JP3273463B2 - Broadband antenna device using semicircular radiating plate - Google Patents

Broadband antenna device using semicircular radiating plate

Info

Publication number
JP3273463B2
JP3273463B2 JP25704196A JP25704196A JP3273463B2 JP 3273463 B2 JP3273463 B2 JP 3273463B2 JP 25704196 A JP25704196 A JP 25704196A JP 25704196 A JP25704196 A JP 25704196A JP 3273463 B2 JP3273463 B2 JP 3273463B2
Authority
JP
Japan
Prior art keywords
plate
semicircular
radiating
antenna device
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25704196A
Other languages
Japanese (ja)
Other versions
JPH09223921A (en
Inventor
泰介 井原
光一 常川
誠 木島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Docomo Inc
Original Assignee
NTT Docomo Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Docomo Inc filed Critical NTT Docomo Inc
Priority to JP25704196A priority Critical patent/JP3273463B2/en
Publication of JPH09223921A publication Critical patent/JPH09223921A/en
Application granted granted Critical
Publication of JP3273463B2 publication Critical patent/JP3273463B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は例えば0.5〜13GHz
のような広帯域でかつ小形に構成可能なアンテナ装置に
関し、特に半円形、又は半円リボン状放射板を使ったア
ンテナ装置に関するものである。
The present invention relates to, for example, 0.5 to 13 GHz.
More particularly, the present invention relates to an antenna device using a semicircular or semicircular ribbon-shaped radiation plate.

【0002】[0002]

【従来の技術】従来の広帯域アンテナの例として文献、
R.M.Taylor.,“A Brodband Omnidirectional Antenna,
”IEEE AP-S International Symposium,1994,p1294.
に半円形導体板を用いたアンテナ装置が示されている。
その構成例を図1に示す。このアンテナ装置は2つのエ
レメントを備えている。一方のエレメントは2枚の半円
形の導体板121a、122aから構成されており、この2枚の
導体板121a、122aは各々の半円円弧の頂点を通る中心線
Ox を互いに一致させ、かつ互いに直角に交わるように
組合わせた構成をしている。もう片方のエレメントも同
様に半円形の導体板121b,122b を、各々の半円円弧の頂
点Ox を通る中心線を互いに一致させ、かつ互いに直角
に交わるように組合わせた構成をしている。この2つの
エレメントは各々の円弧の頂点が対向するように配置さ
れる。給電部はこの2つのエレメントの円弧の頂点間に
設置されており、給電のための同軸ケーブル31が一方
のエレメントの中心部にその外皮導体がエレメントに接
して配置される。
2. Description of the Related Art As examples of conventional broadband antennas, literatures,
RMTaylor., “A Brodband Omnidirectional Antenna,
”IEEE AP-S International Symposium, 1994, p1294.
2 shows an antenna device using a semicircular conductor plate.
FIG. 1 shows an example of the configuration. This antenna device has two elements. One element is composed of two semicircular conductor plates 12 1a , 12 2a, and the two conductor plates 12 1a , 12 2a coincide with each other at the center line Ox passing through the vertex of each semicircular arc. And they are combined so as to cross each other at right angles. Similarly, the other element is formed by combining semicircular conductive plates 12 1b and 12 2b such that the center lines passing through the vertices Ox of the respective semicircular arcs coincide with each other and intersect at right angles with each other. I have. The two elements are arranged such that the vertices of each arc face each other. The power supply section is provided between the apexes of the arcs of the two elements, and a coaxial cable 31 for power supply is disposed at the center of one element and its outer conductor is in contact with the element.

【0003】図2は図1に示したアンテナ装置を簡略化
した構成例を示す。この簡略型のアンテナ装置は、半円
形の導体板12a,12bを備えている。導体板12
a,12bは各々の半円円弧の頂点が対向するよう配置
されている。給電部はこの2つの導体板12a,12b
の頂点間に設けられ、導体板12bに設置された同軸ケ
ーブル31により給電される構成となっている。
FIG. 2 shows a simplified configuration example of the antenna device shown in FIG. This simplified antenna device includes semicircular conductor plates 12a and 12b. Conductor plate 12
a and 12b are arranged so that the vertices of each semicircular arc face each other. The power supply section is composed of the two conductor plates 12a and 12b.
, And power is supplied by a coaxial cable 31 installed on the conductor plate 12b.

【0004】図3は図2に示したアンテナ装置のVSWR特
性を示す。この図に示すように簡略化したアンテナ装置
においても広帯域特性を持つことがわかる。この特性は
放射板12a,12bの半円形状の半径rをr=6cm と
して得られた。VSWR<2.0 となる下限帯域は600MHzとな
っている。この時の下限周波数の波長λは約50cmである
ので、そのおよそ(1/8)λ が半径rの長さとして必要な
ことがわかる。図1のアンテナ装置の放射特性は中心線
Ox に直角な平面内で無指向性であり、他方、図2のア
ンテナ装置の放射特性は下限周波数からそのほぼ2倍の
周波数までは無指向性であり、それより高い周波数領域
では中心線Ox に直角な平面内で放射板12aと同一方
向に強い指向性を有している。
FIG. 3 shows VSWR characteristics of the antenna device shown in FIG. As shown in this figure, it can be seen that the simplified antenna device has wideband characteristics. This characteristic was obtained by setting the radius r of the semicircular shape of the radiation plates 12a and 12b to r = 6 cm. The lower limit band where VSWR <2.0 is 600 MHz. At this time, since the wavelength λ of the lower limit frequency is about 50 cm, it is understood that approximately (1/8) λ is necessary as the length of the radius r. The radiation characteristic of the antenna device of FIG. 1 is non-directional in a plane perpendicular to the center line Ox, while the radiation characteristic of the antenna device of FIG. 2 is non-directional from the lower limit frequency to almost twice the frequency. In the higher frequency range, the radiating plate 12a has strong directivity in the same direction as the radiation plate 12a in a plane perpendicular to the center line Ox.

【0005】[0005]

【発明が解決しようとする課題】このように、図1の従
来のアンテナ装置は2枚の扇状放射板が交差して組み合
わされた形状のアンテナ素子が上下2組設けられている
ため大きな占有空間を必要とし、図2の簡易型アンテナ
装置においても扇状半円形放射板は大きな占有面積を必
要とする。また、その大きさについても少なくとも最低
共振波長の1/8 波長程度の半径を持つ半円形導体板を必
要とし、簡易型でも縦横2r×2r、すなわち(1/4)λ×(1/
4)λのアンテナ面積が必要となる。従って、従来のアン
テナ装置は体積、面積に大きなスペースを必要とし、ま
た下限周波数を下げようとすると、その下限周波数に反
比例してアンテナ装置が大型化する欠点があった。
As described above, the conventional antenna device shown in FIG. 1 has a large occupied space because two sets of upper and lower antenna elements are formed by intersecting and combining two fan-shaped radiation plates. 2 and the fan-shaped semicircular radiating plate also requires a large occupied area in the simplified antenna device of FIG. In addition, a semicircular conductor plate having a radius of at least about 1/8 wavelength of the lowest resonance wavelength is required for its size, and even in the simple type, 2r × 2r in length and width, that is, (1/4) λ × (1 /
4) An antenna area of λ is required. Therefore, the conventional antenna device requires a large space in volume and area, and when trying to lower the lower limit frequency, there is a problem that the size of the antenna device increases in inverse proportion to the lower limit frequency.

【0006】この発明の目的は、このような課題を解決
し、従来と同等の電気的特性でより小型のアンテナ装
置、又は従来よりも小型でしかも従来より低い最低共振
周波数の得られるアンテナ装置を提供することを目的と
する。
An object of the present invention is to solve such a problem and to provide a smaller antenna device having the same electrical characteristics as the conventional one, or an antenna device smaller than the conventional one and capable of obtaining a lower minimum resonance frequency than the conventional one. The purpose is to provide.

【0007】[0007]

【課題を解決するための手段】この発明の第1の観点に
よるアンテナ装置は、放射板としての半円形状の導体板
の中心部に、ほぼ半円形の切り欠き部を形成しているこ
とを特徴としている。この切り欠き部を有する放射板と
直角な面に、その円弧頂点と対向して平面導体地板を設
け、その円弧頂点を給電点とし、上記地板との間に給電
するように構成するか、又は上記放射板とほぼ同じ半円
形のもう1つの放射板を、それらの放射板の円弧頂点が
対向するように設け、それらの円弧頂点を給電点として
それら間に給電するように構成する。
An antenna device according to a first aspect of the present invention has a substantially semicircular notch formed at the center of a semicircular conductor plate as a radiation plate. Features. On a plane perpendicular to the radiating plate having this cutout, a plane conductor ground plane is provided facing the arc vertex, and the arc vertex is used as a feeding point, and power is supplied to the ground plane, or Another radiating plate having substantially the same semicircular shape as the radiating plate is provided so that the arc vertices of the radiating plates face each other, and the arc vertices are used as feed points to supply power therebetween.

【0008】上記半円形放射板の半円形切り欠き部に、
半円形型とは異なる少なくとも1つの放射素子を配置
し、給電点近くに接続してもよい。この発明の第2の観
点によるアンテナ装置は、放射板としての半円形の導体
板が円筒状に折り曲げられていることを特徴とする。こ
の第2の観点によるアンテナ装置において、円弧頂点と
対向し、円筒軸と直角な平面導体地板を設け、上記円弧
頂点を給電点とし、平面導体地板との間に給電する構成
とするか、又は上記円筒状放射板の円弧頂点と対向する
円弧頂点を有するもう1つの半円形放射板を上記円筒軸
と平行に設け、それら円弧頂点を給電点とし、それら間
に給電するように構成してもよい。
In the semicircular cutout of the semicircular radiation plate,
At least one radiating element different from the semicircular type may be arranged and connected near the feeding point. An antenna device according to a second aspect of the present invention is characterized in that a semicircular conductor plate as a radiation plate is bent into a cylindrical shape. In the antenna device according to the second aspect, a planar conductor ground plane facing the arc vertex and perpendicular to the cylindrical axis is provided, and the arc vertex is set as a feeding point, and power is supplied to the plane conductor ground plane, or Another semi-circular radiating plate having an arc vertex opposed to the arc vertex of the cylindrical radiating plate may be provided in parallel with the cylindrical axis, and the arc vertices may be used as feeding points and power may be supplied between them. Good.

【0009】また上記第2の観点のアンテナ装置におい
て、円筒を形成する半円形放射板に半円形切り欠き部を
形成した場合は、その切り欠き部に半円形型とは異なる
放射素子を少なくとも1つ配置して給電点近くに接続し
てもよい。この発明の第1及び第2の観点によるアンテ
ナ装置によれば、半円形放射板に切り欠きを形成し及び
/又は半円形放射板を円筒状に形成することにより、ア
ンテナ素子の占有空間を削減でき、かつ従来と同等の広
帯域特性を維持しつつ、しかもVSWR特性を改善すること
ができる。
In the antenna device according to the second aspect, when a semicircular notch is formed in a semicircular radiating plate forming a cylinder, at least one radiating element different from the semicircular type is formed in the notch. And may be connected near the feeding point. According to the antenna devices according to the first and second aspects of the present invention, the occupied space of the antenna element is reduced by forming the notch in the semicircular radiating plate and / or forming the semicircular radiating plate in a cylindrical shape. VSWR characteristics can be improved while maintaining the same wideband characteristics as before.

【0010】[0010]

【発明の実施の形態】この発明の実施例を説明する前
に、図1に示したダイポール型アンテナの1つの放射素
子である半円形放射板と、鏡像面として作用する平面導
体地板とにより構成し、図1のアンテナと等価な動作を
するモノポール型アンテナについてまず検討する。即
ち、図4に示すように平面導体地板50状に半円形放射
12をその円弧頂点21が地板50と近接対向するよ
うに垂直に配置し、半円形放射板12の円弧頂点と地板
50に同軸給電ケーブルの中心導体と外皮導体をそれぞ
れ接続してアンテナを構成し、以下の解析を行った。図
4の導体地板50は放射板12の鏡像を形成し、従って
図2のアンテナと等価な動作をする。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Before describing an embodiment of the present invention, a semi-circular radiating plate as one radiating element of the dipole type antenna shown in FIG. 1 and a plane conductor ground plate acting as a mirror image surface will be described. First, a monopole antenna that operates equivalent to the antenna of FIG. 1 will be considered. That is, as shown in FIG. 4, the semicircular radiating plate 12 is vertically arranged in the shape of a plane conductor ground plate 50 such that the arc vertices 21 are in close proximity to the ground plate 50, and the semicircular radiating plate 12 is arranged on the arc vertex of the semicircular radiating plate 12 and the ground plate 50 The antenna was constructed by connecting the center conductor and the outer conductor of the coaxial feed cable, and the following analysis was performed. The conductor ground plane 50 of FIG. 4 forms a mirror image of the radiation plate 12, and thus operates equivalent to the antenna of FIG.

【0011】(a) 放射板12状を流れる5GHz の高周波
電流の分布を有限要素法により解析した結果、図5Aに
示すように半円形放射板12の円周に沿った帯状領域に
飛び飛びに電流密度が高い領域が生じ、半円形の中央領
域に流れる電流は無視できる程度に少ないことがわかっ
た。即ち、円弧帯状領域が放射に大きく寄与しているこ
とがわかった。
(A) As a result of analyzing the distribution of the high-frequency current of 5 GHz flowing through the radiation plate 12 by the finite element method, as shown in FIG. 5A, the current jumps into a band-like region along the circumference of the semicircular radiation plate 12. It was found that a region with a high density occurred, and the current flowing in the semicircular central region was negligibly small. That is, it was found that the arc-shaped belt region greatly contributed to the radiation.

【0012】(b) 図4において、半円形放射板12の形
状を、円も含めて一般に楕円と規定し、その互いに直交
する第1及び第2半径L1、L2の大小関係によるVSWR特性
へ の影響を次の3つの場合について測定した。 (1) L1=L2=75mm(即ち半円の場合) (2) L1=75mm、L2=50mm (即ちL1>L2) (3) L1=40mm、L2=75mm (即ちL1<L2) これら3つの場合のVSWRの測定結果を図5Bに実線5
a、破線5b、太い破線5cでそれぞれ示す。L2を変化
させると帯域下限周波数が変化する(L2が小さくなると
帯域下限周波数は上昇する)が、半円を楕円に変化させ
てもVSWR特性に大きな変化は見られず、放射板12が完
全な半円でなくてもよいということがわかった。
(B) In FIG. 4, the shape of the semi-circular radiating plate 12 is generally defined as an ellipse including a circle, and the VSWR characteristic based on the magnitude relationship between the first and second radii L 1 and L 2 orthogonal to each other. Was measured for the following three cases. (1) L 1 = L 2 = 75mm (ie, in the case of a semicircle) (2) L 1 = 75mm, L 2 = 50mm (ie, L 1 > L 2 ) (3) L 1 = 40mm, L 2 = 75mm ( That is, L 1 <L 2 ). The measurement results of VSWR in these three cases are shown in FIG.
a, broken line 5b, and thick broken line 5c. When L 2 is changed, the band lower limit frequency changes (as L 2 decreases, the band lower limit frequency increases). However, even if the semicircle is changed to an ellipse, no significant change is observed in the VSWR characteristic, and the radiation plate 12 It turns out that it doesn't have to be a perfect semicircle.

【0013】解析(a) の結果を利用し、半円形放射板の
円弧帯状領域を残してそれより内側の半円形領域を切除
し、その切除した空間を他の型のアンテナ素子、電子部
品、電子回路、などの配置に利用する。解析(b) の結果
によれば、半円形放射板の形状を半円、半楕円のいずれ
にしても特性に大きな差異はない。このことは以下で述
べるこの発明の実施例における円弧リボン状放射導体に
ついても当てはまる。
Using the result of the analysis (a), the semicircular area inside the semicircular radiating plate is cut away while leaving the arc-shaped band area, and the cut space is used for other types of antenna elements, electronic components, Used for arranging electronic circuits. According to the result of the analysis (b), there is no significant difference in the characteristics regardless of whether the shape of the semicircular radiation plate is a semicircle or a semiellipse. This is also true for the arc-shaped ribbon-shaped radiating conductor in the embodiment of the present invention described below.

【0014】第1実施例 図6は本発明の第1の実施形態を示す図であり、アンテ
ナ装置の構造を斜視図により示す。このアンテナ装置
は、ほぼ半円形状の2枚の導体板(例えば銅板、アルミ
ニウム板等)をそれより小さい同心状のほぼ半円部を切
除して形成した弧状の放射板11a,11b により構成され
る。弧状放射板11a,11b の外周は半円でも半楕円でもよ
いし、同様に内周(切り欠き)も半円でも半楕円でもよ
い。この2枚の放射板11a,11b はそれぞれの円弧の頂点
部21a,21b が対向して配置され、この頂点部21a,21b 間
に給電部30が設けられる。2枚の放射板11a,11b には
それぞれ、その半円形状の円の中心部にそれらと同心状
にほぼ半円形状の切り欠き部41a,41b が設けられる。放
射板11a,11b が半円形で、かつ切り欠き部41a,41b が例
えば水平方向に長軸を有する半楕円の場合、放射板11a,
11b の先端に向かって幅Wが漸次減少または増大する。
垂直方向に長軸を有する場合はWは先端に向かって漸次
増加する。このように切り欠き部41a,41b を設けること
により、それらの切り欠き部に他の素子を配置すること
が可能となり、従来の完全な半円形状の導体板を放射板
として用いた構成に比較して、スペース効率を高めるこ
とができる。
First Embodiment FIG. 6 is a diagram showing a first embodiment of the present invention, and shows a structure of an antenna device in a perspective view. This antenna device is constituted by arc-shaped radiation plates 11a and 11b formed by cutting out two substantially semicircular conductor plates (for example, a copper plate, an aluminum plate, etc.) and cutting out smaller concentric substantially semicircular portions. You. The outer circumferences of the arc-shaped radiating plates 11a and 11b may be semicircular or semielliptical, and similarly, the inner circumference (notch) may be semicircular or semielliptical. The two radiating plates 11a and 11b are arranged such that the vertices 21a and 21b of the respective arcs are opposed to each other, and the feeder 30 is provided between the vertices 21a and 21b. The two radiating plates 11a and 11b are respectively provided with substantially semicircular cutouts 41a and 41b concentrically with the center of the semicircular circle. When the radiation plates 11a and 11b are semicircular, and the notches 41a and 41b are, for example, semi-ellipses having a long axis in the horizontal direction, the radiation plates 11a and 11b
The width W gradually decreases or increases toward the tip of 11b.
In the case of having a long axis in the vertical direction, W gradually increases toward the tip. By providing the cutouts 41a and 41b in this way, it is possible to arrange other elements in those cutouts, which is compared with a conventional configuration using a completely semicircular conductor plate as a radiation plate. Thus, space efficiency can be improved.

【0015】図7乃至図9は図4の実施例のアンテナ装
置における給電のための異なる構成例を示す。図7の構
成では、同軸ケーブル31を放射板11b の中心線Ox に
沿って配置する。これに対して図8の構成では、同軸ケ
ーブル31を放射板11b の半円形の外周に沿って配置す
る。また、図9の構成では、給電のために平行2線33
を用いる。いずれの場合にも、給電は2つの放射板11a,
11b の頂点部21a,21b間で行う。
7 to 9 show different examples of power supply in the antenna device of the embodiment of FIG. 7, the coaxial cable 31 is arranged along the center line Ox of the radiation plate 11b. On the other hand, in the configuration shown in FIG. 8, the coaxial cable 31 is arranged along the semicircular outer periphery of the radiation plate 11b. Further, in the configuration of FIG.
Is used. In each case, the feed is provided by two radiating plates 11a,
This is performed between the vertexes 21a and 21b of 11b.

【0016】このアンテナ装置の性能を確かめるための
実験を行った。図10はその実験に用いたアンテナ装置
の三面図を示し、図11は実験により測定されたVSWR特
性を示す。アンテナ装置としては、放射板11a,11b の外
形がそれぞれ半径a=75mmの半円、切り欠き部41a,41b
の形状がそれぞれ放射板11a,11b の外形と同心の半径b
=55mmの半円とした。従って、放射板11a,11b のそれぞ
れの幅WはW=20mmである。給電は放射板11b の中心軸
に沿って配置した同軸ケーブル31を用い、この同軸ケ
ーブル31の中心導体を放射板11a の頂点部21a に、外
皮導体はもう一方の放射板11b に接続した。得られたVS
WR特性を図3に示した従来例の特性と比較すると、600M
Hzより高い周波数領域ではVSWRがほぼ2かそれより小さ
く抑えられており、放射板に切り欠き部を設けても、帯
域特性は従来例とほぼ同等であることがわかる。このよ
うに切り欠き部を設けることで、この部分に回路装置や
別の放射素子その他を設けることが可能となり、スペー
ス効率の点で優れている。
An experiment was conducted to confirm the performance of the antenna device. FIG. 10 shows three views of the antenna device used in the experiment, and FIG. 11 shows VSWR characteristics measured by the experiment. As the antenna device, the outer shape of each of the radiation plates 11a and 11b is a semicircle having a radius a = 75 mm, and the cutout portions 41a and 41b are respectively provided.
Has a radius b concentric with the outer shape of the radiation plates 11a and 11b, respectively.
= 55 mm semicircle. Therefore, the width W of each of the radiation plates 11a and 11b is W = 20 mm. For feeding, a coaxial cable 31 arranged along the central axis of the radiation plate 11b was used. The center conductor of the coaxial cable 31 was connected to the apex 21a of the radiation plate 11a, and the outer conductor was connected to the other radiation plate 11b. VS obtained
Comparing the WR characteristics with the characteristics of the conventional example shown in FIG.
In the frequency region higher than Hz, the VSWR is suppressed to about 2 or less, and it can be seen that the band characteristic is almost the same as that of the conventional example even if the notch is provided in the radiation plate. By providing the cutout portion in this manner, a circuit device, another radiating element, and the like can be provided in this portion, which is excellent in space efficiency.

【0017】第2実施例 図12は本発明の第2の実施形態を示す図であり、アン
テナ装置の構造を斜視図により示す。このアンテナ装置
は、図1の従来例と同様にほぼ半円形の形状をした2枚
の導体板をそれぞれの円弧の頂点及び中心線を互いに実
質的に一致させて互いに直交するように組み合わせた構
造のエレメントを2組備え、この2組のエレメントの一
方の組をを構成するそれぞれの導体板に、図6の実施例
で説明したと同様な円弧状放射板を使用する。すなわ
ち、一方の組のエレメントは、ほぼ半円形の形状をし中
央部分が切り欠き部が設けられた2枚の放射板111a、11
2aが、円弧の頂点21a とこの頂点を通るそれぞれの中心
線Ox とを一致させ、互いに直角に交差するように組み
合わせて構成される。また、他方の組のエレメントも同
様に、ほぼ半円形の形状をした2枚の放射板121b、122b
が、外形の頂点とこの頂点を通るそれぞれの中心線とを
一致させ、互いに直角に交差するように組み合わせて構
成される。2組のエレメントはそれぞれを構成する放射
板111a、112a及び121b、122bの円弧の頂点部21a、21bが
対向するように配置され、この2組のエレメントの頂点
部21a、21bを給電点とする。この例では、給電のために
同軸ケーブル31を用い、この同軸ケーブル31の中心
導体を放射板111a、112aの頂点部21a に接続し、外皮導
体を放射板121b、122bの頂点部21b に接続している。給
電方法として、同軸ケーブル31の代わりに平行2線そ
の他を用いることもできる。
Second Embodiment FIG. 12 is a view showing a second embodiment of the present invention, and shows the structure of an antenna device in a perspective view. This antenna device has a structure in which two conductor plates each having a substantially semicircular shape, as in the conventional example of FIG. 1, are combined so that the vertexes and center lines of the respective arcs substantially coincide with each other and are orthogonal to each other. 6 are used, and an arc-shaped radiating plate similar to that described in the embodiment of FIG. 6 is used for each conductor plate constituting one of the two sets of elements. That is, one set of elements has two semi-circular plates 11 1a , 11 1a , 11
2a is configured by matching the vertex 21a of the arc with the respective center lines Ox passing through the vertex and intersecting each other at a right angle. Similarly, the other set of elements has two substantially semicircular radiating plates 12 1b , 12 2b
Are arranged so that the vertices of the outer shape and the respective center lines passing through the vertices coincide with each other and intersect at right angles. The two sets of elements are arranged such that the vertices 21a and 21b of the arcs of the radiating plates 11 1a , 11 2a and 12 1b and 12 2b that face each other, and the vertices 21a and 21b of the two sets of elements are The feed point. In this example, a coaxial cable 31 is used for power supply, the center conductor of the coaxial cable 31 is connected to the apex portions 21a of the radiation plates 11 1a and 11 2a , and the outer conductor is apex portions of the radiation plates 12 1b and 12 2b . Connected to 21b. As a power supply method, two parallel wires or the like can be used instead of the coaxial cable 31.

【0018】このような構成においても、図1に示した
従来例と同様の広帯域特性が得られる。従って、第1の
実施形態と同様に高いスペース効率が得られると共に、
放射エレメントを複数の放射板から構成することで、水
平面内の指向性を無指向性とすることができる。 第3実施例 図13は本発明の第3の実施形態を示す図であり、図
6、7の実施例のダイポール型アンテナに対応するモノ
ポール型アンテナ装置の構造を斜視図により示す。この
アンテナ装置は、ほぼ半円形状の弧状帯導体板からなり
その半円形状の円の中心部にほぼ半円形状の切り欠き部
41が設けられた放射板11と、この放射板11の円弧
の頂点部が近接して配置される平面導体地板50とを備
える。放射板11の頂点部21と平面導体地板50とに
は、同軸給電ケーブルの中心導体と外皮導体とがそれぞ
接続される。平面導体地板50に設けられた貫通穴を
通された同軸ケーブル31により給電される。すなわ
ち、同軸ケーブル31は、中心導体が平面導体地板50
の貫通穴を通して放射板11の頂点部に接続され、外皮
導体は平面導体地板50に接続される。
Even in such a configuration, the same broadband characteristics as those of the conventional example shown in FIG. 1 can be obtained. Accordingly, high space efficiency can be obtained as in the first embodiment, and
By forming the radiating element from a plurality of radiating plates, the directivity in the horizontal plane can be made non-directional. Third Embodiment FIG. 13 is a view showing a third embodiment of the present invention, and is a perspective view showing the structure of a monopole antenna device corresponding to the dipole antenna of the embodiment shown in FIGS. The antenna device includes a radiating plate 11 formed of a substantially semicircular arc-shaped band-shaped conductor plate and provided with a substantially semicircular notch 41 at the center of the semicircular circle, and an arc of the radiating plate 11. And a plane conductor ground plane 50 in which the apexes are arranged close to each other. Between the apex 21 of the radiation plate 11 and the plane conductor ground plate 50
Includes a center conductor and outer covering conductor of the coaxial feeder cable it
It is being connected. Power is supplied by the coaxial cable 31 that has passed through the through hole provided in the plane conductor ground plane 50. That is, in the coaxial cable 31, the center conductor is the flat conductor ground plane 50.
And the outer conductor is connected to the plane conductor ground plane 50.

【0019】図13に示すような切り欠き部41の形状
を半円放射板と同心円の半円形状ではなく、半楕円にし
て実験を行った。具体的には図13中の放射板の両端の
幅W1 と給電点を通る幅W2 を変化させて、W1=W2,
1>W2,W1<W2の場合について測定を行った。図14
に測定したパラメータとその時のVSWR特性をを示す。半
円形状の切り欠きの場合と比較して波線で示す半楕円の
切り欠きの場合の方が1.5GHz近傍におけるVSWR値が悪い
ものの、全体としてVSWR特性に変化は見られず、切り欠
き形状が半円に限らなくても良いという結果が得られ
た。また1.5GHz近傍におけるVSWR値の違いは、切り欠き
面積が違うためである。
The experiment was conducted by changing the shape of the notch 41 as shown in FIG. 13 to a semi-elliptical shape instead of a semi-circular shape concentric with the semi-circular radiating plate. Specifically, by changing the width W 1 at both ends of the radiation plate and the width W 2 passing through the feeding point in FIG. 13, W 1 = W 2 ,
Measurements were made for W 1 > W 2 and W 1 <W 2 . FIG.
Shows the measured parameters and the VSWR characteristics at that time. Compared to the case of the semicircular notch, the VSWR value near 1.5 GHz was worse in the case of the semielliptical notch indicated by the wavy line, but no change was observed in the VSWR characteristics as a whole, and the notch shape was The result was that it was not necessary to be limited to a semicircle. The difference in the VSWR value near 1.5 GHz is due to the difference in the notch area.

【0020】第4実施例 図15は本発明の第4の実施形態を示す図であり、図1
3の実施例においてもう1つの帯状弧状放射板112 を放
射板111 と円弧の頂点と中心線を一致させ互いに直交し
て設けたアンテナ装置の構造を斜視図により示す。すな
わち、ほぼ半円形の形状をし中央部分が切り欠き部41
が設けられた2枚の放射板111、112 が、外形の頂点2
1とこの頂点を通るそれぞれの中心線Ox とを一致さ
せ、 互いに直角に交差するように組み合わせて1つの
エレメントを構成し、このエレメントが、その頂点部を
平面導体地板50に近接対向して配置される。このエレ
メントの頂点部21を給電点とし平面導体地板50との
間に、平面導体地板50に設けられた貫通穴を通され
た、同軸ケーブル31により給電される。
Fourth Embodiment FIG. 15 is a view showing a fourth embodiment of the present invention.
Structure of another strip arcuate radiating plate 11 antenna device matched disposed perpendicular to each other the radiation plate 11 1 and the arc vertex and the center line 2 a to the third embodiment is shown by a perspective view. That is, it has a substantially semicircular shape, and the central portion has the cutout portion 41.
The two radiating plates 11 1 and 11 2 provided with
1 and the respective center lines Ox passing through the vertices are made coincident with each other, and are combined so as to intersect at right angles with each other to constitute one element. Is done. Power is supplied by the coaxial cable 31 which passes through a through hole provided in the plane conductor ground plane 50 between the apex portion 21 of the element as a power supply point and the plane conductor ground plane 50.

【0021】図13及び15に示した第3及び第4の実
施形態では、平面導体地板50を用いることで、放射板
11又は111、112の電気的鏡像が平面導体地板50を挟
んだ裏側に形成される。このため、放射素子(放射板1
1又は111、112)がそれぞれ、第1、第2の実施形態に
比べて半分で済み、同等の広帯域特性を実現しながら、
アンテナ高を半分に押さえることが可能となる。このよ
うにアンテナ高を抑え、かつ放射板に切り欠き部41を
設けることで、スペース効率のよいアンテナ装置を実現
できる。
[0021] In the third and fourth embodiments shown in FIGS. 13 and 15, by using the plane conductor ground plate 50, sandwiching the radiation plate 11 or 11 1, 11 2 of the electrical mirror image plane conductor ground plate 50 Formed on the back side. Therefore, the radiating element (radiating plate 1)
1 or 11 1 , 11 2 ) is only half as compared with the first and second embodiments, respectively, while realizing the same broadband characteristics.
The antenna height can be reduced to half. By suppressing the height of the antenna and providing the notch 41 in the radiation plate, an antenna device with good space efficiency can be realized.

【0022】第5実施例 図16は本発明の第5の実施形態を示す図であり、アン
テナ装置の構造を斜視図により示す。このアンテナ装置
は、図13の実施例の放射板の切り欠き部41内に半円
形状とは異なる形状の放射素子をさらに設けたものであ
る。すなわち、ほぼ半円弧帯状の導体板からなりその半
円形状の円の中心部にほぼ半円形状の切り欠き部41が
設けられられた放射板11と、この放射板11の円弧の
頂点部が近接して配置される平面導体地板50と、放射
板11の頂点部と平面導体地板50との間に設けられた
給電点21に平面導体地板50に設けられた貫通穴を通
して給電する同軸ケーブル31とを備え、更に放射板1
1の切り欠き部41内にはメアンダモノポール61が配
置され、その一端である給電点が弧帯状放射板11の給
電点に最も近い中央部に接続される。同軸ケーブル31
の中心導体は平面導体地板50の貫通穴を通されて放射
板11の頂点部に接続され、外皮導体は平面導体地板5
0に接続される。メアンダモノポール61は放射板11
と一体形成され、メアンダモノポール61への給電は放
射板11を介して行われる。
Fifth Embodiment FIG. 16 is a view showing a fifth embodiment of the present invention, and shows the structure of an antenna device in a perspective view. In this antenna device, a radiating element having a shape different from a semicircular shape is further provided in the cutout portion 41 of the radiating plate of the embodiment of FIG. That is, the radiation plate 11, which is formed of a substantially semicircular band-shaped conductor plate and has a semicircular notch 41 at the center of the semicircular circle, and the apex of the circular arc of the radiation plate 11 are A coaxial cable 31 for feeding power through a through hole provided in the plane conductor ground plane 50 to a feeder point 21 provided between the plane conductor ground plane 50 and the apex of the radiation plate 11 and the plane conductor ground plane 50. And a radiation plate 1
A meander monopole 61 is arranged in one notch 41, and a feed point, which is one end thereof, is connected to the center of the arc-shaped radiating plate 11 closest to the feed point. Coaxial cable 31
Are connected to the apexes of the radiation plate 11 through the through holes of the plane conductor ground plane 50, and the outer conductor is a plane conductor ground plane 5
Connected to 0. The meander monopole 61 is the radiation plate 11
The power supply to the meander monopole 61 is performed via the radiation plate 11.

【0023】この実施形態では、図13に示した構造の
第1アンテナに、第2のアンテナとして第1のアンテナ
の最低共振周波数より低い周波数で共振するメアンダ形
状アンテナが組み込まれた構造となっている。このメア
ンダ形状アンテナを構成するメアンダモノポール61に
ついて詳しく説明する。メアンダモノポール61は、電
流の経路を放射板11の半円周よりも長くすることが可
能なため、前述の実施形態のアンテナ装置における最低
共振周波数よりも低い周波数で共振可能となる。このた
め、メアンダモノポール61を組み込むことにより、前
述の実施形態のアンテナ装置の帯域外でも共振させるこ
とができ、多共振が可能となる。特にメアンダモノポー
ル61の共振周波数を放射板11の共振周波数よりも低
く設定することにより、大きさを変えることなく最低共
振周波数を下げることができる。
In this embodiment, a meander-shaped antenna that resonates at a frequency lower than the lowest resonance frequency of the first antenna is incorporated as the second antenna in the first antenna having the structure shown in FIG. I have. The meander monopole 61 constituting the meander-shaped antenna will be described in detail. Since the meander monopole 61 can make the current path longer than the semicircle of the radiation plate 11, the meander monopole 61 can resonate at a frequency lower than the lowest resonance frequency in the antenna device of the above-described embodiment. Therefore, by incorporating the meander monopole 61, resonance can be achieved even outside the band of the antenna device of the above-described embodiment, and multi-resonance can be achieved. In particular, by setting the resonance frequency of the meander monopole 61 lower than the resonance frequency of the radiation plate 11, the lowest resonance frequency can be reduced without changing the size.

【0024】第6実施例 図17は本発明の第6の実施形態を斜視図により示す図
であり、図18及び図19はそのVSWR特性の測定結果を
示す。図17に示すこのアンテナ装置は、図16の実施
例において地板50の代わりに図2の従来例と同様に半
円形の第2の放射板11b を設けてダイポール型アンテナ
とした場合である。すなわち、ほぼ半円弧帯形状の放射
板11a 、と半円状放射板11b を備え、この2枚の放射板
11a,11b がそれぞれの円弧の頂点部21a,21b が給電点と
して対向して配置される。これら給電点21a,21b に、同
軸ケーブル31が接続される。放射板11a の切り欠き部
41にメアンダモノポール61が配置され、その下端が
半円弧帯の内周中央に一体に接続されている。同軸ケー
ブル31の中心導体は放射板11a の頂点部21a に接続さ
れ、外皮導体は放射板11b に接続される。メアンダモノ
ポール61への給電は放射板11a を介して行われる。
Sixth Embodiment FIG. 17 is a perspective view showing a sixth embodiment of the present invention, and FIGS. 18 and 19 show measurement results of the VSWR characteristics. This antenna device shown in FIG. 17 is a dipole antenna in which a semi-circular second radiating plate 11b is provided instead of the ground plate 50 in the embodiment of FIG. That is, a radiation plate 11a having a substantially semicircular arc shape and a radiation plate 11b having a semicircular shape are provided.
11a and 11b are arranged such that the vertices 21a and 21b of the respective arcs face each other as feed points. A coaxial cable 31 is connected to these feeding points 21a and 21b. A meander monopole 61 is disposed in the cutout portion 41 of the radiation plate 11a, and the lower end thereof is integrally connected to the center of the inner circumference of the semicircular band. The center conductor of the coaxial cable 31 is connected to the vertex 21a of the radiation plate 11a, and the outer conductor is connected to the radiation plate 11b. Power is supplied to the meander monopole 61 through the radiation plate 11a.

【0025】ここで、放射板11a をその外形が半径a=
75mmの半円、切り欠き部41の形状が放射板11a の外形
と同心の半径b=55mmの半円、放射板11a の幅WがW=
20mmとなるように形成し、メアンダモノポール61の共
振周波数を280MHzとなるように調整して、このアンテナ
装置のVSWR特性を測定した。この測定結果の全帯域を図
18に、及びその0 〜2GHz帯域の拡大図を図19に示
す。これらの図は、横軸の周波数のスケールが異なるだ
けで、同一のアンテナ装置に関する測定データである。
Here, the radiation plate 11a is formed such that its outer shape has a radius a =
A semicircle of 75 mm, the shape of the notch 41 is a semicircle with a radius b = 55 mm concentric with the outer shape of the radiation plate 11a, and the width W of the radiation plate 11a is W =
The antenna device was formed so as to have a thickness of 20 mm, and the resonance frequency of the meander monopole 61 was adjusted to be 280 MHz, and the VSWR characteristics of the antenna device were measured. FIG. 18 shows the entire band of the measurement result, and FIG. 19 shows an enlarged view of the 0 to 2 GHz band. These figures are measurement data for the same antenna device except for the frequency scale on the horizontal axis.

【0026】図18から、帯域及びVSWRについては、従
来のアンテナ装置と同等の特性が得られていることがわ
かる。また、図19から、メアンダモノポール61を組
み込んだことで280MHzでも共振していることがわかる。
この測定結果から、アンテナ装置の大きさを変えること
なく多共振化を達成でき、さらに、最低共振周波数を下
げることが可能であることがわかる。
FIG. 18 shows that the same characteristics as those of the conventional antenna device are obtained for the band and the VSWR. Also, from FIG. 19, it can be seen that by incorporating the meander monopole 61, resonance occurs even at 280 MHz.
From this measurement result, it can be seen that multi-resonance can be achieved without changing the size of the antenna device, and it is possible to lower the lowest resonance frequency.

【0027】図20乃至図22はそれぞれ図16に示し
た実施形態の変形例を示す。これらの例では、放射板1
1の切り欠き部41に組み込まれる放射素子としてそれ
ぞれ、2つのメアンダモノポール611、612、2つの
ヘリカルアンテナ621、622及び抵抗装荷モノポール
63が用いられる。切り欠き部41に組み込まれる放射
素子としては、このような切り欠き部41に収まるもの
であれば他の形状のものでもよい。また、図20及び図
21ではそれぞれ2つの素子を組み込んだ例を示してい
るが、この数に制限はない。組み込まれた放射素子への
給電は、その放射素子を放射板11に接続することによ
りおこなわれる。
FIGS. 20 to 22 show modifications of the embodiment shown in FIG. In these examples, the radiation plate 1
Each as a radiating element incorporated in the first notch portion 41, the two meander monopoles 61 1, 61 2, two helical antennas 62 1, 62 2 and resistively loaded monopole 63 is used. The radiating element incorporated in the notch 41 may have any other shape as long as it fits in the notch 41. 20 and 21 show examples in which two elements are incorporated, respectively, but the number is not limited. Power is supplied to the built-in radiating element by connecting the radiating element to the radiating plate 11.

【0028】図20または図21に示したように放射板
11の切り欠き部41に別の複数の放射素子を組み込ん
だ場合に、各々の放射素子の共振周波数を異なるものに
しておけば、さらに多共振化が可能となる。また、図2
2に示す抵抗装化モノポール63のような広帯域アンテ
ナを用い、その共振周波数を半円形状の放射板11から
なる半円導体モノポールアンテナより低く設定すること
により、アンテナ装置を大型化せずに最低共振周波数を
下げることができ、さらなる広帯域化が可能となる。 第7実施例 前述の各実施例では少なくとも1つのほぼ半円形放射板
にそれより小さい形の半円形切り欠きを同心状に形成す
ることにより、他の型のアンテナ素子、或いは回路素子
などを切り欠き部に配置可能とするスペースを形成した
場合を示したが、以下の実施例では少なくとも1つのほ
ぼ半円形の放射板をほぼ円筒状に一回巻いた構造とする
ことにより、横方向の占有長を短くした場合のアンテナ
装置の実施例を示す。
When a plurality of other radiating elements are incorporated in the cutout portion 41 of the radiating plate 11 as shown in FIG. 20 or FIG. 21, if the resonance frequencies of the respective radiating elements are different, furthermore, Multi-resonance becomes possible. FIG.
By using a broadband antenna such as the resistive monopole 63 shown in FIG. 2 and setting the resonance frequency thereof lower than that of the semicircular conductor monopole antenna including the semicircular radiating plate 11, the antenna device is not enlarged. Therefore, the lowest resonance frequency can be lowered, and a wider band can be achieved. Seventh Embodiment In each of the above-described embodiments, at least one semi-circular radiating plate is formed concentrically with a semi-circular notch of a smaller shape to cut other types of antenna elements or circuit elements. Although the case where a space that can be arranged in the notch is formed is shown, in the following embodiment, at least one substantially semicircular radiating plate is wound once in a substantially cylindrical shape, thereby occupying the lateral direction. An embodiment of the antenna device when the length is shortened is shown.

【0029】図23はこの発明の第7実施形態を示す図
であり、アンテナ装置の構造を斜視図により示す。この
アンテナ装置はほぼ半円形の導体板を、その直線辺がほ
ぼ円となるように円筒状に一回巻いた構造の放射板13
aと、半円形の導体板で構成された放射板12bとを有
している。これらの放射板13a,12bは中心線Ox
を共有し、かつそれぞれの円弧の頂点部21a,21b
が対向するように配置される。これらの頂点部21a,
21bを給電点とし、それら間に給電部30が設けられ
る。
FIG. 23 is a view showing a seventh embodiment of the present invention, and shows the structure of an antenna device in a perspective view. This antenna device has a radiation plate 13 having a structure in which a substantially semicircular conductor plate is wound once in a cylindrical shape so that the straight sides thereof are substantially circular.
a and a radiation plate 12b composed of a semicircular conductor plate. These radiating plates 13a and 12b have a center line Ox.
And the vertices 21a, 21b of the respective arcs
Are arranged to face each other. These vertex portions 21a,
A power supply unit 30 is provided between the power supply points 21b.

【0030】図24のアンテナ装置においては、2つの
半円形導体板をそれぞれ、半円の頂点部を通る中心線
(半円の半径)Ox が母線となる共通の円柱に一回巻い
た構造の放射板13a,13bが設けられ、2つの半円
形導体の円弧の頂点21a,21bが近接対向して配置
される。つまり半円放射板の直線辺が円を形成するよう
に一回巻いた構成としている。
The antenna device shown in FIG. 24 has a structure in which two semicircular conductor plates are wound once around a common column having a center line (radius of a semicircle) Ox passing through a vertex of a semicircle as a generating line. Radiation plates 13a and 13b are provided, and the vertices 21a and 21b of the arcs of the two semicircular conductors are arranged in close proximity to each other. That is, the semicircular radiation plate is wound once so that the straight sides form a circle.

【0031】このように、1つのアンテナ装置を構成す
る2つの放射板のうち、図23に示すように一方の放射
板を円筒状に一回巻きして筒状放射板13aとしてもよ
いし、図24に示すように両方の放射板を円筒状に一回
巻きして放射板13a,13bとしてもよい。いずれ
も、湾曲した放射板13a(図23)又は13a,13
b(図24)の周方向両端は互いに接触しても、しなく
ても後述するようにVSWR特性に大きなちがいはない。
As shown in FIG. 23, one of the two radiating plates constituting one antenna device may be wound once to form a cylindrical radiating plate 13a. As shown in FIG. 24, both radiation plates may be wound once into a cylindrical shape to form radiation plates 13a and 13b. In each case, the curved radiation plate 13a (FIG. 23) or 13a, 13
Regardless of whether or not both ends in the circumferential direction of b (FIG. 24) are in contact with each other, there is no significant difference in the VSWR characteristics as described later.

【0032】図23、24の実施例では、円筒状に一回
巻きされた放射板13a(図24では13bも)の周方
向の両端は互いに接触しないように、これら間に小間隔
10が設けられている。また円筒状放射板13aの中心
線Ox と間隔10の中央とを結ぶ直線dと、放射板13
aの中心線Ox とはほぼ直角が好ましい。また図24で
は、放射板13a,13bが共有する中心線Ox と間隔
10を結ぶ各直線dはほぼ互いに平行が好ましい。放射
板13a,13bはその展開状態で、同一大きさが好ま
しい。放射板13a又は13bに対する湾曲形状は円筒
状のみならず、楕円筒状でもよく、つまりほぼ円筒状で
あればよい。
In the embodiment shown in FIGS. 23 and 24, a small gap 10 is provided between the circumferential ends of the radiation plate 13a (also 13b in FIG. 24) which is wound once in a cylindrical shape so as not to contact each other. Have been. A straight line d connecting the center line Ox of the cylindrical radiation plate 13a and the center of the interval 10;
It is preferably substantially perpendicular to the center line Ox of a. In FIG. 24, the straight lines d connecting the center line Ox shared by the radiation plates 13a and 13b and the interval 10 are preferably substantially parallel to each other. The radiating plates 13a and 13b are preferably of the same size in the expanded state. The curved shape of the radiation plate 13a or 13b is not limited to a cylindrical shape, and may be an elliptical cylindrical shape, that is, it may be a substantially cylindrical shape.

【0033】このように円筒状の導体板を放射板として
用いることにより、従来の平板の導体板を放射板として
用いた構成に比較して、少なくとも1つの放射素子の占
有する横幅が従来例に比較してほぼ1/3 ですみスペース
効率を高めることができる。図25、図26および図2
7は図24に示したアンテナ装置に対する給電のための
構成例を示してある。図25の構成では同軸ケーブル3
1を放射板13bの頂点を通る中心線Ox に沿って配置
する。これに対し図26の構成では同軸ケーブル31を
放射板13bの半円の円弧に沿って配置する。また図2
7の構成では給電のために平行2線33を用い、両放射
板13a,13b間に配置する。いずれの場合も給電は
2つの放射板13a,12b(又は13a,13b)の
頂点部21a,21bを給電点としてそれら間で行う。 第8実施例2 図28はこの発明の第8実施形態を示す図であり、アン
テナ装置の構造を斜視図により示す。このアンテナ装置
は、例えば図23、24、25などの実施例において、
放射板12b、又は13bを設ける代わりに、図13と
同様に平面導体板よりなる地板50が設けられ、モノポ
ール型アンテナ装置とした場合である。即ち、放射板1
3は図25の場合と同様であり、ほぼ半円形状の導体板
を、半円の円弧の頂点部を通る中心線Ox が円筒の中心
軸と平行になるように円筒状に形成されており、この放
射板13の円弧の頂点部21に近接し、これを通る前記
中心線Ox とはほぼ垂直に配置される平面導体地板50
を備える。放射板13の頂点部21を給電点とし、平面
導体板50との間に平面導体地板50に設けた貫通穴5
1を通された同軸ケーブル31から給電される。すなわ
ち、同軸ケーブル31の中心導体は放射板13の頂点部
21に接続しており、また外皮導体は平面導体板50に
接続されている。
By using the cylindrical conductor plate as the radiation plate in this manner, the width occupied by at least one radiating element is smaller than that of the conventional example, as compared with the conventional configuration using a flat conductor plate as the radiation plate. The space efficiency can be increased by only about 1/3 in comparison. 25, 26 and 2
7 shows an example of a configuration for feeding power to the antenna device shown in FIG. In the configuration of FIG.
1 is arranged along the center line Ox passing through the vertex of the radiation plate 13b. On the other hand, in the configuration of FIG. 26, the coaxial cable 31 is arranged along a semicircular arc of the radiation plate 13b. FIG. 2
In the configuration of No. 7, two parallel wires 33 are used for power supply, and are arranged between the radiation plates 13a and 13b. In either case, power is supplied between the two radiating plates 13a, 12b (or 13a, 13b) using the apexes 21a, 21b as power feeding points. Eighth Embodiment FIG. 28 is a diagram showing an eighth embodiment of the present invention, and shows the structure of an antenna device in a perspective view. This antenna device is, for example, in the embodiments shown in FIGS.
Instead of providing the radiation plate 12b or 13b, a ground plate 50 made of a plane conductor plate is provided as in FIG. That is, the radiation plate 1
3 is similar to the case of FIG. 25, and the substantially semicircular conductor plate is formed in a cylindrical shape such that the center line Ox passing through the apex of the semicircular arc is parallel to the center axis of the cylinder. A plane conductor ground plane 50 which is disposed close to the apex 21 of the circular arc of the radiation plate 13 and substantially perpendicular to the center line Ox passing therethrough.
Is provided. The apex portion 21 of the radiating plate 13 is used as a feeding point, and the through-hole 5 formed in the plane conductor
Power is supplied from the coaxial cable 31 passed through the cable 1. That is, the center conductor of the coaxial cable 31 is connected to the apex 21 of the radiation plate 13, and the outer conductor is connected to the plane conductor plate 50.

【0034】この第8実施形態は平面導体地板50によ
り放射素子13の電気的鏡像が、地板50をはさんだ裏
側に形成される。そのため放射素子の数は第7実施形態
(図23〜27)の半分で済み、同等の広帯域特性を実
現しながらアンテナ高を半分に抑えることが可能とな
る。このような構成にすることでアンテナ高を抑え、ス
ペース効率の良いアンテナ装置が実現できる。
In the eighth embodiment, an electric mirror image of the radiating element 13 is formed on the back side of the ground plane 50 by the plane conductor ground plane 50. Therefore, the number of radiating elements is half that of the seventh embodiment (FIGS. 23 to 27), and the antenna height can be reduced to half while realizing the same broadband characteristics. With such a configuration, the antenna height can be suppressed and an antenna device with good space efficiency can be realized.

【0035】このアンテナ装置の性能を確かめるために
実験を行った。図29A,29B,29Cはその実験に
用いたアンテナ装置の正面図、平面図、右側面図をそれ
ぞれ示し、図29Dは放射板13の展開図を示す。放射
板13は図29Dで示す半径r=75mmの半円形状の導体
板を、半円円弧の頂点を通る中心線Ox を母線とする直
50mmの円柱に一回巻きしたものを用いている。また平
面導体地板50は300mm×300mm、厚さ0.2mm の銅板を用
いた。給電は平面導体地板50の中心部に設けた貫通穴
51に通した給電ケーブル31により行われている。同
軸ケーブル31の中心導体は放射板13の頂点部21に
接続され(図29C)、外皮導体は平面導体地板50に
接続されている。
An experiment was conducted to confirm the performance of the antenna device. 29A, 29B, and 29C show a front view, a plan view, and a right side view of the antenna device used in the experiment, respectively, and FIG. 29D shows a developed view of the radiation plate 13. The radiating plate 13 is formed by winding a semicircular conductor plate having a radius r = 75 mm shown in FIG. 29D once around a 50 mm diameter cylinder whose center line Ox passes through the vertex of the semicircular arc as a generating line. . The plane conductor ground plate 50 was a copper plate of 300 mm × 300 mm and 0.2 mm in thickness. Power is supplied by a power supply cable 31 passing through a through hole 51 provided at the center of the plane conductor ground plane 50. The center conductor of the coaxial cable 31 is connected to the vertex 21 of the radiation plate 13 (FIG. 29C), and the outer conductor is connected to the plane conductor ground plate 50.

【0036】図30には実験により測定したVSWR特性を
示す。得られたVSWR特性と図3に示す従来例の特性とを
比較すると、放射板を円筒状に形成したこの発明のアン
テナ装置の帯域特性は従来例と同等の広帯域特性を有
し、しかもその帯域に渡ってVSWRの値は従来技術による
値よりも小さな値となっている。即ちVSWR特性は図3に
示す従来のものより改善されている。このように放射板
を円筒状とし、平面導体地板を用いることで、アンテナ
高が半分になり、放射板の占有する横幅が従来例に比較
して1/3 ですみ、スペース効率の点で優れたアンテナ装
置となっており、しかもVSWR特性が改善されている。
FIG. 30 shows VSWR characteristics measured by experiments. Comparing the obtained VSWR characteristic with the characteristic of the conventional example shown in FIG. 3, the band characteristic of the antenna device of the present invention in which the radiation plate is formed in a cylindrical shape has the same broadband characteristic as that of the conventional example. The value of VSWR is smaller than the value according to the prior art. That is, the VSWR characteristic is improved as compared with the conventional one shown in FIG. By making the radiation plate cylindrical and using a plane conductor ground plane in this way, the antenna height is halved, the width occupied by the radiation plate is only 1/3 of that of the conventional example, and it is excellent in space efficiency. Antenna device, and the VSWR characteristics are improved.

【0037】図23〜28の実施例では、放射板13は
正円筒状の場合を示したが、楕円筒状に形成してもよ
い。図28に示すようにその楕円の2つの軸を中心線O
x と直角に交わる軸L2と、その軸L2と直交する軸L1と
し、次の3つの場合 (a) L1=L2=50 (円筒) (b) L1=33mm、L2=60mm (即ちL1>L2の楕円筒) (c) L1=60mm、L2=33mm (即ちL1<L2の楕円筒) について測定したVSWR特性を図31中の実線31A、太
線31B、細破線31Cにそれぞれ示す。図から明らか
なように、円筒状放射板13を楕円筒に代えてもVSWR特
性に大きな変化はなく、従って放射板13の湾曲は軸比
L1/L2 が約0.5〜1.5 の範囲で円筒だけでなく、楕円筒
でもよいことを示している。このことは以下の全ての実
施例にも当てはまるし、放射板13a,13bのいずれ
にも当てはまる。
In the embodiment shown in FIGS. 23 to 28, the radiation plate 13 is shown as having a regular cylindrical shape, but may be formed in an elliptical cylindrical shape. As shown in FIG. 28, the two axes of the ellipse
An axis L2 intersects at right angles to x and an axis L1 orthogonal to the axis L2. The following three cases (a) L1 = L2 = 50 (cylindrical) (b) L1 = 33mm, L2 = 60mm (ie L1> L2 (C) The VSWR characteristics measured for L1 = 60 mm and L2 = 33 mm (that is, L1 <L2 elliptic cylinder) are shown by the solid line 31A, the thick line 31B, and the thin broken line 31C in FIG. 31, respectively. As is clear from the figure, there is no significant change in the VSWR characteristic even when the cylindrical radiation plate 13 is replaced by an elliptical cylinder, and therefore, the curvature of the radiation plate 13 is reduced by the axial ratio.
When L1 / L2 is in the range of about 0.5 to 1.5, it indicates that not only a cylinder but also an elliptic cylinder may be used. This applies to all the following embodiments, and also applies to both the radiation plates 13a and 13b.

【0038】図23〜28の実施例では、放射板13を
円筒に一回巻きして両端がほぼ接触するように湾曲する
場合を示したが、そのときの円柱の直径より大きい直径
の円柱に一回未満巻いて図32に示すように両端間に隙
間dを形成するように湾曲させてもよい。この場合の円
柱の直径DがD=48mm(形成される両端間の隙間d=1m
m)の場合とD=60mm( 隙間d=37mm)の場合について
測定したVSWR特性を図33に示し、実線33Aとは破線
33Bでそれぞれ示す。この場合もアンテナ装置の広帯
域性は保たれている。隙間dが大きくなるとVSWRが劣化
するが、それでも図3の従来技術に比べてVSWR特性は優
れている。
In the embodiment shown in FIGS. 23 to 28, the radiation plate 13 is wound once around a cylinder and curved so that both ends are almost in contact with each other. It may be wound less than once to form a gap d between both ends as shown in FIG. In this case, the diameter D of the cylinder is D = 48 mm (a gap d between both ends to be formed is 1 m).
FIG. 33 shows the VSWR characteristics measured for the case m) and the case where D = 60 mm ( gap d = 37 mm), and the solid line 33A and the broken line 33B are shown. Also in this case, the broadband property of the antenna device is maintained. Although the VSWR deteriorates as the gap d increases, the VSWR characteristic is still superior to that of the prior art shown in FIG.

【0039】図32においてd=0とし、放射板13の
両端を互いに半だ付けした場合と、ごくわずか(1mm程
度)離して比接触とした場合のVSWR特性の測定結果をそ
れぞれ図34の破線33Aと実線33Bに示す。この図
から明らかなように、湾曲された放射板13の両端が接
触してもしなくてもVSWR特性にはほとんど影響せず、従
って両端を強いて接触する必要はない。このことは他の
全ての実施例にも当てはまる。 第9実施例 図35はこの発明の第9実施形態を示す図であり、アン
テナ装置の構造を斜視図により示す。このアンテナ装置
は、図28の実施例における円筒状とされた放射板13
に、例えば図13で示したと同様の切り欠き41を形成
した場合であり、ほぼ半円形状の導体板の半円の中心部
にほぼ半円形状の切り欠き部41を形成して得た半円形
リボン状導体板(図36D参照)を、半円の円弧の頂点
部を通る中心線Ox が母線となる円柱に一回巻きして放
射板14としている。つまりこの放射板14は、図28
に示した放射板13の下側周縁(半円弧)の最下頂点部
21から導体地板50と反対側(即ち上側)に離れた点
より、放射板13をその下側周縁と平行に切断した円弧
状リボン形状をしており、図28と同様にこの放射板1
4の円弧の最下頂点部21に近接して平面導体地板50
が設けられている。
In FIG. 32, the measurement results of the VSWR characteristics in the case where d = 0 and the both ends of the radiation plate 13 are half-attached to each other and in the case where the specific contact is made very slightly (about 1 mm) apart are shown by broken lines in FIG. 33 shown in a and the solid line 33 B. As is apparent from this figure, the VSWR characteristic is hardly affected even if the both ends of the curved radiation plate 13 are in contact with each other, and therefore, it is not necessary to force both ends into contact. This is true for all other embodiments. Ninth Embodiment FIG. 35 is a diagram showing a ninth embodiment of the present invention, and shows the structure of an antenna device in a perspective view. This antenna device is similar to the cylindrical radiation plate 13 in the embodiment of FIG.
In this case, for example, a notch 41 similar to that shown in FIG. 13 is formed, and a half obtained by forming a substantially semicircular notch 41 at the center of a semicircle of a substantially semicircular conductor plate. The circular ribbon-shaped conductor plate (see FIG. 36D) is wound once around a column having a center line Ox passing through the apex of a semicircular arc as a generatrix to form the radiation plate 14. That is, this radiation plate 14
The radiation plate 13 is cut in parallel to the lower peripheral edge (semicircular arc) of the lower side apex 21 of the radiation plate 13 shown in FIG. This radiating plate 1 has an arcuate ribbon shape, as in FIG.
4 and a plane conductor ground plate 50 close to the lowermost vertex 21 of the arc.
Is provided.

【0040】放射板14の頂点部21を給電点とし、平
面導体地板50に形成された貫通穴51を通された同軸
ケーブル31から給電される。即ち、同軸ケーブル31
の中心導体は放射板14の給電点21に接続されてお
り、また外皮導体は平面導体地板50に接続されてい
る。このように放射板に切り欠き部41を設けること
で、切り欠きのない半円形導体板を円筒状に巻いた第7
もしくは第8実施形態に比較してスペース効率を更に高
めることができる。前述のように円筒状に一回巻きされ
た放射板14のアンテナ電流はその下側円弧状周縁付近
に分布して流れ、上側直線辺および中心部にはアンテナ
電流が流れず、つまり電波の放射に寄与しないので、切
り欠き部41を形成してもアンテナとしての動作に影響
しない。従って切り欠き部41の形状としては半円形
(展開状態で)状に限らず、例えば半楕円状などとして
もよい。
The power is supplied from the coaxial cable 31 passing through the through hole 51 formed in the plane conductor ground plane 50 with the apex 21 of the radiation plate 14 as a feeding point. That is, the coaxial cable 31
Are connected to the feeding point 21 of the radiation plate 14, and the outer conductor is connected to the plane conductor ground plane 50. By providing the cutout portion 41 in the radiation plate in this way, the seventh cutout of the semicircular conductor plate having no cutout in a cylindrical shape can be obtained.
Alternatively, the space efficiency can be further improved as compared with the eighth embodiment. As described above, the antenna current of the radiating plate 14 wound once in a cylindrical shape is distributed and flows in the vicinity of the lower arc-shaped periphery, and the antenna current does not flow in the upper straight side and the center, that is, the radiation of radio waves Does not affect the operation as an antenna even if the notch 41 is formed. Therefore, the shape of the notch 41 is not limited to a semicircular shape (in an expanded state), but may be, for example, a semielliptical shape.

【0041】このアンテナ装置の性能を確かめるために
実験を行った。図36A,36B,36Cにはその実験
に用いたアンテナ装置の正面図、平面図、右側面図をそ
れぞれ示し、図36Dには放射板14の展開図を示す。
図37Aには実験により測定したVSWR特性を示す。アン
テナ装置として放射板14は、半径r1=75mm の半円形状
の導体板に、外形と同心の半径r2=55mm の半円の切り欠
き部41を設けた導体板を、半円円弧の頂点21を通る
中心線Ox を母線とする直径50mmの円柱に一回巻きした
ものを用いている。また平面導体地板50は300mm×300
mm、厚さ0.2mmの銅板を用いた。給電は平面導体地板5
0の中心部に形成した貫通穴51に通した給電ケーブル
31により行われている。同軸ケーブル31の中心導体
は放射板14の頂点部21に接続され、外皮導体は平面
導体地板50に接続されている。
An experiment was conducted to confirm the performance of the antenna device. 36A, 36B, and 36C show a front view, a plan view, and a right side view of the antenna device used in the experiment, respectively, and FIG. 36D shows a developed view of the radiation plate 14.
FIG. 37A shows VSWR characteristics measured by an experiment. The radiating plate 14 as an antenna device is a semi-circular conductor plate having a radius r 1 = 75 mm and a semi-circular notch 41 having a radius r 2 = 55 mm concentric with the outer shape, and a semi-circular arc. It is wound once around a 50 mm diameter column whose center line Ox passes through the vertex 21 as a generating line. The plane conductor ground plane 50 is 300mm x 300
A copper plate having a thickness of 0.2 mm and a thickness of 0.2 mm was used. The power supply is a plane conductor ground plane 5
This is performed by the power supply cable 31 passing through a through hole 51 formed in the center of the zero. The center conductor of the coaxial cable 31 is connected to the apex 21 of the radiation plate 14, and the outer conductor is connected to the plane conductor ground plate 50.

【0042】得られたVSWR特性(図37A)を、切り欠
き部41を持たない図29A〜29Dに示すアンテナ装
置のVSWR特性(図30)と比較すると、放射板に切り欠
き部41を設けても広帯域性は従来例と同等であること
がわかる。ただし5GHz 以下でVSWRが劣化するが、図3
の従来技術による特性と比べれば、低域側での劣化はみ
られず、むしろ広域側でのVSWRの改善が顕著である。こ
のように放射板に切り欠き部41を設けることにより、
この切り欠き部分に別形状のアンテナを組込むことが可
能となり、スペース効率の点で優れたアンテナ装置とな
っている。
When the obtained VSWR characteristic (FIG. 37A) is compared with the VSWR characteristic (FIG. 30) of the antenna device shown in FIGS. 29A to 29D having no notch 41, the notch 41 is provided on the radiation plate. It can also be seen that the broadband characteristics are equivalent to the conventional example. However, VSWR deteriorates below 5 GHz.
Compared with the characteristics according to the prior art, no deterioration is observed on the low frequency side, and the improvement of the VSWR on the wide frequency side is rather remarkable. By providing the notch 41 in the radiation plate in this way,
An antenna having a different shape can be incorporated into the cutout portion, and the antenna device is excellent in space efficiency.

【0043】半円形切り欠き部41の面積を変化させ、
切り欠き部41がない場合の放射板14の面積に対する
切り欠き部41の面積比率と動作帯域内における最悪VS
WRとの関係を図37Bに示す。この図からVSWRが2まで
許容される場合は、切り欠き部41は前記面積率で50
%程度まで大きくすることができる。これは図36Dに
おける半径比r2/r1 で表すと約r2/r1=0.7であり、かな
り大きな切り欠き部41を形成することができることを
示している。 第10実施例 図38はこの発明の第10実施形態を示す図であり、ア
ンテナ装置の構造を斜視図により示す。このアンテナ装
置は、放射板14の切り欠き部41に半円形リボン状素
子とは異なる型の放射素子を備えている点が図35の第
9実施形態と異なる。即ち、ほぼ半円形の導体板にその
半円と同心にほぼ半円形状の切り欠き部41を形成し、
その導体板を、円弧の頂点部21を通る中心線Ox が母
線となる円柱に一回巻きして円弧リボン状放射板14を
形成する。その放射板14の円弧の頂点部21に近接し
て平面導体地板50が設けられる。放射板14の切り欠
き部41にはヘリカルアンテナ62が接続される。ヘリ
カルアンテナ62の軸心は平面導体地板50とほぼ垂直
とされ、かつ円弧頂点部21の上側に位置している。同
軸ケーブル31は平面導体地板50に形成された貫通穴
51を通され、同軸ケーブル31の中心導体は放射素子
14の頂点部21に接続され、また外皮導体は平面導体
地板50に接続されて、放射板14の頂点部21を給電
点として平面導体地板50との間に給電される。ヘリカ
ルアンテナ62の給電は放射板14を介して行われる。
By changing the area of the semicircular notch 41,
The ratio of the area of the notch 41 to the area of the radiation plate 14 without the notch 41 and the worst VS in the operating band
FIG. 37B shows the relationship with WR. When the VSWR is allowed up to 2 from this figure, the notch 41 has the area ratio of 50%.
%. This is approximately r 2 / r 1 = 0.7 when represented by the radius ratio r 2 / r 1 in FIG. 36D, indicating that a considerably large notch 41 can be formed. Tenth Embodiment FIG. 38 is a diagram showing a tenth embodiment of the present invention, and shows the structure of an antenna device in a perspective view. This antenna device differs from the ninth embodiment in FIG. 35 in that a cutout portion 41 of a radiation plate 14 is provided with a radiation element of a type different from a semicircular ribbon-shaped element. That is, a substantially semicircular cutout portion 41 is formed in a substantially semicircular conductor plate concentrically with the semicircle,
The conductor plate is wound once around a column having a center line Ox passing through a vertex 21 of the arc as a generatrix, thereby forming an arc-shaped ribbon-shaped radiation plate 14. A plane conductor ground plane 50 is provided near the apex 21 of the circular arc of the radiation plate 14. A helical antenna 62 is connected to the notch 41 of the radiation plate 14. The axis of the helical antenna 62 is substantially perpendicular to the plane conductor ground plane 50 and is located above the apex 21 of the arc. The coaxial cable 31 is passed through a through hole 51 formed in the plane conductor ground plane 50, the center conductor of the coaxial cable 31 is connected to the apex 21 of the radiating element 14, and the outer conductor is connected to the plane conductor ground plane 50, Power is supplied between the radiating plate 14 and the plane conductor ground plate 50 with the apex 21 of the radiating plate 14 as a feeding point. Power is supplied to the helical antenna 62 via the radiation plate 14.

【0044】この実施形態では図35に示した構造のア
ンテナに、第2のアンテナとしてヘリカル構造のアンテ
ナが組込まれた構造となっている。組込む第2のアンテ
ナの帯域は任意であるが、特に第1のアンテナの最低共
振周波数よりも低い周波数帯に動作帯域を持つものを選
べば、第2のアンテナを組込むことにより図35に示す
構造のアンテナ装置の多共振化が可能となる。さらに第
2のアンテナとして図38の切り欠き部41に収まる大
きさのアンテナを選ぶことにより、アンテナを大型化す
ることなく最低共振周波数を下げることができる。
This embodiment has a structure in which a helical antenna is incorporated as a second antenna into the antenna having the structure shown in FIG. The band of the second antenna to be incorporated is arbitrary. In particular, if an antenna having an operating band in a frequency band lower than the lowest resonance frequency of the first antenna is selected, the structure shown in FIG. 35 can be obtained by incorporating the second antenna. Of the antenna device can be made multi-resonant. Further, by selecting an antenna having a size that can be accommodated in the cutout portion 41 in FIG. 38 as the second antenna, the lowest resonance frequency can be reduced without increasing the size of the antenna.

【0045】次に、このアンテナ装置の性能を確かめる
ために実験を行った。図39A,39B,39Cはその
実験に用いたアンテナ装置の正面図、平面図、右側面図
をそれぞれ示し、図39Dは放射板14の展開図を示
す。図40および図41には実験により測定したVSWR特
性を示す。ここで、図41は図40における横軸の周波
数帯域0〜1GHz を、横軸を拡大して示したものであ
り、同一のアンテナの測定データである。放射板14
は、半径75mmの半円形状の導体板に、外形と同心の半径
55mmの半円の切り欠き部41を設けた導体板を、半円円
弧の頂点21を通る中心線を母線とする直径50mmの円柱
に一回巻きして形成される。第2のアンテナ素子として
は280MHzで動作するように調整されたヘリカルアンテナ
62を切り欠き部41に設置し、ヘリカルアンテナの一
端を放射板14の切り欠き部41の半円の頂点部21に
接続している。また平面導体地板50は300mm×300mm、
厚さ0.2mm の銅板を用いた。給電は平面導体地板50の
中心部に設けた貫通穴51に通した給電ケーブル31に
より行われている。同軸ケーブル31の中心導体は放射
板14の頂点部21に接続され、外皮導体は平面導体地
板50に接続されている。図40と第9実施例の実験結
果である図37Aとを比較すると、切り欠き部41にヘ
リカルアンテナ62を組込んでも同等の帯域特性が得ら
れていることがわかる。また、図41よりヘリカルアン
テナ62を組込んだことにより280MHzでも共振が生じる
ことがわかる。この測定結果からアンテナ装置の大きさ
を変えることなく多共振化を達成でき、さらに最低共振
周波数を下げることが可能であることがわかる。
Next, an experiment was conducted to confirm the performance of the antenna device. 39A, 39B, and 39C show a front view, a plan view, and a right side view of the antenna device used in the experiment, respectively, and FIG. 39D shows a developed view of the radiation plate 14. FIGS. 40 and 41 show VSWR characteristics measured by experiments. Here, FIG. 41 shows the frequency band of 0 to 1 GHz on the horizontal axis in FIG. 40 with the horizontal axis enlarged, and is measurement data of the same antenna. Radiating plate 14
Is a semi-circular conductor plate with a radius of 75 mm, a radius concentric with the outer shape.
A conductor plate provided with a 55 mm semicircular cutout 41 is formed by winding once around a 50 mm diameter column whose center line passes through the vertex 21 of the semicircular arc. As the second antenna element, a helical antenna 62 tuned to operate at 280 MHz is installed in the notch 41, and one end of the helical antenna is connected to the vertex 21 of the semicircle of the notch 41 of the radiation plate 14. are doing. The plane conductor ground plane 50 is 300 mm x 300 mm,
A copper plate having a thickness of 0.2 mm was used. Power is supplied by a power supply cable 31 passing through a through hole 51 provided at the center of the plane conductor ground plane 50. The center conductor of the coaxial cable 31 is connected to the apex 21 of the radiation plate 14, and the outer conductor is connected to the plane conductor ground plate 50. Comparing FIG. 40 with FIG. 37A, which is an experimental result of the ninth embodiment, it can be seen that the same band characteristic is obtained even when the helical antenna 62 is incorporated in the cutout 41. Also, it can be seen from FIG. 41 that resonance is generated even at 280 MHz by incorporating the helical antenna 62. From this measurement result, it can be seen that multi-resonance can be achieved without changing the size of the antenna device, and that the lowest resonance frequency can be further reduced.

【0046】図42、43及び44はそれぞれ第10実
施形態の変形例を示す。これらの例では放射板14の切
り欠き部41に組込まれる放射素子としてそれぞれ2つ
のヘリカルアンテナ621、6222つのメアンダモノポ
ール611、612及び抵抗装荷モノポール63が用いら
れる。切り欠き部41に組込まれる放射素子は、切り欠
き部41に収まるものならば他の形式の物でもよい。ま
た、この図42,43ではそれぞれ2つの放射素子を組
込んだ例を示しているが、この数に制限は無い。組込ま
れた放射素子への給電は、組込まれた放射素子が放射板
14と接続されていることにより行われる。
FIGS. 42, 43 and 44 show modifications of the tenth embodiment. In these examples the cutout portion 2 each as a radiating element that is incorporated into 41 the helical antenna 62 1, 62 2 two meander monopoles 61 1, 61 2 and resistively loaded monopole 63 of the radiation plate 14 is used. The radiating element incorporated in the notch 41 may be of another type as long as it fits in the notch 41. Further, FIGS. 42 and 43 show examples in which two radiating elements are incorporated, respectively, but the number is not limited. Power is supplied to the built-in radiating element by connecting the built-in radiating element to the radiation plate 14.

【0047】図42、43に示したように放射板14の
切り欠き部41に別の放射素子を複数組込んだ場合、各
々のアンテナの共振周波数を異なるものにしておけば、
さらに多共振化が可能となる。また図44に示す抵抗装
荷型モノポール63のように広帯域アンテナを用い、そ
の共振周波数を、放射板14よりなる半円導体モノポー
ルアンテナより低く設定することによりアンテナを大型
化せずに最低共振周波数を下げることができ、さらなる
広帯域化が可能となる。切り欠き部41に設ける放射素
子と放射板14とはそのアンテナ動作が相互に影響しな
い程度に共振周波数、インピーダンスなどがずらされて
いる。
As shown in FIGS. 42 and 43, when a plurality of different radiating elements are incorporated in the cutout 41 of the radiating plate 14, if the resonance frequencies of the respective antennas are different,
Further, multi-resonance becomes possible. Further, by using a broadband antenna like the resistance-loaded monopole 63 shown in FIG. 44 and setting the resonance frequency thereof lower than that of the semicircular conductor monopole antenna composed of the radiation plate 14, the minimum resonance can be achieved without increasing the size of the antenna. The frequency can be reduced, and a wider band can be achieved. The radiating element provided in the notch 41 and the radiating plate 14 are shifted in resonance frequency, impedance, and the like to such an extent that the antenna operation does not affect each other.

【0048】[0048]

【発明の効果】以上述べたように、この発明の第1の観
点のアンテナ装置は、半円形状の導体板からなる放射板
に切り下記を設けることで、広帯域特性を維持しながら
スペース効率を高めることができる。また、この切り欠
き部に別の放射素子を組み込むことで、従来のアンテナ
装置と同じ大きさで、より多共振、より広帯域のアンテ
ナ装置または最低共振周波数の低いアンテナ装置を実現
できる。
As described above, the antenna device according to the first aspect of the present invention cuts the radiation plate made of a semicircular conductor plate and provides the following, thereby improving the space efficiency while maintaining the wide band characteristics. Can be enhanced. Further, by incorporating another radiating element into this cutout, it is possible to realize an antenna device having the same size as a conventional antenna device, having more resonance, a wider band, or a lower minimum resonance frequency.

【0049】この発明の第2の観点によれば、半円形状
放射板が円筒状に一回巻きされており、最大占有幅を削
減することが可能であり、その円筒状とされた半円形放
射板に切り欠き部を形成することで、更にスペース効率
を高めることが可能となる。また、この切り欠き部に半
円形放射板とは形状および動作帯域の異なるアンテナが
組込まれることにより、従来のアンテナと比較して小型
で広帯域および多共振のアンテナ装置、または最低共振
周波数の低いアンテナ装置を実現できる。
According to the second aspect of the present invention, the semicircular radiation plate is wound once in a cylindrical shape, so that the maximum occupied width can be reduced. By forming the notch in the radiation plate, it is possible to further enhance the space efficiency. An antenna having a shape and an operation band different from those of the semi-circular radiating plate is incorporated in the cutout, so that the antenna device has a small size, a wide band, and a multi-resonance as compared with a conventional antenna, or an antenna having a low minimum resonance frequency. The device can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来のアンテナ装置を示す斜視図。FIG. 1 is a perspective view showing a conventional antenna device.

【図2】図1のアンテナ装置の簡易化した構成例を示す
斜視図。
FIG. 2 is a perspective view showing a simplified configuration example of the antenna device of FIG. 1;

【図3】図2に示すアンテナ装置のVSWR特性を示す図。FIG. 3 is a diagram showing VSWR characteristics of the antenna device shown in FIG. 2;

【図4】この発明の基礎となる解析を行ったアンテナの
構成を示す図。
FIG. 4 is a diagram showing a configuration of an antenna on which analysis which is a basis of the present invention is performed.

【図5】Aは図4の構成で解析された放射板上の電流密
度分布を示す図、Bは図4の構成で放射板形状を変化さ
せた場合のVSWR特性を示す図。
5A is a diagram showing a current density distribution on a radiation plate analyzed by the configuration of FIG. 4, and FIG. 5B is a diagram showing VSWR characteristics when the radiation plate shape is changed in the configuration of FIG.

【図6】この発明の第1実施例を示す斜視図。FIG. 6 is a perspective view showing a first embodiment of the present invention.

【図7】図6における給電の1形態を示す図。FIG. 7 is a diagram showing one mode of power supply in FIG. 6;

【図8】図6における給電の他の形態を示す図。FIG. 8 is a diagram showing another mode of power supply in FIG. 6;

【図9】図6における給電の更に他の形態を示す図。FIG. 9 is a diagram showing still another mode of power supply in FIG. 6;

【図10】Aは実験に用いた図6のアンテナ装置の正面
図、Bは平面図、Cは側面図。
10A is a front view of the antenna device of FIG. 6 used in an experiment, FIG. 10B is a plan view, and FIG. 10C is a side view.

【図11】測定されたVSWR特性を示す図。FIG. 11 is a diagram showing measured VSWR characteristics.

【図12】この発明の第2実施例を示す斜視図。FIG. 12 is a perspective view showing a second embodiment of the present invention.

【図13】この発明の第3実施例を示す斜視図。FIG. 13 is a perspective view showing a third embodiment of the present invention.

【図14】図13のアンテナ装置のVSWR特性を示す図。FIG. 14 is a diagram showing VSWR characteristics of the antenna device of FIG.

【図15】この発明の第4実施例を示す斜視図。FIG. 15 is a perspective view showing a fourth embodiment of the present invention.

【図16】この発明の第5実施例を示す斜視図。FIG. 16 is a perspective view showing a fifth embodiment of the present invention.

【図17】この発明の第6実施例を示す斜視図。FIG. 17 is a perspective view showing a sixth embodiment of the present invention.

【図18】図17のアンテナ装置のVSWR特性を示す図。18 is a diagram showing VSWR characteristics of the antenna device of FIG.

【図19】図18における低周波領域拡大図。FIG. 19 is an enlarged view of a low frequency region in FIG. 18;

【図20】図16に示した実施例の変形例を示す図。FIG. 20 is a view showing a modification of the embodiment shown in FIG. 16;

【図21】図16に示した実施例の他の変形例を示す
図。
FIG. 21 is a view showing another modification of the embodiment shown in FIG. 16;

【図22】図16に示した実施例の更に他の変形例を示
す図。
FIG. 22 is a view showing still another modification of the embodiment shown in FIG. 16;

【図23】この発明の第6実施形態の例を示す斜視図。FIG. 23 is a perspective view showing an example of the sixth embodiment of the present invention.

【図24】この発明の第6実施形態の他の例を示す斜視
図。
FIG. 24 is a perspective view showing another example of the sixth embodiment of the present invention.

【図25】この発明における給電のための構成例を示す
斜視図。
FIG. 25 is a perspective view showing a configuration example for power supply in the present invention.

【図26】この発明における給電のための他の構成例を
示す斜視図。
FIG. 26 is a perspective view showing another configuration example for power supply in the present invention.

【図27】この発明における給電のための更に他の構成
例を示す斜視図。
FIG. 27 is a perspective view showing still another configuration example for power supply in the present invention.

【図28】この発明の第7実施形態を示す斜視図。FIG. 28 is a perspective view showing a seventh embodiment of the present invention.

【図29】Aはこの発明の第7実施形態の実験に用いた
アンテナ装置の正面図、Bは平面図、Cは右側面図、D
は放射板13の展開図。
29A is a front view of the antenna device used in the experiment of the seventh embodiment of the present invention, FIG. 29B is a plan view, FIG.
7 is a development view of the radiation plate 13.

【図30】図29A〜29Dのアンテナ装置の測定され
たVSWR特性を示す図。
FIG. 30 is a view showing measured VSWR characteristics of the antenna devices of FIGS. 29A to 29D.

【図31】図28において楕円筒の軸長を変化させた場
合のVSWR特性を示す図。
FIG. 31 is a view showing VSWR characteristics when the axial length of the elliptical cylinder in FIG. 28 is changed.

【図32】筒状に巻かれた半円形放射板の両端の間隔を
説明するための図。
FIG. 32 is a view for explaining the interval between both ends of a semicircular radiation plate wound in a cylindrical shape.

【図33】半円形放射板の円筒径を変えて両端間隔を変
化させた場合のVSWR特性を示す図。
FIG. 33 is a diagram illustrating VSWR characteristics when the distance between both ends is changed by changing the cylindrical diameter of the semicircular radiation plate.

【図34】半円形放射板の両端を電気的に接続した場合
と分離した場合のVSWR特性を示す図。
FIG. 34 is a view showing VSWR characteristics when both ends of a semicircular radiating plate are electrically connected and separated.

【図35】図35はこの発明の第8実施形態を示す斜視
図。
FIG. 35 is a perspective view showing an eighth embodiment of the present invention.

【図36】Aはこの発明の第8実施形態の実験に用いた
アンテナ装置の正面図、Bは平面図、Cは右側面図、D
は放射板14の展開図。
36A is a front view of the antenna device used in the experiment of the eighth embodiment of the present invention, FIG. 36B is a plan view, FIG.
3 is a development view of the radiation plate 14.

【図37】Aは図36A〜36Dのアンテナ装置の測定
されたVSWR特性を示す図、Bは切り欠き部面積率と帯域
内最悪VSWRとの関係例を示す図。
37A is a diagram showing measured VSWR characteristics of the antenna device of FIGS. 36A to 36D, and FIG. 37B is a diagram showing an example of the relationship between the notch area ratio and the worst VSWR in a band.

【図38】この発明の第9実施形態を示す斜視図。FIG. 38 is a perspective view showing a ninth embodiment of the present invention.

【図39】Aは第10実施形態の実験に用いたアンテナ
装置の正面図、Bは平面図、Cは右側面図、Dは放射板
14の展開図。
39A is a front view of the antenna device used in the experiment of the tenth embodiment, B is a plan view, C is a right side view, and D is a developed view of the radiation plate 14. FIG.

【図40】図39A〜39Dのアンテナ装置の測定され
たVSWR特性を示す図。
FIG. 40 is a diagram showing measured VSWR characteristics of the antenna devices of FIGS. 39A to 39D.

【図41】図40の中の低周波側を拡大表示した図。FIG. 41 is an enlarged view of the low frequency side in FIG. 40;

【図42】第10実施形態の変形例を示す図。FIG. 42 is a view showing a modification of the tenth embodiment;

【図43】第10実施形態の他の変形例を示す図。FIG. 43 is a view showing another modification of the tenth embodiment;

【図44】第10実施形態の更に他の変形例を示す図。FIG. 44 is a view showing still another modification of the tenth embodiment;

フロントページの続き (56)参考文献 特開 昭57−142003(JP,A) 実開 昭61−109205(JP,U) (58)調査した分野(Int.Cl.7,DB名) H01Q 9/46 H01Q 9/26 H01Q 9/27 Continuation of the front page (56) References JP-A-57-142003 (JP, A) JP-A-61-109205 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) H01Q 9 / 46 H01Q 9/26 H01Q 9/27

Claims (15)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ほぼ半円形の導体板からなる第1放射板
と、上記第1放射板はその半円と同心状にほぼ半円形の
切り欠きが形成されており、 上記放射板と直角にその半円弧と対向して配置された平
面導体地板と、 上記放射板の半円弧の頂点部と上記平面導体地板とに接
続され、それら間に給電するための給電線と、 を含むアンテナ装置。
1. A first radiation plate made of a substantially semicircular conductor plate, and the first radiation plate has a substantially semicircular notch formed concentrically with the semicircle, and is formed at right angles to the radiation plate. An antenna device comprising: a plane conductor ground plane disposed to face the semi-circular arc; and a feeder line connected to the apex of the semi-circle arc of the radiation plate and the plane conductor ground plane for feeding power therebetween.
【請求項2】 請求項1のアンテナ装置において、上記
第1放射板とほぼ同一形状のもう1つの放射板が中心軸
を共有して互いに交差して設けられている。
2. The antenna device according to claim 1, wherein another radiating plate having substantially the same shape as the first radiating plate is provided to intersect with each other while sharing a central axis.
【請求項3】 ほぼ半円形の切り欠き部が同心状に形成
されたほぼ半円形の導体からなる第1放射板と、 ほぼ半円形の導体板からなる第2放射板と、上記第1及
び第2放射板はそれぞれの円弧の頂点部が対向して配置
されており、 上記第1及び第2放射板の上記頂点部をそれぞれ給電点
とし、それら間に給電するための給電線と、 を含むアンテナ装置。
3. A first radiating plate comprising a substantially semicircular conductor having a substantially semicircular notch formed concentrically; a second radiating plate comprising a substantially semicircular conductor plate; The second radiating plate has the vertexes of the respective arcs arranged opposite to each other, and the vertexes of the first and second radiating plates are used as feed points, respectively, and a feed line for feeding power therebetween. Including antenna devices.
【請求項4】 請求項3のアンテナ装置において、上記
第1放射板とほぼ同一形状を有し、上記第1放射板と上
記円弧頂点をほぼ一致させ、中心軸を共有して互いに交
差して設けられた第3放射板と、上記第2放射板とほぼ
同一形状を有し、上記第2放射板と上記円弧頂点をほぼ
一致させ、中心軸を共有して互いに交差して設けられた
第4放射板と、を更に含む。
4. The antenna device according to claim 3, wherein the antenna has substantially the same shape as the first radiating plate, the first radiating plate and the arc vertices substantially coincide with each other, and intersect with each other while sharing a central axis. The third radiating plate provided has substantially the same shape as the second radiating plate, and the second radiating plate and the arc vertexes are substantially coincident with each other, and the third radiating plate is provided so as to intersect each other while sharing a central axis. And four radiation plates.
【請求項5】 請求項3のアンテナ装置において、上記
第2放射板はその半円形とほぼ同心に形成された切り欠
き部を有している。
5. The antenna device according to claim 3, wherein the second radiating plate has a notch formed substantially concentrically with the semicircle.
【請求項6】 請求項1または3のアンテナ装置におい
て、上記第1放射板の上記切り欠き部に、上記半円形放
射板とは異なる型の少なくとも1つの放射素子が配置さ
れ、上記第1放射板の上記給電点近傍に接続されてい
る。
6. The antenna device according to claim 1, wherein at least one radiating element of a type different from the semicircular radiating plate is arranged in the cutout portion of the first radiating plate, It is connected to the plate in the vicinity of the feeding point.
【請求項7】 請求項6のアンテナ装置において、上記
放射素子はメアンダ状モノポール、抵抗装荷モノポール
及びヘリカルアンテナのいずれか1つを含む。
7. The antenna device according to claim 6, wherein the radiating element includes any one of a meandering monopole, a resistance-loaded monopole, and a helical antenna.
【請求項8】 ほぼ半円形状の導体板が円筒状に湾曲さ
れて形成された放射板を少くとも1つ有し、 上記導体板の半径をr、円筒状に湾曲されて形成される
記導体板の両端間の隙間をdとすると、dは0.5r
以下を満たすように上記導体板は湾曲されていることを
特徴とするアンテナ装置。
8. have conductor plates of approximately semicircular one at least a radiation plate formed by being bent into a cylindrical shape, is formed to a radius of the upper Kishirube material plate r, is cylindrically curved that when the gap between both ends of <br/> on Kishirube material plate and d, d is 0.5r
Antenna apparatus characterized by upper Kishirube material plate is curved so as to satisfy the following.
【請求項9】 請求項8のアンテナ装置において、上記
放射板の半円弧の頂点部と対向し、上記円筒の母線とほ
ぼ直角に配置された平面導体地板と、上記半円弧の頂点
と上記平面導体地板に接続され、それら間に給電するた
めの給電線とを更に含む。
9. The antenna device according to claim 8, wherein a plane conductor ground plane opposed to a vertex of a semicircular arc of said radiation plate and arranged substantially at right angles to a generatrix of said cylinder, and a vertex of said semicircular arc and said plane A power supply line connected to the conductive ground plane for supplying power therebetween.
【請求項10】 請求項8のアンテナ装置において、上
記半円形の導体板と中心線を一致させ、上記放射板の半
円弧と対向した弧状周縁を有するもう1つの放射板と、
上記放射板の円弧頂点部と上記もう1つの放射板の円弧
頂点部とに接続され、それら間に給電するための給電線
とを含む。
10. The antenna device according to claim 8, wherein a center line coincides with the semicircular conductive plate, and another radiating plate having an arc-shaped periphery facing the semicircular arc of the radiating plate;
A power supply line is connected to the arc vertex of the radiating plate and the arc vertex of the another radiating plate, and feeds power therebetween.
【請求項11】 請求項10のアンテナ装置において、
上記もう1つの放射板は半円形のもう1つの導体板より
なる。
11. The antenna device according to claim 10, wherein
The other radiation plate is formed of another semicircular conductor plate.
【請求項12】 請求項10のアンテナ装置において、
上記もう1つの放射板は半円形のもう1つの導体板をほ
ぼ筒状に巻いて形成された筒状放射板である。
12. The antenna device according to claim 10, wherein
The other radiating plate is a cylindrical radiating plate formed by winding another semicircular conductor plate into a substantially cylindrical shape.
【請求項13】 請求項9または10のアンテナ装置に
おいて、上記放射板はその上記導体板の半円形とほぼ同
心に形成されたほぼ半円形の切り欠き部を有す。
13. The antenna device according to claim 9, wherein the radiation plate has a substantially semicircular notch formed substantially concentrically with a semicircle of the conductor plate.
【請求項14】 請求項13のアンテナ装置において、
上記切り欠き部に少なくとも1つの上記半円形の放射導
体と型の異なる放射素子がその筒状に湾曲された導体板
に取付けられている。
14. The antenna device according to claim 13,
At least one radiating element different in type from the semicircular radiating conductor is attached to the cylindrically curved conductor plate in the notch.
【請求項15】 請求項14のアンテナ装置において、
上記放射素子はメアンダ状モノポール、抵抗装荷モノポ
ールおよびヘリカルアンテナから選ばれた少なくとも1
つのアンテナ素子を含む。
15. The antenna device according to claim 14,
The radiating element is at least one selected from a meandering monopole, a resistance-loaded monopole, and a helical antenna.
One antenna element.
JP25704196A 1995-09-27 1996-09-27 Broadband antenna device using semicircular radiating plate Expired - Fee Related JP3273463B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25704196A JP3273463B2 (en) 1995-09-27 1996-09-27 Broadband antenna device using semicircular radiating plate

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP7-249712 1995-09-27
JP24971295 1995-09-27
JP32190695 1995-12-11
JP7-321906 1995-12-11
JP25704196A JP3273463B2 (en) 1995-09-27 1996-09-27 Broadband antenna device using semicircular radiating plate

Publications (2)

Publication Number Publication Date
JPH09223921A JPH09223921A (en) 1997-08-26
JP3273463B2 true JP3273463B2 (en) 2002-04-08

Family

ID=27333859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25704196A Expired - Fee Related JP3273463B2 (en) 1995-09-27 1996-09-27 Broadband antenna device using semicircular radiating plate

Country Status (1)

Country Link
JP (1) JP3273463B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005094437A (en) * 2003-09-18 2005-04-07 Mitsumi Electric Co Ltd Antenna for uwb
JP2005150804A (en) * 2003-11-11 2005-06-09 Mitsumi Electric Co Ltd Antenna apparatus
US7106256B2 (en) 2003-11-13 2006-09-12 Asahi Glass Company, Limited Antenna device
US7176843B2 (en) 2004-07-12 2007-02-13 Kabushiki Kaisha Toshiba Wideband antenna and communication apparatus having the antenna
US7176837B2 (en) 2004-07-28 2007-02-13 Asahi Glass Company, Limited Antenna device

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004010532A1 (en) 2002-07-15 2004-01-29 Fractus, S.A. Antenna with one or more holes
JP2004096464A (en) * 2002-08-30 2004-03-25 Anten Corp Frequency sharing antenna
JP3620044B2 (en) * 2002-10-23 2005-02-16 ソニー株式会社 Unbalanced antenna
JP2004328694A (en) 2002-11-27 2004-11-18 Taiyo Yuden Co Ltd Antenna and wireless communication card
EP1569299B1 (en) * 2002-11-27 2008-10-22 Taiyo Yuden Co., Ltd. Antenna, dielectric substrate for antenna, radio communication card
JP2004328703A (en) 2002-11-27 2004-11-18 Taiyo Yuden Co Ltd Antenna
JP4590595B2 (en) * 2003-09-09 2010-12-01 独立行政法人情報通信研究機構 Wideband multi-frequency antenna
FR2859824A1 (en) * 2003-09-12 2005-03-18 Thomson Licensing Sa POLARIZATION DIVERSITY ANTENNA
JP2005191769A (en) * 2003-12-25 2005-07-14 Samsung Electronics Co Ltd Antenna
JP2006086973A (en) 2004-09-17 2006-03-30 Fujitsu Component Ltd Antenna system
GB0500856D0 (en) * 2005-01-17 2005-02-23 Antenova Ltd Pure dielectric antennas and related devices
JP2006254081A (en) * 2005-03-10 2006-09-21 Mitsubishi Electric Corp Dipole-type antenna
JP5102941B2 (en) 2005-05-02 2012-12-19 株式会社ヨコオ Broadband antenna
JP4569548B2 (en) * 2005-09-14 2010-10-27 コニカミノルタホールディングス株式会社 Antenna device
FR2901064A1 (en) * 2006-05-12 2007-11-16 Thomson Licensing Sas PORTABLE COMPACT ANTENNA FOR DIGITAL TERRESTRIAL TELEVISION WITH FREQUENCY REJECTION
FR2901063A1 (en) * 2006-05-12 2007-11-16 Thomson Licensing Sas PORTABLE COMPACT ANTENNA FOR DIGITAL TERRESTRIAL TELEVISION
JP4861093B2 (en) 2006-08-18 2012-01-25 富士通コンポーネント株式会社 Antenna device
US7671817B2 (en) * 2007-02-27 2010-03-02 Sony Ericsson Mobile Communications Ab Wideband antenna
JP2007318817A (en) * 2007-09-05 2007-12-06 Fujitsu Component Ltd Antenna apparatus
JP4446203B2 (en) 2007-09-26 2010-04-07 ミツミ電機株式会社 Antenna element and broadband antenna device
JP4878024B2 (en) * 2007-11-16 2012-02-15 Dxアンテナ株式会社 antenna
JP4281023B1 (en) * 2008-02-18 2009-06-17 日本電気株式会社 Wideband antenna and wear and belongings using it
US8179330B2 (en) * 2009-05-07 2012-05-15 Intel Corporation Omnidirectional wideband antenna
JP5250618B2 (en) * 2010-12-13 2013-07-31 三菱電機株式会社 Antenna device
US8810475B2 (en) * 2011-03-11 2014-08-19 Ibiden Co., Ltd. Antenna device
JP5275418B2 (en) * 2011-07-22 2013-08-28 電気興業株式会社 Multi-frequency antenna system
JP6387275B6 (en) * 2014-02-06 2018-09-26 株式会社Hysエンジニアリングサービス Wideband linear array antenna
JP6469771B2 (en) * 2017-07-19 2019-02-13 株式会社フジクラ Dipole antenna
WO2020031364A1 (en) * 2018-08-10 2020-02-13 森田テック株式会社 Antenna device
EP3866263A4 (en) * 2018-10-10 2022-06-08 Yokowo Co., Ltd. Antenna, antenna device, and vehicle-mounted antenna device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005094437A (en) * 2003-09-18 2005-04-07 Mitsumi Electric Co Ltd Antenna for uwb
JP2005150804A (en) * 2003-11-11 2005-06-09 Mitsumi Electric Co Ltd Antenna apparatus
US7106256B2 (en) 2003-11-13 2006-09-12 Asahi Glass Company, Limited Antenna device
US7176843B2 (en) 2004-07-12 2007-02-13 Kabushiki Kaisha Toshiba Wideband antenna and communication apparatus having the antenna
US7176837B2 (en) 2004-07-28 2007-02-13 Asahi Glass Company, Limited Antenna device

Also Published As

Publication number Publication date
JPH09223921A (en) 1997-08-26

Similar Documents

Publication Publication Date Title
JP3273463B2 (en) Broadband antenna device using semicircular radiating plate
KR100211229B1 (en) Wide-band antenna device using semicircular radiation plate
JP3662591B2 (en) Combined multi-segment helical antenna
JP5396575B2 (en) Antenna and wireless communication device
JP4950689B2 (en) Antenna and wireless communication apparatus equipped with the antenna
EP1133809A1 (en) Broadband antenna incorporating both electric and magnetic dipole radiators
US20110148729A1 (en) Log periodic antenna
JPH11512891A (en) Broadband antenna
US6917346B2 (en) Wide bandwidth base station antenna and antenna array
JPH08204431A (en) Multi-resonance antenna device
TWI459633B (en) Multiband high gain omnidirectional antennas
JP5456762B2 (en) Broadband antenna
WO2005027267A1 (en) Wide band antenna common to a plurality of frequencies
Janpangngern et al. Dual-band circularly polarized omni-directional biconical antenna with double-circular parallelepiped elements for WLAN applications
Chen et al. Wideband, compact antennas with interdigitated magnetic-based near-field resonant parasitic elements
JPH0983238A (en) Antenna system for multi-wave common use
EP1548879B1 (en) Antenna
JPH1098333A (en) Antenna for mobile radio
JP3510961B2 (en) Wide-angle circularly polarized antenna
KR102003955B1 (en) Compact Broadband Dipole Antenna
US20220352624A1 (en) Axial mode helical antenna with improved/simplified parallel open wire impedance matching technique
JPH04281604A (en) Spiral antenna and array antenna using the spiral antenna
JP3287987B2 (en) Adjustment method of resonance frequency of helical antenna
JP6387275B2 (en) Wideband linear array antenna
JP2002305410A (en) Antenna

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080201

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090201

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100201

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100201

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130201

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140201

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees