JPH0979650A - Multi-room air conditioner - Google Patents

Multi-room air conditioner

Info

Publication number
JPH0979650A
JPH0979650A JP7239391A JP23939195A JPH0979650A JP H0979650 A JPH0979650 A JP H0979650A JP 7239391 A JP7239391 A JP 7239391A JP 23939195 A JP23939195 A JP 23939195A JP H0979650 A JPH0979650 A JP H0979650A
Authority
JP
Japan
Prior art keywords
indoor
air conditioner
room air
outdoor
air temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7239391A
Other languages
Japanese (ja)
Other versions
JP3278712B2 (en
Inventor
Yasutaka Yoshida
康孝 吉田
Yozo Hibino
陽三 日比野
Hiroshi Yasuda
弘 安田
Susumu Nakayama
進 中山
Kensaku Kokuni
研作 小国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP23939195A priority Critical patent/JP3278712B2/en
Publication of JPH0979650A publication Critical patent/JPH0979650A/en
Application granted granted Critical
Publication of JP3278712B2 publication Critical patent/JP3278712B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a multi-room air conditioner which is capable of enhancing annual energy consumption efficiency and performing comfortable and power- saving air conditioning. SOLUTION: This multi-room air condition is provided with a control arithmetic operation device 32 having an online system identification unit 51 which calculates an actual air conditioning load of a house to be intended and a feedback effective annual consumption energy operation volume computing element 47 which maximizes an annual consumption energy consumption efficiency with a consideration given to a probability distribution of outdoor air temperature which is an air conditioning factor. This construction makes it possible to provide maximum total air conditioning application efficiency throughout the year and save power as well.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、一台の室外機と一台ま
たは複数台の室内機によって、利用部の空気の過熱や冷
却を行う多室空気調和機に関し、特に、利用部の空気温
度等を低消費電力で制御する多室空気調和機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multi-room air conditioner that superheats or cools air in a utilization section by one outdoor unit and one or a plurality of indoor units. The present invention relates to a multi-room air conditioner that controls temperature and the like with low power consumption.

【0002】[0002]

【従来の技術】このような従来の多室空気調和機として
は、省エネルギ制御をするもの、すなわち低消費電力化
を図ったものとして特開昭63−25446号公報等に
記載されているものがある。
2. Description of the Related Art As such a conventional multi-room air conditioner, one that performs energy-saving control, that is, one that achieves low power consumption, is disclosed in Japanese Patent Laid-Open No. 63-25446. There is.

【0003】また、システム同定を用いた制御技術を有
する多室空気調和機としては、特開昭62−12881
6号公報、特開昭63−282441号公報、特開平3
−13754号公報等に記載されている技術がある。
A multi-room air conditioner having a control technique using system identification is disclosed in Japanese Patent Laid-Open No. 62-12881.
6, JP-A-63-282441, JP-A-3
There is a technique described in Japanese Patent Publication No. -13754.

【0004】そして、従来の多室空気調和機における運
転制御技術では、その制御量や外乱等の状態量を確定的
な変数として考慮していた。例えば、ある室外空気温度
が、空調負荷として印加した場合に、その特定の室外空
気温度条件のもとで希望の室温等の状態に制御できるよ
う様々な考慮がなされていた。
In the conventional operation control technique for a multi-room air conditioner, the control variable and the state variable such as disturbance are considered as definite variables. For example, various considerations have been made so that when a certain outdoor air temperature is applied as an air conditioning load, it can be controlled to a desired room temperature or the like under the specific outdoor air temperature condition.

【0005】[0005]

【発明が解決しようとする課題】しかしながら上述の従
来の多室空気調和機では、その室外空気温度が確率的に
出現し、どのような頻度で出現するか、また、その確率
分布が分かった場合に、如何にすれば希望の状態が統計
的に好都合に維持できるか等の考慮はなされていなかっ
た。
However, in the above-mentioned conventional multi-room air conditioner, when the outdoor air temperature appears stochastically and at what frequency, and the probability distribution is known. Moreover, no consideration was given to how the desired state can be statistically favorably maintained.

【0006】また、システム同定に関する従来の制御技
術では、制御定数を設計段階で決めるので、予め多室空
気調和機の特性を調べておく制御方式であるオフライン
システム同定が用いられている。これにより、従来の多
室空気調和機では、空気調和の対象となる利用家屋の空
調負荷等のような、多室空気調和機が設置されるまで未
知なパラメータについてまで対応した運転制御をするこ
とができなかった。
Further, in the conventional control technique relating to system identification, since the control constant is determined at the design stage, the off-line system identification, which is a control method in which the characteristics of the multi-room air conditioner are investigated in advance, is used. As a result, in the conventional multi-room air conditioner, operation control that corresponds to unknown parameters, such as the air-conditioning load of the user's house subject to air conditioning, will be performed until the multi-room air conditioner is installed. I couldn't.

【0007】一方、上述したように、実際の現象は、何
らかの不確定要素を含む確率事象である。ここで、確率
事象とは、例えば、図5に示すような、ある冷房期間中
における冷房を必要とする各温度(室外空気温度)の発
生頻度をあげることができる。従って、その不確定要素
を認識して設計を行なわなければ、統計的に良好な制御
が行えない。
On the other hand, as described above, the actual phenomenon is a stochastic event including some uncertainties. Here, the stochastic event may be, for example, the frequency of occurrence of each temperature (outdoor air temperature) that requires cooling during a certain cooling period as shown in FIG. Therefore, unless the uncertainties are recognized for designing, statistically good control cannot be performed.

【0008】ところが多室空気調和機についての全ての
状態量に関する確率分布を入手することは不可能であ
り、また、可能だとしても、全ての確率現象を取り扱う
と非常に煩雑になり、それが最適であるとは限らない。
However, it is not possible to obtain the probability distributions regarding all the state quantities of the multi-room air conditioner, and even if it is possible, it is very complicated to deal with all the stochastic phenomena. It is not always optimal.

【0009】ただ、図5に示す室外空気温度のように、
出現頻度分布という過去のデータが豊富で、しかも重要
な事象に関しては、予めその事象自体の不確定性や、統
計的性格を考慮にいれた制御手法が有効である。
However, like the outdoor air temperature shown in FIG.
For important events that have abundant past data such as the appearance frequency distribution, a control method that takes into consideration the uncertainty of the event itself and the statistical character is effective.

【0010】例えば、多室空気調和機の効率に関して、
多室空気調和機のエネルギ消費効率COPは、下記数式
1として定義される。
For example, regarding the efficiency of a multi-room air conditioner,
The energy consumption efficiency COP of the multi-room air conditioner is defined by the following mathematical formula 1.

【0011】[0011]

【数1】 [Equation 1]

【0012】ここで、Φは多室空気調和機能力、Pは多
室空気調和機の消費電力である。ところが、このCOP
は、標準空気温度条件と呼ばれるある特定の室外空気温
度(空調負荷)条件における値であって、必ずしも多室
空気調和機の性能を表したものとはいえない。
Here, Φ is a multi-room air conditioning function, and P is power consumption of the multi-room air conditioner. However, this COP
Is a value under a specific outdoor air temperature (air conditioning load) condition called standard air temperature condition, and does not necessarily represent the performance of the multi-room air conditioner.

【0013】近年、その欠点を補うために、年間エネル
ギ消費効率(APF)と呼ばれる、{(冷房・暖房各期
間の空調負荷×頻度)の合計}/{(冷房・暖房の各期
間の消費電力×頻度)の合計}が多室空気調和機の性能
を表す成績係数として使用されるようになった。このA
PFは、各期間の空調負荷及び消費電力に統計的な考え
方を考慮にいれたもので、実際に近いより実用的な効率
を表している。
In recent years, in order to make up for the drawback, it is called the annual energy consumption efficiency (APF), {(total of air conditioning load in each cooling / heating period x frequency)} / {(power consumption in each cooling / heating period) X total)} has come to be used as a coefficient of performance representing the performance of a multi-room air conditioner. This A
The PF is based on the statistical consideration of the air conditioning load and power consumption in each period, and represents a more practical efficiency that is close to the actual value.

【0014】しかし、従来の多室空気調和機における様
々な制御法は、室内空気温度、室外空気温度等の状態
量、及びその制御法のための評価関数に対しても確定的
な取り扱いをする制御法であり、このAPFに代表され
るような統計評価関数に対しては、考慮していなかっ
た。
However, various control methods in the conventional multi-room air conditioner treat the state quantities such as the indoor air temperature and the outdoor air temperature and the evaluation function for the control method deterministically. This is a control method, and no consideration was given to the statistical evaluation function represented by this APF.

【0015】そこで、本発明は、状態量及び評価関数を
統計的なものとして捉え、統計概念を導入することによ
って、より精密で、高効率な制御を行ない、APF等の
統計評価関数に対しても成績を向上させることができる
多室空気調和機を提供することを目的とする。
Therefore, in the present invention, the state quantity and the evaluation function are regarded as statistical and the statistical concept is introduced to perform more precise and highly efficient control, and to the statistical evaluation function such as APF. Also aims to provide a multi-room air conditioner that can improve performance.

【0016】また、本発明は、下記数式3に表されるよ
うな、実際に多室空気調和機が設置された後でないと予
測不可能な実効年間エネルギ消費効率σを、オンライン
システム同定器を用いて、高効率化する多室空気調和機
を提供することを目的とする
Further, the present invention uses an online system identifier to calculate the effective annual energy consumption efficiency σ, which is unpredictable only after the multi-room air conditioner is actually installed, as represented by the following mathematical formula 3. Aiming to provide a multi-room air conditioner with high efficiency by using

【0017】。[0017]

【課題を解決するための手段】本発明の多室空気調和機
は、室外機と、室内機を一台または複数台設け、前記室
外機と前記室内機とを配管接続して閉回路となし、前記
閉回路の中に冷媒を封入し、前記室外機においては、周
波数可変の圧縮機と室外熱交換器及び室外電子膨張弁を
配管接続するとともに、前記室外熱交換器に送風する室
外ファンを備え、前記室内機においては、室内空気と熱
交換を行う室内熱交換器と前記室内熱交換器の冷媒の流
量を調節する室内電子膨張弁を順次配管接続するととも
に、前記室内熱交換器に送風する室内ファンを備えて形
成する多室空気調和機において、室内空気温度と室外空
気温度とのうちの少なくとも一方を含む制御量や外乱を
少なくとも含む各状態量を、ある確率分布に従った不確
定な挙動をする確率変数とみなし、エネルギ効率を少な
くとも含む評価関数を、確率事象を確定値に処理する統
計評価関数とし、この統計評価関数を最適化する制御装
置を有することを特徴とする。
A multi-room air conditioner of the present invention is provided with one or a plurality of outdoor units and indoor units, and the outdoor units and the indoor units are connected by piping to form a closed circuit. , A refrigerant is sealed in the closed circuit, and in the outdoor unit, an outdoor fan that blows air to the outdoor heat exchanger is connected to the frequency variable compressor, the outdoor heat exchanger, and the outdoor electronic expansion valve by pipe connection. In the indoor unit, an indoor heat exchanger that exchanges heat with indoor air and an indoor electronic expansion valve that adjusts the flow rate of the refrigerant of the indoor heat exchanger are sequentially connected by piping, and air is blown to the indoor heat exchanger. In a multi-room air conditioner formed by including an indoor fan that operates, a control quantity including at least one of indoor air temperature and outdoor air temperature and each state quantity including at least disturbance are uncertain according to a certain probability distribution. Certain behavior Regarded as variables, at least including the evaluation function the energy efficiency, and a statistical evaluation function to handle probability events determined value, characterized in that it has a control device for optimizing the statistical evaluation function.

【0018】また、本発明の多室空気調和機において、
制御装置は、室外空気温度、圧縮機冷媒吐出過熱度、圧
縮機冷媒吸入圧力、圧縮機冷媒吐出圧力、圧縮機消費電
力、室内空気温度及び室内吹き出し空気温度を少なくと
も含む各状態量を検知する検知手段と、圧縮機駆動周波
数、室外ファン回転数、室外電子膨張弁開度、室内ファ
ン回転数及び室内電子膨張弁開度を少なくとも含む各操
作量を操作する操作手段と、設定室内空気温度を少なく
とも含む設定値を設定する設定手段と、多室空気調和機
についての年間を通じたエネルギ消費効率の値である年
間エネルギ消費効率(APF)を統計評価関数として最
大化するAPF最大化操作量演算器とを有することが好
ましい。
Further, in the multi-room air conditioner of the present invention,
The control device detects each state quantity including at least the outdoor air temperature, the compressor refrigerant discharge superheat degree, the compressor refrigerant suction pressure, the compressor refrigerant discharge pressure, the compressor power consumption, the indoor air temperature, and the indoor blowout air temperature. Means for operating a compressor driving frequency, an outdoor fan rotation speed, an outdoor electronic expansion valve opening degree, an indoor fan rotation speed and an indoor electronic expansion valve opening degree, and a set indoor air temperature. A setting means for setting a set value including the above, and an APF maximizing manipulated variable calculator for maximizing an annual energy consumption efficiency (APF), which is a value of energy consumption efficiency throughout the year for a multi-room air conditioner, as a statistical evaluation function. It is preferable to have

【0019】また、本発明の多室空気調和機において、
制御装置は、室外空気温度、圧縮機冷媒吐出過熱度、圧
縮機冷媒吸入圧力、圧縮機冷媒吐出圧力、圧縮機消費電
力、室内空気温度及び室内吹き出し空気温度を少なくと
も含む各状態量を検知する検知手段と、圧縮機駆動周波
数、室外ファン回転数、室外電子膨張弁開度、室内ファ
ン回転数及び室内電子膨張弁開度を少なくとも含む各操
作量を操作する操作手段と、設定室内空気温度を少なく
とも含む設定値を設定する設定手段と、前記各操作量に
ついての信号を要素とする操作量信号ベクトルと前記検
知手段が検知した各信号を要素とする検知信号ベクトル
とを入力して、多室空気調和機を少なくとも含む各制御
対象の特性を表すパラメータ推定値信号ベクトルを同定
出力するオンラインシステム同定器と、前記検知信号ベ
クトルと前記パラメータ推定信号ベクトルと前記設定手
段が設定した設定値を要素とする設定値信号ベクトルと
を入力し、年間エネルギ消費効率(APF)を統計評価
関数として最大化するAPF最大化操作量信号ベクトル
を出力するフィードバック演算器とを有することが好ま
しい。
In the multi-room air conditioner of the present invention,
The control device detects each state quantity including at least the outdoor air temperature, the compressor refrigerant discharge superheat degree, the compressor refrigerant suction pressure, the compressor refrigerant discharge pressure, the compressor power consumption, the indoor air temperature, and the indoor blowout air temperature. Means for operating a compressor driving frequency, an outdoor fan rotation speed, an outdoor electronic expansion valve opening degree, an indoor fan rotation speed and an indoor electronic expansion valve opening degree, and a set indoor air temperature. Inputting the setting means for setting the set value including, the operation amount signal vector having the signal for each operation amount as an element and the detection signal vector having each signal detected by the detection means as an element, the multi-chamber air An online system identifier for identifying and outputting a parameter estimation value signal vector representing the characteristics of each controlled object including at least a harmonic unit, the detection signal vector and the parameter Data estimation signal vector and a set value signal vector having set values set by the setting means as elements, and an APF maximized manipulated variable signal vector for maximizing the annual energy consumption efficiency (APF) as a statistical evaluation function is obtained. It is preferable to have a feedback calculator for outputting.

【0020】また、本発明の多室空気調和機において、
制御装置は、室外空気温度、圧縮機冷媒吐出過熱度、圧
縮機冷媒吸入圧力、圧縮機冷媒吐出圧力、圧縮機消費電
力、室内空気温度及び室内吹き出し空気温度を少なくと
も含む各状態量を検知する検知手段と、圧縮機駆動周波
数、室外ファン回転数、室外電子膨張弁開度、室内ファ
ン回転数及び室内電子膨張弁開度を少なくとも含む各操
作量を操作する操作手段と、設定室内空気温度を少なく
とも含む設定値を設定する設定手段と、前記各操作量に
ついての信号を要素とする操作量信号ベクトルと前記検
知手段が検知した各信号を要素とする検知信号ベクトル
とを入力して、多室空気調和機を少なくとも含む各制御
対象の特性を表すパラメータ推定値信号ベクトルを同定
出力するオンラインシステム同定器と、前記検知信号ベ
クトルと前記パラメータ推定信号ベクトルと前記設定手
段が設定した設定値を要素とする設定値信号ベクトルと
を入力し、実際の多室空気調和機設置利用家屋において
の年間エネルギ消費効率を統計評価関数として最大化す
る、実効年間エネルギ消費効率最大化操作量信号ベクト
ルを出力するフィードバック実効年間エネルギ消費効率
最大化操作量演算器とを有することが好ましい。
Further, in the multi-room air conditioner of the present invention,
The control device detects each state quantity including at least the outdoor air temperature, the compressor refrigerant discharge superheat degree, the compressor refrigerant suction pressure, the compressor refrigerant discharge pressure, the compressor power consumption, the indoor air temperature, and the indoor blowout air temperature. Means for operating a compressor driving frequency, an outdoor fan rotation speed, an outdoor electronic expansion valve opening degree, an indoor fan rotation speed and an indoor electronic expansion valve opening degree, and a set indoor air temperature. Inputting the setting means for setting the set value including, the operation amount signal vector having the signal for each operation amount as an element and the detection signal vector having each signal detected by the detection means as an element, the multi-chamber air An online system identifier for identifying and outputting a parameter estimation value signal vector representing the characteristics of each controlled object including at least a harmonic unit, the detection signal vector and the parameter Data estimation signal vector and a set value signal vector having set values set by the setting means as elements, and maximizes the annual energy consumption efficiency in an actual multi-room air conditioner installation user house as a statistical evaluation function It is preferable to have a feedback effective annual energy consumption efficiency maximizing operation amount calculator for outputting an effective annual energy consumption efficiency maximizing operation amount signal vector.

【0021】[0021]

【作用】本多室空気調和機における制御装置は、設定熱
環境空間を得るための方策として、複数の利用部室内空
気温度、圧縮機冷媒吐出圧力、圧縮機冷媒吸入圧力、圧
縮機冷媒吐出過熱度、多室空気調和機能力等の制御量
が、それぞれ決められた設定値に一致するように、圧縮
機の周波数や室外電子膨張弁開度、室内電子膨張弁開度
や室外及び室内ファンといった操作量を制御するもので
ある。
The control device in the present multi-room air conditioner uses, as a measure for obtaining the set thermal environment space, the indoor air temperature of a plurality of use parts, the compressor refrigerant discharge pressure, the compressor refrigerant suction pressure, and the compressor refrigerant discharge overheat. Control unit such as compressor frequency, outdoor electronic expansion valve opening, indoor electronic expansion valve opening, outdoor and indoor fan, etc. It controls the operation amount.

【0022】すなわち、本多室空気調和機における制御
装置は、多室空気調和機全体が常に適正な運転状態とな
ることを制御目的とし、安定かつ安全な運転を保持する
とともに、空調負荷の増減に応じた暖房あるいは冷房能
力を発揮させ、使用者に好ましい熱環境空間を得ること
を制御目的としている。
That is, the control device in the multi-room air conditioner has a control purpose that the whole multi-room air conditioner is always in an appropriate operating state, maintains stable and safe operation, and increases / decreases the air conditioning load. The purpose of the control is to exert the heating or cooling capacity according to the above and obtain a thermal environment space that is preferable to the user.

【0023】ここで、本発明の多室空気調和機の制御装
置では、年間エネルギ消費効率(APF)等のような確
率事象に対しては、統計的概念を導入し、統計的評価関
数を良好化する制御を行なう。
Here, in the control device for a multi-room air conditioner of the present invention, a statistical concept is introduced for a stochastic event such as annual energy consumption efficiency (APF), and a statistical evaluation function is made good. Control.

【0024】加えてオンラインシステム同定法によって
多室空気調和機と利用家屋の特性を明らかにし、結果を
利用することで、より精密、高効率に制御を行なうこと
ができ、省電力化に大いに貢献することができる。
In addition, the characteristics of the multi-room air conditioner and the user's house are clarified by the online system identification method, and the results can be used for more precise and highly efficient control, which greatly contributes to power saving. can do.

【0025】すなわち、本多室空気調和機の制御装置に
おける確率事象に対応する手法は、確率事象を確定的な
ものに変換する演算方法である。例えば、APFは、元
々確率事象である多室空気調和機エネルギ消費効率を、
室外空気温度の確率分布を用いて確定量に変換したもの
である。このような変換演算値としては、期待値、相
関、分散等があり、これらは確率事象の統計的性格を表
すものである。それらの確率事象の演算方法を導入する
ことによって、APF等統計的評価関数の良好化を行な
う。
That is, the method for dealing with the stochastic event in the control device of the present multi-room air conditioner is a calculation method for converting the stochastic event into a deterministic one. For example, the APF uses the multi-room air conditioner energy consumption efficiency, which is a stochastic event originally,
It is converted into a deterministic amount using the probability distribution of outdoor air temperature. Such conversion calculation values include expected values, correlations, variances, etc., which represent the statistical character of stochastic events. The statistical evaluation function such as APF is improved by introducing the method of calculating those stochastic events.

【0026】多室空気調和機の年間エネルギ消費効率
(APF)は、下記数式2として定義される。
The annual energy consumption efficiency (APF) of the multi-room air conditioner is defined by the following mathematical formula 2.

【0027】[0027]

【数2】 [Equation 2]

【0028】ここで、BLhは空調負荷、Pは多室空気
調和機消費電力、T0は室外空気温度、Xは運転率、P
LFは部分負荷係数、cDは成績劣化係数、PRHは空調
負荷に対して多室空気調和機の暖房能力の不足を補うた
めの電熱装置の消費電力、nはある室外空気温度につい
ての出現時間、jは室外空気温度分布を離散分布で段階
的に与えたとき、その刻みの番号を表すパラメータであ
る。また、添字cは冷房期間について、添字hは暖房期
間について表している。
Here, BL h is the air conditioning load, P is the power consumption of the multi-room air conditioner, T 0 is the outdoor air temperature, X is the operating rate, and P is
LF is the partial load coefficient, c D is the performance deterioration coefficient, P RH is the power consumption of the electric heating device to make up for the insufficient heating capacity of the multi-room air conditioner against the air conditioning load, and n is the appearance at a certain outdoor air temperature. Time, j is a parameter that represents the number of the step when the outdoor air temperature distribution is given stepwise as a discrete distribution. Further, the subscript c represents the cooling period, and the subscript h represents the heating period.

【0029】このAPFは、多室空気調和機の能力をも
とに定められた空調負荷と、多室空気調和機の消費電力
で計算されるが、この多室空気調和機の能力と消費電力
は、当然、室外、室内電子膨張弁開度、室外、室内ファ
ン回転数、圧縮機駆動周波数等の操作量に依存する。し
たがって、APFは操作量に関しての関数である。
This APF is calculated by the air conditioning load determined based on the capacity of the multi-room air conditioner and the power consumption of the multi-room air conditioner. The capacity and power consumption of the multi-room air conditioner are calculated. Of course depends on manipulated variables such as outdoor, indoor electronic expansion valve opening, outdoor, indoor fan rotation speed, and compressor drive frequency. Therefore, APF is a function regarding the manipulated variable.

【0030】また、室外空気温度の分布が予め既知であ
るので、期待値を最大化する演算方法を用いて、APF
最大化操作量を計算することができる。このような操作
量を常に出力する制御装置を備えた本発明の多室空気調
和機は、省電力化に大いに貢献することができる。
Further, since the distribution of the outdoor air temperature is known in advance, the APF is calculated using the calculation method that maximizes the expected value.
The maximum manipulated variable can be calculated. The multi-room air conditioner of the present invention including the control device that constantly outputs such an operation amount can greatly contribute to power saving.

【0031】さらに年間エネルギ消費効率向上の補助手
法としては、実際に多室空気調和機を運転する際にシス
テム同定を行う、オンラインシステム同定法を用いるこ
とが好ましい。これにより、上記の考え方をさらに一歩
進めることができ、より一層の省電力化を達成すること
ができる。
Further, as an auxiliary method for improving the annual energy consumption efficiency, it is preferable to use an online system identification method for performing system identification when actually operating the multi-room air conditioner. As a result, the above concept can be taken one step further, and further power saving can be achieved.

【0032】このオンラインシステム同定法は、多室空
気調和機が設置されてから後では測定が困難な多室空気
調和機の設置後の特性や、空調負荷を表す利用家屋の熱
通過係数等も同定するものである。
In this online system identification method, the characteristics after the installation of the multi-room air conditioner, which is difficult to measure after the multi-room air conditioner is installed, the heat transfer coefficient of the user's house indicating the air conditioning load, etc. To identify.

【0033】これらにより、本多室空気調和機は、様々
な条件を持った個々の設置場所において、年間エネルギ
消費効率を統計評価関数として最大化すなわち良好化す
ることができる。
As a result, the present multi-room air conditioner can maximize or improve the annual energy consumption efficiency as a statistical evaluation function at individual installation locations having various conditions.

【0034】上述のAPFを算出する場合において、空
調負荷BL(T0)は、多室空気調和機単体の能力と予
め定められた中立温度から算定するものであって、多室
空気調和機の設置される利用家屋の実際の空調負荷を表
しているものではない。多室空気調和機の能力や消費電
力も、実験場所で測定したある特定の値にすぎない。
In the case of calculating the above APF, the air conditioning load BL (T 0 ) is calculated from the capacity of the multi-room air conditioner alone and the predetermined neutral temperature. It does not represent the actual air conditioning load of the installed house. The capacity and power consumption of the multi-room air conditioner are only certain values measured at the experimental site.

【0035】よって、APFを最大化する意味は、多室
空気調和機単独の性能を最大化することで、必ずしも実
際の使用状況にける年間消費エネルギ消費電力を最大化
することではない。しかし、オンラインシステム同定
は、利用家屋の空調負荷、多室空気調和機の能力、消費
電力を検出し、下記数式3に表すような実効年間消費エ
ネルギ消費効率σを最大化することができる。
Therefore, the meaning of maximizing the APF is to maximize the performance of the multi-room air conditioner alone, and not necessarily to maximize the annual energy consumption power consumption in the actual use condition. However, the online system identification can detect the air-conditioning load of the user's house, the capacity of the multi-room air conditioner, and the power consumption, and maximize the effective annual energy consumption efficiency σ represented by the following mathematical formula 3.

【0036】[0036]

【数3】 (Equation 3)

【0037】ここで、分子のL(T0)は、利用家屋の
実際の空調負荷である。
Here, the numerator L (T 0 ) is the actual air conditioning load of the user's house.

【0038】[0038]

【実施例】以下、本発明の実施例について図面を参照し
て説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0039】図1は、本発明の実施例に係る多室空気調
和機の主要部を示すブロック線図である。また、図3
は、本発明の実施例に係る多室空気調和機の全体構成と
その利用家屋についての配置を示す説明図である。
FIG. 1 is a block diagram showing a main part of a multi-room air conditioner according to an embodiment of the present invention. Also, FIG.
FIG. 1 is an explanatory diagram showing an overall configuration of a multi-room air conditioner according to an embodiment of the present invention and an arrangement of user houses.

【0040】本多室空気調和機は、室外機1と、室内機
91,92を有し、室外機1と室内機91,92とを配
管接続して閉回路となし、この閉回路の中に冷媒を封入
している。
The multi-room air conditioner has the outdoor unit 1 and the indoor units 91 and 92, and the outdoor unit 1 and the indoor units 91 and 92 are connected by piping to form a closed circuit. The refrigerant is enclosed in.

【0041】そして、室外機1は、少なくとも一台の周
波数可変の圧縮機2と室外熱交換器3及び室外電子膨張
弁8を配管接続するとともに、室外熱交換器3に送風す
る室外ファン4を備えているとともに、アキュムレータ
5、四方弁6及びレシーバ7をも備えている。
In the outdoor unit 1, at least one frequency-variable compressor 2, the outdoor heat exchanger 3 and the outdoor electronic expansion valve 8 are connected by piping, and the outdoor fan 4 for blowing air to the outdoor heat exchanger 3 is connected. In addition to the above, the accumulator 5, the four-way valve 6 and the receiver 7 are also provided.

【0042】室内機91,92は、室内空気と熱交換を
行う室内熱交換器101,102と室内熱交換器10
1,102の冷媒の循環量を調節する室内電子膨張弁1
21、122を順次配管接続するとともに、室内熱交換
器101,102に送風する室内ファン111、112
を備えている。
The indoor units 91 and 92 are composed of the indoor heat exchangers 101 and 102 for exchanging heat with the indoor air and the indoor heat exchanger 10.
Indoor electronic expansion valve 1 for adjusting the circulation amount of refrigerant 1,102
Indoor fans 111, 112 for sequentially connecting the pipes 21, 122 and blowing air to the indoor heat exchangers 101, 102
It has.

【0043】ここで、室外機1及び複数の室内機91,
92の各ガス側及び液側を、各々ガス側管路13及び液
側管路14と分岐管151,152で接続して閉回路と
なし、その閉回路の内部に冷媒を封入している。
Here, the outdoor unit 1 and the plurality of indoor units 91,
The gas side and the liquid side of 92 are connected to the gas side pipeline 13 and the liquid side pipeline 14 by branch pipes 151 and 152 to form a closed circuit, and the refrigerant is sealed inside the closed circuit.

【0044】さらに、本多室空気調和機は、室内空気温
度と室外空気温度とのうちの少なくとも一方を含む制御
量や外乱を少なくとも含む各状態量を、ある確率分布に
従った不確定な挙動をする確率変数とみなし、エネルギ
効率を少なくとも含む評価関数を、確率事象を確定値に
処理する統計評価関数とし、この統計評価関数を最適化
する制御装置として制御演算装置32を有する。
Further, the present multi-room air conditioner has an uncertain behavior in which each state quantity including at least one of the indoor air temperature and the outdoor air temperature and the disturbance has a certain probability distribution. The evaluation function including at least the energy efficiency is regarded as a statistical variable that performs a random value, and a statistical calculation function that processes a probability event into a definite value is used as a statistical evaluation function. The control calculation device 32 is provided as a control device that optimizes the statistical evaluation function.

【0045】さらにまた、本多室空気調和機は、制御装
置における検知手段として、室外空気温度を検知する室
外空気温度検知器17、圧縮機冷媒吐出温度検知器及び
冷媒過熱度演算器からなる圧縮機冷媒吐出過熱度検知器
18、圧縮機冷媒吸入圧力を検知する圧縮機冷媒吸入圧
力検知器19、圧縮機冷媒吐出圧力を検知する圧縮機冷
媒吐出圧力検知器20、圧縮機2の電力を検知する圧縮
機電力検知器21、室外ファン4の電力を検知する室外
ファン電力検知器24、利用部161,162の利用部
室内空気温度を検知する利用部室内空気温度検知器26
1,262、利用部への吹き出し空気温度を検知する利
用部吹き出し空気温度検知器271,272、室内ファ
ン111,112の電力を検知する室内ファン電力検知
器291,292を備えている。
Furthermore, in the present multi-room air conditioner, as a detection means in the control device, an outdoor air temperature detector 17 for detecting the outdoor air temperature, a compressor refrigerant discharge temperature detector and a refrigerant superheat degree calculator are used for compression. Refrigerant discharge superheat detector 18, compressor refrigerant suction pressure detector 19 for detecting compressor refrigerant suction pressure, compressor refrigerant discharge pressure detector 20 for detecting compressor refrigerant discharge pressure, and electric power of compressor 2 is detected The compressor power detector 21, the outdoor fan power detector 24 that detects the power of the outdoor fan 4, the use portion indoor air temperature detector 26 that detects the use portion indoor air temperature of the use portions 161, 162.
1, 262, the use unit blown air temperature detectors 271, 272 for detecting the temperature of blown air to the use units, and the indoor fan power detectors 291, 292 for detecting the power of the indoor fans 111, 112.

【0046】さらにまた、本多室空気調和機は、制御装
置における操作手段として、圧縮機2の周波数を操作す
るインバータ圧縮機操作器22、室外ファン4の送風能
力を操作する室外側送風能力操作器23、室外電子膨張
弁8の開度を操作する室外電子膨張弁開度操作器25、
室内ファン111,112の送風能力を操作する室内側
送風能力操作器281,282、室内電子膨張弁12
1,122の冷媒循環量を操作する室内電子膨張弁開度
操作器301,302を備えている。
Furthermore, in the present multi-room air conditioner, as the operating means in the control device, the inverter compressor operating device 22 for operating the frequency of the compressor 2 and the outdoor air blowing ability operation for operating the air blowing ability of the outdoor fan 4 are operated. 23, an outdoor electronic expansion valve opening operation device 25 for operating the opening of the outdoor electronic expansion valve 8,
Indoor side blowing capacity operation devices 281 and 282 for controlling the blowing capacity of the indoor fans 111 and 112, and the indoor electronic expansion valve 12
The indoor electronic expansion valve opening degree operation devices 301 and 302 for operating the refrigerant circulation amount of 1,122 are provided.

【0047】さらにまた、本多室空気調和機は、制御装
置における設定手段として、予め与えられた設定値を記
憶、あるいは使用者が好みの熱環境を設定するための設
定器311,312を備えている。
Furthermore, the present multi-room air conditioner is provided with setting devices 311 and 312 for storing preset setting values or for setting a thermal environment desired by the user as setting means in the control device. ing.

【0048】これらにより、本多室空気調和機は、利用
部161,162の空調環境を調整する。
As a result, the multi-room air conditioner adjusts the air-conditioning environment of the utilization parts 161, 162.

【0049】次に、本多室空気調和機の動作について説
明する。先ず、多室空気調和機の年間エネルギ消費効率
(APF)を最大化するための制御動作について、暖房
運転を例にして説明する。
Next, the operation of the multi-room air conditioner will be described. First, the control operation for maximizing the annual energy consumption efficiency (APF) of the multi-room air conditioner will be described by taking the heating operation as an example.

【0050】暖房運転において、空調負荷と多室空気調
和機の消費電力との関係は、図4に示すようになる。い
ま、多室空気調和機は、回転数制御型とする。簡潔に説
明すると、多室空気調和機の最小能力釣り合い温度T0b
以上では空調負荷は小さく、多室空気調和機は断続運転
を繰り返す。
In the heating operation, the relationship between the air conditioning load and the power consumption of the multi-room air conditioner is as shown in FIG. Now, the multi-room air conditioner is a rotation speed control type. Briefly, the minimum capacity balance temperature T 0b of the multi-room air conditioner
With the above, the air conditioning load is small, and the multi-room air conditioner repeats intermittent operation.

【0051】したがって、その最小能力釣り合い温度T
0b以上の領域では、多室空気調和機の効率は、断続運転
時の特性を表す運転率、成績劣化係数、暖房負荷係数、
部分負荷係数等の値を用いて算出する。
Therefore, the minimum capacity balance temperature T
In the range of 0b or more, the efficiency of the multi-room air conditioner is the operating rate that represents the characteristics during intermittent operation, the coefficient of performance deterioration, the heating load coefficient,
It is calculated using values such as the partial load coefficient.

【0052】最小能力釣り合い温度T0b以下で、かつ最
大能力釣り合い温度T0a以上の領域においては、多室空
気調和機能力と空調負荷が釣り合いの関係にあり、効率
は、(空調負荷)/(多室空気調和機消費電力)=(そ
の空調負荷に見合った多室空気調和機能力)/(多室空
気調和機消費電力)で計算される。
In the region of the minimum capacity balance temperature T 0b or lower and the maximum capacity balance temperature T 0a or higher, the multi-room air conditioning functional force and the air conditioning load are in a balanced relationship, and the efficiency is (air conditioning load) / ( Multi-room air conditioner power consumption) = (multi-room air conditioner functional power commensurate with the air conditioning load) / (multi-room air conditioner power consumption).

【0053】最大能力釣り合い温度T0a以下の領域にお
いては、室内空気温度が設定室内空気温度以下となって
釣り合う。効率は、(多室空気調和機能力Φ)/(多室
空気調和機消費電力P)で計算される。最終的に暖房期
間エネルギ消費効率HSPFは、これらの効率に、室外
空気温度の出現頻度を掛け、期待値として算出される。
In the region of the maximum capacity balance temperature T 0a or lower, the indoor air temperature is equal to or lower than the set indoor air temperature and balanced. The efficiency is calculated by (multi-room air conditioning functional power Φ) / (multi-room air conditioner power consumption P). Finally, the heating period energy consumption efficiency HSPF is calculated as an expected value by multiplying these efficiencies by the appearance frequency of the outdoor air temperature.

【0054】ここで、多室空気調和機能力Φ、多室空気
調和機消費電力Pは、例えば熱交換器特性、配管長さ等
の多室空気調和機のハード特性、及び利用家屋の熱容量
や熱通過係数等の環境特性を表すパラメータの集合S
と、室内、室外膨張弁開度、室内、室外ファン回転数、
圧縮機駆動周波数等の多室空気調和機の操作量の値を表
す集合U、また室外空気温度T0等に依存するので、こ
れらは下記数式4及び数式5で表すことができる。
Here, the multi-room air conditioner functional force Φ and the multi-room air conditioner power consumption P are, for example, heat exchanger characteristics, hardware characteristics of the multi-room air conditioner such as pipe length, and heat capacity of a user's house. A set S of parameters representing environmental characteristics such as heat transfer coefficient
And indoor, outdoor expansion valve opening, indoor, outdoor fan speed,
Since it depends on the set U representing the values of the manipulated variables of the multi-room air conditioner such as the compressor drive frequency, the outdoor air temperature T 0, etc., these can be expressed by the following formulas 4 and 5.

【0055】[0055]

【数4】 (Equation 4)

【0056】[0056]

【数5】 (Equation 5)

【0057】簡単のために、図4における領域4のみに
おける部分的な暖房期間エネルギ消費効率の高効率化を
考える。空調負荷BL(T0)は、日本工業規格によ
り、空気調和機の個体の特性として、除霜時の能力等一
部を除いて制御方法に依存しない値として定義されてい
る。つまり、これは空気調和機単体の特性として決まる
値であり、制御設計者が決める値ではないので、拘束条
件とみなしてよい。いま、離散関数n(T0)を、T0
関する連続関数n’(T0)で近似し、下記数式6で表
すものとする。
For the sake of simplification, consideration will be given to increasing the efficiency of the energy consumption efficiency in the partial heating period only in the region 4 in FIG. The air-conditioning load BL (T 0 ) is defined by the Japanese Industrial Standards as a value that does not depend on the control method except for a part such as the capacity during defrosting as a characteristic of the individual air conditioner. In other words, this is a value determined as the characteristic of the air conditioner itself, not a value determined by the control designer, and may be regarded as a constraint condition. Now, discrete function n a (T 0), is approximated by a continuous function n of T 0 '(T 0), it shall be expressed by the following Equation 6.

【0058】[0058]

【数6】 (Equation 6)

【0059】そして領域4における連続関数で近似した
部分的暖房期間エネルギ消費効率H’は、下記数式7で
表されるものとする。
Then, the partial heating period energy consumption efficiency H'approximated by the continuous function in the region 4 is represented by the following expression 7.

【0060】[0060]

【数7】 (Equation 7)

【0061】ここでは、ある室外空気温度、ある特定の
多室空気調和機、空調環境を考えているので、T0、S
は固定して考える。このように、暖房期間エネルギ消費
効率は、多室空気調和機の操作量Uの関数になる。した
がって、この部分的暖房期間エネルギ消費効率H’を最
大化する操作量Uを見い出す方法を考える。但し、この
まま考慮するより、H’の逆数xを下記数式8で新たに
定義し、最小化するほうが容易である。
Here, since a certain outdoor air temperature, a certain multi-room air conditioner, and an air conditioning environment are considered, T 0 , S
Think fixed. Thus, the heating period energy consumption efficiency is a function of the operation amount U of the multi-room air conditioner. Therefore, consider a method of finding the manipulated variable U that maximizes the energy consumption efficiency H ′ for this partial heating period. However, it is easier to newly define the reciprocal x of H ′ by the following mathematical expression 8 and minimize it, rather than considering it as it is.

【0062】[0062]

【数8】 (Equation 8)

【0063】また、多室空気調和機の能力Φ(U;
0,S)が、空調負荷BL(T0)と同等の値だけ出力
しなければならない条件を考慮して、下記数式9で表わ
す制約条件を付け加える。
The capacity Φ (U;
Considering the condition that T 0 , S) should output the same value as the air conditioning load BL (T 0 ), a constraint condition expressed by the following mathematical expression 9 is added.

【0064】[0064]

【数9】 [Equation 9]

【0065】すると、上記数式9の条件のもとで、上記
数式8を、Uについて最小化する問題となる。しかし、
x(U;S)を最小化することは、すなわち、P(U;
0,S)n’(T0)を最小化することと同等であるの
で、結局、上記数式9の条件のもとで、P(U;T0
S)n’(T0)を、Uについて最小化する問題に帰着
する。
Then, under the condition of Expression 9, there is a problem that Expression 8 is minimized with respect to U. But,
Minimizing x (U; S) means that P (U; S).
Since it is equivalent to minimizing T 0 , S) n ′ (T 0 ), P (U; T 0 ,
S) n ′ (T 0 ) reduces to the problem of minimizing for U.

【0066】等式拘束条件での関数の極値を求める手法
は、Lagrangeの未定乗数法として有名である。
これは、条件付き極値の問題を、助変数を用いて条件無
し極値の問題に転化する方法で、以下の言葉で表現され
る。
The method of obtaining the extreme value of the function under the equality constraint condition is famous as the Lagrange's undetermined multiplier method.
This is a method of converting a conditional extremum problem into an unconditional extremum problem using an auxiliary variable, and is expressed by the following words.

【0067】P(U;T0,S)n’(T0)とφ(U;
0,S)が一回微分可能であるとき、上記数式9の条
件のもとで、P(U;T0,S)n’(T0)が極値をと
る点では、λを助変数として、下記数式10で表される
目的関数F(U,λ;T0,S)について、下記数式1
1で表される条件、あるいは下記数式12で表される条
件を満たす。
P (U; T 0 , S) n '(T 0 ) and φ (U;
When T 0 , S) is once differentiable, λ is assisted at the point where P (U; T 0 , S) n ′ (T 0 ) takes an extreme value under the condition of the above-mentioned expression 9. For the objective function F (U, λ; T 0 , S) expressed by the following mathematical formula 10,
The condition represented by 1 or the condition represented by the following formula 12 is satisfied.

【0068】[0068]

【数10】 (Equation 10)

【0069】[0069]

【数11】 [Equation 11]

【0070】[0070]

【数12】 (Equation 12)

【0071】ここで、Ui∈Uであり、Nは操作量の数
がいくつあるかを示す。このように、条件である数式1
1か、あるいは数式12を満たす操作量を見つけ、その
うちP(U;T0,S)n’(T0)を最大化する操作量
を除くと、それはP(U;T0,S)n’(T0)を最小
化する操作量Uであり、同時に、部分暖房期間エネルギ
消費効率を最大化する。この方法で求められた操作量
は、室外空気温度T0の関数となる。
Here, U i εU, and N indicates how many manipulation quantities there are. Thus, the condition 1
Finding a manipulated variable that satisfies 1 or Eq. 12 and excludes the manipulated variable that maximizes P (U; T 0 , S) n ′ (T 0 ), it is P (U; T 0 , S) n. '(T 0 ) is the operation amount U that minimizes, and at the same time maximizes the energy consumption efficiency in the partial heating period. The manipulated variable obtained by this method is a function of the outdoor air temperature T 0 .

【0072】この作業を、図4における領域4のみでな
く、図4に示す領域すべてに適用すると、暖房期間エネ
ルギ消費効率を最大化する操作量が求められる。さらに
は、冷房期間エネルギ消費効率に対しても同様の作業を
行なうと、年間エネルギ消費効率(APF)を最大化す
る操作量を求めることができる。
If this work is applied not only to the region 4 in FIG. 4 but also to all the regions shown in FIG. 4, the manipulated variable that maximizes the heating period energy consumption efficiency is obtained. Furthermore, by performing the same work for the energy consumption efficiency during the cooling period, the operation amount that maximizes the annual energy consumption efficiency (APF) can be obtained.

【0073】ここで、この暖房期間エネルギ消費効率最
大化操作量を求める際についていえることは、上記数式
11,12を満たすような解を、解析解として得る必要
はないのである。数値的に解を求めることは、コンピュ
ータの手助けが不可欠であるが、解析解を求めるのが困
難な場合でも、確実に解が得られる。
Here, what can be said when obtaining the operation amount for maximizing the energy consumption efficiency in the heating period is that it is not necessary to obtain a solution satisfying the above-mentioned mathematical expressions 11 and 12 as an analytical solution. A computer is indispensable for numerically obtaining a solution, but even if it is difficult to obtain an analytical solution, a solution can be surely obtained.

【0074】以上のべたAPF最大化法は、オフライン
計算である。つまり、求める操作量を具体的に計算する
際には、上記数式で表された様々な条件の、具体的な数
値を必要とする。
The above APF maximization method is an off-line calculation. That is, when specifically calculating the operation amount to be obtained, specific numerical values of various conditions represented by the above mathematical formulas are required.

【0075】ところが、上記数式を満たす操作量は、パ
ラメータの集合Sを未知パラメータとして含んでいる。
集合Sは、配管長さや封入冷媒量等の多室空気調和機を
設置するときに決定する要素を表すものであって、これ
は、事前に決定することができないことを意味してい
る。
However, the manipulated variable satisfying the above formula includes the parameter set S as an unknown parameter.
The set S represents elements that are determined when installing the multi-room air conditioner, such as the pipe length and the amount of enclosed refrigerant, and this means that it cannot be determined in advance.

【0076】具体的には、上記数式4,5等で表される
多室空気調和機の特性の、遅れ時間やむだ時間、係数パ
ラメータである。それらが未知である限り、上記数式
4,5の形が決まらず、上記数式8の最小化も不可能で
ある。
Specifically, the delay time, the dead time, and the coefficient parameter of the characteristics of the multi-room air conditioner represented by the equations 4 and 5 above. As long as they are unknown, the forms of the above equations 4 and 5 are not determined, and the above equation 8 cannot be minimized.

【0077】さらに、日本工業規格のAPFにおいては
空調負荷が、空気調和機個体の持つ決まった値として扱
ったが、実際使用する際の実効年間エネルギ消費効率
は、利用家屋の空調負荷が既知でなければ算出できな
い。
Further, in the APF of the Japanese Industrial Standard, the air conditioning load is treated as a fixed value of the individual air conditioners, but the effective annual energy consumption efficiency in actual use is such that the air conditioning load of the user's house is known. If not, it cannot be calculated.

【0078】そこで、その未知パラメータや未知空調負
荷を、多室空気調和機を実際に運転するときに検知し、
上記数式3で表される実効年間エネルギ消費効率σを最
大化する手法について前述と同じく、暖房運転に関して
以下に説明する。
Therefore, the unknown parameter and the unknown air conditioning load are detected when the multi-room air conditioner is actually operated,
A method for maximizing the effective annual energy consumption efficiency σ represented by the above equation 3 will be described below with respect to the heating operation as in the above.

【0079】多室空気調和機は、例えば操作量である圧
縮機駆動周波数をシステムへの入力、多室空気調和機の
消費電力がシステムの出力と見なすと、圧縮機駆動周波
数によって多室空気調和機消費電力が変化するシステム
と考えることができる。
In the multi-room air conditioner, for example, when the compressor drive frequency, which is an operation amount, is regarded as an input to the system and the power consumption of the multi-room air conditioner is regarded as the output of the system, the multi-room air conditioner is controlled by the compressor drive frequency. It can be considered as a system in which machine power consumption changes.

【0080】また、操作量である室内電子膨張弁開度を
システムへの入力、状態量である多室空気調和機能力を
システムの出力と見なすと、室内電子膨張弁開度によっ
て多室空気調和機能力が変化するシステムと考えること
ができる。
If the indoor electronic expansion valve opening, which is the manipulated variable, is regarded as the input to the system and the multi-room air conditioning functional force that is the state quantity is regarded as the output of the system, the multi-room air conditioning is controlled by the indoor electronic expansion valve opening. It can be thought of as a system in which functional capabilities change.

【0081】さらには、利用家屋を含めて考慮した場合
においては、多室空気調和機の能力をシステムへの入
力、利用家屋室内空気温度をシステムからの出力とみな
すと、多室空気調和機能力によって、室内空気温度が変
化するシステムと考えることができる。
Further, in the case where the user houses are also taken into consideration, if the capacity of the multi-room air conditioner is regarded as the input to the system and the air temperature of the user room indoor air is regarded as the output from the system, the multi-room air conditioner functional capability is obtained. Can be considered as a system in which the indoor air temperature changes.

【0082】これらの入力と出力の因果関係を時系列あ
るいは微分方程式で表したとき、その次数や係数の値及
びむだ時間がシステムの性格を表わす指標となる。した
がって、これらのパラメータを推定できれば、そのシス
テムの性格をかなり明らかに把握したということができ
る。
When the causal relationship between these inputs and outputs is represented by a time series or a differential equation, the order, the value of the coefficient, and the dead time serve as an index showing the character of the system. Therefore, if these parameters can be estimated, it can be said that the characteristics of the system have been fairly clearly understood.

【0083】そこで、まずモデリングを行う。上述の例
と同じく、3つのシステムを考える。システム1とシス
テム2への入力として、圧縮機駆動周波数と電子膨張弁
開度、室外空気温度とし、システム3への入力として多
室空気調和機能力とする。システム1とシステム2の出
力としては多室空気調和機消費電力、多室空気調和機暖
房能力とし、システム3の出力は室内空気温度とする。
これらが離散時間表現で下記数式13,14,15のよ
うに表せるとする。
Therefore, modeling is first performed. As with the example above, consider three systems. The inputs to the system 1 and the system 2 are the compressor drive frequency, the opening degree of the electronic expansion valve, and the outdoor air temperature, and the input to the system 3 is the multi-room air conditioning function. The outputs of the system 1 and the system 2 are the power consumption of the multi-room air conditioner and the heating capacity of the multi-room air conditioner, and the output of the system 3 is the room air temperature.
It is assumed that these can be expressed in discrete time expressions as in the following formulas 13, 14, and 15.

【0084】[0084]

【数13】 (Equation 13)

【0085】[0085]

【数14】 [Equation 14]

【0086】[0086]

【数15】 (Equation 15)

【0087】ここで、Pは圧縮機消費電力、T0は室外
空気温度、εは電子膨張弁開度、rは圧縮機駆動周波
数、Φは多室空気調和機能力、TiINは室内空気温度、
A,Bi j,C,Dij,E,Fはそれぞれ係数パラメー
タ、kはカウンタとする。
Here, P is the power consumption of the compressor, T 0 is the outdoor air temperature, ε is the electronic expansion valve opening degree, r is the compressor drive frequency, Φ is the multi-room air conditioning function, and T iIN is the indoor air temperature. ,
A, B i j , C, D ij , E, and F are coefficient parameters, and k is a counter.

【0088】それぞれの状態量P,Φ,TiINの検知方
法としては、どのような計測器を多室空気調和機に搭載
しているかによって異なるが、図3に示す多室空気調和
機の構成とその利用家屋についての配置の一例を考え、
多室空気調和機能力Φに関しては下記数式16の関係を
用いて算出できるとする。
The method of detecting the respective state quantities P, Φ, T iIN differs depending on what kind of measuring instrument is installed in the multi-room air conditioner, but the configuration of the multi-room air conditioner shown in FIG. And an example of the layout of the user's house,
It is assumed that the multi-room air conditioning functional force Φ can be calculated using the relationship of the following Expression 16.

【0089】[0089]

【数16】 (Equation 16)

【0090】ここで、ρは空気密度、Gは室内機ファン
風量、cpは空気定圧比熱、TiEXは室内吹出空気温度を
表す。以上の関係の中でA,Bij,C,Dij,E,Fの
各パラメータをオンラインシステム同定によって推定す
る。オンラインシステム同定とは、運転及び観測と同時
に行うシステム同定である。
[0090] Here, [rho represents air density, G is the indoor unit fan air volume, c p is the air specific heat at constant pressure, T IEX is a temperature of air blown into the room. In the above relationship, each parameter of A, B ij , C, D ij , E, F is estimated by online system identification. Online system identification is system identification performed simultaneously with operation and observation.

【0091】ここで、パラメータのk回目の推定値を
A”(k),B”ij(k),C”(k),D”
ij(k),E”(k),F”(k)とし、推定ベクトル
θ”(k)を下記数式17,18,19、観測ベクトル
を下記数式20,21,22のごとく定義する。
Here, the k-th estimated value of the parameter is A ″ (k), B ″ ij (k), C ″ (k), D ″.
ij (k), E ″ (k), F ″ (k), the estimated vector θ ″ (k) is defined by the following mathematical formulas 17, 18, and 19, and the observation vector is defined by the following mathematical formulas 20, 21, 22.

【0092】[0092]

【数17】 [Equation 17]

【0093】[0093]

【数18】 (Equation 18)

【0094】[0094]

【数19】 [Equation 19]

【0095】[0095]

【数20】 (Equation 20)

【0096】[0096]

【数21】 (Equation 21)

【0097】[0097]

【数22】 (Equation 22)

【0098】ここで、y1は多室空気調和機消費電力の
検知信号、yTは室外空気温度の検知信号、y2は多室空
気調和機能力の検知信号、y3は利用家屋室内空気温度
の検知信号、また(・)’は転置を表す。この推定ベク
トルは、最小二乗の意味で、下記数式23によって逐次
求められる。
Here, y 1 is the detection signal of the power consumption of the multi-room air conditioner, y T is the detection signal of the outdoor air temperature, y 2 is the detection signal of the multi-room air conditioning functional force, and y 3 is the indoor air of the user's house. The temperature detection signal, and (•) 'represents transposition. This estimated vector has the meaning of least squares and is sequentially obtained by the following formula 23.

【0099】[0099]

【数23】 (Equation 23)

【0100】次に、利用家屋の実際の暖房空調負荷の推
定値は、上記係数パラメータを用いて、室外空気温度の
関数として下記数式24のように表せる。
Next, the estimated value of the actual heating and air-conditioning load of the user's house can be expressed as the following equation 24 as a function of the outdoor air temperature using the coefficient parameter.

【0101】[0101]

【数24】 (Equation 24)

【0102】ここで、TSETは設定室内空気温度を表
し、暖房運転では20℃、冷房運転では27℃の定数と
する。未知パラメータと未知空調負荷を以上のアルゴリ
ズムで求め、後は前述のAPF最大化法と同じ手法で操
作量を求めれば、それは、実効年間エネルギ消費効率σ
を最大化する操作量である。
Here, T SET represents the set indoor air temperature, which is a constant of 20 ° C. in the heating operation and 27 ° C. in the cooling operation. If the unknown parameter and the unknown air conditioning load are obtained by the above algorithm, and then the manipulated variable is obtained by the same method as the above-mentioned APF maximization method, the effective annual energy consumption efficiency σ
Is the operation amount that maximizes.

【0103】次に、さらに具体的に本実施例に係る多室
空気調和機について説明する。図1は、図3に示す多室
空気調和機に適用した、二操作系の多室空気調和機の実
効年間消費エネルギ消費効率σを最大化する最大化制御
装置である制御演算装置32での信号処理の一例を示す
ブロック線図である。
Next, the multi-room air conditioner according to this embodiment will be described more specifically. FIG. 1 shows a control arithmetic unit 32, which is a maximizing controller that maximizes the effective annual energy consumption efficiency σ of a two-operation multi-room air conditioner, which is applied to the multi-room air conditioner shown in FIG. It is a block diagram showing an example of signal processing.

【0104】本多室空気調和機においては、システム1
への入力として圧縮機駆動周波数、電子膨張弁開度、室
外空気温度があるものとし、システム1の出力として多
室空気調和機消費電力があるとする。
In the multi-room air conditioner, the system 1
It is assumed that a compressor driving frequency, an electronic expansion valve opening degree, and an outdoor air temperature are input to the multi-chamber air conditioner power consumption.

【0105】また、システム2の入力として圧縮機駆動
周波数、電子膨張弁開度及び室外空気温度があり、シス
テム2の出力として多室空気調和機能力があるとする。
Further, it is assumed that the input of the system 2 is the compressor drive frequency, the opening degree of the electronic expansion valve and the outdoor air temperature, and the output of the system 2 is the multi-room air conditioning function.

【0106】さらに、システム3の入力として多室空気
調和機能力、室外空気温度があり、システム3の出力と
して室内空気温度があるとする。
Further, it is assumed that the input of the system 3 is the multi-room air conditioning function and the outdoor air temperature, and the output of the system 3 is the indoor air temperature.

【0107】そして、図1において、33は利用家屋設
定室内空気温度信号TSET(k)、34は多室空気調和
機が出力する多室空気調和機消費電力P(k)、35は
多室空気調和機能力Φ(k)、36は多室空気調和機室
内吹出空気温度、37は能力を受けて変化する利用家屋
室内空気温度TiIN(k)、38は多室空気調和機消費
電力検知信号y1(k)、39は多室空気調和機能力検
知信号y2(k)、40は利用家屋室内空気温度検知信
号y3(k)、41は操作信号である圧縮機駆動周波数
信号r(k)、42は操作信号の電子膨張弁開度信号ε
(k)、43は多室空気調和機消費電力の特性を表すパ
ラメータの推定値を要素とする推定値信号ベクトル
θ1”(k)、44は多室空気調和機能力の特性を表す
パラメータの推定値を要素とする推定値信号ベクトルθ
2”(k)、45は利用家屋の熱通過係数等の特性を表
すパラメータの推定値を要素とする推定値信号ベクトル
θ3”(k)、46は上記数式16等で表せる多室空気
調和機能力を算出する多室空気調和機能力演算器、47
はフィードバック実効年間エネルギ消費効率最大化演算
器、48はオンライン多室空気調和機消費電力システム
同定器、49はオンライン多室空気調和機能力システム
同定器、50はオンライン利用家屋特性システム同定
器、51はオンラインシステム同定器である。
In FIG. 1, 33 is a user house setting room air temperature signal T SET (k), 34 is a multi-room air conditioner power consumption P (k) output from the multi-room air conditioner, and 35 is a multi-room air conditioner. Air conditioning functional power Φ (k), 36 is a multi-room air conditioner indoor blown air temperature, 37 is a use house indoor air temperature T iIN (k) that changes depending on the capacity, 38 is a multi-room air conditioner power consumption detection Signals y 1 (k), 39 are multi-room air conditioning functional force detection signals y 2 (k), 40 is a user house indoor air temperature detection signal y 3 (k), 41 is a compressor drive frequency signal r which is an operation signal. (K) and 42 are electronic expansion valve opening signal ε of the operation signal
(K), 43 is an estimated value signal vector θ 1 ″ (k) having an estimated value of a parameter representing the characteristic of the power consumption of the multi-room air conditioner, and 44 is a parameter representing the characteristic of the multi-room air conditioning functional force. Estimated value signal vector θ with estimated values as elements
2 ″ (k), 45 is an estimated value signal vector θ 3 ″ (k) that has estimated values of parameters representing characteristics such as heat transfer coefficient of the user's house as elements, and 46 is a multi-room air conditioner that can be expressed by the above equation 16 etc. Multi-room air conditioning functional force calculator for calculating functional force, 47
Is a feedback effective annual energy consumption efficiency maximizing calculator, 48 is an online multi-room air conditioner power consumption system identifier, 49 is an online multi-room air conditioning function system identifier, 50 is an online user characteristic system identifier, 51 Is an online system identifier.

【0108】次に、本実施例の多室空気調和の詳細な動
作について、図2などを参照して説明する。図2は、図
1に示す本多室空気調和機の動作を示すフローチャート
である。
Next, the detailed operation of the multi-room air conditioning of this embodiment will be described with reference to FIG. FIG. 2 is a flowchart showing the operation of the multi-room air conditioner shown in FIG.

【0109】利用部としては、図3における利用部16
1の一つだけに注目する。先ずはじめに、多室空気調和
機を起動する(S1)。その後、操作量である圧縮機駆
動周波数、電子膨張弁開度の値が、予め設定された初期
値(r(0)、ε(0))で設定される(S2)。
As the utilization unit, the utilization unit 16 in FIG. 3 is used.
Pay attention to only one of 1. First, the multi-room air conditioner is started (S1). After that, the values of the compressor drive frequency and the electronic expansion valve opening, which are the manipulated variables, are set to preset initial values (r (0), ε (0)) (S2).

【0110】その後、室内吸込空気温度及び室内吹出空
気温度が、例えば、暖房運転時においてはどちらも上昇
するので、それらを図3における検知器261、271
により計測、検知する。同時に多室空気調和機消費電力
も検知器21により計測する(S3)。
After that, both the indoor intake air temperature and the indoor blown air temperature rise, for example, during the heating operation, so that they are detected by the detectors 261 and 271 in FIG.
To measure and detect. At the same time, the power consumption of the multi-room air conditioner is also measured by the detector 21 (S3).

【0111】その後、多室空気調和機能力を多室空気調
和機能力演算器46が演算し、図1における検知信号3
9として、また多室空気調和機消費電力が検知信号38
として、利用家屋室内空気温度が検知信号40として出
力される(S4)。
Thereafter, the multi-room air conditioning functional force is calculated by the multi-room air conditioning functional force calculator 46, and the detection signal 3 in FIG.
9 and the power consumption of the multi-room air conditioner is the detection signal 38.
As, the indoor air temperature of the user's house is output as the detection signal 40 (S4).

【0112】これらの検知信号に対し、操作量に対する
多室空気調和機の反応である多室空気調和機消費電力の
特性と多室空気調和機能力の特性、それに利用家屋の特
性を表すパラメータを演算すなわち同定する(S5、S
6、S7)。
In response to these detection signals, the characteristics of the power consumption of the multi-room air conditioner, which is the reaction of the multi-room air conditioner with respect to the manipulated variable, the characteristics of the multi-room air conditioning function, and the parameters representing the characteristics of the user house are set. Calculate or identify (S5, S
6, S7).

【0113】そして、これらのパラメータの値をもと
に、実際の空調負荷を演算する(S8)。またフィード
バックゲインを新たに演算し、、圧縮機駆動周波数と電
子膨張弁開度の2つの操作量についての次のステップの
値(r(1)、ε(1))が同時に求まる(S9、S1
0)。
Then, the actual air conditioning load is calculated based on the values of these parameters (S8). Further, the feedback gain is newly calculated, and the values (r (1), ε (1)) of the next step for the two manipulated variables of the compressor drive frequency and the electronic expansion valve opening are simultaneously obtained (S9, S1).
0).

【0114】さらに、運転を続ける場合は、ステップ3
に戻る(S11)。そして、新しい圧縮機駆動周波数、
電子膨張弁開度が与えられ、検知部54は前ステップと
同様に、室内吸込空気温度、室内吹出空気温度及び多室
空気調和機消費電力を検知し(S3)、多室空気調和機
能力演算部55で多室空気調和機能力を演算する(S
4)。以下、前のステップで行われた演算を繰り返す。
Further, if the operation is to be continued, step 3
Return to (S11). And the new compressor drive frequency,
The opening degree of the electronic expansion valve is given, and the detection unit 54 detects the indoor intake air temperature, the indoor blowout air temperature and the power consumption of the multi-room air conditioner (S3) as in the previous step, and calculates the multi-room air conditioning functional force. The multi-room air conditioning functional force is calculated in the section 55 (S
4). Hereinafter, the calculation performed in the previous step is repeated.

【0115】これらにより、本多室空気調和機は、多室
空気調和機と利用家屋の特性をオンラインで同定、更新
することにより、その設置状態において、実効年間エネ
ルギ消費効率を最大にする操作量を算出するので、年間
を通じて、快適生を損ねることなく省電力化を実現する
ことができる。
As a result, the multi-room air conditioner identifies and updates the characteristics of the multi-room air conditioner and the user's house online, and the operation amount that maximizes the effective annual energy consumption efficiency in the installed state. Therefore, power saving can be realized throughout the year without impairing comfortable life.

【0116】以上の例では、操作量として圧縮機駆動周
波数、電子膨張弁開度を扱ったが、その他にも、操作量
として室外及び室内ファンの回転数等をも加えて、制御
系を構築することができる。また利用部として空気調和
だけでなく、冷凍、水温管理等、様々な熱機械でも使用
できる。
In the above example, the compressor drive frequency and the electronic expansion valve opening are handled as the manipulated variables, but in addition, the control system is constructed by adding the rotation speeds of the outdoor and indoor fans as the manipulated variables. can do. Moreover, not only air conditioning but also various heat machines such as freezing and water temperature control can be used as the utilization part.

【0117】[0117]

【発明の効果】以上説明したように本発明によれば、多
室空気調和機の運転環境に関する不確定に変動する確率
状態量に対して、統計的概念とその演算方法を導入した
運転制御をすること、すなわち、確率事象を確定値に処
理する統計評価関数について最適化する運転制御をする
ので、年間を通じたエネルギ消費効率を良好化できる多
室空気調和機を提供することができる。
As described above, according to the present invention, the operation control which introduces the statistical concept and the calculation method for the stochastic state quantity that varies indefinitely regarding the operating environment of the multi-room air conditioner is performed. That is, since the operation control is performed to optimize the statistical evaluation function that processes the stochastic event into the fixed value, it is possible to provide the multi-room air conditioner that can improve the energy consumption efficiency throughout the year.

【0118】さらに、本発明によれば、多室空気調和機
とその多室空気調和機が設置される周囲の利用家屋の特
性における、多室空気調和機器が設置されるまで未知な
構造部分もオンラインシステム同定によって明らかにす
ることができるので、常に安定で快適、しかも省電力化
を達成した運転を保証することができる。
Further, according to the present invention, in the characteristics of the multi-room air conditioner and the surrounding user house in which the multi-room air conditioner is installed, there are also unknown structural parts until the multi-room air conditioner is installed. Since it can be clarified by online system identification, it is possible to guarantee stable and comfortable driving, and at the same time, achieve power saving.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係る多室空気調和機の主要部
を示すブロック線図である。
FIG. 1 is a block diagram showing a main part of a multi-room air conditioner according to an embodiment of the present invention.

【図2】図1に示す多室空気調和機の動作を示すフロー
チャートである。
FIG. 2 is a flowchart showing an operation of the multi-room air conditioner shown in FIG.

【図3】本発明の実施例に係る多室空気調和機の構成と
その利用家屋についての配置を示す説明図である。
FIG. 3 is an explanatory diagram showing a configuration of a multi-room air conditioner according to an embodiment of the present invention and an arrangement of a user's house.

【図4】空気調和機の消費電力及び空調負荷と室外空気
温度との関係を示すグラフである。
FIG. 4 is a graph showing a relationship between power consumption and air conditioning load of an air conditioner and outdoor air temperature.

【図5】ある冷房期間における冷房を必要とする各室外
空気温度の発生頻度を示すグラフである。
FIG. 5 is a graph showing the frequency of occurrence of each outdoor air temperature that requires cooling during a certain cooling period.

【符号の説明】[Explanation of symbols]

1 室外機 2 圧縮機 3 室外熱交換器 4 室外ファン 5 アキュムレータ 6 四方弁 7 レシーバ 8 室外電子膨張弁 91 室内機 92 室内機 101 室内熱交換器 102 室内熱交換器 111 室内ファン 112 室内ファン 121 室内電子膨張弁 122 室内電子膨張弁 13 ガス管 14 液管 15 分岐管 161 利用部 162 利用部 17 室外空気温度検知器 18 圧縮機冷媒吐出温度検知器 19 圧縮機冷媒吸入圧力検知器 20 圧縮機冷媒吐出圧力検知器 21 圧縮機電力検知器 22 インバータ圧縮機操作器 23 室外側送風能力操作器 24 室外ファン電力検知器 25 室外電子膨張弁開度操作器 261 室内空気温度検知器 262 室内空気温度検知器 271 室内吹出空気温度検知器 272 室内吹出空気温度検知器 281 室内側送風能力操作器 282 室内側送風能力操作器 291 室内ファン電力検知器 292 室内ファン電力検知器 301 室内電子膨張弁 302 室内電子膨張弁 311 設定器 312 設定器 32 制御演算装置 33 設定室内空気温度信号 34 多室空気調和機消費電力 35 多室空気調和機能力 36 室内吹出空気温度 37 室内空気温度 38 多室空気調和機消費電力検知信号 39 多室空気調和機能力検知信号 40 利用家屋室内空気温度検知信号 41 圧縮機駆動周波数信号 42 電子膨張弁開度信号 43 多室空気調和機消費電力特性推定値信号ベクトル 44 多室空気調和機能力特性推定値信号ベクトル 45 利用家屋特性推定値信号ベクトル 46 多室空気調和機能力演算器 47 フィードバック実効年間エネルギ効率最大化操作
量演算器 48 オンライン多室空気調和機消費電力特性システム
同定器 49 オンライン多室空気調和機能力特性システム同定
器 50 オンライン利用家屋特性システム同定器 51 オンラインシステム同定器 52 多室空気調和機起動部 53 操作器規定初期値設定部 54 室内空気温度、室内吹出空気温度、多室空気調和
機消費電力検知部 55 多室空気調和機能力演算部 56 多室空気調和機消費電力特性演算部 57 多室空気調和機能力特性演算部 58 利用家屋特性演算部 59 実効空調負荷演算部 60 実効年間エネルギ効率最大化圧縮機駆動周波数操
作量演算部 61 実効年間エネルギ効率最大化電子膨張弁開度操作
量演算部 62 停止、継続運転判定部 63 停止実行部 64 空気調和機消費電力 65 空調負荷 66 領域1 67 領域2 68 領域3 69 領域4 70 領域5
1 outdoor unit 2 compressor 3 outdoor heat exchanger 4 outdoor fan 5 accumulator 6 four-way valve 7 receiver 8 outdoor electronic expansion valve 91 indoor unit 92 indoor unit 101 indoor heat exchanger 102 indoor heat exchanger 111 indoor fan 112 indoor fan 121 indoor Electronic expansion valve 122 Indoor electronic expansion valve 13 Gas pipe 14 Liquid pipe 15 Branch pipe 161 Use part 162 Use part 17 Outdoor air temperature detector 18 Compressor refrigerant discharge temperature detector 19 Compressor refrigerant suction pressure detector 20 Compressor refrigerant discharge Pressure detector 21 Compressor electric power detector 22 Inverter compressor operator 23 Outdoor air blowing capacity operator 24 Outdoor fan power detector 25 Outdoor electronic expansion valve opening operator 261 Indoor air temperature detector 262 Indoor air temperature detector 271 Indoor air temperature detector 272 Indoor air temperature detector 281 Indoor air blowing Power operation device 282 Indoor air blowing capacity operation device 291 Indoor fan power detector 292 Indoor fan power detector 301 Indoor electronic expansion valve 302 Indoor electronic expansion valve 311 Setting device 312 Setting device 32 Control arithmetic unit 33 Setting indoor air temperature signal 34 Multi Indoor air conditioner power consumption 35 Multi-room air conditioning functional power 36 Indoor blown air temperature 37 Indoor air temperature 38 Multi-room air conditioner power consumption detection signal 39 Multi-room air conditioning functional power detection signal 40 User house indoor air temperature detection signal 41 Compressor drive frequency signal 42 Electronic expansion valve opening signal 43 Multi-room air conditioner power consumption characteristic estimated value signal vector 44 Multi-room air conditioning functional force characteristic estimated value signal vector 45 User house characteristic estimated value signal vector 46 Multi-room air conditioning Functional force calculator 47 Feedback effective annual energy efficiency maximizing manipulated variable calculator 48 Line multi-room air conditioner power consumption characteristic system identifier 49 Online multi-room air conditioning functional force characteristic system identifier 50 Online user house characteristic system identifier 51 Online system identifier 52 Multi-room air conditioner starter 53 Operator regulation initial Value setting part 54 Indoor air temperature, indoor blown air temperature, multi-room air conditioner power consumption detection part 55 Multi-room air conditioning functional force calculation part 56 Multi-room air conditioner power consumption characteristic calculation part 57 Multi-room air conditioning functional power property Calculation unit 58 User house characteristic calculation unit 59 Effective air conditioning load calculation unit 60 Effective annual energy efficiency maximizing compressor drive frequency manipulated variable computing unit 61 Effective annual energy efficiency maximizing electronic expansion valve opening manipulated variable computing unit 62 Stopping and continuous operation Judgment unit 63 Stop execution unit 64 Air conditioner power consumption 65 Air conditioning load 66 Area 1 67 Area 2 68 Area 3 69 Area 4 70 Area 5

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中山 進 静岡県清水市村松390番地 株式会社日立 製作所空調システム事業部内 (72)発明者 小国 研作 静岡県清水市村松390番地 株式会社日立 製作所空調システム事業部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Susumu Nakayama 390 Muramatsu, Shimizu-shi, Shizuoka Hitachi Air Conditioning Systems Division (72) Inventor Kensaku Oguni 390, Muramatsu, Shimizu-shi, Hitachi Hitachi Air Conditioning Systems Business Department

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 室外機と、室内機を一台または複数台設
け、前記室外機と前記室内機とを配管接続して閉回路と
なし、前記閉回路の中に冷媒を封入し、前記室外機にお
いては、周波数可変の圧縮機と室外熱交換器及び室外電
子膨張弁を配管接続するとともに、前記室外熱交換器に
送風する室外ファンを備え、前記室内機においては、室
内空気と熱交換を行う室内熱交換器と前記室内熱交換器
の冷媒の流量を調節する室内電子膨張弁を順次配管接続
するとともに、前記室内熱交換器に送風する室内ファン
を備えて形成する多室空気調和機において、室内空気温
度と室外空気温度とのうちの少なくとも一方を含む制御
量や外乱を少なくとも含む各状態量を、ある確率分布に
従った不確定な挙動をする確率変数とみなし、エネルギ
効率を少なくとも含む評価関数を、確率事象を確定値に
処理する統計評価関数とし、この統計評価関数を最適化
する制御装置を有することを特徴とする多室空気調和
機。
1. An outdoor unit and one or a plurality of indoor units are provided, the outdoor unit and the indoor unit are connected by piping to form a closed circuit, and a refrigerant is sealed in the closed circuit to form the outdoor unit. In the machine, a frequency variable compressor, an outdoor heat exchanger and an outdoor electronic expansion valve are connected by piping, and an outdoor fan that blows air to the outdoor heat exchanger is provided, and in the indoor unit, heat exchange with indoor air is performed. In a multi-chamber air conditioner formed by sequentially connecting indoor indoor heat exchangers and indoor electronic expansion valves for adjusting the flow rate of refrigerant in the indoor heat exchangers with pipes, and providing an indoor fan for blowing air to the indoor heat exchangers , Each state quantity including at least one of the control amount and the disturbance including the indoor air temperature and the outdoor air temperature is regarded as a random variable having an uncertain behavior according to a certain probability distribution, and at least the energy efficiency is included. A multi-room air conditioner characterized in that the evaluation function is a statistical evaluation function for processing a stochastic event into a definite value, and a control device for optimizing the statistical evaluation function is provided.
【請求項2】 請求項1記載の多室空気調和機におい
て、制御装置は、室外空気温度、圧縮機冷媒吐出過熱
度、圧縮機冷媒吸入圧力、圧縮機冷媒吐出圧力、圧縮機
消費電力、室内空気温度及び室内吹き出し空気温度を少
なくとも含む各状態量を検知する検知手段と、圧縮機駆
動周波数、室外ファン回転数、室外電子膨張弁開度、室
内ファン回転数及び室内電子膨張弁開度を少なくとも含
む各操作量を操作する操作手段と、設定室内空気温度を
少なくとも含む設定値を設定する設定手段と、多室空気
調和機についての年間を通じたエネルギ消費効率の値で
ある年間エネルギ消費効率(APF)を統計評価関数と
して最大化するAPF最大化操作量演算器とを有するこ
とを特徴とする多室空気調和機。
2. The multi-room air conditioner according to claim 1, wherein the control device comprises: outdoor air temperature, compressor refrigerant discharge superheat degree, compressor refrigerant suction pressure, compressor refrigerant discharge pressure, compressor power consumption, indoor Detecting means for detecting each state quantity including at least the air temperature and the indoor blown air temperature, at least the compressor drive frequency, the outdoor fan rotation speed, the outdoor electronic expansion valve opening degree, the indoor fan rotation speed and the indoor electronic expansion valve opening degree. The operating means for operating each operation amount including, the setting means for setting the set value including at least the set room air temperature, and the annual energy consumption efficiency (APF) which is the value of the energy consumption efficiency throughout the year for the multi-room air conditioner. ) Is maximized as a statistical evaluation function, and an APF maximizing manipulated variable calculator is included.
【請求項3】 請求項1記載の多室空気調和機におい
て、制御装置は、室外空気温度、圧縮機冷媒吐出過熱
度、圧縮機冷媒吸入圧力、圧縮機冷媒吐出圧力、圧縮機
消費電力、室内空気温度及び室内吹き出し空気温度を少
なくとも含む各状態量を検知する検知手段と、圧縮機駆
動周波数、室外ファン回転数、室外電子膨張弁開度、室
内ファン回転数及び室内電子膨張弁開度を少なくとも含
む各操作量を操作する操作手段と、設定室内空気温度を
少なくとも含む設定値を設定する設定手段と、前記各操
作量についての信号を要素とする操作量信号ベクトルと
前記検知手段が検知した各信号を要素とする検知信号ベ
クトルとを入力して、多室空気調和機を少なくとも含む
各制御対象の特性を表すパラメータ推定値信号ベクトル
を同定出力するオンラインシステム同定器と、前記検知
信号ベクトルと前記パラメータ推定信号ベクトルと前記
設定手段が設定した設定値を要素とする設定値信号ベク
トルとを入力し、年間エネルギ消費効率(APF)を統
計評価関数として最大化するAPF最大化操作量信号ベ
クトルを出力するフィードバック演算器とを有すること
を特徴とする多室空気調和機。
3. The multi-room air conditioner according to claim 1, wherein the control device controls the outdoor air temperature, the compressor refrigerant discharge superheat degree, the compressor refrigerant suction pressure, the compressor refrigerant discharge pressure, the compressor power consumption, and the room. Detecting means for detecting each state quantity including at least the air temperature and the indoor blown air temperature, at least the compressor drive frequency, the outdoor fan rotation speed, the outdoor electronic expansion valve opening degree, the indoor fan rotation speed and the indoor electronic expansion valve opening degree. Operation means for operating each operation amount including, setting means for setting a set value including at least the set indoor air temperature, operation amount signal vector having a signal for each operation amount as an element, and each detected by the detection means An on-line for inputting a detection signal vector having a signal as an element and for identifying and outputting a parameter estimation value signal vector representing the characteristics of each controlled object including at least a multi-room air conditioner. A system identifier, the detection signal vector, the parameter estimation signal vector, and a set value signal vector having set values set by the setting means as elements are input, and the annual energy consumption efficiency (APF) is used as a statistical evaluation function. A multi-room air conditioner, comprising: a feedback calculator that outputs a maximized APF operation amount signal vector.
【請求項4】 請求項1記載の多室空気調和機におい
て、制御装置は、室外空気温度、圧縮機冷媒吐出過熱
度、圧縮機冷媒吸入圧力、圧縮機冷媒吐出圧力、圧縮機
消費電力、室内空気温度及び室内吹き出し空気温度を少
なくとも含む各状態量を検知する検知手段と、圧縮機駆
動周波数、室外ファン回転数、室外電子膨張弁開度、室
内ファン回転数及び室内電子膨張弁開度を少なくとも含
む各操作量を操作する操作手段と、設定室内空気温度を
少なくとも含む設定値を設定する設定手段と、前記各操
作量についての信号を要素とする操作量信号ベクトルと
前記検知手段が検知した各信号を要素とする検知信号ベ
クトルとを入力して、多室空気調和機を少なくとも含む
各制御対象の特性を表すパラメータ推定値信号ベクトル
を同定出力するオンラインシステム同定器と、前記検知
信号ベクトルと前記パラメータ推定信号ベクトルと前記
設定手段が設定した設定値を要素とする設定値信号ベク
トルとを入力し、実際の多室空気調和機設置利用家屋に
おいての年間エネルギ消費効率を統計評価関数として最
大化する、実効年間エネルギ消費効率最大化操作量信号
ベクトルを出力するフィードバック実効年間エネルギ消
費効率最大化操作量演算器とを有することを特徴とする
多室空気調和機。
4. The multi-room air conditioner according to claim 1, wherein the control device comprises: outdoor air temperature, compressor refrigerant discharge superheat degree, compressor refrigerant suction pressure, compressor refrigerant discharge pressure, compressor power consumption, indoor Detecting means for detecting each state quantity including at least the air temperature and the indoor blown air temperature, at least the compressor drive frequency, the outdoor fan rotation speed, the outdoor electronic expansion valve opening degree, the indoor fan rotation speed and the indoor electronic expansion valve opening degree. Operation means for operating each operation amount including, setting means for setting a set value including at least the set indoor air temperature, operation amount signal vector having a signal for each operation amount as an element, and each detected by the detection means An on-line for inputting a detection signal vector having a signal as an element and for identifying and outputting a parameter estimation value signal vector representing the characteristics of each controlled object including at least a multi-room air conditioner. System identifier, the detection signal vector, the parameter estimation signal vector and the set value signal vector having the set value set by the setting means as an element, in an actual multi-room air conditioner installation user house Multi-chamber air having a feedback effective annual energy consumption efficiency maximizing manipulated variable calculator that outputs an effective annual energy consumption efficiency maximizing manipulated variable signal vector that maximizes annual energy consumption efficiency as a statistical evaluation function Harmony machine.
JP23939195A 1995-09-19 1995-09-19 Multi-room air conditioner Expired - Fee Related JP3278712B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23939195A JP3278712B2 (en) 1995-09-19 1995-09-19 Multi-room air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23939195A JP3278712B2 (en) 1995-09-19 1995-09-19 Multi-room air conditioner

Publications (2)

Publication Number Publication Date
JPH0979650A true JPH0979650A (en) 1997-03-28
JP3278712B2 JP3278712B2 (en) 2002-04-30

Family

ID=17044093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23939195A Expired - Fee Related JP3278712B2 (en) 1995-09-19 1995-09-19 Multi-room air conditioner

Country Status (1)

Country Link
JP (1) JP3278712B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102374611A (en) * 2011-09-07 2012-03-14 冯益安 Method for achieving high efficiency-energy ratios of air conditioners and heat pumps
US8655492B2 (en) 2009-10-21 2014-02-18 Mitsubishi Electric Corporation Air-conditioning apparatus control device and refrigerating apparatus control device
WO2014087650A1 (en) * 2012-12-06 2014-06-12 パナソニック株式会社 Space environment management device, space environment management system, and space environment management method
JP2014126327A (en) * 2012-12-27 2014-07-07 Mitsubishi Heavy Ind Ltd Packaged air conditioner and operation method thereof
EP2908066A2 (en) 2013-12-18 2015-08-19 Mitsubishi Heavy Industries, Ltd. Evaluation supporting apparatus, method, and program for air conditioning system
WO2020235077A1 (en) * 2019-05-23 2020-11-26 三菱電機株式会社 Air-conditioner control device and air-conditioner

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8655492B2 (en) 2009-10-21 2014-02-18 Mitsubishi Electric Corporation Air-conditioning apparatus control device and refrigerating apparatus control device
CN102374611A (en) * 2011-09-07 2012-03-14 冯益安 Method for achieving high efficiency-energy ratios of air conditioners and heat pumps
WO2014087650A1 (en) * 2012-12-06 2014-06-12 パナソニック株式会社 Space environment management device, space environment management system, and space environment management method
JPWO2014087650A1 (en) * 2012-12-06 2017-01-05 パナソニックIpマネジメント株式会社 Spatial environment management device, spatial environment management system, and spatial environment management method
JP2014126327A (en) * 2012-12-27 2014-07-07 Mitsubishi Heavy Ind Ltd Packaged air conditioner and operation method thereof
EP2908066A2 (en) 2013-12-18 2015-08-19 Mitsubishi Heavy Industries, Ltd. Evaluation supporting apparatus, method, and program for air conditioning system
EP2908066A3 (en) * 2013-12-18 2015-09-30 Mitsubishi Heavy Industries, Ltd. Evaluation supporting apparatus, method, and program for air conditioning system
WO2020235077A1 (en) * 2019-05-23 2020-11-26 三菱電機株式会社 Air-conditioner control device and air-conditioner
JPWO2020235077A1 (en) * 2019-05-23 2021-10-21 三菱電機株式会社 Air conditioner control device and air conditioner

Also Published As

Publication number Publication date
JP3278712B2 (en) 2002-04-30

Similar Documents

Publication Publication Date Title
Rogers et al. A review of fault detection and diagnosis methods for residential air conditioning systems
Wan et al. A review of recent advancements of variable refrigerant flow air-conditioning systems
Madani et al. Capacity control in ground source heat pump systems: Part I: modeling and simulation
Vakiloroaya et al. Energy-efficient HVAC systems: Simulation–empirical modelling and gradient optimization
Zhao et al. Model-based optimization for vapor compression refrigeration cycle
Zhou et al. Comparison of HVAC system modeling in EnergyPlus, DeST and DOE-2.1 E
CN110736227A (en) Building management system with online configurable system identification
US20210156586A1 (en) Systems and methods for providing custom applications for hvac systems
JPH11218354A (en) Room pressure controller and method having feedfoward as well as feedback control
Wang et al. Model predictive control for the operation of a transcritical CO2 air source heat pump water heater
JPH11224128A (en) Room temperature controller having feedforward and feedback control and method therefor
US20230040886A1 (en) Building equipment energy management control system and control therefor
Seo et al. Comparative analysis of cooling energy performance between water-cooled VRF and conventional AHU systems in a commercial building
Franco et al. Thermal analysis and development of PID control for electronic expansion device of vapor compression refrigeration systems
JP7284435B2 (en) Correctors, Predictors, Methods, Programs, and Correction Models
Wang et al. Model predictive control for the performance improvement of air source heat pump heating system via variable water temperature difference
Yang et al. A modeling study on a direct expansion based air conditioner having a two-sectioned cooling coil
JP3278712B2 (en) Multi-room air conditioner
CN105518394A (en) Operation control device and operation control method
Lee et al. Multi-objective optimization for capacity matching and energy performance of heat-pump-driven liquid-desiccant air-conditioning system
Hu et al. Identification of simplified energy performance models of variable-speed air conditioners using likelihood ratio test method
US11580281B2 (en) System and method for designing heating, ventilating, and air-conditioning (HVAC) systems
Yin et al. Model predictive control for vapor compression cycle of refrigeration process
KR101955812B1 (en) Capacity performance curves creation method of water-cooled vrf heat pump
JP7345686B2 (en) Systems and methods for controlling the operation of HVAC (heating, ventilation, air conditioning) systems

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080222

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080222

Year of fee payment: 6

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080222

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080222

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080222

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090222

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090222

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100222

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100222

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees