JP3278567B2 - Method and apparatus for setting applied current value in thermal conductivity measurement - Google Patents

Method and apparatus for setting applied current value in thermal conductivity measurement

Info

Publication number
JP3278567B2
JP3278567B2 JP01963696A JP1963696A JP3278567B2 JP 3278567 B2 JP3278567 B2 JP 3278567B2 JP 01963696 A JP01963696 A JP 01963696A JP 1963696 A JP1963696 A JP 1963696A JP 3278567 B2 JP3278567 B2 JP 3278567B2
Authority
JP
Japan
Prior art keywords
temperature
current value
measurement
thermal conductivity
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP01963696A
Other languages
Japanese (ja)
Other versions
JPH09210933A (en
Inventor
喜代継 加納
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto Electronics Manufacturing Co Ltd
Original Assignee
Kyoto Electronics Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto Electronics Manufacturing Co Ltd filed Critical Kyoto Electronics Manufacturing Co Ltd
Priority to JP01963696A priority Critical patent/JP3278567B2/en
Publication of JPH09210933A publication Critical patent/JPH09210933A/en
Application granted granted Critical
Publication of JP3278567B2 publication Critical patent/JP3278567B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、細線加熱法の印加
電流値設定方法及びその装置に関し、特に測定前にヒー
タ線に印加される適正な電流値を短い時間で自動設定で
きるようにした細線加熱法の印加電流値設定方法及びそ
の装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for setting an applied current value in a thin wire heating method, and more particularly to a thin wire capable of automatically setting an appropriate current value applied to a heater wire before measurement in a short time. The present invention relates to a method and apparatus for setting an applied current value in a heating method.

【0002】[0002]

【従来技術】細線加熱法(熱線法ともいう)による熱伝
導率の測定は、例えば図4に示すように、無限円筒と見
なせる形状で均質な試料1の中心に張られるヒータ線2
に電源4から所定の電流値の電流を印加し、その印加開
始後から終了までの間に所定の時刻t1 におけるヒータ
線2近傍の試料1の温度T1 と、これよりも更に一定時
間経過した時刻t2 における上記試料1の温度T2 を温
度センサ3によって測定し、該2つの温度T1 ,T2
に基づいて熱伝導率λを計測する方法である。この場
合、上記温度センサ3としては熱電対が用いられるほ
か、ヒータ線2として、白金線を用い該白金線の温度に
よる抵抗変化を温度と仕手検出する構成を用いているも
のもある。
2. Description of the Related Art As shown in FIG. 4, for example, the measurement of the thermal conductivity by a thin wire heating method (also referred to as a hot wire method) is carried out by heating a heater wire 2 attached to the center of a homogeneous sample 1 in a shape that can be regarded as an infinite cylinder.
A current having a predetermined current value is applied from the power supply 4 to the temperature T 1 of the sample 1 near the heater wire 2 at a predetermined time t 1 from the start to the end of the application, and a certain time has elapsed. In this method, the temperature T 2 of the sample 1 at the time t 2 is measured by the temperature sensor 3 and the thermal conductivity λ is measured based on the two temperatures T 1 and T 2 . In this case, a thermocouple may be used as the temperature sensor 3, and a configuration may be used in which a platinum wire is used as the heater wire 2 and the resistance change due to the temperature of the platinum wire is detected as a temperature and a hand.

【0003】この方法の測定原理は以下の通りである。
即ち、電源4からヒータ線2に一定電力を与え続けると
ヒータ線2の近傍の試料温度が図5に示すように時間の
経過と共に指数関数的に上昇し、時間軸を対数目盛りに
すると図6に示すように昇温カーブが直線になり、熱伝
導率の小さい試料1では昇温が速いのでこの直線の傾き
は大きくなり、逆に熱伝導率の大きい試料1ではこの直
線の傾きは小さくなる。従って、熱伝導率λは対数時間
における昇温グラフの傾きに対応し、この傾きは熱伝導
率演算手段7で試料1の熱伝導率λを次の数式1に従っ
て求めることができる。
[0003] The measurement principle of this method is as follows.
That is, when a constant power is continuously supplied from the power source 4 to the heater wire 2, the sample temperature in the vicinity of the heater wire 2 rises exponentially with the passage of time as shown in FIG. As shown in the figure, the temperature rise curve becomes a straight line, and in Sample 1 having a small thermal conductivity, the temperature rises quickly, so that the slope of the straight line becomes large, and conversely, in Sample 1 having a large thermal conductivity, the slope of this straight line becomes small. . Therefore, the thermal conductivity λ corresponds to the slope of the temperature rise graph in logarithmic time, and the slope can be obtained by the thermal conductivity calculating means 7 in accordance with the following equation 1.

【0004】[0004]

【数1】 ここで、qはヒータ線2の単位時間、単位長さ当たりの
発熱量である。この細線加熱法によれば、これらq,t
1 ,t2 ,T1 ,T2 から直接に熱伝導率λを求めるこ
とができ、又、ヒータ線2に電流を印加してから10〜
200秒の短い時間で測定でき、その間の試料1の温度
上昇も20℃程度に止まるので、熱伝導率の温度依存性
が大きい試料1に対して非常に有効な測定法である。更
に、測定時間が短く、試料1の比較的小さな部分だけが
加熱されるので、求められる熱伝導率としては試料表面
近くの組成、構造に対応した値が得られる。
(Equation 1) Here, q is a heating value per unit time and unit length of the heater wire 2. According to this thin wire heating method, these q, t
1 , t 2 , T 1 , and T 2 , the thermal conductivity λ can be directly obtained.
Since the measurement can be performed in a short time of 200 seconds, and the temperature rise of the sample 1 during that period remains at about 20 ° C., this is a very effective measurement method for the sample 1 in which the temperature dependence of the thermal conductivity is large. Furthermore, since the measurement time is short and only a relatively small portion of the sample 1 is heated, a value corresponding to the composition and structure near the sample surface can be obtained as the required thermal conductivity.

【0005】なお、図4において、符号8は印加電流値
を制御する電流制御手段である。ところで、一般にヒー
タ線2に一定電流を流した場合の、上昇温度ΔT(=T
2 −T1 )と試料の熱伝導率λとの間には図7に示すよ
うな関係があり、上昇温度ΔTが大き過ぎると測定器の
ダイナミックレンジを越え、又、試料1の変質、焼損を
招く恐れがあるという問題がある。逆に、上昇温度ΔT
が小さい領域ではλの変化率が大きくなり過ぎて測定精
度が低下するという問題がある。
In FIG. 4, reference numeral 8 denotes an applied current value.
Is a current control means for controlling the current. By the way, in general
Temperature ΔT (= T
Two-T1) And the thermal conductivity λ of the sample are shown in FIG.
If the rise temperature ΔT is too large,
Exceeds the dynamic range and prevents deterioration and burning of sample 1.
There is a problem that it may be invited. Conversely, the temperature rise ΔT
In the region where is small, the rate of change of λ becomes too large
There is a problem that the degree decreases.

【0006】従って、この細線加熱法においては、上昇
温度ΔTを上記の問題の生じない適当な値、例えば20
℃前後となるようにして測定することが必要になる。し
かし、試料1の熱伝導率λは材質によりある程度の範囲
で予測することは可能であるが本質的には未知であるこ
とから、予めこの適正な上昇温度ΔTが得られる印加電
流値Iを設定する必要がある。
Therefore, in this thin wire heating method, the temperature rise ΔT is set to an appropriate value which does not cause the above-mentioned problem, for example, 20
It is necessary to carry out the measurement so that the temperature is around ℃. However, it is possible to predict the thermal conductivity λ of the sample 1 within a certain range depending on the material, but it is essentially unknown. Therefore, the applied current value I at which the appropriate temperature rise ΔT is obtained is set in advance. There is a need to.

【0007】従来、この印加電流値Iを設定する方法と
しては、熱伝導率の測定に先立ち、印加電流値Iを変え
て何度か試行錯誤を繰り返して上昇温度ΔTが例えば2
0℃前後になる値を選択する方法と、経験によって類推
した上昇温度ΔTが20℃前後になると思われる値を選
択する方法がある。
Conventionally, as a method of setting the applied current value I, prior to measuring the thermal conductivity, the applied current value I is changed and trial and error is repeated several times to increase the temperature increase ΔT to, for example, 2
There are a method of selecting a value at which the temperature rises around 0 ° C. and a method of selecting a value at which the temperature rise ΔT estimated by experience is considered to be around 20 ° C.

【0008】[0008]

【発明が解決しようとする課題】これら従来の印加電流
値設定方法のうち、試行錯誤により印加電流値Iを設定
する方法によれば印加電流値Iを得るまでに多大の時間
と、手間が掛かるという難点があり、又、経験により類
推した印加電流値Iを用いる方法によればその印加電流
値Iが必ずしも適正ではなく、測定器のダイナミックレ
ンジを越えたり、試料1の変質や焼損を招いたり、大き
な測定誤差が生じたりする恐れがある。
According to the method of setting the applied current value I by trial and error among these conventional applied current value setting methods, it takes a lot of time and effort to obtain the applied current value I. In addition, according to the method using the applied current value I guessed by experience, the applied current value I is not always appropriate, exceeding the dynamic range of the measuring instrument, or causing deterioration or burning of the sample 1. May cause a large measurement error.

【0009】本発明は、上記の事情を鑑みてなされたも
のであり、測定前に測定時の適正な印加電流値を短い時
間で自動設定できるようにした熱伝導率測定における印
加電流値設定方法及びその装置を提供することを目的と
する。
The present invention has been made in view of the above circumstances, and has been made in consideration of the above circumstances. A method of setting an applied current value in a thermal conductivity measurement, in which an appropriate applied current value at the time of measurement can be automatically set in a short time before measurement. And an apparatus therefor.

【0010】[0010]

【課題を解決するための手段】本発明は、上記の目的を
達成するために以下の方法を採用している。すなわち、
上記ヒータ線2に微小電流I0 を印加し、所定短時間で
のヒータ線2の近傍の試料1の上昇温度ΔT0 に基づい
て、適正な測定ができる印加電流値を設定するようにし
ている。
The present invention employs the following method to achieve the above object. That is,
A small current I 0 is applied to the heater wire 2, and an applied current value at which an appropriate measurement can be performed is set based on the temperature rise ΔT 0 of the sample 1 near the heater wire 2 in a predetermined short time. .

【0011】上記のようにヒータ線2に微小電流I0
所定短時間印加すると、流される電流値と時間に応じた
温度だけヒータ線近傍の試料1の温度は上昇する。この
ときの試料1の上昇温度ΔT0 と、実際の測定時に上記
所定上昇温度ΔTを得るために上記所定時間(t2 −t
1 )に該ヒータ線に印加すべき電流Iとの関係は、経験
則的にもとめられる。
As described above, when the minute current I 0 is applied to the heater wire 2 for a predetermined short time, the temperature of the sample 1 near the heater wire increases by a temperature corresponding to the value of the flowing current and time. At this time, the temperature rise ΔT 0 of the sample 1 and the predetermined time (t 2 −t) for obtaining the predetermined temperature rise ΔT at the time of actual measurement.
The relationship between 1 ) and the current I to be applied to the heater wire can be obtained empirically.

【0012】そこで、上記上昇温度ΔT0 と、印加電流
Iとの関係をメモリ6に記憶させておき、上記上昇温度
ΔT0 より実際の測定時に印加すべき電流値Iを上記メ
モリ6より読み出して決定する。
Therefore, the relationship between the temperature rise ΔT 0 and the applied current I is stored in the memory 6, and the current value I to be applied at the time of actual measurement is read out from the memory 6 based on the temperature rise ΔT 0. decide.

【0013】従って、試行錯誤を繰り返す必要がなく、
短い時間で測定時の印加電流値Iが自動的に設定され、
又、上記上昇温度ΔT0 に対して経験的に適正な印加電
流値Iに設定されるので、大きな誤差が生じる恐れはな
い。
Therefore, there is no need to repeat trial and error,
The applied current value I at the time of measurement is automatically set in a short time,
Further, since the applied current value I is empirically set to the temperature rise ΔT 0 , there is no possibility that a large error occurs.

【0014】上記方法を実現するために以下の装置が使
用される。すなわち、ヒータ線2に所定の短時間微小電
流I0 が流されたときの上記温度センサにより検出され
る試料1の上昇温度を計測する上昇温度計測手段5と、
該上昇温度計測手段5の計測結果に基づいて該上昇温度
に対応する測定時の適正印加電流値を出力するメモリ6
とを備える構成としている。
The following apparatus is used to implement the above method. That is, a rising temperature measuring means 5 for measuring a rising temperature of the sample 1 detected by the temperature sensor when a predetermined short-time minute current I 0 is supplied to the heater wire 2,
A memory for outputting an appropriate applied current value at the time of measurement corresponding to the temperature rise based on the measurement result of the temperature rise measurement means;
Are provided.

【0015】これにより、電源4からヒータ線2に所定
の短時間微小電流I0 を印加し、この時の試料1の上昇
温度ΔT0 を上記上昇温度計測手段5で計測する。本発
明装置においては、更にこの上昇温度ΔT0 と適正な測
定ができる印加電流値Iとの関係を記憶させたメモリ6
が設けられる。これにより、上記上昇温度計測手段5に
よって計測された上昇温度ΔT0 に対応する印加電流値
Iが読み出され、測定時の印加電流値Iが読出された印
加電流値Iに設定される。
As a result, a predetermined short-time minute current I 0 is applied from the power supply 4 to the heater wire 2, and the temperature rise ΔT 0 of the sample 1 at this time is measured by the temperature rise measurement means 5. In the device of the present invention, the memory 6 further stores the relationship between the temperature increase ΔT 0 and the applied current value I that enables proper measurement.
Is provided. Thus, the applied current value I corresponding to the rise temperature ΔT 0 measured by the rise temperature measurement means 5 is read, and the applied current value I at the time of measurement is set to the read applied current value I.

【0016】かくして、本発明装置により、上記本発明
方法が実施され、短い時間で測定時の適正な印加電流値
Iが自動的に設定される。
Thus, the apparatus of the present invention implements the above-described method of the present invention, and an appropriate applied current value I at the time of measurement is automatically set in a short time.

【0017】[0017]

【実施の形態】図1は本発明装置の一実施例構成図であ
る。従来の細線加熱法に於ける熱伝導率測定装置と同
様、無限円筒と見なせる形状で均質な試料1の中心に張
られるヒータ線2と、このヒータ線2の近傍に配置され
た温度検出用の熱電対からなる温度センサ3とを備え、
該ヒータ線2には電源4より電流を印加するようにして
いる。
FIG. 1 is a block diagram showing an embodiment of the apparatus according to the present invention. As with the thermal conductivity measuring device in the conventional thin wire heating method, a heater wire 2 stretched at the center of a homogeneous sample 1 having a shape that can be regarded as an infinite cylinder, and a temperature detecting device arranged near the heater wire 2 A temperature sensor 3 comprising a thermocouple,
A current is applied to the heater wire 2 from a power supply 4.

【0018】更に、上記電源4より印加される電流は電
流制御手段8によって制御され、試料1に応じた電流が
ながされることはもとより、以下に説明する本発明の微
小電流でのプレヒート時の電流制御がなされる。
Further, the current applied from the power supply 4 is controlled by a current control means 8 so that a current corresponding to the sample 1 is generated. Control is exercised.

【0019】上記装置において、ます、上記の電源4か
ら電流制御回路8により微小電流I 0 、例えば0.5A
が所定短時間上記ヒータ線2に印加される(プレヒー
ト)。本発明では更に、上昇温度計測手段5が設けら
れ、該上昇温度計測手段5によって、上記の電流印加開
始後の所定の時間経過した時刻(例えば電流印加開始後
1秒)と、これよりも更に所定短時間を経過した時刻
(例えば電流印加開始後10秒)とのヒータ線2の近傍
の試料1の温度差、すなわち、上記微小電流I0 の印加
開始後の所定時刻から所定短時間での(例えば印加開始
後1秒〜10秒)の試料1の上昇温度ΔT0 が計測され
る。
In the above apparatus, first, the above power supply 4
The small current I by the current control circuit 8 0, For example, 0.5A
Is applied to the heater wire 2 for a predetermined short time (preheat
G). In the present invention, further, a rising temperature measuring means 5 is provided.
The above-mentioned current application is opened by the rising temperature measuring means 5.
Time after the start of the predetermined time (for example, after the start of current application)
1 second) and the time after a predetermined short time has elapsed
(Eg, 10 seconds after the start of current application) near heater wire 2
Temperature difference of the sample 1, ie, the minute current I0Application of
In a predetermined short time from a predetermined time after the start (for example, application start
1 second to 10 seconds after) the temperature rise ΔT of sample 10Is measured
You.

【0020】尚、上記において、不安定要員を排除する
ために最初の一秒を測定の対象より除外しているが、不
安定要員がなければ最初の一秒を上記所定短時間に含め
ても差し支えない。
In the above description, the first second is excluded from the measurement target in order to eliminate unstable personnel. However, if there is no unstable personnel, the first second may be included in the predetermined short time. No problem.

【0021】更に、本発明では上記上昇温度ΔT0 と、
経験則的にこれに対応すると認められた測定時の適正な
印加電流値Iとの関係を記憶させたメモリ6と、読出手
段9とが設けられる。これによて、上記上昇温度ΔT0
が該読出手段9に与えられると、該上昇温度ΔT0 に対
応する印加電流値Iが上記メモリ6から読み出され、測
定時の印加電流値Iとして電流制御手段8に与えられる
ことになる。
Further, in the present invention, the above-mentioned temperature rise ΔT 0 ,
A memory 6 for storing a relationship between the current value I and an appropriate applied current value at the time of measurement, which is empirically recognized to correspond thereto, and a reading means 9 are provided. As a result, the temperature increase ΔT 0
Is applied to the reading means 9, the applied current value I corresponding to the temperature increase ΔT 0 is read from the memory 6 and given to the current control means 8 as the applied current value I at the time of measurement.

【0022】上記「上昇温度ΔT0 と、印加電流値Iと
の関係」とは、以下のように考えることができる。すな
わち、熱伝導率測定時の所定時間(t2 −t1 )に試料
1に所定の上昇温度ΔT(例えば20°C)を得るため
にヒータ線2に流すべき電流Iは熱伝導率に対応して
る。一方、上記所定短時間に印加される微小電流I0
よる、試料1の上昇温度ΔT0 も熱伝導率に対応してい
る。ところが、この微小電流I0 による、試料1の上昇
温度ΔT0 から直接熱伝導率を算出すると誤差が大きく
なり不都合である。そこで、図3に示すように、上記微
小電流I0 による試料1の上昇温度ΔT0 より試料の熱
伝導率λ0 を予測し、該予測熱伝導率λ0を介して得た
電流値が、適正印加電流Iとなる。このメモリ6に記憶
された上記温度上昇ΔT0 と測定時に適正な測定ができ
る印加電流値Iとの関係は例えば表1に示すようになっ
ている。
The "relationship between the temperature rise ΔT 0 and the applied current value I” can be considered as follows. That is, the current I to be passed through the heater wire 2 to obtain a predetermined temperature rise ΔT (for example, 20 ° C.) in the sample 1 during a predetermined time (t 2 −t 1 ) at the time of measuring the thermal conductivity corresponds to the thermal conductivity. I'm doing On the other hand, the temperature rise ΔT 0 of the sample 1 due to the minute current I 0 applied in the predetermined short time also corresponds to the thermal conductivity. However, if the thermal conductivity is directly calculated from the temperature rise ΔT 0 of the sample 1 due to the minute current I 0 , the error increases, which is inconvenient. Therefore, as shown in FIG. 3, predict thermal conductivity lambda 0 of the sample than the elevated temperature [Delta] T 0 of the sample 1 by the minute current I 0, the current value obtained through the predictive heat conductivity lambda 0 is, The appropriate applied current I is obtained. The relationship between the temperature rise ΔT 0 stored in the memory 6 and the applied current value I at which proper measurement can be performed at the time of measurement is as shown in Table 1, for example.

【0023】[0023]

【表1】 上記表1では上昇温度ΔT0 を段階的に採っているが、
上昇温度ΔT0 と印加電流値Iとの連続的な関係をメモ
リ6に記憶させてもよいことはもちろんである。
[Table 1] In Table 1 above, the rise temperature ΔT 0 is taken step by step.
Needless to say, the continuous relationship between the temperature increase ΔT 0 and the applied current value I may be stored in the memory 6.

【0024】なお、この装置は、温度センサ3に上昇温
度計測手段5と選択的に接続される熱伝導率演算手段7
を備え、この後に試料1の熱伝導率を測定する熱伝導率
測定装置と上記ヒータ線2及び温度センサ3を兼用でき
るようにしてあり、測定時には、この熱伝導率演算手段
7を温度センサ3に接続した後、上記ヒータ線2に上記
のようにして設定された印加電流値Iの測定電流を印加
し、この印加開始後の所定の時間が経過した時刻t
1 と、更にこれより一定時間経過した時刻t2 とのヒー
タ線2の近傍の試料温度T1 ,T2 を測定し、この熱伝
導率演算手段7によりこれらの温度T1 ,T2 及び時刻
1 ,t2 に基づいて上記数式1に従って熱伝導率λが
演算されるようにしている。
This device has a thermal conductivity calculating means 7 selectively connected to the temperature sensor 3 and the rising temperature measuring means 5.
The heat conductivity measuring device for measuring the heat conductivity of the sample 1 and the heater wire 2 and the temperature sensor 3 are also used. Is applied to the heater wire 2, a measurement current of the applied current value I set as described above is applied, and at a time t after a predetermined time has elapsed after the start of the application.
The sample temperatures T 1 , T 2 near the heater wire 2 at 1 and at a time t 2 after a certain time has elapsed are measured, and the thermal conductivity calculating means 7 calculates the temperatures T 1 , T 2 and the time. Based on t 1 and t 2 , the thermal conductivity λ is calculated in accordance with the above equation (1).

【0025】即ち、図2のフロー図に示すように、この
装置を用いて実施される本発明方法の一実施例に係る細
線加熱法の印加電流値設定方法は、試料1の熱伝導率の
測定に先立って実施され、ヒータ線2及び温度センサ3
を試料1にセットし、温度センサ3を上昇温度計測手段
5に接続した後、開始後、上記電源4からヒータ線2に
例えば0.5Aの微小電流I0 の印加がなされ(S
1)、その印加開始後1秒が経過すると(S2)、温度
センサ3を用いて試料1の温度が測定され(S3)、更
にその印加開始後10秒が経過すると(S4)、再び温
度センサ3を用いて試料1の温度が測定されると共に微
小電流I0 が停止される(S5)。
That is, as shown in the flow chart of FIG. 2, the method for setting the applied current value of the thin wire heating method according to one embodiment of the method of the present invention, which is carried out using this apparatus, is based on the thermal conductivity of the sample 1. The measurement is performed prior to the measurement, and the heater wire 2 and the temperature sensor 3
Is set on the sample 1, the temperature sensor 3 is connected to the rising temperature measuring means 5, and after starting, a small current I 0 of, for example, 0.5 A is applied from the power source 4 to the heater wire 2 (S
1) When one second elapses after the start of the application (S2), the temperature of the sample 1 is measured using the temperature sensor 3 (S3). When ten seconds elapse after the start of the application (S4), the temperature sensor is again activated. temperature of the sample 1 with 3 minute current I 0 is stopped while being measured (S5).

【0026】そして、上昇温度計測手段5により上記所
定短時間(1〜10秒)の上昇温度ΔT0 が計測され
(S6)、この上昇温度ΔT0 に対応する印加電流値I
がメモリ6から読出手段9に読出され、読出された印加
電流値Iを電流制御手段8に与えることにより測定電流
の電流値が印加電流値Iに設定される(S7)。
[0026] Then, the temperature rise [Delta] T 0 of the predetermined short time (1-10 seconds) is measured by the temperature rise measurement section 5 (S6), the applied current value I corresponding to the temperature increase [Delta] T 0
Is read from the memory 6 to the reading means 9 and the read applied current value I is given to the current control means 8 to set the current value of the measured current to the applied current value I (S7).

【0027】この実施例では、以上のようにして測定時
の印加電流値Iが設定された後、温度センサ3を熱伝導
率演算手段7に接続切替えし、試料1の温度が安定(例
えば図5の初期温度T0 に戻るのをまつ待つ(S8)。
尚、上記ステップS7とS8の順序は逆いなってもよ
い。
In this embodiment, after the applied current value I at the time of measurement is set as described above, the connection of the temperature sensor 3 to the thermal conductivity calculating means 7 is switched to stabilize the temperature of the sample 1 (for example, FIG. Wait for the temperature to return to the initial temperature T 0 of Step 5 (S8).
Note that the order of steps S7 and S8 may be reversed.

【0028】この後試料1の熱伝導率λの測定が以下の
手順で行われる。即ち、上記電源4から設定された印加
電流値Iの測定電流がヒータ線2に印加され(S9)、
この印加開始後の所定の時刻t1 になると(S10)、
温度センサ3を用いて試料の温度T1 が測定され(S1
1)、この後、更に一定時間経過した時刻t2 になると
(S12)、再び温度センサ3を用いて試料1の温度T
2が測定されると共に測定電流が停止され(S13)、
上記熱伝導率演算手段7により上記数式1に従って熱伝
導率λが演算される(S14)。
Thereafter, the measurement of the thermal conductivity λ of the sample 1 is performed according to the following procedure. That is, the measurement current of the applied current value I set from the power supply 4 is applied to the heater wire 2 (S9),
When a predetermined time t 1 after the application start (S10),
Temperature T 1 of the sample using a temperature sensor 3 is measured (S1
1), this then becomes a time t 2 has elapsed further predetermined time (S12), the temperature T of the sample 1 using the temperature sensor 3 again
2 is measured and the measurement current is stopped (S13),
The thermal conductivity λ is calculated by the thermal conductivity calculating means 7 according to the above equation (S14).

【0029】なお、この演算におけるヒータ線2の単位
時間、単位長さ当たりの発熱量qは印加電流値Iに基づ
いて演算される。又、この後、終了指令が与えられると
(S15)、プログラムは終了し、その他の場合には微
小電流I0 の印加開始前の状態に戻る。
The calorific value q per unit time and unit length of the heater wire 2 in this calculation is calculated based on the applied current value I. Further, thereafter, given a termination command (S15), the program is terminated, and otherwise return to the application start state before the minute current I 0.

【0030】更に、設定された印加電流値Iによる測定
(S9〜S13)の手順を複数回繰り返し、各回の測定
値の平均値を最終的に測定値とすることもできる。
Furthermore, the procedure of the measurement (S9 to S13) based on the set applied current value I may be repeated a plurality of times, and the average value of the measured values at each time may be finally used as the measured value.

【0031】[0031]

【発明の効果】以上に説明したように、本発明方法によ
れば、試料にセットしたヒータ線に微小電流を所定短時
間印加(プレヒート)し、この間の試料の上昇温度を測
定し、この上昇温度に対応する適正印加電流値をメモリ
から読出すことにより短時間内に測定時に適正とされる
印加電流値を自動設定でき、しかも、該プレヒート時と
次の本測定とが連続動作でできる。
As described above, according to the method of the present invention, a minute current is applied to the heater wire set on the sample for a predetermined short time (preheating), and the temperature of the sample is measured during this time. By reading the appropriate applied current value corresponding to the temperature from the memory, the appropriate applied current value at the time of measurement can be automatically set within a short time, and the preheating and the next main measurement can be continuously performed.

【0032】又、熱伝導率の温度依存性の大きい物質の
測定温度を異ならせて熱伝導率を測定する場合、測定温
度によって適正な印加電流値が異なるが、この方法によ
れば自動的に測定温度に対応する印加電流値を自動的に
設定することができる。
When the thermal conductivity is measured by changing the measurement temperature of a substance having a large temperature dependence of the thermal conductivity, an appropriate applied current value differs depending on the measurement temperature. The applied current value corresponding to the measurement temperature can be automatically set.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明装置の構成図である。FIG. 1 is a configuration diagram of a device of the present invention.

【図2】本発明方法のフロー図である。FIG. 2 is a flowchart of the method of the present invention.

【図3】微小電流による温度差と適正電流関係を示すグ
ラフ。
FIG. 3 is a graph showing a relationship between a temperature difference caused by a minute current and an appropriate current.

【図4】従来の細線加熱法を実施する装置の構成図であ
る。
FIG. 4 is a configuration diagram of an apparatus for performing a conventional thin wire heating method.

【図5】電流印加による試料の温度変化を示すグラフで
ある。
FIG. 5 is a graph showing a change in temperature of a sample due to current application.

【図6】電流印加によるヒータ線の温度変化を対数時間
軸で示すグラフである。
FIG. 6 is a graph showing a change in temperature of a heater wire due to application of a current on a logarithmic time axis.

【図7】上昇温度と熱伝導率との関係を示すグラフであ
る。
FIG. 7 is a graph showing the relationship between the temperature rise and the thermal conductivity.

【符号の説明】[Explanation of symbols]

1 試料 2 ヒータ線 3 温度センサ 4 電源 5 上昇温度演算手段 6 メモリ Reference Signs List 1 sample 2 heater wire 3 temperature sensor 4 power supply 5 rising temperature calculating means 6 memory

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01N 25/18 G01N 25/00 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 7 , DB name) G01N 25/18 G01N 25/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 細線加熱法を用いた熱伝導率測定方法に
おいて、 加熱用のヒータ線に微小電流を印加し、所定短時間での
ヒータ線近傍の試料の上昇温度に基づいて、適正な測定
ができる印加電流値を設定することを特徴とする熱伝導
率測定における印加電流値設定方法。
In a thermal conductivity measuring method using a thin wire heating method, a minute current is applied to a heater wire for heating, and an appropriate measurement is performed based on a temperature rise of a sample near the heater wire in a predetermined short time. A method for setting an applied current value in the measurement of thermal conductivity, characterized by setting an applied current value capable of performing the following.
【請求項2】 加熱用のヒータ線と、該ヒータ線の近傍
の温度を検出する温度センサと、細線加熱法を用いた熱
伝導率測定装置において、 ヒータ線に所定の所定短時間微小電流が流されたときの
上記温度センサにより検出される試料の上昇温度を計測
する上昇温度計測手段と、該上昇温度計測手段の計測結
果に基づいて該上昇温度に対応する測定時の適正印加電
流値を出力するメモリとを備えたことを特徴とする熱伝
導率測定における印加電流値設定装置。
2. A heater wire for heating, a temperature sensor for detecting a temperature in the vicinity of the heater wire, and a thermal conductivity measuring device using a thin wire heating method, wherein a minute current for a predetermined short time is applied to the heater wire. A rising temperature measuring means for measuring a rising temperature of the sample detected by the temperature sensor when flowing, and an appropriate applied current value at the time of measurement corresponding to the rising temperature based on the measurement result of the rising temperature measuring means. An applied current value setting device in thermal conductivity measurement, comprising a memory for outputting.
JP01963696A 1996-02-06 1996-02-06 Method and apparatus for setting applied current value in thermal conductivity measurement Expired - Lifetime JP3278567B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01963696A JP3278567B2 (en) 1996-02-06 1996-02-06 Method and apparatus for setting applied current value in thermal conductivity measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01963696A JP3278567B2 (en) 1996-02-06 1996-02-06 Method and apparatus for setting applied current value in thermal conductivity measurement

Publications (2)

Publication Number Publication Date
JPH09210933A JPH09210933A (en) 1997-08-15
JP3278567B2 true JP3278567B2 (en) 2002-04-30

Family

ID=12004710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01963696A Expired - Lifetime JP3278567B2 (en) 1996-02-06 1996-02-06 Method and apparatus for setting applied current value in thermal conductivity measurement

Country Status (1)

Country Link
JP (1) JP3278567B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102049610B1 (en) * 2018-04-17 2020-01-08 국방과학연구소 Apparatus and method for thermal contact resistance of porous materials

Also Published As

Publication number Publication date
JPH09210933A (en) 1997-08-15

Similar Documents

Publication Publication Date Title
JP2006503307A5 (en)
JP5358789B2 (en) Adaptive temperature controller
JP2005249427A (en) Thermophysical property measuring method and device
Van der Held et al. On the measurement of the thermal conductivity of liouids by a non-stationary method
HU186066B (en) Method and apparatus for measuring coefficient of heat transfer
KR20110089156A (en) Adaptive temperature controller
US6913383B2 (en) Method and apparatus for thermally investigating a material
JP2001249093A (en) Modulation method for thermally analyzing substance and apparatus using the same
JP3278567B2 (en) Method and apparatus for setting applied current value in thermal conductivity measurement
EP0500088A3 (en) Image forming apparatus
CN110546497A (en) Temperature control system of chromatographic system
JPH1123504A (en) Method for measuring water content per unit volume of and water-cement ratio of fresh concrete
JP3670757B2 (en) Sample temperature control method and apparatus
WO2008053735A1 (en) Method and device for heating article
JPH0262575A (en) Fixing device
SU1168912A1 (en) Method and apparatus for programmed control of temperature
JPH11142218A (en) Detection method of presence or absence of water
JP4049210B2 (en) Moisture meter control method, moisture meter control program, recording medium recording moisture meter control program, and moisture meter
JP2537744B2 (en) Measuring method of thermal conductivity
JP3269174B2 (en) Moisture or volatile content meter
JPH11241962A (en) Pressure sensor
JP2002277416A (en) Heat conductivity measuring method
RU2184954C2 (en) Method of non-destructive test of thermophysical characteristics of solid materials
JP2920510B2 (en) A method for measuring the thermal constant of a substance by heating the inner surface of a cylindrical partition
JP2734831B2 (en) Thin film thermophysical property measurement method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120215

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130215

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130215

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140215

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term