JP3271469B2 - Curve straightening load calculation method - Google Patents

Curve straightening load calculation method

Info

Publication number
JP3271469B2
JP3271469B2 JP10934295A JP10934295A JP3271469B2 JP 3271469 B2 JP3271469 B2 JP 3271469B2 JP 10934295 A JP10934295 A JP 10934295A JP 10934295 A JP10934295 A JP 10934295A JP 3271469 B2 JP3271469 B2 JP 3271469B2
Authority
JP
Japan
Prior art keywords
correction
load
plastic deformation
amount
maximum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10934295A
Other languages
Japanese (ja)
Other versions
JPH08300042A (en
Inventor
英樹 斉藤
伊知郎 石丸
敏郎 浅野
眞範 近藤
雅浩 永井
満 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10934295A priority Critical patent/JP3271469B2/en
Publication of JPH08300042A publication Critical patent/JPH08300042A/en
Application granted granted Critical
Publication of JP3271469B2 publication Critical patent/JP3271469B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Lift-Guide Devices, And Elevator Ropes And Cables (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、塑性変形しうる部材の
3点曲げあるいは一軸引張り加工、例えば、エレベータ
用ガイドレール等長尺材の曲り矯正方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for three-point bending or uniaxial tensioning of a plastically deformable member, for example, a method for straightening a long member such as an elevator guide rail.

【0002】[0002]

【従来の技術】被矯正材の加工特性を推定しながら矯正
を行う方法に関する従来技術は、以下のようなものが挙
げられる。
2. Description of the Related Art The prior art relating to a method of performing a correction while estimating the processing characteristics of a material to be corrected includes the following.

【0003】まず、1ロット中の1本について除荷時の
荷重と変形量とを計測し、両者間の関係式を1次式とし
て記憶し、それを当該ロットの他ワークの矯正に用いる
方法として、例えば特開平2−192820号公報があ
る。しかし、被矯正材には加工履歴等による残留応力の
ばらつき、肉厚のばらつきが個体毎、位置毎にあり、被
矯正材の荷重と変形量との関係式を1種類で表すことは
できないが、この点について考慮されていない。
First, a method of measuring the load and the amount of deformation at the time of unloading of one of the lots, storing a relational expression between them as a linear expression, and using the relational expression for correcting another work of the lot. For example, there is JP-A-2-192820. However, the material to be corrected has variations in residual stress and wall thickness due to processing history and the like for each individual and for each position, and the relational expression between the load and the amount of deformation of the material to be corrected cannot be represented by one type. , This point is not taken into account.

【0004】また、現矯正対象の被矯正材に対して目標
塑性変形量に達しない段階でいったん除荷し、除荷中の
荷重変化分と変形量変化分との比を求める方法として、
例えば特開昭54−135659号公報、特開平6−2
77760号公報がある。これらの従来技術では、実測
した現矯正対象の現矯正位置の加工特性にもとづいて矯
正をおこなうため、原理的には被矯正材個体毎、位置毎
の加工特性のばらつき、また加工硬化やバウシンガ効果
に影響されることなく一回の試行で高精度の矯正が可能
である。しかしこれらの従来技術は、繰り返し加圧を行
っても除荷時の荷重変化分と変形量変化分との関係が変
わらないことを前提としていた。ところが実際には、異
なる荷重から除荷を行うと完全に除荷が終了した時点で
の荷重変化分と変形量変化分との比は異なる。その理由
として、除荷時の荷重変化分と変形量変化分との関係は
一次比例関係ではなく非線形であることが挙げられる。
従って、従来技術によっては高精度な矯正が行えなかっ
た。
Further, as a method of unloading the material to be corrected which is to be currently corrected at a stage where the amount of plastic deformation does not reach the target amount of plastic deformation, and calculating a ratio between a change in load and a change in deformation during unloading,
For example, Japanese Patent Application Laid-Open Nos. 54-135659 and 6-2
No. 77760 is known. In these conventional techniques, since the correction is performed based on the processing characteristics of the current correction position of the current correction target actually measured, in principle, the processing characteristics vary for each material to be corrected and for each position, and the work hardening and the Bauschinger effect. It is possible to perform high-precision correction in one trial without being affected by the above. However, these prior arts are based on the premise that the relationship between the load change and the deformation change at the time of unloading does not change even if pressure is repeatedly applied. However, in actuality, when unloading is performed from different loads, the ratio between the load change and the deformation change at the time when the unloading is completely completed is different. The reason is that the relationship between the load change and the deformation change at the time of unloading is not a linear relationship but a non-linear relationship.
Therefore, high-precision straightening cannot be performed by the conventional technology.

【0005】このため、矯正に必要な加圧荷重もしくは
変形量を求める計算式を修正しながら矯正を行い、少な
い試行回数で許容誤差内に収束させる方法について、以
下のような方法が提案されている。
For this reason, the following method has been proposed as a method of performing correction while correcting a calculation formula for determining a pressing load or a deformation amount required for correction and converging within an allowable error with a small number of trials. I have.

【0006】まず、既定値を用いた矯正結果が目標塑性
変形量に対して過剰または不足であった場合に、前回の
矯正時の除荷中の荷重変化分と変形量変化分との比を用
いる方法として、例えば特開昭55−117520号公
報がある。しかしこの従来技術を用いても、ある一つの
荷重まで加圧しその後除荷したときの荷重変化分と変形
量変化分との比しか用いないため、複数回の矯正を行っ
ても矯正結果が許容誤差内になかなか収束しないという
問題点があった。
First, when a correction result using a predetermined value is excessive or insufficient with respect to a target plastic deformation amount, a ratio between a load change amount and a deformation amount change during unloading at the time of the previous correction is calculated. As a method to be used, there is, for example, JP-A-55-117520. However, even if this conventional technology is used, since only the ratio of the load change and the deformation change when the pressure is applied to one load and then unloaded is used, the correction result is acceptable even if the correction is performed multiple times. There is a problem that it does not easily converge within the error.

【0007】そこで、矯正時に与えた総変形量とそれに
よって生じた塑性変形量との関係式を曲線回帰によって
求め、関係式から被矯正材に与えるべき変形量を算出し
て矯正を行い、曲げ不足が発生した場合その結果も用い
て関係式を求め直すことによって加工特性のばらつきや
変化に対応する方法として、例えば、特開昭63−19
9026号公報が提案された。図7にこの従来技術の説
明図を示す。この従来技術では、まず被矯正材に微小な
塑性変形を与えて塑性変形開始時の総変形量、すなわ
ち、総変形量と塑性変形量との座標系における総変形量
軸の切片を求める。次にこの切片および、微小な塑性変
形を与えたときの総変形量と塑性変形量とのデータを用
いて、矯正時の総変形量と塑性変形量との2次回帰曲線
を計算する。そして回帰曲線を用いて、目標の塑性変形
量を得るために与えるべき総変形量を算出する。さらに
矯正結果が目標の塑性変形量に対して不足であった場
合、その結果もデータとして加えて回帰曲線を求め直
す。矯正結果が目標の塑性変形量に対して過剰であった
場合、最初の切片算出に戻る。このようにして従来技術
では、被矯正材毎の加工特性のばらつきに対応し、2次
回帰曲線を用いることにより加工硬化に対応し、矯正過
剰時に回帰曲線を求め直すことによりバウシンガ効果に
対応した。
Therefore, a relational expression between the total amount of deformation given at the time of straightening and the amount of plastic deformation caused by the straightening is determined by curve regression, and the amount of deformation to be given to the material to be corrected is calculated from the relational expression to perform the correction. As a method for coping with variations or changes in the processing characteristics by recalculating the relational expression using the result when the shortage occurs, for example, Japanese Patent Application Laid-Open No. 63-19 / 1988
No. 9026 was proposed. FIG. 7 shows an explanatory diagram of this prior art. In this prior art, first, a small plastic deformation is applied to a material to be corrected, and a total deformation amount at the start of the plastic deformation, that is, an intercept of a total deformation amount axis in a coordinate system of the total deformation amount and the plastic deformation amount is obtained. Next, a quadratic regression curve of the total deformation amount and the plastic deformation amount at the time of correction is calculated using the intercept and the data of the total deformation amount and the plastic deformation amount when a minute plastic deformation is given. Then, using the regression curve, the total amount of deformation to be applied to obtain the target amount of plastic deformation is calculated. Further, when the correction result is insufficient for the target amount of plastic deformation, the result is added as data and the regression curve is obtained again. If the correction result is excessive with respect to the target amount of plastic deformation, the process returns to the initial intercept calculation. As described above, in the conventional technology, it is possible to cope with the variation in the processing characteristics of each material to be corrected, to cope with work hardening by using a quadratic regression curve, and to cope with the Bauschinger effect by re-determining the regression curve at the time of excessive correction. .

【0008】[0008]

【発明が解決しようとする課題】しかし従来技術は、総
変形量と塑性変形量との関係式を2次回帰曲線で近似す
るので、2次関数の未知パラメータ3個を決定するため
に最低3回の曲げを行う必要がある。
However, in the prior art, since the relational expression between the total deformation and the plastic deformation is approximated by a quadratic regression curve, at least three equations are required to determine three unknown parameters of the quadratic function. It is necessary to perform bending twice.

【0009】また、総変形量と塑性変形量との関係式を
2次回帰曲線で近似したあと、目標の塑性変形量を得る
ための総変形量を求めるのは外挿によるが、2次関数で
近似した式は変形量が大きくなるほど誤差が増大し、総
変形量算出精度が低下する。
After approximating the relational expression between the total deformation amount and the plastic deformation amount by a quadratic regression curve, the total deformation amount for obtaining the target plastic deformation amount is obtained by extrapolation. In the expression approximated by, the error increases as the deformation amount increases, and the accuracy of calculating the total deformation amount decreases.

【0010】さらに矯正過剰により加圧方向を変更する
必要が生じると、再び塑性変形開始時の塑性変形量を求
めるために最低3回の曲げを行う必要がある。
Further, when it is necessary to change the pressing direction due to overcorrection, it is necessary to perform bending at least three times in order to obtain the amount of plastic deformation at the start of plastic deformation again.

【0011】以上のように上記従来技術は、最少の場合
においても4回の加圧を必要とし非常に効率が悪いとい
う問題があった。
As described above, the prior art described above has a problem in that it requires four pressurizations at the minimum, and is extremely inefficient.

【0012】本発明の目的は、可能な限り少ないデータ
数で被矯正材曲がり矯正時の加工特性のばらつき、変化
を推定し、高精度の塑性変形量を得るために適切な加圧
時最大荷重を求めることにある。
An object of the present invention is to estimate the variation and change in the processing characteristics at the time of straightening a material to be straightened with as few data as possible, and to obtain an appropriate maximum load under pressure in order to obtain a high-precision plastic deformation amount. Is to seek.

【0013】[0013]

【課題を解決するための手段】上記目的を達成するた
め、本発明は被矯正材の個体を識別する記号と矯正位置
と矯正に必要な塑性変形量と矯正実行時の加圧最大荷重
と塑性変形量とを入力し、矯正時の加圧最大荷重を出力
し、矯正時の加圧最大荷重と塑性変形量と個体を識別す
る記号と矯正位置と矯正回数と加圧方向とを記憶する被
矯正材曲り矯正荷重算出方法であって、被矯正材矯正時
の加圧最大荷重と塑性変形量それぞれの対数をとり回帰
曲線を求めることによって加圧最大荷重と塑性変形量と
の関係式を計算し、矯正時の目標最大荷重を算出するこ
とを特徴とする。
In order to achieve the above object, the present invention provides a symbol for identifying an individual material to be corrected, a correction position, a plastic deformation amount required for correction, a maximum pressurizing load during correction, and a plasticity. The amount of deformation is input, the maximum pressurizing load at the time of correction is output, and the maximum pressurizing load at the time of correction, the amount of plastic deformation, a symbol identifying the individual, the correction position, the number of corrections, and the pressing direction are stored. A straightening material bending straightening load calculation method that calculates the relationship between the maximum pressing load and the amount of plastic deformation by calculating the logarithm of each of the maximum pressing force and the amount of plastic deformation when straightening the material to be corrected and obtaining a regression curve. And calculating a target maximum load at the time of correction.

【0014】[0014]

【作用】塑性変形しうる材料の変形において、弾塑性領
域での変形は、しばしば式
[Action] In the deformation of a plastically deformable material, the deformation in the elasto-plastic region is often expressed by the formula

【0015】[0015]

【数1】 (Equation 1)

【0016】を用いて、十分な精度で近似することがで
きる。ここに、σは加工力、εは変位量、Y,F,nは
材料によって決定される実数値定数である。上式の特別
な場合の式、
Can be approximated with sufficient accuracy. Here, σ is a processing force, ε is a displacement amount, and Y, F, and n are real-value constants determined by materials. A special case of the above formula,

【0017】[0017]

【数2】 (Equation 2)

【0018】で表される特性は、n乗硬化特性と呼ばれ
る。
The characteristic represented by is called n-th power curing characteristic.

【0019】本発明は、被矯正材矯正時の加圧最大荷重
をw、塑性変形量をxとして、次式
According to the present invention, the maximum pressurizing load at the time of straightening the material to be straightened is defined as w, and the plastic deformation amount is defined as x.

【0020】[0020]

【数3】 (Equation 3)

【0021】で加圧最大荷重と塑性変形量との関係式を
近似する。n乗硬化特性は加圧中の状態を記述したもの
であり、また弾性変形と塑性変形を含むので、厳密には
加圧最大荷重と塑性変形量との関係はn乗硬化特性に帰
着できないが近似としては十分な精度を得られる。
The relational expression between the maximum pressurizing load and the amount of plastic deformation is approximated. The n-th power hardening characteristic describes the state during pressurization, and includes elastic deformation and plastic deformation. Strictly speaking, the relationship between the maximum applied load and the amount of plastic deformation cannot be reduced to the n-th power hardening characteristic. Sufficient accuracy can be obtained as an approximation.

【0022】本発明は、n乗硬化特性を表す式を近似的
に用いて矯正時の加圧最大荷重と塑性変形量との関係式
を求めるので、外挿によって目標の塑性変形量を得るた
めの加圧最大荷重を求める際に、高い精度を得ることが
できる。また、n乗硬化特性を表す式は未知パラメータ
を2個しかもたないために、2回矯正試行を行えば、個
体間のばらつきを含む加工特性を特定することができ
る。さらに、加圧最大荷重と塑性変形量との関係式を記
憶することにより、1回目および2回目の矯正試行にお
いても高い精度が期待できる。また、矯正過剰により加
圧方向を変更する必要が生じたときにも、逆加圧方向の
矯正データを用いて加圧最大荷重と塑性変形量との関係
式を求めることができるので、加工特性推定のための試
し曲げを必要としない。
According to the present invention, the relational expression between the maximum pressurizing load at the time of correction and the amount of plastic deformation is obtained by approximately using the expression representing the n-th power hardening characteristic. When obtaining the maximum pressurizing load, a high accuracy can be obtained. Further, since the equation representing the n-th power hardening characteristic has only two unknown parameters, if the correction trial is performed twice, it is possible to specify the processing characteristics including the variation between individuals. Further, by storing the relational expression between the maximum applied load and the amount of plastic deformation, high accuracy can be expected in the first and second correction trials. In addition, when it is necessary to change the pressing direction due to overcorrection, the relational expression between the maximum pressing load and the amount of plastic deformation can be obtained using the correction data in the reverse pressing direction. No test bend is required for estimation.

【0023】以上のように本発明は、1回目の加圧にお
いてすでに高い矯正精度を有し、3回目の加圧までには
きわめて高い比率で目標の塑性変形量を得る。また矯正
過剰が発生した場合にも加工特性の変化を推定すること
が可能なため、結果として平均約3回の加圧によって目
標の塑性変形量を得ることができる。
As described above, according to the present invention, the first pressurization already has high correction accuracy, and the target plastic deformation is obtained at a very high ratio by the third pressurization. In addition, even when overcorrection occurs, it is possible to estimate a change in the processing characteristics, and as a result, it is possible to obtain a target amount of plastic deformation by pressurizing about three times on average.

【0024】[0024]

【実施例】以下、本発明を長尺材の3点曲げに適用した
一実施例を図1を用いて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which the present invention is applied to three-point bending of a long material will be described below with reference to FIG.

【0025】図1に曲り矯正荷重算出方法でおこなう処
理の内容を示す。
FIG. 1 shows the contents of the processing performed by the bending correction load calculation method.

【0026】矯正データ入力1では、矯正前に長尺材の
個体番号と矯正位置と加圧方向と目標塑性変形量の入力
を行い、また矯正後に矯正実行時の加圧最大荷重と塑性
変形量とを入力する。矯正履歴記憶では、矯正データ
入力1を用いて入力した長尺材の個体番号と矯正位置と
加圧方向、および矯正実行時の加圧最大荷重と塑性変形
量とを、記憶した順に番号付けして記憶する。加工特性
演算は、矯正履歴記憶を用いて記憶した矯正実行時
の加圧最大荷重と塑性変形量との関係式を算出する。目
標最大荷重演算は、目標塑性変形量と、加工特性演算
を用いて修正した加工特性とを用いて、加圧に必要な
最大荷重を算出する。目標最大荷重出力は、目標最大
荷重演算を用いて算出した目標最大荷重を出力する。
In the correction data input 1, before the correction, the individual number of the long material, the correction position, the pressing direction, and the target plastic deformation amount are input, and after the correction, the maximum pressing load and the plastic deformation amount when the correction is performed. Enter In the correction history storage 2 , the individual number of the long material, the correction position, the pressing direction, and the maximum pressing load and the amount of plastic deformation at the time of performing correction, which are input using the correction data input 1, are numbered in the order of storage. And memorize. The processing characteristic calculation 3 calculates a relational expression between the maximum pressurizing load and the amount of plastic deformation at the time of execution of the correction stored using the correction history storage 2 . The target maximum load calculation 4 includes a target plastic deformation amount and a processing characteristic calculation.
The maximum load required for pressurization is calculated by using the processing characteristics corrected by using No.3 . The target maximum load output 5 outputs a target maximum load calculated using the target maximum load calculation 4 .

【0027】図2を用いて、本実施例で用いた加圧位置
と塑性変形量の定義の一例を詳細に説明する。
An example of the definition of the pressing position and the amount of plastic deformation used in this embodiment will be described in detail with reference to FIG.

【0028】c1で表される曲りをもつ被矯正材に対し
てP1を加圧した後の曲り形状がc2であったとする。
長尺材の曲がりを表す曲線c1の両端を結ぶ直線を座標
の横軸にとり、それに直交する直線を縦軸にとる。加圧
位置P1の横軸への射影p1を加圧位置データと定め
る。次に、P1におけるc1の接線tLをとる。さら
に、長さdでc1上に端点bp1,bp2をとりtLに
平行な線分bp1bp2をとり、線分bp1bp2とP
1との距離をx1とする。このx1を相対変位と呼び塑
性変形量算出に用いる。同様にc2に対して先述したよ
うな処理を行いx2を求める。このとき、Δ=x2−x
1を長尺材の塑性変形量と定める。
It is assumed that the curved shape after pressing P1 on the material to be corrected having the curvature represented by c1 is c2.
The horizontal axis of the coordinate is a straight line connecting both ends of the curve c1 representing the bending of the long material, and the vertical axis is a straight line orthogonal to the coordinate. The projection p1 of the pressing position P1 onto the horizontal axis is defined as pressing position data. Next, a tangent tL to c1 at P1 is taken. Further, the end points bp1 and bp2 on c1 with the length d are taken, a line segment bp1bp2 parallel to tL is taken, and the line segments bp1bp2 and P
Let x1 be the distance to 1. This x1 is called a relative displacement and used for calculating the amount of plastic deformation. Similarly, the processing described above is performed on c2 to obtain x2. At this time, Δ = x2−x
1 is defined as the amount of plastic deformation of the long material.

【0029】図3および図4を用いて、本実施例で用い
た加工特性の定義を詳細に説明する。
The definition of the processing characteristics used in this embodiment will be described in detail with reference to FIGS.

【0030】図3は1本の長尺材の1ヶ所に対して同一
方向に繰り返し加圧を行った結果を示すグラフである。
縦軸には各回加圧時の最大荷重をとる。横軸には各回加
圧後の、1回目からの全ての塑性変形量を合計した値を
とる。この値を累積塑性変形量と呼ぶ。それに対して各
回一回分の矯正のみによって生じた塑性変形量を逐次塑
性変形量と呼ぶ。図4は、図3で用いたデータの最大荷
重と累積塑性変形量それぞれの対数を取ったときの関係
を示すグラフである。この対数を取ったデータを最小2
乗法を用いて直線で近似した結果次の式を得たとする。
FIG. 3 is a graph showing the result of repeatedly applying pressure to one location of one long material in the same direction.
The vertical axis indicates the maximum load at each pressurization. The abscissa indicates a value obtained by summing all the amounts of plastic deformation from the first press after each press. This value is called the accumulated plastic deformation. On the other hand, the amount of plastic deformation caused by only one correction each time is called successive plastic deformation. FIG. 4 is a graph showing the relationship between the maximum load of the data used in FIG. 3 and the logarithm of each cumulative plastic deformation. The logarithm of the data is 2
It is assumed that the following equation is obtained as a result of approximation by a straight line using the multiplication method.

【0031】 log w = a log x+b …(1) 近似の方法として、最小二乗法でなく例えばパーセプト
ロン型ニューラルネットワークを用いてもよい。この
(1)式を以下のように変形する。
Log w = a log x + b (1) As an approximation method, for example, a perceptron-type neural network may be used instead of the least squares method. This equation (1) is modified as follows.

【0032】[0032]

【数4】 (Equation 4)

【0033】を得る。数4で長尺材の矯正時の加工特性
を表す。
Is obtained. Equation 4 represents the processing characteristics of the long material at the time of straightening.

【0034】図5および図6を用いて加工特性演算
詳細に説明する。
The processing characteristic calculation 3 will be described in detail with reference to FIGS.

【0035】図5は、一矯正材の一加圧位置を6回加圧
したときの1回目の加圧における加圧方向と同一方向へ
の累積塑性変形量と最大荷重との関係を示す図である。
図6は、初めて加圧方向を変更したときの加圧前の累積
塑性変形量を0とした、1回目の加圧における加圧方向
と逆方向への累積塑性変形量と加圧最大荷重との関係を
示す図である。図5を曲げ側加工特性テーブルと呼ぶ。
図6を曲げ戻し側加工特性テーブルと呼ぶ。
で各回の加圧時の矯正履歴データを表す。は同
一方向に加圧したときの矯正履歴データである。は
とは逆方向に加圧したときの矯正履歴データである。
は再びと同一方向に加圧したときの矯正履歴データ
である。で初めて加圧方向が変わったときに、それ以
前から加工特性が著しく変化する。こののような条件
下での加圧を曲げ戻しと呼ぶ。では加圧方向が再び
と同一方向に戻っているが、の示す加工特性には
従わず、しかもとも加工特性が異なる。こののよ
うな条件下での加圧を曲げ足しと呼ぶ。1回目から6回
目までの各回の加圧によって生じた、1回目の加圧方向
と同一方向への逐次塑性変形量をそれぞれΔ1,Δ2,Δ
3,Δ4,Δ5,Δ6とする。逆方向への逐次塑性変形量は
負値で表す。すなわち、Δ4,Δ5は負値である。また各
回の加圧時の最大荷重をそれぞれw1,w2,w3,w4
5,w6とする。また、各回の加圧後の、1回目の加圧
前を基準とした1回目の加圧と同一方向への累積塑性変
形量をそれぞれx1,x2,x3,x4,x5,x6とする。
例えばx1=Δ1であり、x2=Δ2+Δ1である。また、
最初に加圧方向の変更があった時を基準とする、1回目
の加圧と逆の方向への累積塑性変形量を曲げ戻し側累積
塑性変形量と呼び、それぞれz1,z2,z3,z4
5,z6とする。例えばz4=x4−x3=Δ4で、z6
6−x3=Δ4+Δ5+Δ6である。
FIG. 5 is a diagram showing the relationship between the accumulated plastic deformation in the same direction as the pressing direction and the maximum load in the first pressing when one pressing position of one straightening material is pressed six times. It is.
FIG. 6 shows the cumulative plastic deformation in the direction opposite to the pressing direction and the maximum pressing load in the first pressing with the cumulative plastic deformation before pressing when the pressing direction is changed for the first time set to 0. FIG. FIG. 5 is called a bending-side processing characteristic table.
FIG. 6 is called a bending-back-side processing characteristic table.
Represents correction history data at each pressurization. Is correction history data when pressure is applied in the same direction. Is correction history data when pressure is applied in the reverse direction.
Is correction history data when pressure is again applied in the same direction. When the pressing direction changes for the first time, the processing characteristics change significantly before that time. Pressing under such conditions is called bending back. In this case, the pressing direction returns to the same direction as above, but the processing characteristics do not follow and the processing characteristics are different. Pressurization under such conditions is called bending addition. The amounts of successive plastic deformation in the same direction as the first pressing direction, generated by the first to sixth pressings, are represented by Δ 1 , Δ 2 , and Δ, respectively.
3, Δ 4, Δ 5, and delta 6. The amount of sequential plastic deformation in the opposite direction is represented by a negative value. That is, Δ 4 and Δ 5 are negative values. The w 1, respectively the maximum load of each round of pressurization, w 2, w 3, w 4,
Let w 5 and w 6 . Also, each time after pressurization, x 1 first referenced to pressurization the first pressure and the cumulative amount of plastic deformation in the same direction, respectively, x 2, x 3, x 4, x 5, and x 6.
For example, x 1 = Δ 1 and x 2 = Δ 2 + Δ 1 . Also,
First referenced to when there is a change in the direction of pressure, referred to as first pressure and cumulative plastic deformation bending back side cumulative plastic deformation of opposite to the direction, each z 1, z 2, z 3, z 4,
z 5 and z 6 . For example, z 4 = x 4 -x 3 = Δ 4, z 6 =
x 6 −x 3 = Δ 4 + Δ 5 + Δ 6

【0036】1回目の加圧時には、現長尺材の現矯正位
置について参照すべき矯正履歴データが存在しない。そ
こで、その長尺材を含む1または複数の長尺材の1また
は複数の矯正位置を同一加圧方向で矯正したときの矯正
履歴データを用いて回帰直線の(1)式を求め、F,n
値を算出したのちに数4に変形し、加圧最大荷重と塑性
変形量との関係式として用いる。
At the time of the first pressurization, there is no correction history data to be referred to for the current correction position of the current long material. Therefore, using the correction history data obtained when one or more correction positions of one or more long members including the long member are corrected in the same pressing direction, the regression line equation (1) is obtained. n
After the value is calculated, it is transformed into Equation 4 and used as a relational expression between the maximum pressurized load and the amount of plastic deformation.

【0037】2回目の加圧において、加圧方向が1回目
と同一方向である時には、現長尺材の現矯正位置につい
て参照すべき矯正履歴データはただ1点である。この
場合、1回目の加圧時に求めた同じ数4を1個しかない
矯正履歴データ点を通るようにw軸方向に平行移動す
る。すなわち、座標の第1成分を塑性変形量とし第2成
分を最大加圧力として、点を(x1,w1)とすると
き、
In the second pressing, when the pressing direction is the same as the first pressing, the correction history data to be referred to for the current correction position of the current long material is only one point. In this case, the same number 4 obtained at the first pressurization is translated in the w-axis direction so as to pass through only one correction history data point. That is, when the first component of the coordinates is the amount of plastic deformation, the second component is the maximum pressing force, and the point is (x 1 , w 1 ),

【0038】[0038]

【数5】 (Equation 5)

【0039】とする。It is assumed that

【0040】2回目の加圧において、加圧方向が1回目
と逆方向である時には、1回目の加圧時と同様にして加
圧最大荷重と塑性変形量との関係式を求める。
In the second pressing, when the pressing direction is opposite to the first pressing, the relational expression between the maximum pressing load and the amount of plastic deformation is obtained in the same manner as in the first pressing.

【0041】3回目以降の矯正において、その前回まで
の矯正がすべて今回と同じ加圧方向であった場合、前回
までの全ての矯正履歴データを用いて回帰直線の(1)
式を求め、F,n値を算出したのちに数4に変形し、加
圧最大荷重と塑性変形量との関係式として用いる。
In the third and subsequent corrections, if all previous corrections have the same pressing direction as this time, the regression line (1) is obtained using all correction history data up to the previous time.
After calculating the formulas and calculating the F and n values, they are transformed into the formula 4 and used as a relational expression between the maximum applied load and the amount of plastic deformation.

【0042】3回目以降の加圧において、それ以前に加
圧方向の変更がただ一度だけあった場合、すなわち曲げ
戻しが発生した場合について説明する。前回までの矯正
がすべて今回と逆の加圧方向であった場合、前回までの
全ての矯正履歴データを用いて回帰直線の(1)式を求
め、F,n値を算出したのちに数4に変形し、あらかじ
め実験により求めた定数F’を用いて次式に変形する。
In the third and subsequent pressurizations, a description will be given of a case where the pressurization direction has been changed only once before that, that is, a case where bending back has occurred. If the corrections up to the previous time were all in the opposite direction of pressurization, the regression line (1) was calculated using all correction history data up to the previous time, and the F and n values were calculated. And using the constant F ′ obtained by an experiment in advance to the following equation.

【0043】[0043]

【数6】 (Equation 6)

【0044】この式を曲げ戻し時の加工特性とする。ま
た例えば、前回までの累積塑性変形量をxjとし、あら
かじめ実験により求めた定数をKFとしてF’=−KF
jFとしてもよい。次に、前回の矯正だけが今回と同じ
加圧方向であった場合、前ゝ回までの全ての矯正履歴デ
ータを用いて回帰直線の(1)式を求め、F,n値を算
出したのちに数4に変形し、前回の矯正履歴データ点を
通るようにw軸方向に平行移動する。また例えば、前回
の加圧が加圧方向変更後始めての加圧であったことを利
用し、前回の加圧次に算出したFおよびF’から仮想的
な矯正履歴データ(0,F+F’)を設定し、この点と
前回の矯正履歴データ点を用いて数4を求めてもよい。
最後に、前回までの矯正が2回以上連続した今回と同一
方向の加圧であった場合、今回と同一方向の矯正履歴デ
ータ点すべてを用いて回帰直線の(1)式を求め、F,
n値を算出したのちに数4に変形し加圧最大荷重と塑性
変形量との関係式とする。
This equation is used as the processing characteristic at the time of bending back. Further, for example, the accumulated plastic deformation amount up to the previous time is defined as x j, and a constant obtained in advance by experiment is defined as K F , and F ′ = − K F x
jF may be used. Next, if only the previous correction was in the same pressure direction as this time, the regression line (1) was obtained using all the correction history data up to the previous ゝ, and the F and n values were calculated. And is translated in the w-axis direction so as to pass through the previous correction history data point. Also, for example, utilizing the fact that the previous pressurization was the first pressurization after the change in the pressurization direction, virtual correction history data (0, F + F ′) is calculated from F and F ′ calculated next to the previous pressurization. May be set, and Equation 4 may be obtained using this point and the previous correction history data point.
Lastly, if the previous correction was pressurization in the same direction as this time, which was performed two or more times in succession, the regression line (1) was obtained using all the correction history data points in the same direction as this time.
After calculating the n value, it is transformed into the formula 4 and a relational expression between the maximum pressurized load and the amount of plastic deformation is obtained.

【0045】3回目以降の加圧において、それ以前に加
圧方向の変更が2度以上あった場合、すなわち曲げ足し
の場合について説明する。なお、2度目の加圧方向変更
後の加圧はすべて曲げ足しとして取り扱うことができ
る。
In the third and subsequent pressurizations, the case where the pressurization direction has been changed twice or more before that, that is, the case of bending and adding will be described. Note that all pressures after the second change in the pressure direction can be handled as bending additions.

【0046】まず、前回の矯正が今回と同一方向であっ
た場合、前回を含めて連続する限りにおいて、今回と同
一方向の矯正履歴データをすべて用い、さらに、今回と
同一方向の矯正履歴データのうち、加圧最大荷重が最大
であるデータを加えて数4を求め、加圧最大荷重と塑性
変形量との関係式とする。
First, when the previous correction was in the same direction as this time, all the correction history data in the same direction as this time are used as long as the correction is continued including the previous time. Of these data, the maximum pressurizing load is added to the data, and Equation 4 is calculated to obtain a relational expression between the maximum pressurizing load and the amount of plastic deformation.

【0047】次に、前回の矯正が今回と逆方向の加圧で
あった場合について説明する。前回矯正時の加圧最大荷
重をwj、前回矯正後の今回と同一方向側での累積塑性
変形量をxj、今回と同一方向の矯正履歴データのうち
最後のものを(xk,wk)とするとき、前回の矯正に用
いたF,n値を用いて仮想的に次のような矯正履歴デー
タ(xj’,wj’)を作る。区別のためここでFをFj
と書く。
Next, a case where the previous correction is pressurization in the opposite direction to the current correction will be described. The maximum pressurizing load at the time of the previous straightening was w j , the accumulated plastic deformation amount in the same direction after the previous straightening was x j , and the last correction history data in the same direction as this time was (x k , w k ), the following correction history data (x j ′, w j ′) is virtually created using the F and n values used for the previous correction. For distinction, here F is F j
Write

【0048】xj’=xj,wj’=wk−(wj−F)こ
こで、2点(xk,wk),(xj’,wj’)を平行移動
して作った2点(xk−xj’,wk),(0,wj’)そ
れぞれの各成分の対数をとり、回帰直線を求めてF,n
値を算出する。最後に平行移動した分を元に戻して、最
終的に次式、
X j ′ = x j , w j ′ = w k − (w j −F) Here, two points (x k , w k ), (x j ′, w j ′) are translated in parallel. The logarithm of each component of each of the two points (x k −x j ′, w k ) and (0, w j ′) is obtained, and a regression line is obtained to obtain F, n
Calculate the value. Restore the last translation and finally the following equation:

【0049】[0049]

【数7】 (Equation 7)

【0050】を得る。この式を加圧最大荷重と塑性変形
量との関係式とする。
Is obtained. This equation is defined as a relational equation between the maximum pressurized load and the amount of plastic deformation.

【0051】最後に、被矯正材が新素材であるなどし
て、矯正履歴データが全く蓄積されていない場合が考え
られる。この場合には最初の矯正位置を用いて矯正履歴
データを蓄積する必要がある。あらかじめ記憶された初
期値から、あらかじめ記憶された一定値ずつ加圧最大荷
重を増やして、塑性変形した矯正履歴データを2点得る
まで同一方向から繰り返し加圧する。ただしこの場合に
おいても、曲げ戻しと状況によっては曲げ足しを行うこ
とにより許容誤差内に収束させることができ、被矯正材
の1本を試験用に供するような必要はない。
Finally, it is conceivable that the correction history data is not accumulated at all because the material to be corrected is a new material. In this case, it is necessary to accumulate the correction history data using the first correction position. From the initial value stored in advance, the maximum pressurizing load is increased by a predetermined value stored in advance, and pressure is repeatedly applied from the same direction until two points of plastically deformed correction history data are obtained. However, even in this case, it is possible to converge within an allowable error by performing the bending back and the bending addition depending on the situation, and it is not necessary to use one of the materials to be corrected for the test.

【0052】以上により全ての場合について加圧最大荷
重と累積塑性変形量との関係式を求める方法を得た。こ
の式のxに目標の塑性変形量を代入すると、加圧最大荷
重wを求める。
As described above, a method for obtaining the relational expression between the maximum pressurized load and the accumulated plastic deformation in all cases was obtained. When the target amount of plastic deformation is substituted for x in this equation, the maximum pressurized load w is obtained.

【0053】[0053]

【発明の効果】曲がりの矯正に対して本発明を適用する
ことによって、1回の矯正試行で目標の塑性変形量に対
して高い精度で矯正を行える可能性が高く、平均3回の
矯正試行で目標の塑性変形量に対して高い精度で矯正を
行うことができる。
By applying the present invention to the correction of bending, there is a high possibility that correction can be performed with high accuracy with respect to the target amount of plastic deformation in one correction trial, and an average of three correction trials is performed. Thus, the correction can be performed with high accuracy for the target amount of plastic deformation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】曲り矯正荷重算出方法の処理のフローチャー
ト。
FIG. 1 is a flowchart of processing of a bending correction load calculation method.

【図2】矯正位置および塑性変形量の説明図。FIG. 2 is an explanatory diagram of a correction position and a plastic deformation amount.

【図3】本発明を適用した結果例をもとにした被矯正材
矯正時の最大荷重と塑性変形量との関係の説明図。
FIG. 3 is an explanatory diagram of a relationship between a maximum load and a plastic deformation amount at the time of straightening a material to be straightened based on an example of a result of applying the present invention.

【図4】本発明を適用した結果例をもとにした被矯正材
矯正時の最大荷重と塑性変形量それぞれの対数を取った
ときの関係の説明図。
FIG. 4 is an explanatory diagram of a relationship when a logarithm of a maximum load and a logarithm of a plastic deformation amount at the time of correcting a material to be corrected based on an example of a result of applying the present invention.

【図5】一被矯正材の一加圧位置を6回加圧したときの
1回目の加圧における加圧方向と同一方向への累積塑性
変形量と加圧最大荷重との関係を示す説明図。
FIG. 5 is an explanatory diagram showing the relationship between the cumulative amount of plastic deformation in the same direction as the pressing direction and the maximum pressing load in the first pressing when one pressing position of the material to be corrected is pressed six times. FIG.

【図6】初めて加圧方向を変更したときの加圧前の累積
塑性変形量を0とした1回目の加圧における加圧方向と
逆方向への累積塑性変形量と加圧最大荷重との関係を示
す説明図。
FIG. 6 is a graph showing the relationship between the cumulative plastic deformation in the direction opposite to the pressing direction and the maximum pressing load in the first pressing with the cumulative plastic deformation before the pressing when the pressing direction is changed for the first time being 0; FIG.

【図7】従来方法の説明図。FIG. 7 is an explanatory diagram of a conventional method.

【符号の説明】[Explanation of symbols]

1…矯正データ入力方法、 2…目標最大荷重出力方法、 3…矯正履歴記憶方法、 4…加工特性演算方法、 5…目標最大荷重出力方法。 1 ... Correction data input method, 2 ... Target maximum load output method, 3 ... Correction history storage method, 4 ... Processing characteristic calculation method, 5 ... Target maximum load output method.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 近藤 眞範 茨城県ひたちなか市市毛1070番地株式会 社日立製作所水戸工場内 (72)発明者 永井 雅浩 茨城県ひたちなか市市毛1070番地株式会 社日立製作所水戸工場内 (72)発明者 山田 満 茨城県ひたちなか市市毛1070番地株式会 社日立製作所水戸工場内 (56)参考文献 特開 平6−277760(JP,A) 特開 昭54−135659(JP,A) 特開 昭55−117520(JP,A) 特開 平2−192820(JP,A) 特開 昭63−199026(JP,A) (58)調査した分野(Int.Cl.7,DB名) B21D 3/00 - 3/16 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Masanori Kondo 1070 Ma, Hitachinaka City, Ibaraki Prefecture Inside the Mito Plant of Hitachi, Ltd. (72) Inventor Masahiro Nagai 1070 Ma, Hitachinaka City, Hitachinaka City, Ibaraki Prefecture Hitachi, Ltd. Inside Mito Factory (72) Inventor Mitsuru Yamada 1070 Ma, Hitachinaka City, Ibaraki Pref. Mito Factory Hitachi, Ltd. (56) References JP-A-6-277760 (JP, A) JP-A-54-135659 ( JP, A) JP-A-55-117520 (JP, A) JP-A-2-192820 (JP, A) JP-A-63-199026 (JP, A) (58) Fields investigated (Int. Cl. 7 , (DB name) B21D 3/00-3/16

Claims (11)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】被矯正材の個体を識別する記号と矯正位置
と加圧方向と矯正に必要な塑性変形量と矯正実行時の加
圧最大荷重と塑性変形量とを入力し、矯正時の目標最大
荷重を出力する曲り矯正荷重算出方法において、矯正時
の加圧最大荷重と塑性変形量と個体を識別する記号と矯
正位置と矯正回数と加圧方向とを記憶する矯正履歴記憶
と、被矯正材矯正時の加圧最大荷重と塑性変形量それぞ
れの対数をとり回帰直線を求めることによって加圧最大
荷重と塑性変形量との関係式を計算し、矯正時の目標最
大荷重を算出することを特徴とする曲り矯正荷重算出方
法。
1. A symbol for identifying an individual material to be corrected, a correction position, a pressing direction, a plastic deformation amount required for correction, a maximum pressing load and a plastic deformation amount at the time of performing correction, and a correction value at the time of correction. In the bending correction load calculating method for outputting the target maximum load, a correction history storage for storing a maximum pressing load at the time of correction, a plastic deformation amount, a symbol for identifying an individual, a correction position, a correction frequency, and a pressing direction; Calculate the relational expression between the maximum pressurizing load and the plastic deformation by taking the logarithm of the maximum pressurizing load and the amount of plastic deformation at the time of straightening and calculating the regression line to calculate the target maximum load at the time of straightening. A bending straightening load calculation method characterized by the following.
【請求項2】請求項1において、前記記憶された現被矯
正材現矯正位置の矯正における加圧最大荷重と塑性変形
量とがいずれも複数個である場合に、加圧最大荷重量と
塑性変形量それぞれの対数をとり回帰直線を求めること
によって加圧最大荷重と塑性変形量との関係式を算出す
る曲り矯正荷重算出方法。
2. The method according to claim 1, wherein the maximum pressurizing load and the plastic deformation amount in correcting the stored current straightening position of the current material to be corrected are both plural. A bending correction load calculation method that calculates the relational expression between the maximum applied load and the plastic deformation amount by taking the logarithm of each deformation amount and obtaining a regression line.
【請求項3】請求項1において、前記記憶された現被矯
正材の現矯正位置の矯正における加圧最大荷重と塑性変
形量とのいずれかが2個未満である場合に、前記記憶さ
れた一つまたは複数の被矯正材の一つまたは複数の矯正
位置における矯正時の加圧最大荷重と塑性変形量それぞ
れの対数をとり回帰直線を求めることによって加圧最大
荷重と塑性変形量との関係式を算出する曲り矯正荷重算
出方法。
3. The method according to claim 1, wherein when either of the stored maximum pressurizing load and the amount of plastic deformation in the correction of the current correction position of the stored current material to be corrected is less than two, the stored correction is performed. The relationship between the maximum pressurized load and the amount of plastic deformation by taking the logarithm of each of the maximum pressurized load and the amount of plastic deformation during correction at one or more correction positions of one or more materials to be corrected and obtaining a regression line A straightening load calculation method for calculating the equation.
【請求項4】請求項3において、前記記憶された現被矯
正材の現矯正位置における矯正時の加圧最大荷重と塑性
変形量がいずれも存在する場合、前記記憶された現被矯
正材の現矯正位置における矯正時の加圧最大荷重と塑性
変形量を用いて前記算出した矯正時の加圧最大荷重と塑
性変形量との関係式を平行移動して現被矯正材の現矯正
位置の矯正における加圧最大荷重と塑性変形量との関係
式を算出する曲り矯正荷重算出方法。
4. The method according to claim 3, wherein when the stored current maximum correction load and the plastic deformation amount at the current correction position of the stored current material to be corrected are both present, the stored current material to be corrected is stored. Using the maximum pressurizing load at the time of correction at the current straightening position and the amount of plastic deformation at the time of correction, the relational expression between the maximum pressurizing load at correction and the amount of plastic deformation calculated at the same time is translated and the current correction position of the current material to be corrected is A bending straightening load calculation method for calculating a relational expression between the maximum pressurizing load and the amount of plastic deformation in straightening.
【請求項5】請求項1において、前記記憶された現被矯
正材の現矯正位置の矯正における加圧方向のデータが存
在しいずれもが前記入力された加圧方向と逆であった場
合に、前記記憶された現被矯正材の現矯正位置の矯正に
おける加圧最大荷重と塑性変形量それぞれの対数をとり
回帰直線を求め平行移動することによって加圧最大荷重
と塑性変形量との関係式を算出する曲り矯正荷重算出方
法。
5. The method according to claim 1, wherein there is data of a pressing direction in the stored correction of the current correction position of the current material to be corrected which is opposite to the input pressing direction. The relational expression between the maximum pressurized load and the amount of plastic deformation by taking the logarithm of each of the maximum pressurized load and the amount of plastic deformation in the correction of the stored current straightening position of the current material to be corrected and obtaining a regression line and moving in parallel. To calculate the straightening load.
【請求項6】請求項1において、前記記憶された現被矯
正材の現矯正位置の矯正における加圧方向のうち最後に
記憶されたものが、前記入力された加圧方向と逆であ
り、前記記憶された現被矯正材の現矯正位置の矯正にお
ける加圧方向のうち最後に記憶されたもの以外の少なく
とも一つが、前記入力された加圧方向と同じである場合
に、前記記憶された現被矯正材の現矯正位置の矯正にお
ける加圧方向のうち前記入力された加圧方向と同一であ
りかつ最後に記憶されたものについて、それと同時に記
憶された加圧最大荷重と塑性変形量とを合わせて第1の
点とし、前記記憶された現被矯正材の現矯正位置の矯正
における加圧方向のうち前記入力された加圧方向と同一
でありかつ最後に記憶されたものについて、それより後
に記憶された加圧最大荷重と塑性変形量とをすべて用い
て演算を行った結果に基づいて第1の点を平行移動した
点を第2の点とし、それぞれの各成分の対数をとって回
帰直線を求めることによって加圧最大荷重と塑性変形量
との関係式を算出する曲り矯正荷重算出方法。
6. The pressurizing direction stored in the stored pressurized material according to claim 1, wherein the last stored pressurizing direction in the correction of the current corrective position of the current material to be corrected is opposite to the input pressurizing direction, When at least one of the stored pressing directions in the correction of the current correction position of the current material to be corrected other than the last stored pressing direction is the same as the input pressing direction, the stored pressing direction is stored. Of the pressing directions in the correction of the current correction position of the current material to be corrected, which are the same as the input pressing direction and the last stored direction, the maximum pressing load and the amount of plastic deformation stored simultaneously with the stored direction. Are combined into a first point, and among the stored pressing directions in the correction of the current correction position of the current material to be corrected, which is the same as the input pressing direction and lastly stored, The later Based on the result of the calculation using all of the load and the amount of plastic deformation, the point obtained by translating the first point is defined as the second point, and the logarithm of each component is calculated to obtain a regression line. A straightening load calculating method for calculating a relational expression between the maximum pressure load and the amount of plastic deformation.
【請求項7】請求項1から請求項6に記載の一つもしく
は複数の方法を用いた長尺材曲り矯正方法。
7. A method for straightening a long material using one or a plurality of the methods according to claim 1.
【請求項8】請求項1から請求項6に記載の一つもしく
は複数の方法を用いた長尺材曲り矯正装置。
8. A long material bending straightening apparatus using one or a plurality of the methods according to claim 1.
【請求項9】請求項1から請求項6に記載の一つもしく
は複数の方法を用いたエレベータ用ガイドレール曲り矯
正装置。
9. An apparatus for straightening an elevator guide rail using one or a plurality of methods according to claim 1.
【請求項10】請求項1から請求項6に記載の一つもし
くは複数の方法を用いた曲げ加工装置。
10. A bending apparatus using one or a plurality of methods according to claim 1.
【請求項11】請求項1から請求項6に記載の一つもし
くは複数の方法を用いた引張り圧縮加工装置。
11. A tension-compression processing apparatus using one or a plurality of methods according to claim 1.
JP10934295A 1995-05-08 1995-05-08 Curve straightening load calculation method Expired - Fee Related JP3271469B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10934295A JP3271469B2 (en) 1995-05-08 1995-05-08 Curve straightening load calculation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10934295A JP3271469B2 (en) 1995-05-08 1995-05-08 Curve straightening load calculation method

Publications (2)

Publication Number Publication Date
JPH08300042A JPH08300042A (en) 1996-11-19
JP3271469B2 true JP3271469B2 (en) 2002-04-02

Family

ID=14507801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10934295A Expired - Fee Related JP3271469B2 (en) 1995-05-08 1995-05-08 Curve straightening load calculation method

Country Status (1)

Country Link
JP (1) JP3271469B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103418642B (en) * 2012-05-18 2015-09-09 长江润发机械股份有限公司 A kind of elevator guide rail precision leveler
CN110346215A (en) * 2018-04-08 2019-10-18 吉林启星铝业有限公司 A kind of aluminium drill pipe aligning and full-scale load-detecting system
CN114803771B (en) * 2022-05-24 2023-07-25 快意电梯股份有限公司 Elevator guide rail distribution and guide rail bracket positioning method

Also Published As

Publication number Publication date
JPH08300042A (en) 1996-11-19

Similar Documents

Publication Publication Date Title
Pourboghrat et al. Prediction of spring-back and side-wall curl in 2-D draw bending
US20190291163A1 (en) Springback compensation in the production of formed sheet-metal parts
KR101066778B1 (en) Shape defect factor identification method, device, and program
Park et al. Development of a finite element analysis program for roller leveling and application for removing blanking bow defects of thin steel sheet
De Vin et al. A process model for air bending
Rebelo et al. Finite element analysis of sheet forming processes
Stelson et al. An adaptive pressbrake control using an elastic-plastic material model
US7130714B1 (en) Method of predicting springback in hydroforming
JP3271469B2 (en) Curve straightening load calculation method
JP3809374B2 (en) Stress-strain relationship simulation method and method for obtaining yield point in unloading process
US5508935A (en) Method for determining the radius of a bending die for use with a bending machine for bending a part and an associated apparatus
CN114309261A (en) Progressive forming bending method for double-curved-surface metal plate
Nakagaki et al. A finite-element analysis of stable crack growth—I
Huang Elasto-plastic finite-element analysis of the axisymmetric tube-flaring process with conical punch
CN112474819B (en) Method and device for controlling shape of product
JPH105872A (en) Method for straightening bend of long stock
Kim et al. Finite element method for the analysis of a material property identification algorithm for pressbrake bending
Naceur et al. Response surface methodology for the design of sheet metal forming parameters to control springback effects using the inverse approach
JP2920372B2 (en) Age forming molding method
Weisz-Patrault et al. Imposed curvature of an elastic-plastic strip: application to simulation of coils
JP4798983B2 (en) Estimation method of residual stress when passing through roll straightener
JPH09323129A (en) Method for correcting real time of calculated data of linear shape deformation by heating
JP2843273B2 (en) Hot rolled steel sheet shape prediction method
JP2628916B2 (en) Flatness control method during reverse rolling
JP3063524B2 (en) Bar straightening method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080125

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080125

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090125

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090125

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100125

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees