JP3272823B2 - Dry cleaning method for semiconductor device - Google Patents

Dry cleaning method for semiconductor device

Info

Publication number
JP3272823B2
JP3272823B2 JP17808493A JP17808493A JP3272823B2 JP 3272823 B2 JP3272823 B2 JP 3272823B2 JP 17808493 A JP17808493 A JP 17808493A JP 17808493 A JP17808493 A JP 17808493A JP 3272823 B2 JP3272823 B2 JP 3272823B2
Authority
JP
Japan
Prior art keywords
oxide film
gas
substrate
reactor
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17808493A
Other languages
Japanese (ja)
Other versions
JPH0684865A (en
Inventor
寛 冨田
壮一 灘原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP17808493A priority Critical patent/JP3272823B2/en
Publication of JPH0684865A publication Critical patent/JPH0684865A/en
Application granted granted Critical
Publication of JP3272823B2 publication Critical patent/JP3272823B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、半導体装置の製造工程
に適用される乾式清浄化方法の改良に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a dry cleaning method applied to a semiconductor device manufacturing process.

【0002】[0002]

【従来の技術】近年、半導体集積回路は高集積化が急速
に進み、その信頼性の向上のために半導体装置の表面に
吸着した重金属や軽金属等の汚染物を除去して電気特性
を改善することが要望されている。
2. Description of the Related Art In recent years, semiconductor integrated circuits have rapidly become highly integrated, and in order to improve the reliability thereof, contaminants such as heavy metals and light metals adsorbed on the surface of a semiconductor device are removed to improve electric characteristics. It is desired.

【0003】すなわち、半導体装置の製造工程中に半導
体基板(シリコン基板)内部に重金属等の汚染物質が導
入されると、電子または正孔のトラップ中心を形成した
り、pn接合のリークの原因になったり、或いは半導体
素子の電気特性を劣化させたりするという問題を生じ
る。例えば、DRAMにおいてシリコン基板内部にF
e、Cu、Ni、Au等の重金属が導入されると、基板
表面に形成されたMOSトランジスタのライフタイムが
低下し、メモリ保持時間が短くなる。また、ゲート酸化
膜中に前記重金属が導入されると、ゲート酸化膜の絶縁
耐圧やリーク電流等の電気特性の劣化および欠陥密度の
増大等を招くことが報告されている。
That is, when a contaminant such as a heavy metal is introduced into a semiconductor substrate (silicon substrate) during a manufacturing process of a semiconductor device, a trap center of electrons or holes is formed or a pn junction leak is caused. Or the electrical characteristics of the semiconductor element may be degraded. For example, in a DRAM, F
When heavy metals such as e, Cu, Ni, and Au are introduced, the lifetime of the MOS transistor formed on the substrate surface is reduced, and the memory retention time is shortened. In addition, it has been reported that the introduction of the heavy metal into the gate oxide film causes deterioration of electric characteristics such as dielectric strength and leakage current of the gate oxide film and an increase in defect density.

【0004】また、半導体装置の高速化を図るために配
線間容量を低減し、かつ層間絶縁膜の絶縁性を高め、さ
らに下地であるシリコン基板の表面の汚染量を低減する
ことが必要である。
In order to increase the speed of a semiconductor device, it is necessary to reduce the capacitance between wirings, increase the insulating property of the interlayer insulating film, and reduce the amount of contamination on the surface of the underlying silicon substrate. .

【0005】ところで、従来、半導体装置の製造工程で
用いられる固体表面の清浄化方法としては、湿式洗浄方
法と乾式洗浄方法が知られている。しかしながら、湿式
洗浄方法は洗浄液(薬液)の純度および半導体基板(シ
リコンウェハ)への汚染金属の逆吸着等により、現状で
は109 〜1012原子/cm2 レベルの汚染金属が前記
ウェハに吸着されるという問題がある。また、乾式洗浄
方法としては真空中でフッ素ガス、塩素ガス等のハロゲ
BR>ン元素を含むガス、またはシリコン系ガス等、或い
はこれらのラジカルを汚染金属に対する反応種として用
いた枚様式のものが知られている。しかしながら、この
方法は汚染金属の除去と共にシリコン基板をもエッチン
グして前記基板表面を荒らしてしまうなどの問題があ
る。
Conventionally, as a method of cleaning a solid surface used in a semiconductor device manufacturing process, a wet cleaning method and a dry cleaning method are known. However, in the wet cleaning method, at present, contaminated metal at a level of 10 9 to 10 12 atoms / cm 2 is adsorbed on the wafer due to the purity of the cleaning liquid (chemical solution) and the reverse adsorption of the contaminated metal to the semiconductor substrate (silicon wafer). Problem. In addition, as a dry cleaning method, a halogen gas such as fluorine gas and chlorine gas is used in a vacuum.
A gas type using a gas containing a BR element, a silicon-based gas, or the like, or a radical thereof as a reactive species for a contaminant metal is known. However, this method has a problem that the surface of the substrate is roughened by etching the silicon substrate together with the removal of the contaminant metal.

【0006】また、シリコン基板表面に清浄な酸化膜
(例えばゲート酸化膜)を形成する技術として従来から
塩化水素(HCl)ガスまたはトリクロロエタン(TC
A)添加熱酸化方法(塩酸酸化方法)が知られている。
この塩酸酸化方法は、固体表面の汚染金属を気相中にゲ
ッタリングする作用があることが知られている。しかし
ながら、この方法は熱酸化の条件によってシリコン基板
表面の汚染金属が気相中に除去されるものと、シリコン
基板中に拡散するものと、があり、シリコン基板から汚
染金属を効果的に除去することが困難である。
As a technique for forming a clean oxide film (eg, a gate oxide film) on the surface of a silicon substrate, hydrogen chloride (HCl) gas or trichloroethane (TC) has conventionally been used.
A) An additional thermal oxidation method (hydrochloric acid oxidation method) is known.
It is known that this hydrochloric acid oxidation method has an effect of gettering a contaminant metal on a solid surface into a gas phase. However, this method includes a method in which the contaminant metal on the silicon substrate surface is removed in the gas phase due to the conditions of thermal oxidation, and a method in which the contaminant metal diffuses into the silicon substrate. It is difficult.

【0007】すなわち、図16の(a)に示すように塩
化水素(HCl)ガスを含む酸化雰囲気でシリコン基板
31を熱酸化すると、前記基板31表面の汚染金属32
はHClと反応して金属塩化物の状態で気相中にゲッタ
リングされる。このゲッタリング時に、同図の(b)に
示すように前記基板31表面の汚染金属32が前記基板
31の内部に拡散する。また、酸化性雰囲気中、高温で
熱処理を行うため、汚染金属32の一部が除去されずに
金属酸化物になって形成された酸化膜33中に取り込ま
れたり、酸化膜33中に拡散するという問題がある。な
お、前記汚染金属のシリコン基板への拡散は塩酸酸化時
の加熱温度が上昇する程、より顕著になる。
That is, when the silicon substrate 31 is thermally oxidized in an oxidizing atmosphere containing hydrogen chloride (HCl) gas as shown in FIG.
Reacts with HCl and is gettered in the gas phase in the form of a metal chloride. During this gettering, the contaminated metal 32 on the surface of the substrate 31 diffuses into the substrate 31 as shown in FIG. In addition, since heat treatment is performed at a high temperature in an oxidizing atmosphere, a part of the contaminant metal 32 is not removed and is taken in or diffused into the oxide film 33 formed as a metal oxide. There is a problem. The diffusion of the contaminated metal into the silicon substrate becomes more remarkable as the heating temperature during the oxidation with hydrochloric acid increases.

【0008】さらに、前記塩酸酸化方法は酸化膜の形成
を伴うために半導体基板の表面形状が変化するという問
題がある。一方、CVD法等の気相成長法によって形成
した酸化膜または窒化膜等の絶縁膜を反応性イオンエッ
チング(RIE)によってエッチングする場合には、R
IEチャンバ内の汚染金属がそれらの膜に付着したり、
膜中に取り込まれる。このように絶縁膜の表面に付着し
た汚染金属は、湿式洗浄によって大部分を除去すること
ができる。しかしながら、前記汚染金属を除去するため
の薬液の純度や逆吸着の問題から前記絶縁膜表面を十分
に清浄化することができない。また、前記絶縁膜中に取
り込まれた不純物はエッチングを伴わない湿式洗浄では
除去できないという問題がある。
Further, the hydrochloric acid oxidation method involves a problem that the surface shape of the semiconductor substrate is changed since an oxide film is formed. On the other hand, when an insulating film such as an oxide film or a nitride film formed by a vapor deposition method such as a CVD method is etched by reactive ion etching (RIE), R
Contaminated metals in the IE chamber adhere to those films,
It is taken into the film. Most of the contaminant metal adhering to the surface of the insulating film can be removed by wet cleaning. However, the surface of the insulating film cannot be sufficiently cleaned due to the problems of purity and reverse adsorption of a chemical solution for removing the contaminant metal. Further, there is a problem that impurities taken into the insulating film cannot be removed by wet cleaning without etching.

【0009】[0009]

【発明が解決しようとする課題】本発明の目的は、素子
形成工程中に生じた汚染金属を半導体基板内に拡散させ
ることなく、容易かつ効果的に気相中にゲッタリングす
ることが可能な半導体装置の乾式清浄化方法を提供しよ
うとするものである。
SUMMARY OF THE INVENTION An object of the present invention is to make it possible to easily and effectively getter in a gas phase without diffusing a contaminant metal generated during an element forming process into a semiconductor substrate. An object of the present invention is to provide a dry cleaning method for a semiconductor device.

【0010】本発明の別の目的は、素子形成工程中に生
じた汚染軽金属(特にAl)を容易かつ効果的に気相中
にゲッタリングすることが可能な半導体装置の乾式清浄
化方法を提供しようとするものである。
Another object of the present invention is to provide a dry cleaning method for a semiconductor device capable of easily and effectively gettering a contaminated light metal (particularly Al) generated during an element forming step into a gas phase. What you want to do.

【0011】[0011]

【課題を解決するための手段】本発明に係る半導体装置
の乾式清浄化方法は、下部にガスの導入口を有する縦型
外部反応炉と、この反応炉内に配置され、上部にガス導
入穴、下部に排気口がそれぞれ形成された縦型内部反応
炉と、この縦型反応炉内に配置された保持具と、前記縦
型外部反応炉の側面周囲に配置されたヒータとを備えた
処理装置を用い、半導体基板または表面に各種の膜が形
成された半導体基板をその半導体基板の表裏面の大部分
が表出するように前記内部反応炉内に配置された保持具
に保持して設置した後、酸化または拡散を行う工程の直
前に実施される清浄化方法であって、ハロゲンもしくは
ハロゲン化物を含むガスを前記縦型外部反応炉下部の導
入口からこの外部反応炉と前記縦型内部反応炉との空間
に導入して上昇させると共に、その上昇過程のガスを前
記ヒータにより加熱し、さらにこの加熱されたガスを前
記縦型内部反応炉上部のガス導入穴からその内部を通し
て下部の排気口より排気することにより、前記内部反応
炉内の保持具に表裏面が表出するように保持された前記
半導体基板に400〜600℃の温度に加熱されたハロ
ゲンもしくはハロゲン化物を含むガスを接触させて熱処
し、前記半導体基板の表裏面のアルミニウムを除去
ることを特徴とするものである。
According to the present invention, there is provided a dry cleaning method for a semiconductor device, comprising: a vertical external reactor having a gas inlet at a lower portion; a gas introducing hole disposed at an upper portion of the reactor; A process comprising: a vertical internal reactor having an exhaust port formed at a lower portion thereof; a holder disposed in the vertical reactor; and a heater disposed around a side surface of the vertical external reactor. Using a device, a semiconductor substrate or a semiconductor substrate on which various films are formed on the surface is held and installed in a holder arranged in the internal reaction furnace so that most of the front and back surfaces of the semiconductor substrate are exposed. A cleaning method carried out immediately before the step of oxidizing or diffusing, wherein a gas containing a halogen or a halide is supplied from an inlet at the lower part of the vertical external reactor to the external reactor and the vertical internal reactor. Introduced into the space with the reactor and raised At the same time, the gas in the ascending process is heated by the heater, and the heated gas is exhausted from the gas introduction hole at the upper portion of the vertical internal reactor through the inside thereof through the exhaust port at the lower portion. front and back surfaces is the retained gas containing a halogen or halide is heated to a temperature of 400 to 600 ° C. in the semiconductor substrate is contacted to exposed heat treated holder in the furnace, the table of the semiconductor substrate It is characterized in that aluminum on the back surface is removed .

【0012】前記半導体基板は、例えば図1〜図5に示
す形態のものが挙げられる。すなわち、図1中の21は
シリコン基板、23は前記基板21表面に付着された汚
染金属である。
The semiconductor substrate has a form shown in FIGS. 1 to 5, for example. That is, in FIG. 1, 21 is a silicon substrate, and 23 is a contaminant metal attached to the surface of the substrate 21.

【0013】図2中の21は、シリコン基板、25は前
記基板21表面に生成された自然酸化膜、23は前記自
然酸化膜の表面に付着されたり、内部に取込まれた汚染
金属である。
In FIG. 2, 21 is a silicon substrate, 25 is a natural oxide film formed on the surface of the substrate 21, and 23 is a contaminant metal adhered to the surface of the natural oxide film or taken into the inside. .

【0014】図3中の21は、シリコン基板、22は前
記基板21表面に形成された熱酸化膜、26は前記熱酸
化膜22表面に堆積されたCVDSiO2 膜、27は前
記CVDSiO2 膜26表面に堆積されたBPSG膜、
28は前記BPSG膜27から前記熱酸化膜22に亘っ
て例えばRIE等により開口されたコンタクトホール、
23は前記コンタクトホール28の内面に付着された汚
染金属である。
In FIG. 3, 21 is a silicon substrate, 22 is a thermal oxide film formed on the surface of the substrate 21, 26 is a CVD SiO 2 film deposited on the surface of the thermal oxide film 22, and 27 is a CVD SiO 2 film 26 A BPSG film deposited on the surface,
28 is a contact hole opened by, for example, RIE from the BPSG film 27 to the thermal oxide film 22;
Reference numeral 23 denotes a contaminant metal attached to the inner surface of the contact hole 28.

【0015】図4中の21は、シリコン基板、22は前
記基板21表面に形成された熱酸化膜である。図5の中
の21は、シリコン基板、22は前記基板21表面に形
成された熱酸化膜、24は前記熱酸化膜22に堆積され
たシリコン窒化膜である。
In FIG. 4, reference numeral 21 denotes a silicon substrate, and reference numeral 22 denotes a thermal oxide film formed on the surface of the substrate 21. In FIG. 5, 21 is a silicon substrate, 22 is a thermal oxide film formed on the surface of the substrate 21, and 24 is a silicon nitride film deposited on the thermal oxide film 22.

【0016】前述した図4の熱酸化膜22、図5のシリ
コン窒化膜24の上には、例えばフォトレジスト等がエ
ッチング工程のために塗布され、前記レジスト処理工程
中に汚染金属23がそれらの膜表面に付着したり、その
内部に侵入される。
For example, a photoresist or the like is applied on the thermal oxide film 22 of FIG. 4 and the silicon nitride film 24 of FIG. 5 for the etching step, and the contaminant metal 23 is deposited during the resist processing step. It adheres to the surface of the film or penetrates into it.

【0017】前記ハロゲンとしては、例えばCl2 等を
用いることができ、前記ハロゲン化合物としては例えば
HCl、HBr、CCl4 、C2 HCl3 等を用いるこ
とができる。
As the halogen, for example, Cl 2 or the like can be used, and as the halogen compound, for example, HCl, HBr, CCl 4 , C 2 HCl 3 or the like can be used.

【0018】前記非酸化性雰囲気を形成するための非酸
化性ガスとしては、例えば窒素ガス、またはアルゴン、
ヘリウム等の不活性ガス等を用いることができる。前記
非酸化性雰囲気中に含まれる前記ハロゲンまたはハロゲ
ン化物の濃度は、3%以上にすることが望ましい。
As the non-oxidizing gas for forming the non-oxidizing atmosphere, for example, nitrogen gas or argon,
An inert gas such as helium can be used. The concentration of the halogen or halide contained in the non-oxidizing atmosphere is desirably 3% or more.

【0019】前記熱処理温度は、汚染金属とハロゲンと
が反応する温度以上に設定すればよい。前記熱処理時の
温度を限定した理由は、前記図1〜図3の状態の半導体
基板をハロゲンもしくはハロゲン化物を含む非酸化性雰
囲気中で600℃を越える温度で熱処理を行うと、図6
に示すように半導体基板(シリコン基板)が例えば塩素
ガスによってエッチングされ、基板表面にエッチピット
が多数発生するからである。より好ましい熱処理温度
は、汚染金属とハロゲンとが反応する温度以上、550
℃以下、さらに好ましくは500℃以下の範囲である。
The heat treatment temperature may be set to a temperature higher than the temperature at which the contaminant metal reacts with the halogen. The reason for limiting the temperature during the heat treatment is that if the semiconductor substrate in the state of FIGS. 1 to 3 is subjected to a heat treatment at a temperature exceeding 600 ° C. in a non-oxidizing atmosphere containing a halogen or a halide, as shown in FIG.
This is because the semiconductor substrate (silicon substrate) is etched by, for example, chlorine gas as shown in FIG. A more preferred heat treatment temperature is a temperature not lower than the temperature at which the contaminant metal reacts with the halogen, and
C. or lower, more preferably 500 C. or lower.

【0020】また、本発明に係わる乾式清浄化方法を実
施するためには例えば図8に示す縦型処理装置が用いら
れる。なお、参考のために図7に示す横型処理装置につ
いても以下に説明する。すなわち、図7に示す処理装置
は一端に非酸化性ガスおよびHClガスを導入するため
の導入管1が形成され、他端に排気管2を有するキャッ
プ3が取り付けられた例えば石英からなる横型反応炉4
と、前記反応炉4の周囲に配置されたヒータ5とから構
成されている。なお、図中の6はシリコンウェハ7が多
数立て掛けられた石英ボートであり、前記石英ボート6
は前記キャップ3が取り付けられる前記反応炉4側から
その内部に搬入される。
For carrying out the dry cleaning method according to the present invention, for example, a vertical processing apparatus shown in FIG. 8 is used. For reference, the horizontal processing apparatus shown in FIG.
This will be described below. That is, the processing apparatus shown in FIG. 7 is formed with a horizontal reaction tube made of, for example, quartz in which an introduction pipe 1 for introducing a non-oxidizing gas and HCl gas is formed at one end and a cap 3 having an exhaust pipe 2 is attached at the other end. Furnace 4
And a heater 5 arranged around the reaction furnace 4. Reference numeral 6 in the drawing denotes a quartz boat on which a large number of silicon wafers 7 are leaned, and the quartz boat 6
Is carried into the reactor 3 from the side where the cap 3 is attached.

【0021】図8に示す処理装置は、下部に非酸化性ガ
スおよびHClガスを導入するための導入口11を有す
る石英からなる縦型外部反応炉13と、上部にガス導入
穴12、下部に排気口14がそれぞれ形成された石英か
らなる縦型内部反応炉15と、前記縦型外部反応炉13
の側面周囲に配置されたヒータ16とから構成されてい
る。図中の17は前記縦型内部反応炉15内に搬入さ
れ、多数のシリコンウェハ18が上下方向に水平な状態
で収納されたウェハ保持具である。
The processing apparatus shown in FIG. 8 has a vertical external reaction furnace 13 made of quartz having an inlet 11 for introducing a non-oxidizing gas and HCl gas at a lower part, a gas introducing hole 12 at an upper part, and a gas introducing hole 12 at a lower part. A vertical internal reactor 15 made of quartz having an exhaust port 14 formed therein, and the vertical external reactor 13
And a heater 16 arranged around the side of the heater. In the drawing, reference numeral 17 denotes a wafer holder which is carried into the vertical internal reaction furnace 15 and in which a large number of silicon wafers 18 are stored in a horizontal state in the vertical direction.

【0022】なお、前述した図7、図8の反応炉内は減
圧雰囲気にしても、加圧雰囲気にしてもよい。本発明に
係わる別の半導体装置の乾式清浄化方法は、半導体基板
または表面に各種の膜が形成された半導体基板に吸着さ
れた汚染軽金属を低減させる半導体装置の乾式清浄化方
法において、前記半導体基板をハロゲンもしくはハロゲ
ン化物を含むガス雰囲気中で400℃以上、700℃以
下の温度にて熱処理する工程を具備することを特徴とす
るものである。
The inside of the reaction furnace shown in FIGS. 7 and 8 may be a reduced pressure atmosphere or a pressurized atmosphere. Another dry cleaning method for a semiconductor device according to the present invention is the dry cleaning method for a semiconductor device for reducing contaminating light metal adsorbed on a semiconductor substrate or a semiconductor substrate having various films formed on a surface thereof. In a gas atmosphere containing halogen or halide at a temperature of 400 ° C. or more and 700 ° C. or less.

【0023】前記軽金属としては、例えばAl、Ca、
Na、K等を挙げることができる。前記ハロゲンとして
は、例えばCl2 等を用いることができ、前記ハロゲン
化合物としては例えばHCl、HBr、CCl4 、C2
HCl3 等を用いることができる。
As the light metal, for example, Al, Ca,
Na, K and the like can be mentioned. As the halogen, for example, Cl 2 or the like can be used. As the halogen compound, for example, HCl, HBr, CCl 4 , C 2
HCl 3 or the like can be used.

【0024】前記酸化性雰囲気中に含まれる前記ハロゲ
ンまたはハロゲン化物の濃度は、3%以上にすることが
望ましい。前記熱処理温度を限定したのは、前記温度範
囲(400℃以上、700℃以下)を逸脱すると軽金
属、特にAlを効果的に除去できなくなるからである。
It is desirable that the concentration of the halogen or the halide contained in the oxidizing atmosphere is 3% or more. The reason why the heat treatment temperature is limited is that if the temperature deviates from the temperature range (400 ° C. or more and 700 ° C. or less), light metals, particularly Al, cannot be effectively removed.

【0025】前述した本発明に係わる乾式清浄化方法
は、例えば酸化処理、拡散処理または膜堆積処理等の工
程の直前に実施される。特に、本発明の乾式清浄化方法
は前記工程の直前に実施された後、大気に触れることな
く連続して次工程を行うインラインプロセスを採用する
ことが望ましい。
The above-mentioned dry cleaning method according to the present invention is carried out immediately before a step such as an oxidation treatment, a diffusion treatment or a film deposition treatment. In particular, it is preferable that the dry cleaning method of the present invention employs an in-line process in which the next step is continuously performed without exposure to the atmosphere after being performed immediately before the above-described step.

【0026】[0026]

【作用】本発明者らは、Si基板表面に吸着された代表
的な汚染元素であるFeについて、常圧のHCl酸化性
雰囲気中での熱挙動を室温(RT)から1000℃の範
囲で調べた。その結果、図17に示すような各処理温度
における自然酸化膜または熱酸化膜中のFe量とSi基
板中に拡散したFe量の関係が得られた。このような図
17から次のような事実が明らかになった。なお、以下
の説明において前記常圧のHCl酸化性雰囲気中で異な
る温度で熱処理した場合のFeの熱挙動を示す図18の
(a)〜(d)を参照する。
The present inventors investigated the thermal behavior of Fe, a typical contaminant element adsorbed on the surface of a Si substrate, in a HCl oxidizing atmosphere at normal pressure in a range from room temperature (RT) to 1000 ° C. Was. As a result, a relationship between the amount of Fe in the natural oxide film or the thermal oxide film and the amount of Fe diffused in the Si substrate at each processing temperature as shown in FIG. 17 was obtained. The following facts have been clarified from FIG. In the following description, reference is made to FIGS. 18A to 18D showing the thermal behavior of Fe when heat treatment is performed at different temperatures in the HCl oxidizing atmosphere at normal pressure.

【0027】(1)図17に示すように自然酸化膜上の
FeはRT以上、200℃未満の温度範囲(I) で熱処理
した場合、殆ど除去されない。この状態を図18の
(a)に示す。すなわち、Fe23は基板21の自然酸
化膜25上に残留する。
(1) As shown in FIG. 17, Fe on the native oxide film is hardly removed when heat-treated in a temperature range (I) of not less than RT and less than 200 ° C. This state is shown in FIG. That is, Fe23 remains on the native oxide film 25 of the substrate 21.

【0028】(2)図17に示すように200℃以上、
400℃未満の温度範囲(II)で熱処理した場合は、Fe
は気相中に除去され始めるが、大部分はSi基板表面に
残留する。400℃以上、600℃以下の温度範囲(II
I) で熱処理した場合は基板表面のFeは効率よく気相
中に除去される。この状態を図18の(b)に示す。す
なわち、前記自然酸化膜25上のFe23がハロゲン化
物と反応して金属塩化物になって気相中に除去される。
ただし、550℃を越える温度で熱処理を行うと、基板
表面のFeが基板内に拡散し始める。したがって、55
0℃以下の温度で熱処理することが好ましい。なお、3
00℃以上の温度でも、ある程度のFe,Niの除去が
可能である。
(2) As shown in FIG.
When heat-treated in a temperature range (II) lower than 400 ° C., Fe
Begins to be removed in the gas phase, but mostly remains on the Si substrate surface. 400 ° C to 600 ° C temperature range (II
When the heat treatment is performed in step I), Fe on the substrate surface is efficiently removed in the gas phase. This state is shown in FIG. That is, Fe23 on the natural oxide film 25 reacts with the halide to become a metal chloride and is removed in the gas phase.
However, when heat treatment is performed at a temperature exceeding 550 ° C., Fe on the substrate surface starts to diffuse into the substrate. Therefore, 55
The heat treatment is preferably performed at a temperature of 0 ° C. or less. In addition, 3
Even at a temperature of 00 ° C. or more, a certain amount of Fe and Ni can be removed.

【0029】(3)図17に示すように600℃より高
く、800℃未満の温度範囲(IV)で熱処理した場合は、
酸化性雰囲気中での処理になるため、Si基板が酸化さ
れて汚染した表面のFeはその一部が形成された酸化膜
中にも拡散され始める。この状態を図18の(c)に示
す。なお、図中の22はSi基板21の酸化により生成
された酸化膜である。したがって、前記温度範囲(IV)で
は汚染した表面のFeは気相中に除去されるものと、酸
化膜中に拡散してその膜中に取り残されるものと、さら
にSi基板内に拡散するものとが共存する。
(3) As shown in FIG. 17, when the heat treatment is performed in a temperature range (IV) higher than 600 ° C. and lower than 800 ° C.,
Since the treatment is performed in an oxidizing atmosphere, Fe on the surface contaminated by oxidation of the Si substrate starts to diffuse into the oxide film partially formed. This state is shown in FIG. Note that reference numeral 22 in the drawing denotes an oxide film generated by oxidation of the Si substrate 21. Therefore, in the temperature range (IV), the contaminated surface Fe is removed in the gas phase, the Fe is diffused into the oxide film and left in the film, and the Fe is further diffused into the Si substrate. Coexist.

【0030】(4)図17に示すように800℃以上、
1000℃未満の温度範囲(V) で熱処理した場合は、大
部分のFeがSi基板中に拡散する。この状態を図18
の(d)に示す。酸化膜中に一旦拡散したFeは、前記
600℃以上、800℃未満の温度範囲で熱処理した場
合と異なり、酸化膜中でのFeの拡散係数が大きいため
に膜中から吸い出され、膜中に残留しない。ただし、検
出限界までFeを除去できない理由は、前記Si基板が
酸化性雰囲気中で処理されるため、Feの一部が酸化膜
中で酸化物(例えばFe23 等)になって取り込まれ
るからである。
(4) As shown in FIG.
When heat treatment is performed in a temperature range (V) lower than 1000 ° C., most of the Fe diffuses into the Si substrate. This state is shown in FIG.
(D) of FIG. The Fe once diffused into the oxide film is sucked out of the film due to the large diffusion coefficient of Fe in the oxide film, unlike the case where the heat treatment is performed in the temperature range of 600 ° C. or more and less than 800 ° C. Does not remain. However, the reason why Fe cannot be removed to the detection limit is that the Si substrate is treated in an oxidizing atmosphere, so that part of Fe is taken in as an oxide (eg, Fe 2 O 3 ) in an oxide film. Because.

【0031】前記(1)〜(4)で説明した理由からS
i基板内にFeを拡散させることなく、効果的に基板表
面に吸着したFeを除去するためには常圧プロセスにお
いてFeがハロゲン化物と反応する温度以上、例えば4
00℃以上、600℃以下の温度範囲で熱処理を行うこ
とが必要であることがわかる。また、汚染金属が金属酸
化物になって基板表面に形成される酸化膜中に取り込ま
れるのを抑制する観点から、HClを添加するガスは非
酸化性ガスにすることが必要であることがわかる。した
がって、本発明は半導体基板をハロゲンもしくはハロゲ
ン化物を含む非酸化性雰囲気中で600℃以下の温度に
て熱処理する工程を具備するため、従来の塩酸酸化法に
比べて効果的に基板表面に吸着した汚染元素を除去する
ことができる。
For the reasons explained in the above (1) to (4), S
In order to effectively remove Fe adsorbed on the substrate surface without diffusing Fe into the i-substrate, the temperature is higher than the temperature at which Fe reacts with the halide in the normal pressure process, for example, 4
It can be seen that it is necessary to perform the heat treatment in a temperature range from 00 ° C. to 600 ° C. Further, from the viewpoint of suppressing the contamination metal from becoming a metal oxide and being taken into an oxide film formed on the substrate surface, it is understood that the gas to which HCl is added needs to be a non-oxidizing gas. . Therefore, the present invention includes a step of heat-treating the semiconductor substrate in a non-oxidizing atmosphere containing halogen or halide at a temperature of 600 ° C. or less, so that the semiconductor substrate is more effectively adsorbed on the substrate surface than the conventional hydrochloric acid oxidation method. It is possible to remove the contaminated elements.

【0032】また、半導体基板または表面に各種の膜が
形成された半導体基板をハロゲンもしくはハロゲン化物
(例えばHCl)を含む非酸化性雰囲気中で熱処理する
ことによって、例えば前述した図4に示すように前記シ
リコン基板21上の熱酸化膜22表面に付着された汚染
金属23が前記加熱された雰囲気中のHClと容易に反
応し、金属に比べて著しく蒸気圧の高い金属塩化物の状
態で気相中にゲッタリングされる。また、前記膜中に取
り込まれた汚染金属は、熱処理により前記膜表面に拡散
されるため、前述したのと同様なメカニズムにより気相
中にゲッタリングされる。しかも、非酸化性雰囲気で処
理することによって気相中にゲッタリングされずに酸化
物として酸化膜中に取り込まれる汚染金属量を著しく低
減することができる。
By subjecting the semiconductor substrate or the semiconductor substrate having various films formed on its surface to a heat treatment in a non-oxidizing atmosphere containing a halogen or a halide (eg, HCl), for example, as shown in FIG. The contaminant metal 23 attached to the surface of the thermal oxide film 22 on the silicon substrate 21 easily reacts with HCl in the heated atmosphere, and the gaseous phase in a state of a metal chloride having a significantly higher vapor pressure than the metal. Gettered inside. Further, the contaminant metal taken into the film is diffused to the surface of the film by the heat treatment, and is gettered in the gas phase by the same mechanism as described above. In addition, by performing the treatment in a non-oxidizing atmosphere, the amount of contaminant metals taken into the oxide film as oxide without being gettered in the gas phase can be significantly reduced.

【0033】気相中に半導体基板の表面または自然酸化
膜が露出している状態で本発明に係わる乾式清浄化処理
を行う場合には、600℃以下の温度で熱処理すること
によって例えば前述した図1に示すようにシリコン基板
21表面へのエッチピットの発生を抑制しつつ前記基板
21表面の汚染金属23を金属塩化物の状態で気相中に
ゲッタリングできる。ただし、前述した図2に示すよう
に自然酸化膜25に付着ないし取り込まれた汚染金属2
3、図3に示すコンタクトホール28の内面に付着され
た汚染金属23も同様な処理により気相中にゲッタリン
グされる。さらに、例えば半導体基板表面へのゲート酸
化の前処理として行い、大気に触れることなく連続して
ゲート酸化を行えば、低温で半導体基板表面の汚染金属
を除去でき、大気中に取り出し、搬送することに伴う外
部からの再汚染を防止することができるため、従来の塩
酸酸化方法によって形成された半導体装置に比べて半導
体基板および酸化膜への汚染の少ない良好な特性を有す
る半導体装置を製造することができる。
When the dry cleaning treatment according to the present invention is performed in a state where the surface of the semiconductor substrate or the natural oxide film is exposed in the gas phase, the heat treatment is performed at a temperature of 600 ° C. or less, for example, as shown in FIG. As shown in FIG. 1, the contaminated metal 23 on the surface of the silicon substrate 21 can be gettered in the gas phase in the state of a metal chloride while suppressing the occurrence of etch pits on the surface of the silicon substrate 21. However, as shown in FIG.
3. The contaminated metal 23 attached to the inner surface of the contact hole 28 shown in FIG. 3 is also gettered in the gas phase by the same process. Furthermore, for example, by performing pre-treatment of gate oxidation on the surface of the semiconductor substrate and continuously performing gate oxidation without exposure to the air, contaminant metals on the surface of the semiconductor substrate can be removed at a low temperature. It is possible to manufacture a semiconductor device having good characteristics with less contamination on a semiconductor substrate and an oxide film as compared with a semiconductor device formed by a conventional hydrochloric acid oxidation method, because external recontamination accompanying the above can be prevented. Can be.

【0034】したがって、本発明方法は乾式であるた
め、湿式洗浄で問題になる薬液の純度、逆吸着等の問題
を解決することができると共に、膜中に取り込まれた汚
染金属をエッチングを伴わずに除去することができる。
また、非酸化性雰囲気中で処理を行うために酸化による
半導体基板の形状が変化することも抑制することができ
る。
Therefore, since the method of the present invention is of a dry type, it is possible to solve the problems of chemical cleaning such as purity and reverse adsorption, which are problems in wet cleaning, and to prevent the contamination metal taken in the film from being etched. Can be removed.
In addition, since the treatment is performed in a non-oxidizing atmosphere, a change in the shape of the semiconductor substrate due to oxidation can be suppressed.

【0035】さらに、本発明に係わる別の乾式清浄化方
法によれば半導体基板または表面に各種の膜が形成され
た半導体基板に吸着した汚染軽金属を低減させるに際
し、前記半導体基板をハロゲンもしくはハロゲン化物を
含むガス雰囲気中で400℃以上、600℃以下の特定
の温度にて熱処理することによって、前記汚染軽金属
(特にAl)を効果的に気相中にゲッタリングできる。
また、例えば半導体基板表面へのゲート酸化の前処理と
して行い、大気に触れることなく連続してゲート酸化を
行えば、従来の塩酸酸化方法によって形成された半導体
装置に比べて半導体基板および酸化膜へのAl汚染の少
ない良好な特性を有する半導体装置を製造することがで
きる。
Further, according to another dry cleaning method according to the present invention, when reducing contaminating light metals adsorbed on a semiconductor substrate or a semiconductor substrate having various films formed on its surface, the semiconductor substrate is treated with a halogen or halide. By performing heat treatment at a specific temperature of 400 ° C. or more and 600 ° C. or less in a gas atmosphere containing, the contaminated light metal (particularly, Al) can be effectively gettered in the gas phase.
Also, for example, if the gate oxidation is performed as a pre-treatment on the surface of the semiconductor substrate and the gate oxidation is continuously performed without being exposed to the air, the semiconductor substrate and the oxide film can be compared with the semiconductor device formed by the conventional hydrochloric acid oxidation method. A semiconductor device having good characteristics with less Al contamination can be manufactured.

【0036】以上のように本発明によれば、Fe等の重
金属、Al等の軽金属の汚染レベルを減少させることが
でき、特に1012原子/cm2 オーダ以下、さらには1
10原子/cm2 オーダ以下に抑えることが可能であ
る。
According to the present invention as described above, heavy metals such as Fe, can reduce the light metal contamination level of Al or the like, in particular 10 12 atoms / cm 2 order or less, more 1
It can be suppressed to the order of 0 10 atoms / cm 2 or less.

【0037】[0037]

【実施例】以下、本発明の実施例を図面を参照して詳細
に説明する。 実施例1および比較例1〜3 Feで強制汚染された厚い熱酸化膜が表面に形成された
シリコン基板に対してN2 雰囲気中、550℃、1時間
の熱処理(比較例1)、酸化性雰囲気中、同温度、同時
間の酸化処理(比較例2)、HClを含む酸素雰囲気
中、同温度、同時間の塩酸酸化処理(比較例3)および
10%HClを含むN2 雰囲気中、同温度、同時間の熱
処理(実施例1)をそれぞれ施した。
Embodiments of the present invention will be described below in detail with reference to the drawings. Example 1 and Comparative Examples 1 to 3 A heat treatment at 550 ° C. for 1 hour in a N 2 atmosphere (Comparative Example 1) was performed on a silicon substrate on which a thick thermal oxide film forcibly contaminated with Fe was formed (Comparative Example 1). In an atmosphere, at the same temperature, simultaneous oxidation treatment (Comparative Example 2), in an oxygen atmosphere containing HCl, at the same temperature, in a simultaneous hydrochloric acid oxidation treatment (Comparative Example 3), and in an N 2 atmosphere containing 10% HCl, the same. Temperature and simultaneous heat treatment (Example 1) were performed.

【0038】前記比較例1〜3および実施例1の処理後
のシリコン基板について、その表面の熱酸化膜を希弗酸
溶液で溶解し、その溶液中に含まれるFe量を原子吸光
分析した。その結果を図9に示す。
With respect to the silicon substrates after the treatments of Comparative Examples 1 to 3 and Example 1, the thermal oxide film on the surface was dissolved with a dilute hydrofluoric acid solution, and the amount of Fe contained in the solution was analyzed by atomic absorption analysis. FIG. 9 shows the result.

【0039】図9から明らかなようにN2 雰囲気中での
熱処理(比較例1)または通常のドライ酸化(比較例
2)ではFeは全く除去されない。これは、Fe単体の
蒸気圧、またはFeの酸化物の蒸気圧が低いため、Fe
が酸化膜上から気相中へ除去できないことを示してい
る。一方、比較例3の塩酸酸化方法ではFeが気相中に
ゲッタリングされ、膜中に取込まれたFe量が汚染レベ
ルに比べて減少しているが、本実施例1ではさらに熱酸
化膜中に取込まれたFe量を減少できることがわかる。
これは、塩酸酸化方法ではシリコン基板を酸化性雰囲気
中、高温で処理しているため、熱酸化膜表面に強制汚染
したFeの一部が除去されずにFe酸化物の状態で酸化
膜中に取込まれていることに起因するものである。これ
に対し、本発明では非酸化性雰囲気中で処理しているた
め、Fe酸化物の生成を抑止し、蒸気圧の高いFe塩化
物のみを生成でき、容易に気相中にゲッタリングできる
ことによるものと考えられる。
As is clear from FIG. 9, Fe is not removed at all by heat treatment in N 2 atmosphere (Comparative Example 1) or ordinary dry oxidation (Comparative Example 2). This is because the vapor pressure of Fe alone or the vapor pressure of Fe oxide is low,
Cannot be removed from the oxide film into the gas phase. On the other hand, in the hydrochloric acid oxidation method of Comparative Example 3, Fe is gettered in the gas phase, and the amount of Fe incorporated in the film is reduced as compared with the contamination level. It can be seen that the amount of Fe taken in can be reduced.
This is because, in the hydrochloric acid oxidation method, since the silicon substrate is treated at a high temperature in an oxidizing atmosphere, a part of Fe compulsorily contaminated on the surface of the thermal oxide film is not removed, and the Fe oxide remains in the oxide film. It is due to being taken in. In contrast, in the present invention, since the treatment is performed in a non-oxidizing atmosphere, the formation of Fe oxides is suppressed, only Fe chloride having a high vapor pressure can be generated, and gettering can be easily performed in the gas phase. It is considered something.

【0040】実施例2および比較例4 Feで強制汚染された厚い熱酸化膜が表面に形成された
シリコン基板に対してHClを含む酸素雰囲気中、10
0℃以上、600℃以下の温度範囲で、1時間の塩酸酸
化処理(比較例4)および10%HClを含むN2 雰囲
気中、同温度範囲、同時間の熱処理(実施例2)をそれ
ぞれ施した。
Example 2 and Comparative Example 4 A silicon substrate having a thick thermal oxide film forcibly contaminated with Fe formed on a surface thereof was placed in an oxygen atmosphere containing HCl in an oxygen atmosphere.
In a temperature range of 0 ° C. or more and 600 ° C. or less, a 1-hour hydrochloric acid oxidation treatment (Comparative Example 4) and a simultaneous heat treatment (Example 2) in an N 2 atmosphere containing 10% HCl in the same temperature range were performed. did.

【0041】前記実施例2および比較例4の処理後のシ
リコン基板について、その表面の熱酸化膜を希弗酸溶液
で溶解し、その溶液中に含まれるFe量を原子吸光分析
した。その結果を図10に温度とFe量との関係として
示す。
With respect to the silicon substrates treated in Example 2 and Comparative Example 4, the thermal oxide film on the surface was dissolved in a dilute hydrofluoric acid solution, and the amount of Fe contained in the solutions was analyzed by atomic absorption analysis. The results are shown in FIG. 10 as a relationship between temperature and Fe amount.

【0042】図10から明らかなように比較例4の塩酸
酸化方法ではFeが気相中にゲッタリングされ、膜中に
取込まれたFe量が汚染レベルに比べて減少している
が、本実施例2ではさらに熱酸化膜中に取込まれたFe
量を高温側で減少できることがわかる。これは、一般に
金属酸化物の蒸気圧が高温ほど大きくなるため、本発明
のような処理によってFeの除去効果が高くなることを
示す。ただし、この場合熱酸化膜が保護膜として働くた
め、非酸化性雰囲気での処理においてシリコン基板がH
Cl(Cl2 )でエッチングされるのを防止される。こ
れに対し、比較例4の塩酸酸化法では400℃以上の温
度でFeの一部が酸化膜中で酸化物となって除去できな
くなることを示している。
As is clear from FIG. 10, in the hydrochloric acid oxidation method of Comparative Example 4, Fe was gettered in the gas phase, and the amount of Fe incorporated in the film was reduced as compared with the contamination level. In the second embodiment, furthermore, Fe incorporated in the thermal oxide film
It can be seen that the amount can be reduced on the high temperature side. This indicates that, as the vapor pressure of the metal oxide generally increases as the temperature increases, the treatment of the present invention increases the Fe removing effect. However, in this case, since the thermal oxide film acts as a protective film, the silicon substrate may be H
It is prevented from being etched by Cl (Cl 2 ). In contrast, in the hydrochloric acid oxidation method of Comparative Example 4, at a temperature of 400 ° C. or more, a part of Fe becomes an oxide in the oxide film and cannot be removed.

【0043】実施例3 Niで強制汚染された厚い熱酸化膜が表面に形成された
シリコン基板に対して10%HClを含むN2 雰囲気
中、100℃以上、600℃以下の温度範囲で、1時間
の熱処理を施した。
Example 3 A silicon substrate having a thick thermal oxide film forcibly contaminated with Ni formed on a surface thereof in an N 2 atmosphere containing 10% HCl in a temperature range of 100 ° C. to 600 ° C. Time heat treatment was applied.

【0044】前記実施例3の処理後のシリコン基板につ
いて、その表面の熱酸化膜を希弗酸溶液で溶解し、その
溶液中に含まれるNi量を原子吸光分析した。その結果
を図11に温度とNi量の関係として示す。
With respect to the silicon substrate after the treatment in Example 3, the thermal oxide film on the surface was dissolved in a dilute hydrofluoric acid solution, and the amount of Ni contained in the solution was analyzed by atomic absorption analysis. The results are shown in FIG. 11 as a relationship between temperature and Ni amount.

【0045】図11から明らかなように本実施例3では
熱酸化膜中に取込まれたNi量を高温側で検出限界まで
減少できることがわかる。 実施例4 Feで強制汚染された自然酸化膜が表面に形成されたシ
リコン基板に対して10%HClを含むN2 雰囲気中、
300〜500℃の温度範囲で、1時間の熱処理を施し
た。なお、前記自然酸化膜は湿式洗浄方法によってシリ
コン基板表面に生成した薄い酸化膜、またはフッ化水素
酸で処理したシリコン基板上に時間経過に伴って徐々に
生成された50オングストローム以下の薄い酸化膜であ
る。
As is apparent from FIG. 11, in the third embodiment, the amount of Ni taken in the thermal oxide film can be reduced to the detection limit on the high temperature side. Example 4 A silicon substrate having a natural oxide film forcibly contaminated with Fe formed on a surface thereof in an N 2 atmosphere containing 10% HCl was used.
Heat treatment was performed for 1 hour in a temperature range of 300 to 500 ° C. The natural oxide film is a thin oxide film formed on a silicon substrate surface by a wet cleaning method or a thin oxide film of 50 Å or less formed gradually on a silicon substrate treated with hydrofluoric acid with time. It is.

【0046】前記実施例4の処理後のシリコン基板につ
いて、その表面の自然酸化膜を希弗酸溶液で溶解し、そ
の溶液中に含まれるFe量を原子吸光分析した。また、
Si基板内部に拡散するFe量を測定した。その結果を
図12に温度とFe量の関係として示す。
With respect to the silicon substrate after the treatment in Example 4, the natural oxide film on the surface was dissolved with a dilute hydrofluoric acid solution, and the amount of Fe contained in the solution was analyzed by atomic absorption analysis. Also,
The amount of Fe diffused into the Si substrate was measured. The results are shown in FIG. 12 as a relationship between temperature and Fe amount.

【0047】図12から明らかなように本実施例4では
低温で処理しているためシリコン基板中に拡散するFe
を抑え、かつ自然酸化膜中のFe量を検出限界まで気相
中に除去できることがわかる。
As is apparent from FIG. 12, in the fourth embodiment, since the treatment is performed at a low temperature, Fe diffused in the silicon substrate.
It can be seen that the amount of Fe in the natural oxide film can be reduced to the detection limit in the gas phase.

【0048】実施例5 表面がFeで汚染されたシリコン基板を10%HClを
含むN2 雰囲気中、400℃、1時間の乾式清浄化処理
を施した後、大気に触れることなくHClを含む酸素雰
囲気中、800℃、1時間の塩酸酸化処理を施して前記
基板表面にゲート酸化膜を形成した。
Example 5 A silicon substrate having a surface contaminated with Fe was subjected to dry cleaning at 400 ° C. for 1 hour in an N 2 atmosphere containing 10% HCl, and then oxygen containing HCl was exposed without being exposed to the air. A gate oxide film was formed on the surface of the substrate by performing hydrochloric acid oxidation treatment at 800 ° C. for 1 hour in an atmosphere.

【0049】比較例5 表面がFeで汚染されたシリコン基板をHClを含む酸
素雰囲気中、800℃、1時間の塩酸酸化処理を直接施
して前記基板表面にゲート酸化膜を形成した。
Comparative Example 5 A silicon oxide substrate whose surface was contaminated with Fe was directly subjected to a hydrochloric acid oxidation treatment at 800 ° C. for 1 hour in an oxygen atmosphere containing HCl to form a gate oxide film on the substrate surface.

【0050】前記実施例5および比較例5の処理により
形成されたゲート酸化膜および前記ゲート酸化膜下のシ
リコン基板の表層を希弗酸溶液で溶解し、その溶液中に
含まれるFe量を原子吸光分析した。また、Si基板内
部に拡散するFe量を測定した。その結果を図13に示
す。
The gate oxide film formed by the treatments of Example 5 and Comparative Example 5 and the surface layer of the silicon substrate under the gate oxide film were dissolved in a dilute hydrofluoric acid solution, and the Fe content in the solution was determined by atom. Absorbance analysis was performed. Further, the amount of Fe diffused into the Si substrate was measured. The result is shown in FIG.

【0051】図13から明らかなように、本実施例5で
は直接塩酸酸化法を行ってゲート酸化膜を形成する比較
例5に比べてシリコン基板、ゲート酸化膜への汚染を抑
制でき、良好な特性を有するMOS半導体装置を製造す
ることができる。
As is apparent from FIG. 13, in the fifth embodiment, the contamination to the silicon substrate and the gate oxide film can be suppressed, and a good result can be obtained as compared with the comparative example 5 in which the gate oxide film is formed by directly performing the hydrochloric acid oxidation method. A MOS semiconductor device having characteristics can be manufactured.

【0052】実施例6 前述した図5に示すようにシリコン基板21上の熱酸化
膜22、CVDSiO2 膜26およびBPSG膜27に
亘ってRIEによりコンタクトホール28を開口した
後、10%HClを含むN2 雰囲気中、400℃、1時
間の熱処理を施した。
Embodiment 6 As shown in FIG. 5, a contact hole 28 is opened by RIE over the thermal oxide film 22, the CVD SiO 2 film 26 and the BPSG film 27 on the silicon substrate 21, and then contains 10% HCl. Heat treatment was performed at 400 ° C. for 1 hour in an N 2 atmosphere.

【0053】本実施例6の処理によって前記RIE時に
前記コンタクトホールの内面に付着された汚染金属を良
好に除去できることが確認された。なお、従来の塩酸酸
化法で処理した場合にはコンタクトホール底部に露出し
たシリコン基板表面が酸化されるためにコンタクトホー
ルの形状が変化するが、本実施例6の方法ではN2 雰囲
気中でなされるため酸化の進行がなく、コンタクトホー
ルの形状変化を防止できた。
It was confirmed that the treatment of Example 6 successfully removed contaminant metal adhered to the inner surface of the contact hole during the RIE. Although silicon substrate surface exposed in the contact hole bottom is when treated with conventional hydrochloric acid oxidation method is changed the shape of the contact hole to be oxidized, the method of the present embodiment 6 is made in an atmosphere of N 2 Therefore, oxidation did not progress, and the shape change of the contact hole could be prevented.

【0054】実施例7 汚染軽金属であるAlを吸着した自然酸化膜が生成され
たシリコン基板を10%HClを含むガス雰囲気中、2
00〜1000℃の温度範囲、1時間の熱処理を施し
た。なお、前記自然酸化膜はRCA洗浄のSC1処理に
よって生成されたものである。
Example 7 A silicon substrate on which a natural oxide film adsorbing Al as a contaminating light metal was formed was placed in a gas atmosphere containing 10% HCl.
Heat treatment was performed for 1 hour in a temperature range of 00 to 1000 ° C. The natural oxide film is formed by the RCA cleaning SC1 process.

【0055】前記実施例7の処理後のシリコン基板につ
いて、その表面の酸化膜を希弗酸溶液で溶解し、その溶
液中に含まれるAl量を原子吸光分析した。その結果を
図14に温度とAl量の関係として示す。
With respect to the silicon substrate after the treatment in Example 7, the oxide film on the surface was dissolved with a dilute hydrofluoric acid solution, and the amount of Al contained in the solution was analyzed by atomic absorption analysis. The results are shown in FIG. 14 as a relationship between temperature and Al amount.

【0056】図14から明らかなように400℃未満お
よび700℃を越える温度での処理ではAlは殆ど除去
されない。これに対し、400℃以上、600℃以下、
特に600℃未満の温度で処理を行うことによってAl
を効果的に除去できることがわかる。これは、前記温度
範囲での熱処理によりAl酸化物の生成を抑え、かつA
l塩化物の生成を促進して気相中にAlを良好にゲッタ
リングできるためである。
As is apparent from FIG. 14, Al is hardly removed by the treatment at a temperature lower than 400 ° C. or higher than 700 ° C. On the other hand, 400 ° C or higher, 600 ° C or lower
In particular, by performing the treatment at a temperature lower than 600 ° C.,
Can be effectively removed. This is because the heat treatment in the above temperature range suppresses the formation of Al oxide,
This is because the formation of 1 chloride can be promoted and Al can be favorably gettered in the gas phase.

【0057】実施例8、9および比較例6 汚染軽金属であるAlを吸着した自然酸化膜が生成され
たシリコン基板を10%HClを含む酸素雰囲気中、5
00℃、1時間の熱処理(実施例8)、10%HClを
含む酸素雰囲気中、800℃、1時間の熱処理(比較例
6)および10%HClを含む酸素雰囲気中、500
℃、1時間の熱処理後にシリコン基板を大気に触れるこ
となく同雰囲気、800℃、1時間の熱処理(実施例
9)をそれぞれ施した。
Examples 8 and 9 and Comparative Example 6 A silicon substrate on which a natural oxide film adsorbing Al as a contaminated light metal was formed was placed in an oxygen atmosphere containing 10% HCl.
Heat treatment at 00 ° C. for 1 hour (Example 8) in an oxygen atmosphere containing 10% HCl, 800 ° C., heat treatment for 1 hour (Comparative Example 6), and 500 ° C. in an oxygen atmosphere containing 10% HCl.
After the heat treatment at 1 ° C. for 1 hour, the silicon substrate was subjected to a heat treatment at 800 ° C. for 1 hour (Example 9) without being exposed to the air.

【0058】前記実施例8、9および比較例6の処理後
のシリコン基板について、その表面の酸化膜を希弗酸溶
液で溶解し、その溶液中に含まれるAl量を原子吸光分
析した。その結果を図15に示す。
With respect to the silicon substrates treated in Examples 8 and 9 and Comparative Example 6, the oxide film on the surface was dissolved with a dilute hydrofluoric acid solution, and the amount of Al contained in the solutions was analyzed by atomic absorption analysis. The result is shown in FIG.

【0059】図15から明らかなように800℃の高温
で処理する比較例6ではAlを気相中に殆どゲッタリン
グできない。これに対し、500℃の低温で処理する実
施例8ではAlを効果的に除去できることがわかる。ま
た、前記500℃の低温で処理の後、大気に曝すことな
く連続して800℃の高温で酸化処理を行う実施例9で
はAlが除去された清浄な酸化膜をシリコン基板表面に
形成することがわかる。したがって、従来の塩酸酸化方
法に比べて酸化膜汚染の少ない良好な半導体装置を製造
することが可能になる。
As is apparent from FIG. 15, in Comparative Example 6 in which the treatment was performed at a high temperature of 800 ° C., Al was hardly getterable in the gas phase. In contrast, it can be seen that in Example 8 in which the treatment is performed at a low temperature of 500 ° C., Al can be effectively removed. In the ninth embodiment, after the treatment at the low temperature of 500 ° C., the oxidation treatment is continuously performed at a high temperature of 800 ° C. without being exposed to the air, a clean oxide film from which Al has been removed is formed on the surface of the silicon substrate. I understand. Therefore, it is possible to manufacture a good semiconductor device with less oxide film contamination than the conventional hydrochloric acid oxidation method.

【0060】[0060]

【発明の効果】以上詳述したように、本発明に係わる乾
式清浄化方法よれば素子形成工程中に基板表面に吸着し
た汚染金属を容易かつ効果的に気相中にゲッタリングで
き、高信頼性、高速の半導体装置を製造できる等顕著な
効果を奏する。
As described above in detail, according to the dry cleaning method of the present invention, the contaminant metal adsorbed on the substrate surface during the element forming step can be easily and effectively gettered in the gas phase, and the reliability is high. And a remarkable effect such as the ability to manufacture a high-speed semiconductor device.

【図面の簡単な説明】[Brief description of the drawings]

【図1】汚染金属がシリコン基板表面に付着された状態
およびその気相中へのゲッタリングを示す断面図。
FIG. 1 is a cross-sectional view showing a state in which a contaminant metal is attached to the surface of a silicon substrate and gettering into a gas phase.

【図2】汚染金属がシリコン基板上の自然酸化膜の表面
および内部に取り込まれた状態を示す断面図。
FIG. 2 is a cross-sectional view showing a state in which a contaminant metal is taken into the surface and inside of a natural oxide film on a silicon substrate.

【図3】汚染金属がシリコン基板上の絶縁膜のコンタク
トホール内面に付着された状態を示す断面図。
FIG. 3 is a cross-sectional view showing a state in which a contaminant metal is attached to the inner surface of a contact hole of an insulating film on a silicon substrate.

【図4】汚染金属がシリコン基板上の熱酸化膜表面に付
着された状態およびその気相中へのゲッタリングを示す
断面図。
FIG. 4 is a cross-sectional view showing a state in which a contaminant metal is attached to the surface of a thermal oxide film on a silicon substrate and gettering into a gas phase.

【図5】汚染金属がシリコン基板上のシリコン窒化膜表
面に付着された状態を示す断面図。
FIG. 5 is a sectional view showing a state in which a contaminant metal is attached to the surface of a silicon nitride film on a silicon substrate.

【図6】HClを含む非酸化性雰囲気中でシリコン基板
を熱処理した際の温度と前記基板表面へのエッチピット
の発生との関係を示す特性図。
FIG. 6 is a characteristic diagram showing the relationship between the temperature when a silicon substrate is heat-treated in a non-oxidizing atmosphere containing HCl and the occurrence of etch pits on the substrate surface.

【図7】本発明の乾式清浄化処理に用いられる横型処理
装置を示す概略図。
FIG. 7 is a schematic view showing a horizontal processing apparatus used in the dry cleaning treatment of the present invention.

【図8】本発明の乾式清浄化処理に用いられる縦型処理
装置を示す概略図。
FIG. 8 is a schematic view showing a vertical processing apparatus used in the dry cleaning treatment of the present invention.

【図9】Feで強制汚染された厚い熱酸化膜が表面に形
成されたシリコン基板に対して比較例1〜3および実施
例1で処理した後の熱酸化膜表面および内部のFe量を
示す特性図。
FIG. 9 shows the amount of Fe on the surface and inside of the thermal oxide film after the silicon substrate having a thick thermal oxide film forcibly contaminated with Fe formed on the surface in Comparative Examples 1 to 3 and Example 1; Characteristic diagram.

【図10】Feで強制汚染された厚い熱酸化膜が表面に
形成されたシリコン基板に対して比較例4および実施例
2で処理した際の温度と熱酸化膜の表面および内部の残
留Fe量との関係を示す特性図。
FIG. 10 shows the temperature and the amount of Fe remaining on the surface and inside of the thermal oxide film when a silicon substrate having a thick thermal oxide film forcibly contaminated with Fe formed on the surface is treated in Comparative Example 4 and Example 2. FIG. 3 is a characteristic diagram showing a relationship with the graph.

【図11】Niで強制汚染された厚い熱酸化膜が表面に
形成されたシリコン基板に対して実施例3で処理した際
の温度と熱酸化膜の表面および内部の残留Ni量との関
係を示す特性図。
FIG. 11 shows the relationship between the temperature and the amount of residual Ni on the surface and inside of the thermal oxide film when a silicon substrate having a thick thermal oxide film forcibly contaminated with Ni formed on the surface is treated in Example 3. FIG.

【図12】Feで強制汚染された自然酸化膜が表面に形
成されたシリコン基板に対して実施例4で処理した際の
温度と自然酸化膜の表面および内部の残留Fe量との関
係を示す特性図。
FIG. 12 shows the relationship between the temperature and the amount of Fe remaining on the surface and inside the natural oxide film when a silicon substrate having a natural oxide film forcibly contaminated with Fe formed on the surface is treated in Example 4. Characteristic diagram.

【図13】表面がFeで汚染されたシリコン基板を実施
例5および比較例5で処理してゲート酸化膜を形成した
際の前記シリコン基板の表層およびゲート酸化膜中のF
e量を示す特性図。
FIG. 13 shows a surface layer of the silicon substrate and a F in the gate oxide film when the silicon substrate whose surface is contaminated with Fe is processed in Example 5 and Comparative Example 5 to form a gate oxide film.
FIG. 4 is a characteristic diagram showing an e amount.

【図14】Alを吸着した自然酸化膜が生成されたシリ
コン基板を実施例7で処理した際の温度と酸化膜中のA
l量との関係を示す特性図。
FIG. 14 shows the temperature and the A in the oxide film when a silicon substrate on which a natural oxide film on which Al was adsorbed was treated in Example 7.
FIG. 4 is a characteristic diagram showing a relationship with an l amount.

【図15】Alを吸着した自然酸化膜が生成されたシリ
コン基板を実施例8、9および比較例6で処理すること
により形成した酸化膜中のAl量を示す特性図。
FIG. 15 is a characteristic diagram showing the amount of Al in an oxide film formed by processing a silicon substrate on which a natural oxide film on which Al is adsorbed is formed in Examples 8 and 9 and Comparative Example 6.

【図16】従来の塩酸酸化方法の問題点を示す断面図。FIG. 16 is a sectional view showing a problem of the conventional hydrochloric acid oxidation method.

【図17】HCl酸化性雰囲気中での基板表面に吸着し
たFeの熱挙動を示す特性図。
FIG. 17 is a characteristic diagram showing a thermal behavior of Fe adsorbed on a substrate surface in an HCl oxidizing atmosphere.

【図18】異なる温度のHCl酸化性雰囲気中で熱処理
した際の基板表面に吸着したFeの熱挙動を示す断面
図。
FIG. 18 is a cross-sectional view showing the thermal behavior of Fe adsorbed on the substrate surface when heat treatment is performed in an HCl oxidizing atmosphere at different temperatures.

【符号の説明】[Explanation of symbols]

21…シリコン基板、22…熱酸化膜、23…汚染金
属、24…シリコン窒化膜、25…自然酸化膜、28…
コンタクトホール。
21 silicon substrate, 22 thermal oxide film, 23 contaminated metal, 24 silicon nitride film, 25 natural oxide film, 28
Contact hole.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平3−64024(JP,A) 特開 平3−127830(JP,A) 特開 平2−49428(JP,A) 特開 平4−157161(JP,A) 特開 平5−121394(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 21/304 645 H01L 21/306 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-3-64024 (JP, A) JP-A-3-127830 (JP, A) JP-A-2-49428 (JP, A) JP-A-4- 157161 (JP, A) JP-A-5-121394 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01L 21/304 645 H01L 21/306

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 下部にガスの導入口を有する縦型外部反
応炉と、この反応炉内に配置され、上部にガス導入穴、
下部に排気口がそれぞれ形成された縦型内部反応炉と、
この縦型反応炉内に配置された保持具と、前記縦型外部
反応炉の側面周囲に配置されたヒータとを備えた処理装
置を用い、半導体基板または表面に各種の膜が形成され
た半導体基板をその半導体基板の表裏面の大部分が表出
するように前記内部反応炉内に配置された保持具に保持
して設置した後、酸化または拡散を行う工程の直前に実
施される清浄化方法であって、 ハロゲンもしくはハロゲン化物を含むガスを前記縦型外
部反応炉下部の導入口からこの外部反応炉と前記縦型内
部反応炉との空間に導入して上昇させると共に、その上
昇過程のガスを前記ヒータにより加熱し、さらにこの加
熱されたガスを前記縦型内部反応炉上部のガス導入穴か
らその内部を通して下部の排気口より排気することによ
り、前記内部反応炉内の保持具に表裏面が表出するよう
に保持された前記半導体基板に400〜600℃の温度
に加熱されたハロゲンもしくはハロゲン化物を含むガス
を接触させて熱処理し、前記半導体基板の表裏面のアル
ミニウムを除去することを特徴とする半導体装置の乾式
清浄化方法。
1. A vertical external reactor having a gas inlet at a lower portion, a gas inlet hole disposed at an upper portion of the reactor, and a gas inlet hole at an upper portion.
A vertical internal reactor with an exhaust port formed at the bottom,
A semiconductor device having a semiconductor substrate or a surface on which various films are formed using a processing apparatus including a holder disposed in the vertical reactor and a heater disposed around a side surface of the vertical external reactor. The cleaning performed immediately before the step of performing oxidation or diffusion after holding and installing the substrate in the holder disposed in the internal reaction furnace so that most of the front and back surfaces of the semiconductor substrate are exposed. A method comprising: introducing a gas containing a halogen or a halide into a space between the external reactor and the vertical internal reactor from an inlet at a lower portion of the vertical external reactor and raising the same; The gas is heated by the heater, and the heated gas is exhausted from the gas introduction hole in the upper part of the vertical internal reactor through the inside thereof through the lower exhaust port, thereby displaying the gas on the holder in the internal reactor. Back side Contacting a gas containing retained the heated to a temperature of the semiconductor substrate to 400 to 600 ° C. was a halogen or halide as exposed to heat treatment, Al of front and back surfaces of the semiconductor substrate
A dry cleaning method for a semiconductor device, comprising removing minium .
【請求項2】 前記ハロゲンもしくはハロゲン化物を含
むガスは、ハロゲンもしくはハロゲン化物を含む非酸化
性ガスであることを特徴とする請求項1記載の半導体装
置の乾式清浄化方法。
2. The dry cleaning method for a semiconductor device according to claim 1, wherein the gas containing a halogen or a halide is a non-oxidizing gas containing a halogen or a halide.
【請求項3】 前記ハロゲン化物は、HClであること
を特徴とする請求項1または2記載の半導体装置の乾式
清浄化方法。
3. A dry cleaning method for a semiconductor device according to claim 1, wherein said halide is HCl.
JP17808493A 1992-07-17 1993-07-19 Dry cleaning method for semiconductor device Expired - Fee Related JP3272823B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17808493A JP3272823B2 (en) 1992-07-17 1993-07-19 Dry cleaning method for semiconductor device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4-191121 1992-07-17
JP19112192 1992-07-17
JP17808493A JP3272823B2 (en) 1992-07-17 1993-07-19 Dry cleaning method for semiconductor device

Publications (2)

Publication Number Publication Date
JPH0684865A JPH0684865A (en) 1994-03-25
JP3272823B2 true JP3272823B2 (en) 2002-04-08

Family

ID=26498382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17808493A Expired - Fee Related JP3272823B2 (en) 1992-07-17 1993-07-19 Dry cleaning method for semiconductor device

Country Status (1)

Country Link
JP (1) JP3272823B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0697467A1 (en) * 1994-07-21 1996-02-21 Applied Materials, Inc. Method and apparatus for cleaning a deposition chamber
KR100390909B1 (en) * 2001-06-12 2003-07-12 주식회사 하이닉스반도체 Method for gettering semiconductor device
KR100474594B1 (en) * 2002-08-28 2005-03-10 주식회사 하이닉스반도체 Method for washing of semiconductor device
JP6108453B2 (en) * 2013-05-21 2017-04-05 大陽日酸株式会社 Substrate recycling method and substrate cleaning apparatus

Also Published As

Publication number Publication date
JPH0684865A (en) 1994-03-25

Similar Documents

Publication Publication Date Title
JP2937817B2 (en) Method of forming oxide film on semiconductor substrate surface and method of manufacturing MOS semiconductor device
US6682659B1 (en) Method for forming corrosion inhibited conductor layer
KR100391840B1 (en) Method and apparatus for forming an insulating film on the surface of a semiconductor substrate
JP3105770B2 (en) Method for manufacturing semiconductor device
US6204205B1 (en) Using H2anneal to improve the electrical characteristics of gate oxide
US5704986A (en) Semiconductor substrate dry cleaning method
JP2000150640A (en) Manufacture of semiconductor device
US5803980A (en) De-ionized water/ozone rinse post-hydrofluoric processing for the prevention of silicic acid residue
JP3272823B2 (en) Dry cleaning method for semiconductor device
JPH0380338B2 (en)
US5928786A (en) Monocrystalline silicon wafer and method of thermally oxidizing a surface thereof
US6177341B1 (en) Method for forming interconnections in semiconductor devices
JP3296268B2 (en) Method for manufacturing semiconductor device
JPH11297689A (en) Heat treatment of silicon insulating film and manufacture of semiconductor device
JP2002289612A (en) Method for forming oxide film on semiconductor substrate surface and method for manufacturing semiconductor device
JP3800788B2 (en) Method for forming silicon oxide film
JPH08335576A (en) Silicon oxide film-forming method
JPH11176828A (en) Forming method for silicon oxide film
JP3210510B2 (en) Method for manufacturing semiconductor device
JPH07221034A (en) Manufacture of semiconductor device
JP3152289B2 (en) Method for manufacturing semiconductor device
JPS63199434A (en) Forming method for insulating film
JPH0955379A (en) Treatment method of semiconductor substrate and manufacture of semiconductor device
JP2001110895A (en) Formation method for metal wiring
JPH097969A (en) Method of filling fine hole with metal

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080125

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090125

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100125

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees