0014] However, various control methods in the conventional multi-room air conditioner perform deterministic treatment on state quantities such as indoor air temperature and outdoor air temperature, and evaluation functions for the control method. This is a control method, and a statistical evaluation function represented by the APF was not considered.
【0015】そこで、本発明は、状態量及び評価関数を
統計的なものとして捉え、統計概念を導入することによ
って、より精密で、高効率な制御を行ない、APF等の
統計評価関数に対しても成績を向上させることができる
多室空気調和機を提供することを目的とする。Accordingly, the present invention regards the state quantity and the evaluation function as statistical and introduces a statistical concept to perform more precise and highly efficient control. It is another object of the present invention to provide a multi-room air conditioner capable of improving performance.
【0016】また、本発明は、下記数式3に表されるよ
うな、実際に多室空気調和機が設置された後でないと予
測不可能な実効年間エネルギ消費効率σを、オンライン
システム同定器を用いて、高効率化する多室空気調和機
を提供することを目的とするFurther, the present invention provides an online system identifier for determining the effective annual energy consumption efficiency σ which cannot be predicted until after the multi-room air conditioner is actually installed, as represented by the following equation (3). The purpose is to provide a multi-room air conditioner with high efficiency by using
【0017】。[0017]
【課題を解決するための手段】本発明の多室空気調和機
は、室外機と、室内機を一台または複数台設け、前記室
外機と前記室内機とを配管接続して閉回路となし、前記
閉回路の中に冷媒を封入し、前記室外機においては、周
波数可変の圧縮機と室外熱交換器及び室外電子膨張弁を
配管接続するとともに、前記室外熱交換器に送風する室
外ファンを備え、前記室内機においては、室内空気と熱
交換を行う室内熱交換器と前記室内熱交換器の冷媒の流
量を調節する室内電子膨張弁を順次配管接続するととも
に、前記室内熱交換器に送風する室内ファンを備えて形
成する多室空気調和機において、室内空気温度と室外空
気温度とのうちの少なくとも一方を含む制御量や外乱を
少なくとも含む各状態量を、ある確率分布に従った不確
定な挙動をする確率変数とみなし、エネルギ効率を少な
くとも含む評価関数を、確率事象を確定値に処理する統
計評価関数とし、この統計評価関数を最適化する制御装
置を有することを特徴とする。A multi-room air conditioner according to the present invention comprises an outdoor unit and one or more indoor units, and connects the outdoor unit and the indoor unit with a pipe to form a closed circuit. A refrigerant is sealed in the closed circuit, and in the outdoor unit, a frequency-variable compressor, an outdoor heat exchanger, and an outdoor electronic expansion valve are connected by piping, and an outdoor fan that blows air to the outdoor heat exchanger is provided. In the indoor unit, an indoor heat exchanger that exchanges heat with indoor air and an indoor electronic expansion valve that adjusts a flow rate of a refrigerant of the indoor heat exchanger are sequentially connected by piping, and air is blown to the indoor heat exchanger. In a multi-room air conditioner formed with an indoor fan, a control amount including at least one of an indoor air temperature and an outdoor air temperature and each state amount including at least a disturbance are uncertain according to a certain probability distribution. Behavior Regarded as variables, at least including the evaluation function the energy efficiency, and a statistical evaluation function to handle probability events determined value, characterized in that it has a control device for optimizing the statistical evaluation function.
【0018】また、本発明の多室空気調和機において、
制御装置は、室外空気温度、圧縮機冷媒吐出過熱度、圧
縮機冷媒吸入圧力、圧縮機冷媒吐出圧力、圧縮機消費電
力、室内空気温度及び室内吹き出し空気温度を少なくと
も含む各状態量を検知する検知手段と、圧縮機駆動周波
数、室外ファン回転数、室外電子膨張弁開度、室内ファ
ン回転数及び室内電子膨張弁開度を少なくとも含む各操
作量を操作する操作手段と、設定室内空気温度を少なく
とも含む設定値を設定する設定手段と、多室空気調和機
についての年間を通じたエネルギ消費効率の値である年
間エネルギ消費効率(APF)を統計評価関数として最
大化するAPF最大化操作量演算器とを有することが好
ましい。Further, in the multi-room air conditioner of the present invention,
The control device detects each state quantity including at least the outdoor air temperature, the compressor refrigerant discharge superheat degree, the compressor refrigerant suction pressure, the compressor refrigerant discharge pressure, the compressor power consumption, the indoor air temperature, and the indoor discharge air temperature. Means, a compressor driving frequency, an outdoor fan rotation speed, an outdoor electronic expansion valve opening degree, an operating means for operating each operation amount including at least an indoor fan rotation speed and an indoor electronic expansion valve opening degree, and at least a set indoor air temperature. A setting means for setting a set value including an APF maximizing operation amount calculator for maximizing, as a statistical evaluation function, an annual energy consumption efficiency (APF) which is a value of energy consumption efficiency throughout the year for the multi-room air conditioner. It is preferable to have
【0019】また、本発明の多室空気調和機において、
制御装置は、室外空気温度、圧縮機冷媒吐出過熱度、圧
縮機冷媒吸入圧力、圧縮機冷媒吐出圧力、圧縮機消費電
力、室内空気温度及び室内吹き出し空気温度を少なくと
も含む各状態量を検知する検知手段と、圧縮機駆動周波
数、室外ファン回転数、室外電子膨張弁開度、室内ファ
ン回転数及び室内電子膨張弁開度を少なくとも含む各操
作量を操作する操作手段と、設定室内空気温度を少なく
とも含む設定値を設定する設定手段と、前記各操作量に
ついての信号を要素とする操作量信号ベクトルと前記検
知手段が検知した各信号を要素とする検知信号ベクトル
とを入力して、多室空気調和機を少なくとも含む各制御
対象の特性を表すパラメータ推定値信号ベクトルを同定
出力するオンラインシステム同定器と、前記検知信号ベ
クトルと前記パラメータ推定信号ベクトルと前記設定手
段が設定した設定値を要素とする設定値信号ベクトルと
を入力し、年間エネルギ消費効率(APF)を統計評価
関数として最大化するAPF最大化操作量信号ベクトル
を出力するフィードバック演算器とを有することが好ま
しい。Further, in the multi-room air conditioner of the present invention,
The control device detects each state quantity including at least the outdoor air temperature, the compressor refrigerant discharge superheat degree, the compressor refrigerant suction pressure, the compressor refrigerant discharge pressure, the compressor power consumption, the indoor air temperature, and the indoor discharge air temperature. Means, a compressor driving frequency, an outdoor fan rotation speed, an outdoor electronic expansion valve opening degree, an operating means for operating each operation amount including at least an indoor fan rotation speed and an indoor electronic expansion valve opening degree, and at least a set indoor air temperature. Setting means for setting a set value including the input, an operation amount signal vector having a signal for each of the operation amounts as an element and a detection signal vector having each signal detected by the detection means as an element, and inputting the multi-chamber air An on-line system identifier for identifying and outputting a parameter estimation value signal vector representing a characteristic of each control target including at least a harmony device, the detection signal vector and the parameter And an APF maximizing operation amount signal vector for maximizing an annual energy consumption efficiency (APF) as a statistical evaluation function. It is preferable to have a feedback calculator for outputting.
【0020】また、本発明の多室空気調和機において、
制御装置は、室外空気温度、圧縮機冷媒吐出過熱度、圧
縮機冷媒吸入圧力、圧縮機冷媒吐出圧力、圧縮機消費電
力、室内空気温度及び室内吹き出し空気温度を少なくと
も含む各状態量を検知する検知手段と、圧縮機駆動周波
数、室外ファン回転数、室外電子膨張弁開度、室内ファ
ン回転数及び室内電子膨張弁開度を少なくとも含む各操
作量を操作する操作手段と、設定室内空気温度を少なく
とも含む設定値を設定する設定手段と、前記各操作量に
ついての信号を要素とする操作量信号ベクトルと前記検
知手段が検知した各信号を要素とする検知信号ベクトル
とを入力して、多室空気調和機を少なくとも含む各制御
対象の特性を表すパラメータ推定値信号ベクトルを同定
出力するオンラインシステム同定器と、前記検知信号ベ
クトルと前記パラメータ推定信号ベクトルと前記設定手
段が設定した設定値を要素とする設定値信号ベクトルと
を入力し、実際の多室空気調和機設置利用家屋において
の年間エネルギ消費効率を統計評価関数として最大化す
る、実効年間エネルギ消費効率最大化操作量信号ベクト
ルを出力するフィードバック実効年間エネルギ消費効率
最大化操作量演算器とを有することが好ましい。In the multi-room air conditioner of the present invention,
The control device detects each state quantity including at least the outdoor air temperature, the compressor refrigerant discharge superheat degree, the compressor refrigerant suction pressure, the compressor refrigerant discharge pressure, the compressor power consumption, the indoor air temperature, and the indoor discharge air temperature. Means, a compressor driving frequency, an outdoor fan rotation speed, an outdoor electronic expansion valve opening degree, an operating means for operating each operation amount including at least an indoor fan rotation speed and an indoor electronic expansion valve opening degree, and at least a set indoor air temperature. Setting means for setting a set value including the input, an operation amount signal vector having a signal for each of the operation amounts as an element and a detection signal vector having each signal detected by the detection means as an element, and inputting the multi-chamber air An on-line system identifier for identifying and outputting a parameter estimation value signal vector representing a characteristic of each control target including at least a harmony device, the detection signal vector and the parameter Data estimation signal vector and a set value signal vector having the set value set by the setting means as an element, and maximizing the annual energy consumption efficiency in the actual multi-room air conditioner installation house as a statistical evaluation function. It is preferable to have a feedback effective annual energy consumption efficiency maximizing operation amount calculator that outputs an effective annual energy consumption efficiency maximizing operation amount signal vector.
【0021】[0021]
【作用】本多室空気調和機における制御装置は、設定熱
環境空間を得るための方策として、複数の利用部室内空
気温度、圧縮機冷媒吐出圧力、圧縮機冷媒吸入圧力、圧
縮機冷媒吐出過熱度、多室空気調和機能力等の制御量
が、それぞれ決められた設定値に一致するように、圧縮
機の周波数や室外電子膨張弁開度、室内電子膨張弁開度
や室外及び室内ファンといった操作量を制御するもので
ある。The control device of the present multi-room air conditioner has a plurality of utilization unit indoor air temperatures, a compressor refrigerant discharge pressure, a compressor refrigerant suction pressure, a compressor refrigerant discharge overheat as a measure for obtaining a set thermal environment space. Degree, the control amount of the multi-room air conditioning function, etc., match the set values respectively set, such as the compressor frequency, the outdoor electronic expansion valve opening, the indoor electronic expansion valve opening, and the outdoor and indoor fans. The operation amount is controlled.
【0022】すなわち、本多室空気調和機における制御
装置は、多室空気調和機全体が常に適正な運転状態とな
ることを制御目的とし、安定かつ安全な運転を保持する
とともに、空調負荷の増減に応じた暖房あるいは冷房能
力を発揮させ、使用者に好ましい熱環境空間を得ること
を制御目的としている。That is, the control device of the present multi-room air conditioner aims at controlling the entire multi-room air conditioner to always be in an appropriate operation state, and maintains stable and safe operation while increasing or decreasing the air conditioning load. The purpose of the present invention is to provide a heating or cooling capacity corresponding to the temperature and to obtain a thermal environment space preferable for the user.
【0023】ここで、本発明の多室空気調和機の制御装
置では、年間エネルギ消費効率(APF)等のような確
率事象に対しては、統計的概念を導入し、統計的評価関
数を良好化する制御を行なう。Here, in the control device for a multi-room air conditioner of the present invention, a statistical concept is introduced for a stochastic event such as annual energy consumption efficiency (APF) to improve the statistical evaluation function. Control is performed.
【0024】加えてオンラインシステム同定法によって
多室空気調和機と利用家屋の特性を明らかにし、結果を
利用することで、より精密、高効率に制御を行なうこと
ができ、省電力化に大いに貢献することができる。In addition, the characteristics of the multi-room air conditioner and the user's house are clarified by the online system identification method, and the results can be used to perform more precise and highly efficient control, greatly contributing to power saving. can do.
【0025】すなわち、本多室空気調和機の制御装置に
おける確率事象に対応する手法は、確率事象を確定的な
ものに変換する演算方法である。例えば、APFは、元
々確率事象である多室空気調和機エネルギ消費効率を、
室外空気温度の確率分布を用いて確定量に変換したもの
である。このような変換演算値としては、期待値、相
関、分散等があり、これらは確率事象の統計的性格を表
すものである。それらの確率事象の演算方法を導入する
ことによって、APF等統計的評価関数の良好化を行な
う。That is, the method corresponding to the probability event in the control device of the present multi-room air conditioner is a calculation method for converting the probability event into a deterministic one. For example, APF uses the multi-room air conditioner energy consumption efficiency, which is a stochastic event originally,
This is converted into a determined amount using the probability distribution of the outdoor air temperature. Such conversion operation values include expected values, correlations, variances, and the like, which represent the statistical nature of the stochastic event. The statistical evaluation function such as APF is improved by introducing a method of calculating the probability events.
【0026】多室空気調和機の年間エネルギ消費効率
(APF)は、下記数式2として定義される。The annual energy consumption efficiency (APF) of the multi-room air conditioner is defined by the following equation (2).
【0027】[0027]
【数2】 (Equation 2)
【0028】ここで、BLhは空調負荷、Pは多室空気
調和機消費電力、T0は室外空気温度、Xは運転率、P
LFは部分負荷係数、cDは成績劣化係数、PRHは空調
負荷に対して多室空気調和機の暖房能力の不足を補うた
めの電熱装置の消費電力、nはある室外空気温度につい
ての出現時間、jは室外空気温度分布を離散分布で段階
的に与えたとき、その刻みの番号を表すパラメータであ
る。また、添字cは冷房期間について、添字hは暖房期
間について表している。[0028] Here, BL h is the air conditioning load, P is a multi-chamber air conditioner power consumption, T 0 is the outdoor air temperature, X is the operating rate, P
LF partial load factor, c D emergence of power consumption, n represents a certain outdoor air temperature of the heating apparatus for compensating for the lack of performance degradation coefficient, the heating capacity of the multi-room air conditioner with respect to P RH is air conditioning load Time and j are parameters representing the step numbers when the outdoor air temperature distribution is given in a discrete distribution. The subscript “c” indicates the cooling period, and the subscript “h” indicates the heating period.
【0029】このAPFは、多室空気調和機の能力をも
とに定められた空調負荷と、多室空気調和機の消費電力
で計算されるが、この多室空気調和機の能力と消費電力
は、当然、室外、室内電子膨張弁開度、室外、室内ファ
ン回転数、圧縮機駆動周波数等の操作量に依存する。し
たがって、APFは操作量に関しての関数である。The APF is calculated based on the air-conditioning load determined based on the capacity of the multi-room air conditioner and the power consumption of the multi-room air conditioner. Naturally depends on the operation amount such as the outdoor and indoor electronic expansion valve opening degree, the outdoor and indoor fan rotation speed, and the compressor drive frequency. Therefore, APF is a function related to the manipulated variable.
【0030】また、室外空気温度の分布が予め既知であ
るので、期待値を最大化する演算方法を用いて、APF
最大化操作量を計算することができる。このような操作
量を常に出力する制御装置を備えた本発明の多室空気調
和機は、省電力化に大いに貢献することができる。Also, since the distribution of the outdoor air temperature is known in advance, the APF is calculated using a calculation method that maximizes the expected value.
A maximizing manipulated variable can be calculated. The multi-room air conditioner of the present invention including the control device that constantly outputs such an operation amount can greatly contribute to power saving.
【0031】さらに年間エネルギ消費効率向上の補助手
法としては、実際に多室空気調和機を運転する際にシス
テム同定を行う、オンラインシステム同定法を用いるこ
とが好ましい。これにより、上記の考え方をさらに一歩
進めることができ、より一層の省電力化を達成すること
ができる。Further, as an auxiliary method for improving the annual energy consumption efficiency, it is preferable to use an online system identification method for performing system identification when actually operating the multi-room air conditioner. As a result, the above concept can be taken one step further, and further power saving can be achieved.
【0032】このオンラインシステム同定法は、多室空
気調和機が設置されてから後では測定が困難な多室空気
調和機の設置後の特性や、空調負荷を表す利用家屋の熱
通過係数等も同定するものである。This on-line system identification method uses characteristics after installation of the multi-room air conditioner, which is difficult to measure after the multi-room air conditioner is installed, and the heat transfer coefficient of the user's house representing the air conditioning load. It is to identify.
【0033】これらにより、本多室空気調和機は、様々
な条件を持った個々の設置場所において、年間エネルギ
消費効率を統計評価関数として最大化すなわち良好化す
ることができる。As a result, the present multi-room air conditioner can maximize, ie, improve the annual energy consumption efficiency as a statistical evaluation function at individual installation locations having various conditions.
【0034】上述のAPFを算出する場合において、空
調負荷BL(T0)は、多室空気調和機単体の能力と予
め定められた中立温度から算定するものであって、多室
空気調和機の設置される利用家屋の実際の空調負荷を表
しているものではない。多室空気調和機の能力や消費電
力も、実験場所で測定したある特定の値にすぎない。In calculating the APF, the air conditioning load BL (T 0 ) is calculated from the capacity of the multi-room air conditioner alone and a predetermined neutral temperature. It does not represent the actual air conditioning load of the installed house. The capacity and power consumption of a multi-room air conditioner are also only certain values measured at the experimental site.
【0035】よって、APFを最大化する意味は、多室
空気調和機単独の性能を最大化することで、必ずしも実
際の使用状況にける年間消費エネルギ消費電力を最大化
することではない。しかし、オンラインシステム同定
は、利用家屋の空調負荷、多室空気調和機の能力、消費
電力を検出し、下記数式3に表すような実効年間消費エ
ネルギ消費効率σを最大化することができる。Therefore, maximizing the APF means maximizing the performance of the multi-room air conditioner alone, not necessarily maximizing the annual energy consumption in actual use conditions. However, the online system identification detects the air-conditioning load of the user's house, the capacity of the multi-room air conditioner, and the power consumption, and can maximize the effective annual energy consumption efficiency σ as represented by the following Expression 3.
【0036】[0036]
【数3】 (Equation 3)
【0037】ここで、分子のL(T0)は、利用家屋の
実際の空調負荷である。Here, the numerator L (T 0 ) is the actual air conditioning load of the house.
【0038】[0038]
【実施例】以下、本発明の実施例について図面を参照し
て説明する。Embodiments of the present invention will be described below with reference to the drawings.
【0039】図1は、本発明の実施例に係る多室空気調
和機の主要部を示すブロック線図である。また、図3
は、本発明の実施例に係る多室空気調和機の全体構成と
その利用家屋についての配置を示す説明図である。FIG. 1 is a block diagram showing a main part of a multi-room air conditioner according to an embodiment of the present invention. FIG.
FIG. 1 is an explanatory diagram showing an overall configuration of a multi-room air conditioner according to an embodiment of the present invention and an arrangement of a house for using the air conditioner.
【0040】本多室空気調和機は、室外機1と、室内機
91,92を有し、室外機1と室内機91,92とを配
管接続して閉回路となし、この閉回路の中に冷媒を封入
している。The multi-room air conditioner has an outdoor unit 1 and indoor units 91 and 92. The outdoor unit 1 and the indoor units 91 and 92 are connected by piping to form a closed circuit. The refrigerant is sealed in
【0041】そして、室外機1は、少なくとも一台の周
波数可変の圧縮機2と室外熱交換器3及び室外電子膨張
弁8を配管接続するとともに、室外熱交換器3に送風す
る室外ファン4を備えているとともに、アキュムレータ
5、四方弁6及びレシーバ7をも備えている。The outdoor unit 1 connects at least one variable frequency compressor 2 with the outdoor heat exchanger 3 and the outdoor electronic expansion valve 8 by piping, and also controls the outdoor fan 4 for blowing air to the outdoor heat exchanger 3. And an accumulator 5, a four-way valve 6, and a receiver 7.
【0042】室内機91,92は、室内空気と熱交換を
行う室内熱交換器101,102と室内熱交換器10
1,102の冷媒の循環量を調節する室内電子膨張弁1
21、122を順次配管接続するとともに、室内熱交換
器101,102に送風する室内ファン111、112
を備えている。The indoor units 91 and 92 are provided with indoor heat exchangers 101 and 102 for exchanging heat with indoor air and indoor heat exchangers 10 and 102, respectively.
Indoor electronic expansion valve 1 for adjusting the circulation amount of refrigerant 1,102
The indoor fans 111 and 112 are connected to the indoor heat exchangers 101 and 102 while connecting pipes 21 and 122 sequentially.
It has.
【0043】ここで、室外機1及び複数の室内機91,
92の各ガス側及び液側を、各々ガス側管路13及び液
側管路14と分岐管151,152で接続して閉回路と
なし、その閉回路の内部に冷媒を封入している。Here, the outdoor unit 1 and the plurality of indoor units 91,
Each of the gas side and liquid side 92 is connected to the gas side pipe 13 and the liquid side pipe 14 by branch pipes 151 and 152 to form a closed circuit, and a refrigerant is sealed inside the closed circuit.
【0044】さらに、本多室空気調和機は、室内空気温
度と室外空気温度とのうちの少なくとも一方を含む制御
量や外乱を少なくとも含む各状態量を、ある確率分布に
従った不確定な挙動をする確率変数とみなし、エネルギ
効率を少なくとも含む評価関数を、確率事象を確定値に
処理する統計評価関数とし、この統計評価関数を最適化
する制御装置として制御演算装置32を有する。Further, the present multi-room air conditioner is capable of controlling a control quantity including at least one of the indoor air temperature and the outdoor air temperature and each state quantity including at least the disturbance in an uncertain manner according to a certain probability distribution. The evaluation function including at least the energy efficiency is regarded as a statistical evaluation function for processing a probability event into a definite value, and a control operation device 32 is provided as a control device for optimizing the statistical evaluation function.
【0045】さらにまた、本多室空気調和機は、制御装
置における検知手段として、室外空気温度を検知する室
外空気温度検知器17、圧縮機冷媒吐出温度検知器及び
冷媒過熱度演算器からなる圧縮機冷媒吐出過熱度検知器
18、圧縮機冷媒吸入圧力を検知する圧縮機冷媒吸入圧
力検知器19、圧縮機冷媒吐出圧力を検知する圧縮機冷
媒吐出圧力検知器20、圧縮機2の電力を検知する圧縮
機電力検知器21、室外ファン4の電力を検知する室外
ファン電力検知器24、利用部161,162の利用部
室内空気温度を検知する利用部室内空気温度検知器26
1,262、利用部への吹き出し空気温度を検知する利
用部吹き出し空気温度検知器271,272、室内ファ
ン111,112の電力を検知する室内ファン電力検知
器291,292を備えている。Further, in the multi-room air conditioner, as a detecting means in the control device, a compression unit comprising an outdoor air temperature detector 17 for detecting an outdoor air temperature, a compressor refrigerant discharge temperature detector and a refrigerant superheat degree calculator. The refrigerant refrigerant superheat degree detector 18, the compressor refrigerant suction pressure detector 19 for detecting the compressor refrigerant suction pressure, the compressor refrigerant discharge pressure detector 20 for detecting the compressor refrigerant discharge pressure, and the electric power of the compressor 2 are detected. Compressor power detector 21, an outdoor fan power detector 24 for detecting the power of the outdoor fan 4, and a use room air temperature detector 26 for detecting the use room air temperature of the use units 161 and 162.
1 and 262, use section blow-out air temperature detectors 271 and 272 for detecting blow-out air temperature to the use section, and indoor fan power detectors 291 and 292 for detecting the power of the indoor fans 111 and 112.
【0046】さらにまた、本多室空気調和機は、制御装
置における操作手段として、圧縮機2の周波数を操作す
るインバータ圧縮機操作器22、室外ファン4の送風能
力を操作する室外側送風能力操作器23、室外電子膨張
弁8の開度を操作する室外電子膨張弁開度操作器25、
室内ファン111,112の送風能力を操作する室内側
送風能力操作器281,282、室内電子膨張弁12
1,122の冷媒循環量を操作する室内電子膨張弁開度
操作器301,302を備えている。Further, in the present multi-room air conditioner, as an operating means in the control device, an inverter compressor operating device 22 for operating the frequency of the compressor 2, and an outdoor blowing capacity operating for controlling the blowing capacity of the outdoor fan 4. Device 23, an outdoor electronic expansion valve opening degree operating device 25 for operating the opening degree of the outdoor electronic expansion valve 8,
Indoor air blowing capacity controllers 281 and 282 for controlling the blowing capacity of the indoor fans 111 and 112, and the indoor electronic expansion valve 12
There are provided indoor electronic expansion valve opening degree controllers 301 and 302 for controlling the refrigerant circulation amounts of 1,122.
【0047】さらにまた、本多室空気調和機は、制御装
置における設定手段として、予め与えられた設定値を記
憶、あるいは使用者が好みの熱環境を設定するための設
定器311,312を備えている。Further, the present multi-room air conditioner is provided with setting devices 311 and 312 for storing predetermined setting values or setting the user's favorite thermal environment as setting means in the control device. ing.
【0048】これらにより、本多室空気調和機は、利用
部161,162の空調環境を調整する。Thus, the multi-room air conditioner adjusts the air-conditioning environment of the use units 161 and 162.
【0049】次に、本多室空気調和機の動作について説
明する。先ず、多室空気調和機の年間エネルギ消費効率
(APF)を最大化するための制御動作について、暖房
運転を例にして説明する。Next, the operation of the present multi-room air conditioner will be described. First, a control operation for maximizing the annual energy consumption efficiency (APF) of the multi-room air conditioner will be described by taking a heating operation as an example.
【0050】暖房運転において、空調負荷と多室空気調
和機の消費電力との関係は、図4に示すようになる。い
ま、多室空気調和機は、回転数制御型とする。簡潔に説
明すると、多室空気調和機の最小能力釣り合い温度T0b
以上では空調負荷は小さく、多室空気調和機は断続運転
を繰り返す。In the heating operation, the relationship between the air conditioning load and the power consumption of the multi-room air conditioner is as shown in FIG. Now, the multi-room air conditioner is of a rotation speed control type. In brief, the minimum capacity balancing temperature T 0b of the multi-room air conditioner
Above, the air conditioning load is small, and the multi-room air conditioner repeats intermittent operation.
【0051】したがって、その最小能力釣り合い温度T
0b以上の領域では、多室空気調和機の効率は、断続運転
時の特性を表す運転率、成績劣化係数、暖房負荷係数、
部分負荷係数等の値を用いて算出する。Therefore, its minimum capacity balance temperature T
In the region of 0b or more, the efficiency of the multi-room air conditioner is determined by the operation rate, the performance deterioration coefficient, the heating load coefficient,
It is calculated using a value such as a partial load coefficient.
【0052】最小能力釣り合い温度T0b以下で、かつ最
大能力釣り合い温度T0a以上の領域においては、多室空
気調和機能力と空調負荷が釣り合いの関係にあり、効率
は、(空調負荷)/(多室空気調和機消費電力)=(そ
の空調負荷に見合った多室空気調和機能力)/(多室空
気調和機消費電力)で計算される。In an area where the temperature is equal to or lower than the minimum capacity balancing temperature T 0b and equal to or higher than the maximum capacity balancing temperature T 0a , the multi-room air conditioning function and the air conditioning load are in a balanced relationship, and the efficiency is (air conditioning load) / (air conditioning load) / ( Multi-room air conditioner power consumption) = (multi-room air conditioning function power corresponding to the air conditioning load) / (multi-room air conditioner power consumption).
【0053】最大能力釣り合い温度T0a以下の領域にお
いては、室内空気温度が設定室内空気温度以下となって
釣り合う。効率は、(多室空気調和機能力Φ)/(多室
空気調和機消費電力P)で計算される。最終的に暖房期
間エネルギ消費効率HSPFは、これらの効率に、室外
空気温度の出現頻度を掛け、期待値として算出される。In the region below the maximum capacity balance temperature T 0a , the room air temperature is balanced below the set room air temperature. The efficiency is calculated by (multi-room air conditioning function power Φ) / (multi-room air conditioner power consumption P). Finally, the heating period energy consumption efficiency HSPF is calculated as an expected value by multiplying the efficiency by the appearance frequency of the outdoor air temperature.
【0054】ここで、多室空気調和機能力Φ、多室空気
調和機消費電力Pは、例えば熱交換器特性、配管長さ等
の多室空気調和機のハード特性、及び利用家屋の熱容量
や熱通過係数等の環境特性を表すパラメータの集合S
と、室内、室外膨張弁開度、室内、室外ファン回転数、
圧縮機駆動周波数等の多室空気調和機の操作量の値を表
す集合U、また室外空気温度T0等に依存するので、こ
れらは下記数式4及び数式5で表すことができる。Here, the multi-chamber air conditioning function power Φ and the multi-chamber air conditioner power consumption P are, for example, the hardware characteristics of the multi-chamber air conditioner such as the heat exchanger characteristics, the pipe length, and the heat capacity of the house. A set S of parameters representing environmental characteristics such as heat transfer coefficient
And indoor and outdoor expansion valve opening, indoor and outdoor fan rotation speed,
Since it depends on the set U representing the value of the operation amount of the multi-room air conditioner such as the compressor drive frequency, the outdoor air temperature T 0, and the like, these can be represented by the following Expressions 4 and 5.
【0055】[0055]
【数4】 (Equation 4)
【0056】[0056]
【数5】 (Equation 5)
【0057】簡単のために、図4における領域4のみに
おける部分的な暖房期間エネルギ消費効率の高効率化を
考える。空調負荷BL(T0)は、日本工業規格によ
り、空気調和機の個体の特性として、除霜時の能力等一
部を除いて制御方法に依存しない値として定義されてい
る。つまり、これは空気調和機単体の特性として決まる
値であり、制御設計者が決める値ではないので、拘束条
件とみなしてよい。いま、離散関数n(T0)を、T0に
関する連続関数n’(T0)で近似し、下記数式6で表
すものとする。For the sake of simplicity, it is considered that the energy consumption efficiency in the heating period is partially improved only in the region 4 in FIG. The air-conditioning load BL (T 0 ) is defined by the Japanese Industrial Standards as a characteristic of the individual air conditioner, as a value that does not depend on the control method except for a part such as the defrosting ability. That is, this is a value determined as a characteristic of the air conditioner alone and not a value determined by the control designer, and may be regarded as a constraint condition. Now, it is assumed that the discrete function n (T 0 ) is approximated by a continuous function n ′ (T 0 ) related to T 0 and is represented by the following Expression 6.
【0058】[0058]
【数6】 (Equation 6)
【0059】そして領域4における連続関数で近似した
部分的暖房期間エネルギ消費効率H’は、下記数式7で
表されるものとする。The energy consumption efficiency H ′ of the partial heating period approximated by the continuous function in the area 4 is represented by the following equation (7).
【0060】[0060]
【数7】 (Equation 7)
【0061】ここでは、ある室外空気温度、ある特定の
多室空気調和機、空調環境を考えているので、T0、S
は固定して考える。このように、暖房期間エネルギ消費
効率は、多室空気調和機の操作量Uの関数になる。した
がって、この部分的暖房期間エネルギ消費効率H’を最
大化する操作量Uを見い出す方法を考える。但し、この
まま考慮するより、H’の逆数xを下記数式8で新たに
定義し、最小化するほうが容易である。Here, since a certain outdoor air temperature, a specific multi-room air conditioner, and an air-conditioning environment are considered, T 0 , S
Is fixed. Thus, the heating period energy consumption efficiency is a function of the manipulated variable U of the multi-room air conditioner. Therefore, a method of finding the manipulated variable U that maximizes the energy consumption efficiency H ′ during the partial heating period will be considered. However, it is easier to newly define and minimize the reciprocal number x of H ′ by the following Expression 8 than to consider it as it is.
【0062】[0062]
【数8】 (Equation 8)
【0063】また、多室空気調和機の能力Φ(U;
T0,S)が、空調負荷BL(T0)と同等の値だけ出力
しなければならない条件を考慮して、下記数式9で表わ
す制約条件を付け加える。The capacity Φ (U;
Considering the condition that T 0 , S) must output the same value as the air conditioning load BL (T 0 ), a constraint represented by the following equation 9 is added.
【0064】[0064]
【数9】 (Equation 9)
【0065】すると、上記数式9の条件のもとで、上記
数式8を、Uについて最小化する問題となる。しかし、
x(U;S)を最小化することは、すなわち、P(U;
T0,S)n’(T0)を最小化することと同等であるの
で、結局、上記数式9の条件のもとで、P(U;T0,
S)n’(T0)を、Uについて最小化する問題に帰着
する。Then, under the condition of the above equation (9), the above equation (8) becomes a problem of minimizing U. But,
Minimizing x (U; S) means that P (U; S)
T 0 , S) n ′ (T 0 ) is equivalent to minimizing it, and eventually P (U; T 0 ,
S) Reduce the problem of minimizing n ′ (T 0 ) for U.
【0066】等式拘束条件での関数の極値を求める手法
は、Lagrangeの未定乗数法として有名である。
これは、条件付き極値の問題を、助変数を用いて条件無
し極値の問題に転化する方法で、以下の言葉で表現され
る。The method of finding the extremum of a function under the equation constraint condition is well known as Lagrange's method of undetermined multipliers.
This is a method of converting a conditional extremum problem into an unconditional extremum problem using an auxiliary variable, and is expressed by the following words.
【0067】P(U;T0,S)n’(T0)とφ(U;
T0,S)が一回微分可能であるとき、上記数式9の条
件のもとで、P(U;T0,S)n’(T0)が極値をと
る点では、λを助変数として、下記数式10で表される
目的関数F(U,λ;T0,S)について、下記数式1
1で表される条件、あるいは下記数式12で表される条
件を満たす。P (U; T 0 , S) n ′ (T 0 ) and φ (U;
When T 0 , S) is once differentiable, λ is assisted at the point where P (U; T 0 , S) n ′ (T 0 ) takes an extreme value under the condition of the above equation (9). As a variable, an objective function F (U, λ; T 0 , S) expressed by the following equation 10
1 or a condition represented by the following equation (12).
【0068】[0068]
【数10】 (Equation 10)
【0069】[0069]
【数11】 [Equation 11]
【0070】[0070]
【数12】 (Equation 12)
【0071】ここで、Ui∈Uであり、Nは操作量の数
がいくつあるかを示す。このように、条件である数式1
1か、あるいは数式12を満たす操作量を見つけ、その
うちP(U;T0,S)n’(T0)を最大化する操作量
を除くと、それはP(U;T0,S)n’(T0)を最小
化する操作量Uであり、同時に、部分暖房期間エネルギ
消費効率を最大化する。この方法で求められた操作量
は、室外空気温度T0の関数となる。Here, U i ∈U, and N indicates the number of manipulated variables. As described above, the condition 1
1 or, alternatively locate the operation amount satisfying Equation 12, of which P; except for the operation amount that maximizes the (U T 0, S) n '(T 0), which is P (U; T 0, S ) n '(T 0 ) is the manipulated variable U that minimizes, and at the same time, maximizes the energy consumption efficiency during the partial heating period. Operation amount obtained in this way is a function of the outdoor air temperature T 0.
【0072】この作業を、図4における領域4のみでな
く、図4に示す領域すべてに適用すると、暖房期間エネ
ルギ消費効率を最大化する操作量が求められる。さらに
は、冷房期間エネルギ消費効率に対しても同様の作業を
行なうと、年間エネルギ消費効率(APF)を最大化す
る操作量を求めることができる。When this operation is applied not only to the region 4 in FIG. 4 but also to all the regions shown in FIG. 4, an operation amount that maximizes the energy consumption efficiency during the heating period is obtained. Further, when the same operation is performed on the energy consumption efficiency during the cooling period, the operation amount that maximizes the annual energy consumption efficiency (APF) can be obtained.
【0073】ここで、この暖房期間エネルギ消費効率最
大化操作量を求める際についていえることは、上記数式
11,12を満たすような解を、解析解として得る必要
はないのである。数値的に解を求めることは、コンピュ
ータの手助けが不可欠であるが、解析解を求めるのが困
難な場合でも、確実に解が得られる。Here, it is not necessary to obtain a solution that satisfies the above formulas (11) and (12) as an analytical solution when calculating the heating period energy consumption efficiency maximizing operation amount. A numerical solution requires a computer to help, but even if it is difficult to find an analytical solution, the solution can be obtained reliably.
【0074】以上のべたAPF最大化法は、オフライン
計算である。つまり、求める操作量を具体的に計算する
際には、上記数式で表された様々な条件の、具体的な数
値を必要とする。The above-described solid APF maximization method is an off-line calculation. In other words, when specifically calculating the manipulated variable to be obtained, specific numerical values under various conditions represented by the above formulas are required.
【0075】ところが、上記数式を満たす操作量は、パ
ラメータの集合Sを未知パラメータとして含んでいる。
集合Sは、配管長さや封入冷媒量等の多室空気調和機を
設置するときに決定する要素を表すものであって、これ
は、事前に決定することができないことを意味してい
る。However, the manipulated variable that satisfies the above equation includes the parameter set S as an unknown parameter.
The set S represents an element that is determined when installing the multi-room air conditioner, such as a pipe length and a sealed refrigerant amount, and means that it cannot be determined in advance.
【0076】具体的には、上記数式4,5等で表される
多室空気調和機の特性の、遅れ時間やむだ時間、係数パ
ラメータである。それらが未知である限り、上記数式
4,5の形が決まらず、上記数式8の最小化も不可能で
ある。More specifically, there are a delay time, a dead time, and a coefficient parameter of the characteristics of the multi-room air conditioner represented by the above formulas 4, 5 and the like. As long as they are unknown, the forms of Equations 4 and 5 are not determined, and it is impossible to minimize Equation 8 above.
【0077】さらに、日本工業規格のAPFにおいては
空調負荷が、空気調和機個体の持つ決まった値として扱
ったが、実際使用する際の実効年間エネルギ消費効率
は、利用家屋の空調負荷が既知でなければ算出できな
い。Further, in the APF according to the Japanese Industrial Standards, the air conditioning load is treated as a fixed value possessed by the individual air conditioner. However, the effective annual energy consumption efficiency in actual use is based on the fact that the air conditioning load of the user's house is known. If not, it cannot be calculated.
【0078】そこで、その未知パラメータや未知空調負
荷を、多室空気調和機を実際に運転するときに検知し、
上記数式3で表される実効年間エネルギ消費効率σを最
大化する手法について前述と同じく、暖房運転に関して
以下に説明する。Therefore, the unknown parameters and unknown air conditioning loads are detected when the multi-room air conditioner is actually operated,
The method of maximizing the effective annual energy consumption efficiency σ represented by the above formula 3 will be described below with respect to the heating operation in the same manner as described above.
【0079】多室空気調和機は、例えば操作量である圧
縮機駆動周波数をシステムへの入力、多室空気調和機の
消費電力がシステムの出力と見なすと、圧縮機駆動周波
数によって多室空気調和機消費電力が変化するシステム
と考えることができる。The multi-room air conditioner, for example, considers the compressor drive frequency, which is an operation amount, as an input to the system and the power consumption of the multi-room air conditioner as the output of the system. It can be considered as a system in which the machine power consumption changes.
【0080】また、操作量である室内電子膨張弁開度を
システムへの入力、状態量である多室空気調和機能力を
システムの出力と見なすと、室内電子膨張弁開度によっ
て多室空気調和機能力が変化するシステムと考えること
ができる。When the opening degree of the indoor electronic expansion valve, which is the manipulated variable, is regarded as the input to the system, and the multi-room air conditioning function, which is the state quantity, is regarded as the output of the system, the multi-room air conditioning is determined by the opening degree of the indoor electronic expansion valve. It can be considered as a system in which the functional power changes.
【0081】さらには、利用家屋を含めて考慮した場合
においては、多室空気調和機の能力をシステムへの入
力、利用家屋室内空気温度をシステムからの出力とみな
すと、多室空気調和機能力によって、室内空気温度が変
化するシステムと考えることができる。Further, in the case where the house including the house is taken into consideration, when the capacity of the multi-room air conditioner is regarded as the input to the system and the room air temperature in the house is regarded as the output from the system, the function of the multi-room air conditioner is considered. Thus, it can be considered that the system changes the indoor air temperature.
【0082】これらの入力と出力の因果関係を時系列あ
るいは微分方程式で表したとき、その次数や係数の値及
びむだ時間がシステムの性格を表わす指標となる。した
がって、これらのパラメータを推定できれば、そのシス
テムの性格をかなり明らかに把握したということができ
る。When the causal relationship between these inputs and outputs is represented by a time series or a differential equation, the order, the value of the coefficient, and the dead time serve as indices indicating the characteristics of the system. Therefore, if these parameters can be estimated, it can be said that the character of the system has been understood quite clearly.
【0083】そこで、まずモデリングを行う。上述の例
と同じく、3つのシステムを考える。システム1とシス
テム2への入力として、圧縮機駆動周波数と電子膨張弁
開度、室外空気温度とし、システム3への入力として多
室空気調和機能力とする。システム1とシステム2の出
力としては多室空気調和機消費電力、多室空気調和機暖
房能力とし、システム3の出力は室内空気温度とする。
これらが離散時間表現で下記数式13,14,15のよ
うに表せるとする。Therefore, modeling is first performed. As in the example above, consider three systems. The inputs to the system 1 and the system 2 are the compressor drive frequency, the electronic expansion valve opening, and the outdoor air temperature, and the input to the system 3 is the multi-room air conditioning function. The outputs of the system 1 and the system 2 are the power consumption of the multi-room air conditioner and the heating capacity of the multi-room air conditioner, and the output of the system 3 is the indoor air temperature.
It is assumed that these can be expressed in discrete time expressions as in the following Expressions 13, 14, and 15.
【0084】[0084]
【数13】 (Equation 13)
【0085】[0085]
【数14】 [Equation 14]
【0086】[0086]
【数15】 (Equation 15)
【0087】ここで、Pは圧縮機消費電力、T0は室外
空気温度、εは電子膨張弁開度、rは圧縮機駆動周波
数、Φは多室空気調和機能力、TiINは室内空気温度、
A,Bi j,C,Dij,E,Fはそれぞれ係数パラメー
タ、kはカウンタとする。Here, P is the power consumption of the compressor, T 0 is the outdoor air temperature, ε is the opening degree of the electronic expansion valve, r is the compressor drive frequency, Φ is the multi-room air conditioning function, and T iIN is the indoor air temperature. ,
A, B i j, C, D ij, E, F each coefficient parameter, k is a counter.
【0088】それぞれの状態量P,Φ,TiINの検知方
法としては、どのような計測器を多室空気調和機に搭載
しているかによって異なるが、図3に示す多室空気調和
機の構成とその利用家屋についての配置の一例を考え、
多室空気調和機能力Φに関しては下記数式16の関係を
用いて算出できるとする。The method of detecting each of the state quantities P, Φ, and T iIN differs depending on what kind of measuring instrument is mounted on the multi-room air conditioner, but the configuration of the multi-room air conditioner shown in FIG. And an example of the layout of the houses
It is assumed that the multi-chamber air conditioning function Φ can be calculated using the relationship of the following equation (16).
【0089】[0089]
【数16】 (Equation 16)
【0090】ここで、ρは空気密度、Gは室内機ファン
風量、cpは空気定圧比熱、TiEXは室内吹出空気温度を
表す。以上の関係の中でA,Bij,C,Dij,E,Fの
各パラメータをオンラインシステム同定によって推定す
る。オンラインシステム同定とは、運転及び観測と同時
に行うシステム同定である。[0090] Here, [rho represents air density, G is the indoor unit fan air volume, c p is the air specific heat at constant pressure, T IEX is a temperature of air blown into the room. In the above relationship, the parameters A, B ij , C, D ij , E, and F are estimated by online system identification. Online system identification is system identification performed simultaneously with operation and observation.
【0091】ここで、パラメータのk回目の推定値を
A”(k),B”ij(k),C”(k),D”
ij(k),E”(k),F”(k)とし、推定ベクトル
θ”(k)を下記数式17,18,19、観測ベクトル
を下記数式20,21,22のごとく定義する。Here, the k-th estimated value of the parameter is represented by A ″ (k), B ″ ij (k), C ″ (k), D ″
ij (k), E "(k), F" (k), the estimated vector .theta. "(k) is defined as the following equations 17, 18, 19, and the observation vector is defined as the following equations 20, 21, 22.
【0092】[0092]
【数17】 [Equation 17]
【0093】[0093]
【数18】 (Equation 18)
【0094】[0094]
【数19】 [Equation 19]
【0095】[0095]
【数20】 (Equation 20)
【0096】[0096]
【数21】 (Equation 21)
【0097】[0097]
【数22】 (Equation 22)
【0098】ここで、y1は多室空気調和機消費電力の
検知信号、yTは室外空気温度の検知信号、y2は多室空
気調和機能力の検知信号、y3は利用家屋室内空気温度
の検知信号、また(・)’は転置を表す。この推定ベク
トルは、最小二乗の意味で、下記数式23によって逐次
求められる。Here, y 1 is a detection signal of the power consumption of the multi-room air conditioner, y T is a detection signal of the outdoor air temperature, y 2 is a detection signal of the multi-room air conditioning function, and y 3 is the indoor air of the user's house. The temperature detection signal and (•) ′ indicate transposition. This estimation vector is sequentially obtained by the following Expression 23 in the sense of the least square.
【0099】[0099]
【数23】 (Equation 23)
【0100】次に、利用家屋の実際の暖房空調負荷の推
定値は、上記係数パラメータを用いて、室外空気温度の
関数として下記数式24のように表せる。Next, the estimated value of the actual heating / air-conditioning load of the user's house can be expressed as the following equation 24 as a function of the outdoor air temperature using the above-mentioned coefficient parameter.
【0101】[0101]
【数24】 (Equation 24)
【0102】ここで、TSETは設定室内空気温度を表
し、暖房運転では20℃、冷房運転では27℃の定数と
する。未知パラメータと未知空調負荷を以上のアルゴリ
ズムで求め、後は前述のAPF最大化法と同じ手法で操
作量を求めれば、それは、実効年間エネルギ消費効率σ
を最大化する操作量である。Here, T SET represents the set indoor air temperature, which is a constant of 20 ° C. in the heating operation and 27 ° C. in the cooling operation. If the unknown parameters and the unknown air-conditioning load are determined by the above algorithm, and the manipulated variables are determined by the same method as the above-described APF maximization method, the effective annual energy consumption efficiency σ
Is the amount of operation that maximizes
【0103】次に、さらに具体的に本実施例に係る多室
空気調和機について説明する。図1は、図3に示す多室
空気調和機に適用した、二操作系の多室空気調和機の実
効年間消費エネルギ消費効率σを最大化する最大化制御
装置である制御演算装置32での信号処理の一例を示す
ブロック線図である。Next, the multi-room air conditioner according to this embodiment will be described more specifically. FIG. 1 shows a control operation device 32 which is a maximization control device applied to the multi-room air conditioner shown in FIG. 3 and which maximizes the effective annual energy consumption efficiency σ of the two-operation multi-room air conditioner. It is a block diagram which shows an example of signal processing.
【0104】本多室空気調和機においては、システム1
への入力として圧縮機駆動周波数、電子膨張弁開度、室
外空気温度があるものとし、システム1の出力として多
室空気調和機消費電力があるとする。In this multi-room air conditioner, the system 1
It is assumed that there are a compressor drive frequency, an electronic expansion valve opening degree, and an outdoor air temperature as inputs to the system 1 and a multi-room air conditioner power consumption as an output of the system 1.
【0105】また、システム2の入力として圧縮機駆動
周波数、電子膨張弁開度及び室外空気温度があり、シス
テム2の出力として多室空気調和機能力があるとする。It is also assumed that the input of the system 2 is a compressor drive frequency, an electronic expansion valve opening, and an outdoor air temperature, and the output of the system 2 is a multi-room air conditioning function.
【0106】さらに、システム3の入力として多室空気
調和機能力、室外空気温度があり、システム3の出力と
して室内空気温度があるとする。Further, it is assumed that the inputs of the system 3 are the multi-room air conditioning function and the outdoor air temperature, and the output of the system 3 is the indoor air temperature.
【0107】そして、図1において、33は利用家屋設
定室内空気温度信号TSET(k)、34は多室空気調和
機が出力する多室空気調和機消費電力P(k)、35は
多室空気調和機能力Φ(k)、36は多室空気調和機室
内吹出空気温度、37は能力を受けて変化する利用家屋
室内空気温度TiIN(k)、38は多室空気調和機消費
電力検知信号y1(k)、39は多室空気調和機能力検
知信号y2(k)、40は利用家屋室内空気温度検知信
号y3(k)、41は操作信号である圧縮機駆動周波数
信号r(k)、42は操作信号の電子膨張弁開度信号ε
(k)、43は多室空気調和機消費電力の特性を表すパ
ラメータの推定値を要素とする推定値信号ベクトル
θ1”(k)、44は多室空気調和機能力の特性を表す
パラメータの推定値を要素とする推定値信号ベクトルθ
2”(k)、45は利用家屋の熱通過係数等の特性を表
すパラメータの推定値を要素とする推定値信号ベクトル
θ3”(k)、46は上記数式16等で表せる多室空気
調和機能力を算出する多室空気調和機能力演算器、47
はフィードバック実効年間エネルギ消費効率最大化演算
器、48はオンライン多室空気調和機消費電力システム
同定器、49はオンライン多室空気調和機能力システム
同定器、50はオンライン利用家屋特性システム同定
器、51はオンラインシステム同定器である。In FIG. 1, reference numeral 33 denotes a user house setting indoor air temperature signal T SET (k), 34 denotes a multi-room air conditioner power consumption P (k) output by the multi-room air conditioner, and 35 denotes a multi-room air conditioner. The air conditioning function power Φ (k), 36 is the indoor air temperature of the multi-room air conditioner room, 37 is the indoor air temperature T iIN (k) of the user's house that changes depending on the capacity, and 38 is the power consumption detection of the multi-room air conditioner. Signals y 1 (k) and 39 are a multi-room air conditioning function force detection signal y 2 (k), 40 is a user room indoor air temperature detection signal y 3 (k), and 41 is a compressor drive frequency signal r which is an operation signal. (K) and 42 are electronic expansion valve opening degree signals ε of operation signals.
(K) and 43 are estimated value signal vectors θ 1 ″ (k) having an estimated value of a parameter representing the characteristic of the power consumption of the multi-room air conditioner as an element, and 44 is a parameter representing the characteristic of the multi-room air conditioning function force. Estimated value signal vector θ with the estimated value as an element
2 ″ (k), 45 is an estimated value signal vector θ 3 ″ (k), 46 in which an estimated value of a parameter representing a characteristic such as a heat transfer coefficient of a user's house is an element, and 46 is a multi-room air conditioner that can be expressed by the above equation (16). Multi-room air-conditioning functional power calculator for calculating functional power, 47
Is a feedback effective annual energy consumption efficiency maximizing calculator, 48 is an online multi-room air conditioner power consumption system identifier, 49 is an online multi-room air conditioning functional force system identifier, 50 is an online use house characteristic system identifier, 51 Is an online system identifier.
【0108】次に、本実施例の多室空気調和の詳細な動
作について、図2などを参照して説明する。図2は、図
1に示す本多室空気調和機の動作を示すフローチャート
である。Next, the detailed operation of the multi-room air conditioning of this embodiment will be described with reference to FIG. FIG. 2 is a flowchart showing the operation of the present multi-room air conditioner shown in FIG.
【0109】利用部としては、図3における利用部16
1の一つだけに注目する。先ずはじめに、多室空気調和
機を起動する(S1)。その後、操作量である圧縮機駆
動周波数、電子膨張弁開度の値が、予め設定された初期
値(r(0)、ε(0))で設定される(S2)。As the use unit, the use unit 16 in FIG.
Look at only one of them. First, the multi-room air conditioner is started (S1). Thereafter, the values of the compressor drive frequency and the electronic expansion valve opening, which are the manipulated variables, are set at preset initial values (r (0), ε (0)) (S2).
【0110】その後、室内吸込空気温度及び室内吹出空
気温度が、例えば、暖房運転時においてはどちらも上昇
するので、それらを図3における検知器261、271
により計測、検知する。同時に多室空気調和機消費電力
も検知器21により計測する(S3)。Thereafter, since both the indoor intake air temperature and the indoor discharge air temperature rise during, for example, a heating operation, they are detected by the detectors 261 and 271 in FIG.
Measurement and detection. At the same time, the power consumption of the multi-room air conditioner is also measured by the detector 21 (S3).
【0111】その後、多室空気調和機能力を多室空気調
和機能力演算器46が演算し、図1における検知信号3
9として、また多室空気調和機消費電力が検知信号38
として、利用家屋室内空気温度が検知信号40として出
力される(S4)。Thereafter, the multi-room air-conditioning function calculator 46 calculates the multi-room air-conditioning function, and the detection signal 3 in FIG.
9, the power consumption of the multi-room air conditioner is
Is output as the detection signal 40 (S4).
【0112】これらの検知信号に対し、操作量に対する
多室空気調和機の反応である多室空気調和機消費電力の
特性と多室空気調和機能力の特性、それに利用家屋の特
性を表すパラメータを演算すなわち同定する(S5、S
6、S7)。In response to these detection signals, the characteristics of the power consumption of the multi-room air conditioner, the characteristics of the power of the multi-room air conditioning function, which are the responses of the multi-room air conditioner to the operation amount, and the parameters representing the characteristics of the user's house are shown. Operation, that is, identification (S5, S
6, S7).
【0113】そして、これらのパラメータの値をもと
に、実際の空調負荷を演算する(S8)。またフィード
バックゲインを新たに演算し、、圧縮機駆動周波数と電
子膨張弁開度の2つの操作量についての次のステップの
値(r(1)、ε(1))が同時に求まる(S9、S1
0)。Then, the actual air conditioning load is calculated based on the values of these parameters (S8). Further, a feedback gain is newly calculated, and values (r (1), ε (1)) of the next step for two operation amounts of the compressor drive frequency and the electronic expansion valve opening are simultaneously obtained (S9, S1).
0).
【0114】さらに、運転を続ける場合は、ステップ3
に戻る(S11)。そして、新しい圧縮機駆動周波数、
電子膨張弁開度が与えられ、検知部54は前ステップと
同様に、室内吸込空気温度、室内吹出空気温度及び多室
空気調和機消費電力を検知し(S3)、多室空気調和機
能力演算部55で多室空気調和機能力を演算する(S
4)。以下、前のステップで行われた演算を繰り返す。Further, when driving is continued, step 3
Return to (S11). And a new compressor drive frequency,
The electronic expansion valve opening is given, and the detection unit 54 detects the indoor intake air temperature, the indoor blowout air temperature, and the power consumption of the multi-room air conditioner as in the previous step (S3), and calculates the multi-room air conditioning function power. The multi-room air conditioning function is calculated by the unit 55 (S
4). Hereinafter, the calculation performed in the previous step is repeated.
【0115】これらにより、本多室空気調和機は、多室
空気調和機と利用家屋の特性をオンラインで同定、更新
することにより、その設置状態において、実効年間エネ
ルギ消費効率を最大にする操作量を算出するので、年間
を通じて、快適生を損ねることなく省電力化を実現する
ことができる。As a result, the multi-room air conditioner identifies and updates the characteristics of the multi-room air conditioner and the user's house online, and in the installed state, the amount of operation that maximizes the effective annual energy consumption efficiency. Is calculated, power saving can be realized throughout the year without impairing comfort life.
【0116】以上の例では、操作量として圧縮機駆動周
波数、電子膨張弁開度を扱ったが、その他にも、操作量
として室外及び室内ファンの回転数等をも加えて、制御
系を構築することができる。また利用部として空気調和
だけでなく、冷凍、水温管理等、様々な熱機械でも使用
できる。In the above example, the compressor drive frequency and the electronic expansion valve opening are treated as the operation amounts. However, the control system is constructed by adding the outdoor and indoor fan speeds as the operation amounts. can do. Further, as a utilization part, not only air conditioning, but also various heat machines such as freezing and water temperature management can be used.
【0117】[0117]
【発明の効果】以上説明したように本発明によれば、多
室空気調和機の運転環境に関する不確定に変動する確率
状態量に対して、統計的概念とその演算方法を導入した
運転制御をすること、すなわち、確率事象を確定値に処
理する統計評価関数について最適化する運転制御をする
ので、年間を通じたエネルギ消費効率を良好化できる多
室空気調和機を提供することができる。As described above, according to the present invention, it is possible to control the operation of a multi-room air conditioner by introducing a statistical concept and a calculation method thereof for an indefinitely fluctuating state quantity relating to the operating environment of a multi-room air conditioner. In other words, since the operation control for optimizing the statistical evaluation function for processing the stochastic event to the definite value is performed, it is possible to provide a multi-room air conditioner capable of improving the energy consumption efficiency throughout the year.
【0118】さらに、本発明によれば、多室空気調和機
とその多室空気調和機が設置される周囲の利用家屋の特
性における、多室空気調和機器が設置されるまで未知な
構造部分もオンラインシステム同定によって明らかにす
ることができるので、常に安定で快適、しかも省電力化
を達成した運転を保証することができる。Further, according to the present invention, the structure of a multi-room air conditioner and the structural parts which are unknown until the multi-room air conditioner is installed in the characteristics of the surrounding user house where the multi-room air conditioner is installed are also included. Since it can be clarified by online system identification, it is possible to guarantee stable, comfortable and power-saving operation.
【図1】本発明の実施例に係る多室空気調和機の主要部
を示すブロック線図である。FIG. 1 is a block diagram showing a main part of a multi-room air conditioner according to an embodiment of the present invention.
【図2】図1に示す多室空気調和機の動作を示すフロー
チャートである。FIG. 2 is a flowchart showing an operation of the multi-room air conditioner shown in FIG.
【図3】本発明の実施例に係る多室空気調和機の構成と
その利用家屋についての配置を示す説明図である。FIG. 3 is an explanatory diagram showing a configuration of a multi-room air conditioner according to an embodiment of the present invention and an arrangement of a house for using the air conditioner.
【図4】空気調和機の消費電力及び空調負荷と室外空気
温度との関係を示すグラフである。FIG. 4 is a graph showing a relationship between power consumption and air conditioning load of the air conditioner and outdoor air temperature.
【図5】ある冷房期間における冷房を必要とする各室外
空気温度の発生頻度を示すグラフである。FIG. 5 is a graph showing the frequency of occurrence of each outdoor air temperature requiring cooling in a certain cooling period.
1 室外機 2 圧縮機 3 室外熱交換器 4 室外ファン 5 アキュムレータ 6 四方弁 7 レシーバ 8 室外電子膨張弁 91 室内機 92 室内機 101 室内熱交換器 102 室内熱交換器 111 室内ファン 112 室内ファン 121 室内電子膨張弁 122 室内電子膨張弁 13 ガス管 14 液管 15 分岐管 161 利用部 162 利用部 17 室外空気温度検知器 18 圧縮機冷媒吐出温度検知器 19 圧縮機冷媒吸入圧力検知器 20 圧縮機冷媒吐出圧力検知器 21 圧縮機電力検知器 22 インバータ圧縮機操作器 23 室外側送風能力操作器 24 室外ファン電力検知器 25 室外電子膨張弁開度操作器 261 室内空気温度検知器 262 室内空気温度検知器 271 室内吹出空気温度検知器 272 室内吹出空気温度検知器 281 室内側送風能力操作器 282 室内側送風能力操作器 291 室内ファン電力検知器 292 室内ファン電力検知器 301 室内電子膨張弁 302 室内電子膨張弁 311 設定器 312 設定器 32 制御演算装置 33 設定室内空気温度信号 34 多室空気調和機消費電力 35 多室空気調和機能力 36 室内吹出空気温度 37 室内空気温度 38 多室空気調和機消費電力検知信号 39 多室空気調和機能力検知信号 40 利用家屋室内空気温度検知信号 41 圧縮機駆動周波数信号 42 電子膨張弁開度信号 43 多室空気調和機消費電力特性推定値信号ベクトル 44 多室空気調和機能力特性推定値信号ベクトル 45 利用家屋特性推定値信号ベクトル 46 多室空気調和機能力演算器 47 フィードバック実効年間エネルギ効率最大化操作
量演算器 48 オンライン多室空気調和機消費電力特性システム
同定器 49 オンライン多室空気調和機能力特性システム同定
器 50 オンライン利用家屋特性システム同定器 51 オンラインシステム同定器 52 多室空気調和機起動部 53 操作器規定初期値設定部 54 室内空気温度、室内吹出空気温度、多室空気調和
機消費電力検知部 55 多室空気調和機能力演算部 56 多室空気調和機消費電力特性演算部 57 多室空気調和機能力特性演算部 58 利用家屋特性演算部 59 実効空調負荷演算部 60 実効年間エネルギ効率最大化圧縮機駆動周波数操
作量演算部 61 実効年間エネルギ効率最大化電子膨張弁開度操作
量演算部 62 停止、継続運転判定部 63 停止実行部 64 空気調和機消費電力 65 空調負荷 66 領域1 67 領域2 68 領域3 69 領域4 70 領域5REFERENCE SIGNS LIST 1 outdoor unit 2 compressor 3 outdoor heat exchanger 4 outdoor fan 5 accumulator 6 four-way valve 7 receiver 8 outdoor electronic expansion valve 91 indoor unit 92 indoor unit 101 indoor heat exchanger 102 indoor heat exchanger 111 indoor fan 112 indoor fan 121 indoor Electronic expansion valve 122 Indoor electronic expansion valve 13 Gas pipe 14 Liquid pipe 15 Branch pipe 161 Utilization part 162 Utilization part 17 Outdoor air temperature detector 18 Compressor refrigerant discharge temperature detector 19 Compressor refrigerant suction pressure detector 20 Compressor refrigerant discharge Pressure detector 21 Compressor power detector 22 Inverter compressor controller 23 Outdoor blower capacity controller 24 Outdoor fan power detector 25 Outdoor electronic expansion valve opening degree controller 261 Indoor air temperature detector 262 Indoor air temperature detector 271 Indoor blown air temperature detector 272 Indoor blown air temperature detector 281 Indoor ventilation Force controller 282 Indoor-side blowing capacity controller 291 Indoor fan power detector 292 Indoor fan power detector 301 Indoor electronic expansion valve 302 Indoor electronic expansion valve 311 Setter 312 Setter 32 Control arithmetic unit 33 Set indoor air temperature signal 34 Multi Room air conditioner power consumption 35 Multi-room air conditioning function power 36 Indoor air temperature 37 Indoor air temperature 38 Multi-room air conditioner power consumption detection signal 39 Multi-room air conditioning function power detection signal 40 User indoor air temperature detection signal 41 Compressor drive frequency signal 42 Electronic expansion valve opening signal 43 Multi-room air conditioner power consumption characteristic estimated value signal vector 44 Multi-room air conditioning functional force characteristic estimated value signal vector 45 User house characteristic estimated value signal vector 46 Multi-room air conditioning Functional force calculator 47 Feedback effective annual energy efficiency maximizing manipulated variable calculator 48 E Line multi-room air conditioner power consumption characteristic system identifier 49 Online multi-room air conditioning function force characteristic system identifier 50 Online use house characteristic system identifier 51 Online system identifier 52 Multi-room air conditioner start-up unit 53 Initial operation controller specification Value setting unit 54 Indoor air temperature, indoor outlet air temperature, multi-room air conditioner power consumption detection unit 55 multi-room air conditioning function power calculation unit 56 multi-room air conditioner power consumption characteristic calculation unit 57 multi-room air conditioning function power characteristic Calculation unit 58 User house characteristic calculation unit 59 Effective air conditioning load calculation unit 60 Effective annual energy efficiency maximization Compressor drive frequency operation amount calculation unit 61 Effective annual energy efficiency maximization electronic expansion valve opening operation amount calculation unit 62 Stop, continuous operation Judgment unit 63 Stop execution unit 64 Air conditioner power consumption 65 Air conditioning load 66 Area 1 67 Area 2 68 Area 3 69 Area 4 70 Area 5
───────────────────────────────────────────────────── フロントページの続き (72)発明者 中山 進 静岡県清水市村松390番地 株式会社 日立製作所 空調システム事業部内 (72)発明者 小国 研作 静岡県清水市村松390番地 株式会社 日立製作所 空調システム事業部内 (56)参考文献 特開 平9−21574(JP,A) 特開 平3−13754(JP,A) 特開 平1−193545(JP,A) 特開 平7−83482(JP,A) 特開 平3−158643(JP,A) 特開 平6−323595(JP,A) 特開 昭63−222917(JP,A) ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Susumu Nakayama 390 Muramatsu, Shimizu-shi, Shizuoka Prefecture Inside Air Conditioning Systems Division, Hitachi, Ltd. (72) Inventor Kensaku 390 Muramatsu, Shimizu-shi, Shizuoka Prefecture Air Conditioning Systems Business, Hitachi, Ltd. (56) References JP-A-9-21574 (JP, A) JP-A-3-13754 (JP, A) JP-A-1-193545 (JP, A) JP-A-7-83482 (JP, A) JP-A-3-158643 (JP, A) JP-A-6-323595 (JP, A) JP-A-63-222917 (JP, A)
Claims (4)
け、前記室外機と前記室内機とを配管接続して閉回路と
なし、前記閉回路の中に冷媒を封入し、前記室外機にお
いては、周波数可変の圧縮機と室外熱交換器及び室外電
子膨張弁を配管接続するとともに、前記室外熱交換器に
送風する室外ファンを備え、前記室内機においては、室
内空気と熱交換を行う室内熱交換器と前記室内熱交換器
の冷媒の流量を調節する室内電子膨張弁を順次配管接続
するとともに、前記室内熱交換器に送風する室内ファン
を備えて形成する多室空気調和機において、室内空気温
度と室外空気温度とのうちの少なくとも一方を含む制御
量や外乱を少なくとも含む各状態量を、ある確率分布に
従った不確定な挙動をする確率変数とみなし、エネルギ
効率を少なくとも含む評価関数を、確率事象を確定値に
処理する統計評価関数とし、この統計評価関数を最適化
する制御装置を有することを特徴とする多室空気調和
機。1. An outdoor unit and one or more indoor units are provided, a pipe is connected between the outdoor unit and the indoor unit to form a closed circuit, and a refrigerant is sealed in the closed circuit. In the unit, the variable frequency compressor and the outdoor heat exchanger and the outdoor electronic expansion valve are connected with a pipe, and an outdoor fan that blows air to the outdoor heat exchanger is provided.The indoor unit exchanges heat with indoor air. In a multi-room air conditioner formed with an indoor heat exchanger to be performed and an indoor electronic expansion valve for adjusting the flow rate of the refrigerant in the indoor heat exchanger sequentially connected with a pipe and having an indoor fan for blowing air to the indoor heat exchanger. Each of the control variables including at least one of the indoor air temperature and the outdoor air temperature and each state variable including the disturbance is regarded as a random variable having an uncertain behavior according to a certain probability distribution, and includes at least energy efficiency. A multi-room air conditioner, characterized in that the evaluation function is a statistical evaluation function for processing a stochastic event into a definite value, and a control device for optimizing the statistical evaluation function is provided.
て、制御装置は、室外空気温度、圧縮機冷媒吐出過熱
度、圧縮機冷媒吸入圧力、圧縮機冷媒吐出圧力、圧縮機
消費電力、室内空気温度及び室内吹き出し空気温度を少
なくとも含む各状態量を検知する検知手段と、圧縮機駆
動周波数、室外ファン回転数、室外電子膨張弁開度、室
内ファン回転数及び室内電子膨張弁開度を少なくとも含
む各操作量を操作する操作手段と、設定室内空気温度を
少なくとも含む設定値を設定する設定手段と、多室空気
調和機についての年間を通じたエネルギ消費効率の値で
ある年間エネルギ消費効率(APF)を統計評価関数と
して最大化するAPF最大化操作量演算器とを有するこ
とを特徴とする多室空気調和機。2. The multi-room air conditioner according to claim 1, wherein the control device includes: an outdoor air temperature; a compressor refrigerant discharge superheat degree; a compressor refrigerant suction pressure; a compressor refrigerant discharge pressure; Detecting means for detecting each state quantity including at least the air temperature and the indoor blowout air temperature; and at least the compressor drive frequency, the outdoor fan rotation speed, the outdoor electronic expansion valve opening degree, the indoor fan rotation speed and the indoor electronic expansion valve opening degree. Operating means for operating each of the operation amounts including the above, setting means for setting a set value including at least the set indoor air temperature, and annual energy consumption efficiency (APF) which is a value of energy consumption efficiency throughout the year for the multi-room air conditioner. And a APF maximizing operation amount calculator for maximizing a) as a statistical evaluation function.
て、制御装置は、室外空気温度、圧縮機冷媒吐出過熱
度、圧縮機冷媒吸入圧力、圧縮機冷媒吐出圧力、圧縮機
消費電力、室内空気温度及び室内吹き出し空気温度を少
なくとも含む各状態量を検知する検知手段と、圧縮機駆
動周波数、室外ファン回転数、室外電子膨張弁開度、室
内ファン回転数及び室内電子膨張弁開度を少なくとも含
む各操作量を操作する操作手段と、設定室内空気温度を
少なくとも含む設定値を設定する設定手段と、前記各操
作量についての信号を要素とする操作量信号ベクトルと
前記検知手段が検知した各信号を要素とする検知信号ベ
クトルとを入力して、多室空気調和機を少なくとも含む
各制御対象の特性を表すパラメータ推定値信号ベクトル
を同定出力するオンラインシステム同定器と、前記検知
信号ベクトルと前記パラメータ推定信号ベクトルと前記
設定手段が設定した設定値を要素とする設定値信号ベク
トルとを入力し、年間エネルギ消費効率(APF)を統
計評価関数として最大化するAPF最大化操作量信号ベ
クトルを出力するフィードバック演算器とを有すること
を特徴とする多室空気調和機。3. The multi-room air conditioner according to claim 1, wherein the control device includes: an outdoor air temperature; a compressor refrigerant discharge superheat degree; a compressor refrigerant suction pressure; a compressor refrigerant discharge pressure; a compressor power consumption; Detecting means for detecting each state quantity including at least the air temperature and the indoor blowout air temperature; and at least the compressor drive frequency, the outdoor fan rotation speed, the outdoor electronic expansion valve opening degree, the indoor fan rotation speed and the indoor electronic expansion valve opening degree. An operation means for operating each operation amount including, a setting means for setting a set value including at least a set indoor air temperature, an operation amount signal vector having a signal for each operation amount as an element, and each of the detection amounts detected by the detection means. A detection signal vector having a signal as an element and identifying and outputting a parameter estimation value signal vector representing a characteristic of each control target including at least the multi-room air conditioner; System identifier, the detection signal vector, the parameter estimation signal vector, and the set value signal vector having the set value set by the setting means as an element, and using the annual energy consumption efficiency (APF) as a statistical evaluation function. A multi-room air conditioner, comprising: a feedback calculator that outputs an APF maximization operation amount signal vector to be maximized.
て、制御装置は、室外空気温度、圧縮機冷媒吐出過熱
度、圧縮機冷媒吸入圧力、圧縮機冷媒吐出圧力、圧縮機
消費電力、室内空気温度及び室内吹き出し空気温度を少
なくとも含む各状態量を検知する検知手段と、圧縮機駆
動周波数、室外ファン回転数、室外電子膨張弁開度、室
内ファン回転数及び室内電子膨張弁開度を少なくとも含
む各操作量を操作する操作手段と、設定室内空気温度を
少なくとも含む設定値を設定する設定手段と、前記各操
作量についての信号を要素とする操作量信号ベクトルと
前記検知手段が検知した各信号を要素とする検知信号ベ
クトルとを入力して、多室空気調和機を少なくとも含む
各制御対象の特性を表すパラメータ推定値信号ベクトル
を同定出力するオンラインシステム同定器と、前記検知
信号ベクトルと前記パラメータ推定信号ベクトルと前記
設定手段が設定した設定値を要素とする設定値信号ベク
トルとを入力し、実際の多室空気調和機設置利用家屋に
おいての年間エネルギ消費効率を統計評価関数として最
大化する、実効年間エネルギ消費効率最大化操作量信号
ベクトルを出力するフィードバック実効年間エネルギ消
費効率最大化操作量演算器とを有することを特徴とする
多室空気調和機。4. The multi-room air conditioner according to claim 1, wherein the controller is configured to control an outdoor air temperature, a compressor refrigerant discharge superheat degree, a compressor refrigerant suction pressure, a compressor refrigerant discharge pressure, a compressor power consumption, an indoor power consumption of the compressor. Detecting means for detecting each state quantity including at least the air temperature and the indoor blowout air temperature; and at least the compressor drive frequency, the outdoor fan rotation speed, the outdoor electronic expansion valve opening degree, the indoor fan rotation speed and the indoor electronic expansion valve opening degree. An operation means for operating each operation amount including, a setting means for setting a set value including at least a set indoor air temperature, an operation amount signal vector having a signal for each of the operation amounts as an element, and each of the detection amounts detected by the detection means. A detection signal vector having a signal as an element and identifying and outputting a parameter estimation value signal vector representing a characteristic of each control target including at least the multi-room air conditioner; System identifier, the detection signal vector, the parameter estimation signal vector, and the set value signal vector having the set value set by the setting means as an element, and inputting the actual multi-room air conditioner installation user house. A multi-room air having a feedback effective annual energy consumption efficiency maximizing operation amount calculator for outputting an effective annual energy consumption efficiency maximizing operation amount signal vector for maximizing the annual energy consumption efficiency as a statistical evaluation function Harmony machine.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23939195A JP3278712B2 (en) | 1995-09-19 | 1995-09-19 | Multi-room air conditioner |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23939195A JP3278712B2 (en) | 1995-09-19 | 1995-09-19 | Multi-room air conditioner |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0979650A JPH0979650A (en) | 1997-03-28 |
JP3278712B2 true JP3278712B2 (en) | 2002-04-30 |
Family
ID=17044093
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23939195A Expired - Fee Related JP3278712B2 (en) | 1995-09-19 | 1995-09-19 | Multi-room air conditioner |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3278712B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4980407B2 (en) | 2009-10-21 | 2012-07-18 | 三菱電機株式会社 | Air conditioner control device, refrigeration device control device |
CN102374611A (en) * | 2011-09-07 | 2012-03-14 | 冯益安 | Method for achieving high efficiency-energy ratios of air conditioners and heat pumps |
WO2014087650A1 (en) * | 2012-12-06 | 2014-06-12 | パナソニック株式会社 | Space environment management device, space environment management system, and space environment management method |
JP6029460B2 (en) * | 2012-12-27 | 2016-11-24 | 三菱重工業株式会社 | Multi-type air conditioner and operation method thereof |
JP6234801B2 (en) | 2013-12-18 | 2017-11-22 | 三菱重工サーマルシステムズ株式会社 | Air conditioning system evaluation support apparatus, method, and program |
US11954713B2 (en) * | 2018-03-13 | 2024-04-09 | Johnson Controls Tyco IP Holdings LLP | Variable refrigerant flow system with electricity consumption apportionment |
JP7112054B2 (en) * | 2019-05-23 | 2022-08-03 | 三菱電機株式会社 | Control device for air conditioner, and air conditioner |
-
1995
- 1995-09-19 JP JP23939195A patent/JP3278712B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0979650A (en) | 1997-03-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Rogers et al. | A review of fault detection and diagnosis methods for residential air conditioning systems | |
Wan et al. | A review of recent advancements of variable refrigerant flow air-conditioning systems | |
US20210156586A1 (en) | Systems and methods for providing custom applications for hvac systems | |
Xu et al. | A model-based optimal ventilation control strategy of multi-zone VAV air-conditioning systems | |
Shi et al. | Refrigerant charge fault diagnosis in the VRF system using Bayesian artificial neural network combined with ReliefF filter | |
EP4089619A1 (en) | Building equipment energy management control system and control method therefor | |
Gao et al. | An optimization strategy for the control of small capacity heat pump integrated air-conditioning system | |
Zhu et al. | Online optimal control of variable refrigerant flow and variable air volume combined air conditioning system for energy saving | |
JP7284435B2 (en) | Correctors, Predictors, Methods, Programs, and Correction Models | |
Dong et al. | Integrated energy performance modeling for a retail store building | |
US11580281B2 (en) | System and method for designing heating, ventilating, and air-conditioning (HVAC) systems | |
JP3278712B2 (en) | Multi-room air conditioner | |
JP2005301582A (en) | Process management device | |
Lee et al. | Verification of refrigerant evaporating temperature control effect in VRF systems in actual buildings | |
Lee et al. | Multi-objective optimization for capacity matching and energy performance of heat-pump-driven liquid-desiccant air-conditioning system | |
CN113028610B (en) | Method and device for global optimization and energy-saving control of dynamic load of central air conditioner | |
Shao et al. | A practical application-oriented model predictive control algorithm for direct expansion (DX) air-conditioning (A/C) systems that balances thermal comfort and energy consumption | |
Wang et al. | Modeling Variable Refrigerant Flow (VRF) systems in building applications: A comprehensive review | |
JP2004234302A (en) | Process management device | |
CN114838487B (en) | Control method of multi-split air conditioner, multi-split air conditioner and storage medium | |
US11162701B2 (en) | Controlling HVAC system by inversing airflow dynamics | |
Wan et al. | Variable Refrigerant Flow (VRF) System Field Test and Data Analysis Methodologies | |
Nyika et al. | Generalized performance maps for variable-speed, ducted, Residential Heat Pumps | |
CN117241561B (en) | Data center distributed precise air conditioning unit optimized operation parameter estimation method | |
WO2023218634A1 (en) | Air conditioning control device, air conditioning control method, and air conditioning control program |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080222 Year of fee payment: 6 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080222 Year of fee payment: 6 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080222 Year of fee payment: 6 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080222 Year of fee payment: 6 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080222 Year of fee payment: 6 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080222 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090222 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090222 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100222 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100222 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110222 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120222 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120222 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130222 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |