JP3269308B2 - Method for manufacturing resin substrate for optical information recording medium - Google Patents

Method for manufacturing resin substrate for optical information recording medium

Info

Publication number
JP3269308B2
JP3269308B2 JP584195A JP584195A JP3269308B2 JP 3269308 B2 JP3269308 B2 JP 3269308B2 JP 584195 A JP584195 A JP 584195A JP 584195 A JP584195 A JP 584195A JP 3269308 B2 JP3269308 B2 JP 3269308B2
Authority
JP
Japan
Prior art keywords
pressure
resin
substrate
resin substrate
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP584195A
Other languages
Japanese (ja)
Other versions
JPH08192450A (en
Inventor
基範 上田
通和 堀江
フリードリッヒ バーカード
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP584195A priority Critical patent/JP3269308B2/en
Publication of JPH08192450A publication Critical patent/JPH08192450A/en
Application granted granted Critical
Publication of JP3269308B2 publication Critical patent/JP3269308B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/263Moulds with mould wall parts provided with fine grooves or impressions, e.g. for record discs

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Manufacturing Optical Record Carriers (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は大容量の光学的情報記録
媒体、特に今後主流となると思われる、700nm未満
の短波長でNA=0.55以上の対物レンズを用い、か
つトラックピッチ1.3μm未満の記録密度で記録・再
生を行う光ディスクに適した樹脂基板の射出圧縮成形に
よる製造方法に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to a large-capacity optical information recording medium, in particular, to use an objective lens having a short wavelength of less than 700 nm and an NA = 0.55 or more, which is considered to become the mainstream, and having a track pitch of 1.0. The present invention relates to a method for producing a resin substrate suitable for an optical disk for recording / reproducing at a recording density of less than 3 μm by injection compression molding.

【0002】[0002]

【従来の技術】記録可能な光ディスクとして穴あけ型媒
体が登場して以来、10年以上の年月が経過した。この
間、記録消去が可能な光磁気媒体、1ビームオーバーラ
イトが可能な相変化媒体なども実用化されている。極く
初期を除き、記録再生用光源としては半導体レーザーが
用いられており、使用レーザー波長は、初期は830n
m前後、最近では780nm前後が主流である。
2. Description of the Related Art More than ten years have passed since the emergence of a perforated medium as a recordable optical disk. During this time, magneto-optical media capable of recording and erasing, phase change media capable of overwriting by one beam, and the like have been put to practical use. Except for the very beginning, a semiconductor laser is used as a recording / reproducing light source.
m, and recently around 780 nm.

【0003】収束光ビームのスポット径は、波長が短け
れば小さくすることができるため、短波長化が望まれて
いるが、現在、信頼性のある実用的な半導体レーザーの
波長は780nmまでである。このような光記録媒体
は、コスト、量産性の観点から透明な樹脂基板上に記録
層、保護層等を形成してなり、ポリカーボネート樹脂が
主として用いられている。樹脂基板、特にポリカーボネ
ート樹脂基板では、基板の光学的異方性、すなわち複屈
折、と基板のそり、すなわちチルトが問題となる。特に
光磁気媒体では、0.5度程度の小さなKerr回転角
を検出するため、複屈折の影響が大きい。
[0003] Since the spot diameter of the convergent light beam can be reduced if the wavelength is short, it is desired to shorten the wavelength. At present, however, the wavelength of a reliable and practical semiconductor laser is up to 780 nm. . Such an optical recording medium has a recording layer, a protective layer, and the like formed on a transparent resin substrate from the viewpoint of cost and mass productivity, and mainly uses a polycarbonate resin. In the case of a resin substrate, particularly, a polycarbonate resin substrate, the optical anisotropy of the substrate, that is, birefringence, and the warpage of the substrate, that is, the tilt, become problems. Particularly, in a magneto-optical medium, since a small Kerr rotation angle of about 0.5 degrees is detected, the influence of birefringence is large.

【0004】しかしながら、樹脂の分子量等の最適化、
成形技術の改良により、面内複屈折は20×10-6未満
に抑えられ、実用上問題ないレベルとなっている。一
方、垂直複屈折、すなわち基板面に平行な方向の屈折率
と基板面に直角な方向の屈折率の差の絶対値は、ポリカ
ーボネート樹脂基板で特に大きく、500×10-6以上
にも達するが、作動光学ヘッドの開発により、やはり実
用上問題ないレベルまでその影響は低減されていた。
[0004] However, optimization of the molecular weight of the resin, etc.
By the improvement of the molding technique, the in-plane birefringence is suppressed to less than 20 × 10 −6 , which is a practically acceptable level. On the other hand, the absolute value of the vertical birefringence, that is, the absolute value of the difference between the refractive index in the direction parallel to the substrate surface and the refractive index in the direction perpendicular to the substrate surface is particularly large in a polycarbonate resin substrate, and reaches 500 × 10 −6 or more. With the development of the working optical head, the influence has been reduced to a level at which there is no practical problem.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、光ディ
スクの一層の高密度化が求められるなか、680nm前
後の半導体レーザーが実用化され、近い将来安価で高出
力なものが提供される見通しが出てきた。また、800
〜1000nm前後の高出力半導体レーザーと非線形素
子を組み合わせて500nm前後の波長を得る技術も進
歩し、レーザーと非線形素子を組み合わせたヘッドも小
型化されつつある。
However, with the demand for higher density optical discs, semiconductor lasers having a wavelength of about 680 nm have been put to practical use, and it is expected that inexpensive and high-output ones will be provided in the near future. . Also, 800
Techniques for obtaining a wavelength of about 500 nm by combining a high-power semiconductor laser of about 1000 nm and a non-linear element have also been advanced, and a head combining a laser and a non-linear element has also been reduced in size.

【0006】さらには、波長500nm程度の半導体レ
ーザーも実験室レベルでは開発に成功したという報告が
あいついでいる。このように、短波長化半導体レーザー
を用いた高密度光ディスクは、まず波長680nm前後
を始めとして、近い将来に量産化される状況が整ってき
ている。またより小さなスポット径を得るため、収束用
の対物レンズの開口数NAを0.55以上にすることも
検討されている。以上述べたような高密度化の際、いっ
たん解決されたと思われた樹脂基板の光学的異方性及び
チルトが再び深刻な問題となることが懸念される。
Further, it has been reported that a semiconductor laser having a wavelength of about 500 nm has been successfully developed at a laboratory level. As described above, high-density optical discs using a semiconductor laser with a shorter wavelength are being mass-produced in the near future, beginning with a wavelength of about 680 nm. Further, in order to obtain a smaller spot diameter, it has been studied to increase the numerical aperture NA of the objective lens for convergence to 0.55 or more. At the time of the above-described high density, there is a concern that the optical anisotropy and tilt of the resin substrate once considered to be solved will become a serious problem again.

【0007】まず、樹脂基板の光学的異方性(複屈折)
に係わる問題点としては、以下の2点があげられる。 1)基板を光ビームが通過する際に生じる位相差。
(W.A.Challener and T.A.Ri
nehart,Appl.Opt.,31(199
2),1853ページ等に詳しい)光磁気媒体のように
光の偏光とその方位の回転を利用して情報の記録再生を
行う媒体では、特定方向の直線偏光の回転とともに、楕
円化が生じ、これがキャリアレベルの低下、作動ヘッド
におけるコモンモードノイズの増加をもたらす。
First, the optical anisotropy (birefringence) of the resin substrate
The following two points can be cited as problems relating to. 1) A phase difference generated when a light beam passes through a substrate.
(WA Challenger and TA Ri
nehart, Appl. Opt. , 31 (199
2), page 1853) For a medium that records and reproduces information using the polarization of light and rotation of its direction, such as a magneto-optical medium, ellipticity occurs with the rotation of linear polarization in a specific direction. This results in a lower carrier level and an increase in common mode noise in the working head.

【0008】通常のポリカーボネート樹脂基板では2軸
または1軸の光学的異方性を有し、これは入射光の方向
によって、位相差が異なってくることを意味する。収束
光ビームでは、種々の入射光線の方位があるため、無数
の位相差を有する光線の寄せ集めとなり、位相差板等で
は簡単に補正できない、複雑な波面を形成する。位相差
は、光線の入射方向によって決まる基板の複屈折をΔ
n、基板厚をd、波長をλとすると、
An ordinary polycarbonate resin substrate has biaxial or uniaxial optical anisotropy, which means that the phase difference varies depending on the direction of incident light. In a convergent light beam, since there are various directions of incident light beams, light beams having innumerable phase differences are gathered, and a complicated wavefront which cannot be easily corrected by a phase difference plate or the like is formed. The phase difference is the birefringence of the substrate, which is determined by the incident direction of the light beam, is Δ
n, the substrate thickness is d, and the wavelength is λ,

【0009】[0009]

【数1】Δn・d/λ## EQU1 ## Δn · d / λ

【0010】で決まるから、記録再生に用いる波長が短
くなれば、実質的に位相差は増加する。従って、短波長
化、特に700nm未満で使用する光磁気媒体では基板
の複屈折による位相差の問題が深刻になる。
Therefore, the phase difference substantially increases as the wavelength used for recording / reproducing becomes shorter. Accordingly, the problem of phase difference due to birefringence of the substrate becomes serious in the case of shortening the wavelength, especially in a magneto-optical medium used below 700 nm.

【0011】2)複屈折による非点収差の問題。(B.
E.Bernacki and M.Mansurip
ur,Appl.Opt.,32(1993),654
7ページ等に詳しい)収束光ビームで基板に対して垂直
でなく斜めに光線が基板に入射する際、屈折が生じる
が、光学的異方性を有する基板では、入射光線の方位、
入射角度によって屈折率が異なることはよく知られてい
る。このため、本来、基板の記録層側の面で直径1μm
程度の面内に収束すべき、ビームに非点収差が生じる。
2) The problem of astigmatism due to birefringence. (B.
E. FIG. Bernacki and M.S. Mansurip
ur, Appl. Opt. , 32 (1993), 654.
When a light beam is incident on the substrate obliquely, not perpendicularly to the substrate, with a convergent light beam (refer to page 7 or the like), refraction occurs.
It is well known that the refractive index varies depending on the incident angle. For this reason, the diameter of the substrate should be 1 μm
Astigmatism occurs in the beam, which should converge within a certain plane.

【0012】非点収差が生じた場合、焦点面をどこで合
わせるかという光学ヘッドの機差により、記録再生特性
にばらつきが生じる。また、ビームがトラック横断方向
に長軸をもつ楕円ビームとなった場合、隣接トラックか
らのクロストークが問題となる。短波長光源を用いた高
密度光ディスクでは、トラックピッチも狭くなるから、
クロストークの問題はいっそう厳しくなる。
When astigmatism occurs, the recording / reproducing characteristics vary due to differences in the optical head where the focal plane is adjusted. Further, when the beam is an elliptical beam having a major axis in the cross-track direction, crosstalk from an adjacent track becomes a problem. In a high-density optical disk using a short-wavelength light source, the track pitch becomes narrower.
The problem of crosstalk becomes even more severe.

【0013】従来、垂直複屈折を400×10-6未満と
する基板についての出願(特開昭62−204451)
はあるが、その製造方法に関する記述は不十分で必ずし
も光学的、機械的に優れた各種特性のバランスのとれた
基板を提供できるとは限らない。別の、出願(特開昭6
2−121767)では、主軸を基板面に水平にするこ
とを提案しているが、やはり、製造方法として十分な記
載があるとは言えないし、光学特性以外の機械特性等を
も満足できるとは限らない。
Conventionally, an application for a substrate having a vertical birefringence of less than 400 × 10 -6 (Japanese Patent Laid-Open No. 62-204451)
However, the description of the manufacturing method is inadequate, and it is not always possible to provide a substrate that is excellent in optical and mechanical properties and balances various properties. Another application (Japanese Unexamined Patent Publication No.
2-121767) proposes to make the main axis horizontal to the substrate surface. However, it cannot be said that there is a sufficient description as a manufacturing method, and it cannot satisfy mechanical characteristics other than optical characteristics. Not exclusively.

【0014】これらは、800nm程度の波長での比較
的記録密度の媒体を念頭に、複屈折に伴う位相差の低減
のみを考慮している。先の出願(特開昭62−2044
51号等)では射出成形過程を3段階で制御し、転写の
ための加圧過程の直後に圧力を大幅に抜くことを提案し
ているが、これでは、樹脂が比較的自由に収縮しやす
く、微妙な変形を生じ易い。光学的異方性の少ないポリ
オレフィン樹脂を用いるという材料面からの提案もある
が、その上に成膜した薄膜との密着性が悪いこと、生産
量が少なく、工程が複雑なため、高価であること等の理
由により、必ずしも実用化に適するとはいえない。
[0014] These are concerned only with a medium having a relatively high recording density at a wavelength of about 800 nm, and only consider the reduction of the phase difference due to birefringence. Earlier application (Japanese Patent Application Laid-Open No. 62-2044)
No. 51) proposes that the injection molding process is controlled in three stages, and that the pressure is significantly reduced immediately after the pressurizing process for transfer. However, in this case, the resin tends to shrink relatively freely. , Easy to cause subtle deformation. Although there is a proposal from the material side to use a polyolefin resin with low optical anisotropy, it is expensive because of poor adhesion to a thin film formed thereon, a small amount of production, and a complicated process. For these reasons, it is not always suitable for practical use.

【0015】さらに、通常用いられる基板の厚みは1.
2mmであるが、基板の厚みを1.0mm未満とする
と、複屈折に係わる上記問題は軽減される。しかし、そ
のような薄型基板は、単体ではそり易く、機械的安定性
に乏しいため、張り合わせて使用する必要がある。
Further, the thickness of a commonly used substrate is 1.
Although it is 2 mm, when the thickness of the substrate is less than 1.0 mm, the above-mentioned problem relating to birefringence is reduced. However, such a thin substrate is easily warped by itself and has poor mechanical stability.

【0016】[0016]

【課題を解決するための手段】本発明者らは、現在広く
用いられており、安価で信頼性についても実績のあるポ
リカーボネート樹脂基板の複屈折、特に垂直複屈折を低
減し、将来の高密度媒体にも適用できるよう、射出成形
法について種々検討を行い、本発明に到達した。すなわ
ち、本発明の要旨は、射出圧縮成形によって形成され
る、外径80mmφ以上150mmφ以下の光学的情報
記録媒体用のポリカーボネート樹脂基板の製造方法であ
って、溶融樹脂を金型内に充填する第1過程と、圧縮し
てスタンパ上の微細パターンを転写する第2過程と、金
型内に樹脂を保持して冷却する第3過程と、金型を開い
て成形品を知り出す第4過程とからなり、金型温度を樹
脂のガラス転移点Tgに対して10から40℃低い温度
に保持し、第1過程において基板の単位面積あたりに印
加する圧力P1を0≦P1<220kgf/cm2
し、第2過程の圧力P2を220≦P2≦430kgf
/cm2 とし、第3過程において圧力を2段階に制御
し、その圧力P3、P4をP4+60≦P3≦P2−4
0kgf/cm2 、かつ、80≦P3<220kgf/
cm2 、0≦P4<80kgf/cm2 となるように設
定し、かつ、上記第1過程及び第2過程に要する時間、
すなわち、樹脂充填開始から圧力P2の印加を終了し、
圧力P3の印加開始までの時間を3秒未満とし、圧力P
3から圧力P4へ圧力を変化させるタイミングを樹脂充
填より3秒以上経過し、かつ5秒は経過しない時間とす
る光学的情報記録媒体用樹脂基板の製造方法に存する。
Means for Solving the Problems The present inventors have reduced the birefringence, particularly vertical birefringence, of a polycarbonate resin substrate which has been widely used at present and is inexpensive and has a proven track record in reliability. Various studies have been made on the injection molding method so as to be applicable to the medium, and the present invention has been reached. That is, the gist of the present invention is a method for producing a polycarbonate resin substrate for an optical information recording medium having an outer diameter of 80 mmφ or more and 150 mmφ or less, which is formed by injection compression molding, wherein a mold is filled with a molten resin. A first step, a second step of compressing and transferring the fine pattern on the stamper, a third step of holding and cooling the resin in the mold, and a fourth step of opening the mold to find out a molded product. The mold temperature is maintained at a temperature lower by 10 to 40 ° C. than the glass transition point Tg of the resin, and the pressure P1 applied per unit area of the substrate in the first step is set to 0 ≦ P1 <220 kgf / cm 2. , The pressure P2 in the second step is set to 220 ≦ P2 ≦ 430 kgf
/ Cm 2, and the pressure is controlled in two stages in the third step, and the pressures P3 and P4 are P4 + 60 ≦ P3 ≦ P2-4
0 kgf / cm 2 and 80 ≦ P3 <220 kgf /
cm 2 , 0 ≦ P4 <80 kgf / cm 2 , and the time required for the first and second steps,
That is, the application of the pressure P2 ends from the start of the resin filling,
The time until the start of application of the pressure P3 is less than 3 seconds, and the pressure P3
The present invention is directed to a method for manufacturing a resin substrate for an optical information recording medium, in which the pressure is changed from 3 to the pressure P4 at a time at which 3 seconds or more have elapsed since the resin was filled and 5 seconds did not elapse.

【0017】本発明に用いる樹脂はポリカーボネート樹
脂であり、1種または2種以上のビスフェノール類とホ
スゲンまたはジフェニルカーボネートのような炭酸エス
テルとを反応させることにより製造されるもので、その
例は、特公平6−20784、特公平6−20783に
例示されている。このうち、代表的なのは、現在広く用
いられているビスフェノールAからなるタイプである。
本発明における射出圧縮成形に用いる装置の概念図を図
1に、圧力制御の模式図を図2に示す。
The resin used in the present invention is a polycarbonate resin, which is produced by reacting one or more bisphenols with phosgene or a carbonate such as diphenyl carbonate. This is exemplified in Japanese Patent Publication No. Hei 6-20784 and Japanese Patent Publication No. Hei 6-20783. Among them, a typical one is a type of bisphenol A which is widely used at present.
FIG. 1 is a conceptual diagram of an apparatus used for injection compression molding in the present invention, and FIG. 2 is a schematic diagram of pressure control.

【0018】以下、本発明のディスク用基板成形法につ
き詳細に説明する。図1には本発明の基板の成形方法を
実施する成形装置の一例が示されている。この成形装置
10は可動金型11と固定金型12とを含み、可動金型
11には基板13表面にビットやレーザー案内溝を転写
形成するためのスタンパー14が内外周スタンパー押さ
え15,16によって固定されている。
Hereinafter, the disk substrate forming method of the present invention will be described in detail. FIG. 1 shows an example of a molding apparatus for performing the substrate molding method of the present invention. The molding apparatus 10 includes a movable mold 11 and a fixed mold 12. A stamper 14 for transferring and forming a bit or a laser guide groove on the surface of the substrate 13 is formed on the movable mold 11 by inner and outer stamper holders 15 and 16. Fixed.

【0019】他方、固定金型12は固定盤17に載置さ
れており、中央には湯口筒体即ちスプルー部18が設け
られている。このスプルー部18の中心には樹脂流入路
18aが形成されており、その一端18bは金型11,
12間に形成されるキャビティ19内に開口し且つ他端
18cは射出ノズル20に接続している。そして、固定
金型12は、その外周部に配置され且つ固定盤17に取
付けられた金型押え21によって該固定盤17に固定さ
れている。
On the other hand, the fixed mold 12 is mounted on a fixed platen 17, and a sprue cylinder or sprue portion 18 is provided at the center. A resin inflow path 18a is formed at the center of the sprue part 18, and one end 18b of the resin inflow path 18a is
The other end 18c is connected to the injection nozzle 20 and opens into the cavity 19 formed between the two. The fixed mold 12 is fixed to the fixed board 17 by a mold presser 21 arranged on the outer peripheral portion and attached to the fixed board 17.

【0020】可動金型11と固定金型12は図1に示さ
れるように温度調整用チャンネル22a〜22d,23
a〜23dを備え、このチャンネルによって各金型1
1、12の径方向内側(以下内周部と称す)の温度と外
側(以下外周部と称す)の温度とを調節する。また、ス
プルー部18には中心の樹脂流入路18aを取り巻くよ
うに冷却媒体通路24が形成されている。
As shown in FIG. 1, the movable mold 11 and the fixed mold 12 are provided with temperature control channels 22a to 22d, 23.
a to 23d, each die 1
The temperature of the inner side (hereinafter, referred to as an inner peripheral portion) and the outer side (hereinafter, referred to as an outer peripheral portion) of the first and second temperatures are adjusted. Further, a cooling medium passage 24 is formed in the sprue portion 18 so as to surround the central resin inflow passage 18a.

【0021】本発明のディスク用基板製造法はこのよう
な成形装置10によって実施される。すなわち、当該成
形装置10において、可動金型11が固定金型12に型
閉じされ、例えばポリカーボネートのような溶融樹脂が
射出ノズル20からスプルー部18の樹脂流入路18a
を介してキャビティ19内に射出される。溶融樹脂のキ
ャビティ19への射出工程前に、可動金型11は矢印A
方向に高圧で加圧される。
The method of manufacturing a disk substrate according to the present invention is performed by such a molding apparatus 10. That is, in the molding apparatus 10, the movable mold 11 is closed by the fixed mold 12, and a molten resin such as polycarbonate is injected from the injection nozzle 20 to the resin inflow passage 18 a of the sprue portion 18.
Through the cavity 19. Before the step of injecting the molten resin into the cavity 19, the movable mold 11
Pressure in the direction.

【0022】この可動金型11の加圧即ち型締め圧力
は、本特許請求に示す圧力である。この型締め圧力によ
りキャビティ19内の溶融樹脂は所望の板厚のディスク
にプレス成形され、スタンパー14のピット又は溝等の
プリフォーマット情報が転写される。そして、プレス成
形後はこの型締め圧力をそのまま保持、或いは段階的に
変化させる。この後、成形されたディスク基板を金型1
1、12から取り出す。すなわち、金型を開く直前に固
定金型12に付属したエアー離型機構から基板と固定金
型12との間にエアーを導入してディスク基板を固定金
型12から引き離し金型を開く。
The pressurization of the movable mold 11, that is, the mold clamping pressure is the pressure described in the present invention. The molten resin in the cavity 19 is press-molded into a disk having a desired thickness by the mold clamping pressure, and preformat information such as pits or grooves of the stamper 14 is transferred. After the press forming, the mold clamping pressure is maintained as it is or is changed stepwise. Thereafter, the molded disk substrate is placed in a mold 1
Take out from 1 and 12. That is, immediately before the mold is opened, air is introduced between the substrate and the fixed mold 12 from an air release mechanism attached to the fixed mold 12 to separate the disk substrate from the fixed mold 12 and open the mold.

【0023】可動金型11側は、金型を開くと同時、あ
るいは、型開後に機械的突出機構が動作するまでの間に
エアー供給することにより、ディスク基板をスタンパー
14から引き離す。図2において、圧力制御は少なくと
も3段階に分けられる。
The movable mold 11 separates the disk substrate from the stamper 14 by supplying air at the same time as opening the mold or during the period after the mold is opened until the mechanical projection mechanism operates. In FIG. 2, the pressure control is divided into at least three stages.

【0024】溶融した樹脂を金型内に充填する第1過程
は、樹脂温度が低下して流れにくくなる前に終了するた
め、1秒未満の短時間とする。充填された樹脂表面にス
タンパの微細パターンを転写するための第2過程は、
0.5秒〜2秒程度に選ばれるのが普通である。樹脂の
冷却を行なう第3過程は数秒から30秒程度の間で、機
械特性の安定性、タクトタイム等を考慮して決められ
る。基板をいきなり取り出すとガラス転移点Tg近傍に
あるため、変形し易い。例えば、基板中心部を吸着して
金型からはずす場合、わずかな引っかかり(金型を開い
た時の落下防止に必要)により、基板が反ったりする。
The first step of filling the molten resin into the mold is completed before the resin temperature decreases and the resin does not flow easily, so that the first step is shorter than 1 second. The second process for transferring the fine pattern of the stamper to the filled resin surface is as follows:
Usually, it is selected to be about 0.5 to 2 seconds. The third step of cooling the resin is determined in consideration of stability of mechanical properties, tact time and the like in a period of from several seconds to about 30 seconds. When the substrate is suddenly taken out, it is near the glass transition point Tg, so that it is easily deformed. For example, when the central portion of the substrate is removed from the mold by suction, the substrate warps due to slight catching (necessary to prevent the mold from dropping when opened).

【0025】溶融樹脂の温度は樹脂の流動性が十分確保
でき、かつ分解等から変質が防げる温度であり、例え
ば、分子量15000程度のビスフェノールAからなる
ポリカーボネート樹脂では、3百数十℃程度から400
℃程度に選ばれる。もちろん、樹脂の融点、流動性、耐
熱性を基準として決められるので、樹脂の融点が変化す
れば必ずしもこの範囲にあるとは限らない。
The temperature of the molten resin is a temperature at which the fluidity of the resin can be sufficiently ensured and deterioration due to decomposition or the like can be prevented. For example, in the case of a polycarbonate resin comprising bisphenol A having a molecular weight of about 15,000, a temperature of about three hundred and several tens degrees Celsius to 400
℃ is selected. Of course, since it is determined based on the melting point, fluidity, and heat resistance of the resin, if the melting point of the resin changes, it does not always fall within this range.

【0026】金型温度Tmoは通常、樹脂のガラス転移
点Tgよりやや低めに選ばれる。Tgより数十℃以上低
いと、金型表面でのスキン層形成が促進され、特に面内
複屈折が大きくなる。Tgより高いと、基板が柔らかい
まま金型から取り出されることになり、機械特性の面か
ら好ましくない。
The mold temperature Tmo is usually selected to be slightly lower than the glass transition point Tg of the resin. When the temperature is lower than Tg by several tens of degrees C. or more, formation of a skin layer on the surface of the mold is promoted, and particularly, in-plane birefringence increases. If it is higher than Tg, the substrate is taken out of the mold while being soft, which is not preferable in terms of mechanical properties.

【0027】例えば、充填時の樹脂温度350℃、樹脂
のTgが140℃の場合、Tmoは100℃〜120℃
とし、冷却時間を5秒〜10秒とする。少なくともこの
3段階あれば、現行の垂直複屈折500×10-6程度の
光ディスク樹脂基板の製造は可能である。
For example, when the resin temperature at the time of filling is 350 ° C. and the Tg of the resin is 140 ° C., Tmo is 100 ° C. to 120 ° C.
And the cooling time is 5 seconds to 10 seconds. With at least these three steps, it is possible to manufacture an optical disk resin substrate having a current vertical birefringence of about 500 × 10 −6 .

【0028】さて、ポリカーボネート樹脂基板の複屈折
のうち、面内複屈折に関しては、樹脂温度、金型温度を
ある温度以上にして樹脂の流動性を確保し、また、樹脂
自身の分子量を14000〜20000程度に低くする
ことで、十分低くできる。また、比較的短時間の低温の
アニールでも低減できる。すなわち、20×10-6未満
にすることは容易である(特公平6−20784、特開
昭60−155424)。
As for the in-plane birefringence of the polycarbonate resin substrate, the resin temperature and the mold temperature are set to a certain temperature or more to secure the fluidity of the resin, and the molecular weight of the resin itself is set to 14000 to 14,000. By lowering it to about 20,000, it can be lowered sufficiently. In addition, it can be reduced by annealing at a low temperature for a relatively short time. That is, it is easy to make it less than 20 × 10 -6 (Japanese Patent Publication No. 6-20784, Japanese Patent Application Laid-Open No. Sho 60-155424).

【0029】一方、通常500〜600×10-6と言わ
れるポリカーボネート樹脂基板の垂直複屈折を低くする
ことは容易ではない。第2過程で相当大きな圧力P2を
印加して転写したあと、第3過程において圧力P3をで
きるだけ低くして冷却した方が良いことは既に知られて
いる(特公平5−68778)。
On the other hand, it is not easy to lower the vertical birefringence of a polycarbonate resin substrate, which is usually referred to as 500 to 600 × 10 -6 . It is already known that it is better to apply the pressure P2 in the second step to transfer the image and transfer it in the third step, and then to cool in the third step by reducing the pressure P3 as low as possible (Japanese Patent Publication No. 5-67878).

【0030】本発明者らは、P2からP3への圧力差が
大きく、かつP3が低いほど垂直複屈折の低下が著し
く、また、特定の時間範囲内でP2からP3への圧力低
下を行うことが有効であることを見いだした。この圧力
低下のタイミングは、金型内に充填された樹脂の内部の
温度が急激に低下する際に、Tgを通過する前後とほぼ
一致する。
The present inventors have found that the larger the pressure difference from P2 to P3 and the lower P3, the more the vertical birefringence is reduced, and that the pressure is reduced from P2 to P3 within a specific time range. Was found to be effective. The timing of the pressure drop substantially coincides with the timing before and after passing through Tg when the temperature inside the resin filled in the mold rapidly decreases.

【0031】すなわち、垂直複屈折の発生要因は、面内
複屈折のように樹脂充填時の流動によるものではなく、
冷却時、特にTg近傍での板厚方向の圧力と樹脂が収縮
しようとする圧力のバランスによって決まる。P2,P
3がずっと高ければ、基板は板厚方向に圧縮された状態
で固化する。P3がたとえ低くても、P2からP3への
移行が早ければ、樹脂の収縮があまりにも自由に行われ
るため、やはり高応力状態のまま固化してしまう。
That is, the cause of the vertical birefringence is not due to the flow at the time of filling the resin as in the in-plane birefringence, but
At the time of cooling, it is determined by the balance between the pressure in the thickness direction near Tg and the pressure at which the resin tends to shrink. P2, P
If 3 is much higher, the substrate solidifies while being compressed in the thickness direction. Even if P3 is low, if the transition from P2 to P3 is fast, the resin shrinks too freely, so that the resin is still solidified in a high stress state.

【0032】いずれにせよ、板厚方向と面内方向の応力
に異方性が生じ、これとポリカーボネート樹脂特有の大
きな光弾性定数のために、前述のような大きな垂直複屈
折が残されてしまうのである。従来、垂直複屈折は樹脂
の流動時に生じる配向性のみで説明されたり、圧縮成形
時の歪の残留のみに注目して説明されたりしてきた。
(例えば特開平4−83620)。樹脂固化時の、特に
Tg近傍まで冷却されたときの樹脂内の圧力バランスに
言及した例は、本発明者らが知る限り全くない。
In any case, anisotropy is generated in the stress in the plate thickness direction and the stress in the in-plane direction, and a large vertical birefringence as described above is left due to this and a large photoelastic constant peculiar to the polycarbonate resin. It is. Conventionally, vertical birefringence has been described only by the orientation that occurs when the resin flows, or has been described focusing only on residual strain during compression molding.
(For example, JP-A-4-83620). As far as the present inventors know, there is no example referring to the pressure balance in the resin during the solidification of the resin, particularly when the resin is cooled to around Tg.

【0033】本発明者らによる垂直複屈折発生メカニズ
ムに関する上記の新たな考案が、以下に述べる本発明の
新規性を支えるものであることは言うまでもない。本発
明者らは、考察は別として、従来経験的に提案、使用さ
れてきた、この3段階の制御だけでは、光学的、機械的
に高密度な媒体に適用できる基板は得難いという結論に
達した。すなわち、P2からP3の圧力差が大きく、P
3が低ければ良いということをP2からP3への1段階
で行おうとすると、樹脂に引けが発生したり、反りが発
生し易い。
It goes without saying that the above-mentioned new invention relating to the vertical birefringence generation mechanism by the present inventors supports the novelty of the present invention described below. The present inventors have concluded that, apart from considerations, it has been difficult to obtain a substrate applicable to optically and mechanically high-density media only by these three steps of control that have been proposed and used empirically in the past. did. That is, the pressure difference between P2 and P3 is large, and P
If it is attempted to reduce the value of 3 to one step from P2 to P3, the resin tends to be shrunk or warped.

【0034】これは、樹脂温度は金型の半径方向で一様
ではなく、Tgを通過するタイミングも2〜3秒のばら
つきを生じるため、一気に圧力を加えると、半径方向で
その効果が一様でなく、結果として、内外周で応力差を
生じるためであると考えられる。また、板厚方向にも温
度分布は存在するので基板の表裏に応力分布が非対称に
なったりする。
This is because the resin temperature is not uniform in the radial direction of the mold, and the timing of passing the Tg varies by 2 to 3 seconds. Therefore, when pressure is applied at once, the effect is uniform in the radial direction. It is considered that, as a result, a stress difference occurs between the inner and outer circumferences. Further, since the temperature distribution also exists in the thickness direction, the stress distribution may be asymmetric on the front and back surfaces of the substrate.

【0035】そこで、圧力プロファイルを4段階以上に
して冷却過程の圧力低下を段階的に行う必要がある。圧
力低下を徐々にあるいは段階的にするという提案は従来
もあったが、先に述べたとおり、特に垂直複屈折の低減
には特定の圧力差、タイミングのみが有効であり、この
点で従来の方法では不十分であると言わざるを得ない。
Therefore, it is necessary to reduce the pressure in the cooling process stepwise by setting the pressure profile to four or more steps. Although there has been a proposal to gradually or gradually reduce the pressure drop, as described above, only a specific pressure difference and timing are particularly effective in reducing vertical birefringence. I have to say that the method is not enough.

【0036】本発明においては、図2に模式的に示した
ような4段階の圧力プロファイルを用いる。金型温度T
moについては、上記3段階制御の場合と同様な配慮か
ら、樹脂のガラス転移点Tgに対して10℃から40℃
低い温度に保持する。金型温度をこのような範囲に保つ
ことは、樹脂の冷却速度をほぼ一定の範囲にする効果も
ある。
In the present invention, a four-stage pressure profile as schematically shown in FIG. 2 is used. Mold temperature T
As for mo, from the same consideration as in the case of the three-step control, the glass transition point Tg of the resin is 10 ° C. to 40 ° C.
Keep at low temperature. Maintaining the mold temperature in such a range also has the effect of keeping the cooling rate of the resin in a substantially constant range.

【0037】すなわち、特定の時間範囲に圧力を制御す
る本発明の特徴の一つは、樹脂温度がTg近傍まで冷却
された時に圧力を変化させることであるから、上記金型
温度を一定の範囲に保つことで圧力を変化させるべき特
定の時間範囲を限定できる。樹脂充填時の圧力P1は0
≦P1<220kgf/cm2 とする。220kgf/
cm2 以上とすると、樹脂充填時の抵抗が大きくなり、
せん断応力が増大して、樹脂の配向が促進させるため、
面内複屈折が大きくなりすぎるので好ましくない。
That is, one of the features of the present invention in which the pressure is controlled in a specific time range is to change the pressure when the resin temperature is cooled to around Tg. Keeps the specific time range over which the pressure should be changed. The pressure P1 when filling the resin is 0
≦ P1 <220 kgf / cm 2 . 220kgf /
When cm 2 or more, the resistance at the time of resin filling is increased,
Since the shear stress increases and the orientation of the resin is promoted,
It is not preferable because in-plane birefringence becomes too large.

【0038】微細パターン転写のための圧力P2は、2
20≦P2≦430kgf/cm2とする。220kg
f/cm2 未満では、微細パターンの転写が不十分であ
る。例えば、深さ0.5〜1μm、幅0.3〜0.6μ
m程度の溝を形成する場合、スタンパの凸形状の転写率
が悪く、浅い溝しか形成できないという問題が生じる。
The pressure P2 for transferring the fine pattern is 2
20 ≦ P2 ≦ 430 kgf / cm 2 . 220 kg
If it is less than f / cm 2 , transfer of the fine pattern is insufficient. For example, a depth of 0.5 to 1 μm and a width of 0.3 to 0.6 μm
When a groove of about m is formed, there is a problem that the transfer rate of the convex shape of the stamper is poor, and only a shallow groove can be formed.

【0039】430kgf/cm2 より大とすると、基
板中の残留応力歪を増大させ、複屈折の増大、基板のそ
りを生じ易い。本発明では、転写後の一定の冷却時間基
板を金型内に保持し、この間、圧力をP3、P4と段階
的に低下させる。P2からP3への圧力を低下させるタ
イミングは、金型内への樹脂充填開始から3秒未満とす
る。
When it is larger than 430 kgf / cm 2 , the residual stress strain in the substrate is increased, so that the birefringence is increased and the substrate is likely to be warped. In the present invention, the substrate is held in the mold for a fixed cooling time after the transfer, and during this time, the pressure is gradually reduced to P3 and P4. The timing of reducing the pressure from P2 to P3 is set to less than 3 seconds from the start of filling the resin into the mold.

【0040】樹脂を金型内に充填するには通常0.5秒
程度で十分であるから、残りの約2.5秒未満がP2印
加時間となる。P3からP4への圧力低下を、金型内樹
脂温度がほぼTg近傍にさしかかる時間帯とする。すな
わち、P3からP4へ圧力を変化させるタイミングを、
樹脂充填より3秒以上経過し、かつ5秒よりは経過しな
い時間帯とする。
Since about 0.5 seconds is usually sufficient for filling the resin into the mold, the remaining P2 application time is less than about 2.5 seconds. The pressure drop from P3 to P4 is defined as a time period when the temperature of the resin in the mold almost approaches Tg. That is, the timing of changing the pressure from P3 to P4 is
This is a time zone in which three seconds or more have elapsed since the resin was filled and no more than five seconds elapsed.

【0041】圧力P3、P4はP4+60≦P3≦P2
−40kgf/cm2 、かつ80≦P3<220kgf
/cm2 、0≦P4<80kgf/cm2 となるように
設定する。P2−P3が40kgf/cm2 未満であっ
たり、P3が220kgf/cm 2 以上であると、P2
からP3へ圧力低下させた効果が全くなく、実質的にP
2からP4にいっきに圧力変動させることになり、やは
り好ましくない。
The pressures P3 and P4 are P4 + 60 ≦ P3 ≦ P2
-40kgf / cmTwoAnd 80 ≦ P3 <220kgf
/ CmTwo, 0 ≦ P4 <80kgf / cmTwoSo that
Set. P2-P3 is 40kgf / cmTwoLess than
And P3 is 220kgf / cm TwoAbove, P2
Has no effect of reducing the pressure from P3 to P3,
The pressure will fluctuate from 2 to P4 at once.
Is not preferred.

【0042】最後に、P4を0≦P4<80kgf/c
2 となるように設定する。P4が80kgf/cm2
以上では、特に垂直複屈折の低減効果は見られない。本
発明の場合P1からP4のいずれかの圧力を印加する時
間も0とはならない。P4を0kg/cm2 とすること
は、面内複屈折を小さくする上で効果がある。P4が2
0kgf/cm2 から80kgf/cm2 では、負の比
較的大きな複屈折が特に、外周部に発生し易い。
Finally, P4 is set to 0 ≦ P4 <80 kgf / c
set so that the m 2. P4 is 80 kgf / cm 2
Above, there is no particular effect of reducing the vertical birefringence. In the case of the present invention, the time for applying any one of the pressures P1 to P4 is not zero. Setting P4 to 0 kg / cm 2 is effective in reducing in-plane birefringence. P4 is 2
From 0 kgf / cm 2 to 80 kgf / cm 2 , relatively large negative birefringence tends to occur particularly in the outer peripheral portion.

【0043】相変化媒体のような反射率変化を検出する
媒体では問題とならないレベルであるが光磁気媒体では
問題となるレベルとなる−20×10-6から−50×1
-6の範囲にある。ここでいう、面内複屈折の符号は、
半径方向主軸の屈折率が円周方向の主軸の屈折率より大
きい場合を正とする。本発明者らの検討によれば、この
負の複屈折は、樹脂基板を該樹脂の示差走査熱量計で測
定したガラス転移点Tgに対し、Tg−40℃≦Ta≦
Tg−10℃なる温度Taにおいてアニールすることに
よって大幅に低減することができ、ほとんどの場合、−
20×10-6より小さくできる。(絶対値を小さくでき
る)。
This is a level that does not cause a problem in a medium such as a phase change medium that detects a change in reflectivity, but a level that causes a problem in a magneto-optical medium, from −20 × 10 −6 to −50 × 1.
It is in the range of 0 -6. Here, the sign of in-plane birefringence is
A case where the refractive index of the radial main axis is larger than the refractive index of the circumferential main axis is defined as positive. According to the study of the present inventors, this negative birefringence is such that the resin substrate has a glass transition point Tg measured by a differential scanning calorimeter of the resin, Tg−40 ° C. ≦ Ta ≦
Annealing at a temperature Ta of Tg−10 ° C. can significantly reduce the temperature. In most cases, −
It can be smaller than 20 × 10 -6 . (The absolute value can be reduced).

【0044】また、アニールによる複屈折の低減は樹脂
の配向または、熱歪みの緩和によることが知られている
が、垂直と面内の複屈折ではアニールによる緩和速度が
異なるため、垂直複屈折を低下させるには30分以上の
アニールが必要である。外周部の面内複屈折の大きな領
域は、最外周から数mm未満に限られるので、外周部の
複屈折を低減したい場合には金型の外径を、上記樹脂基
板の外径より3mm以上10mm未満だけ大きいものと
し、上記金型径とほぼ等しい樹脂基板を成形した後、所
定の外径まで外周部を切削することも有効である。
It is known that the reduction in birefringence due to annealing is due to the relaxation of the orientation of the resin or thermal strain. To reduce the temperature, annealing for 30 minutes or more is required. Since the area with large in-plane birefringence in the outer periphery is limited to less than a few mm from the outermost periphery, if it is desired to reduce the birefringence in the outer periphery, the outer diameter of the mold should be 3 mm or more than the outer diameter of the resin substrate It is also effective to reduce the outer peripheral portion to a predetermined outer diameter after molding a resin substrate approximately equal to the above-mentioned mold diameter by making it larger by less than 10 mm.

【0045】もちろん、アニールと外周切削を組み合わ
せても良い。なお、本発明における4段階の圧力制御の
うち、P3、P4のステップは圧力範囲を上記P3、P
4に課せられた条件を保ちつつ、多段階に分割して、段
階的に圧力を減少させても良い。以下、実施例を用いて
本発明を詳細に説明する。本発明は、以下の実施例で用
いられた、特定の構造を有する成形機に依存しないこと
は言うまでもない。また、以下の実施例で用いた特定の
ポリカーボネート樹脂のみに限定されるものではない。
Of course, annealing and outer periphery cutting may be combined. In the four-stage pressure control in the present invention, the steps P3 and P4 set the pressure range to the above P3 and P4.
The pressure may be reduced stepwise by dividing into multiple stages while maintaining the conditions imposed on the fourth. Hereinafter, the present invention will be described in detail with reference to examples. It goes without saying that the present invention does not depend on the molding machine having a specific structure used in the following examples. The invention is not limited to the specific polycarbonate resin used in the following examples.

【0046】[0046]

【実施例】【Example】

実施例1〜14、比較例1〜16 成形用樹脂として、分子量14300のビスフェノール
Aタイプのポリカーボネート樹脂を用いた。示差走査熱
量計で測定したガラス転移点Tgは140℃である。成
形機のシリンダー内の樹脂温度を350℃として、金型
内に樹脂の充填を行った。金型温度は110℃〜120
℃で変化させた。樹脂基板は130mm、厚みは1.2
mmとした。
Examples 1 to 14, Comparative Examples 1 to 16 Bisphenol A type polycarbonate resin having a molecular weight of 14300 was used as a molding resin. The glass transition point Tg measured by a differential scanning calorimeter is 140 ° C. The temperature of the resin in the cylinder of the molding machine was set to 350 ° C., and the mold was filled with the resin. Mold temperature is 110 ° C ~ 120
C varied. Resin substrate is 130mm, thickness is 1.2
mm.

【0047】成形機は、住友重機(株)製のディスク5
A MIII (商品名)を使用した。表1に実施例の、表
2に比較例の成形条件及び評価結果をまとめた。評価結
果として半径30mmから60mmのうち10mm刻み
で、4点測定した面内複屈折及び垂直複屈折の最大値と
最小値を示した。さらに、基板の機械特性を現行光ディ
スクの規格(ISO/IEC13549)に従って評価
した結果、十分なマージンをもってクリアするものを
○、ぎりぎりではあるがクリアするものを△、規格外の
ものを×で表した。
The molding machine is a disk 5 manufactured by Sumitomo Heavy Industries, Ltd.
A MIII (trade name) was used. Table 1 summarizes the molding conditions and evaluation results of Examples and Table 2 of Comparative Examples. As the evaluation results, the maximum value and the minimum value of the in-plane birefringence and the vertical birefringence measured at four points were shown at 10 mm intervals from a radius of 30 mm to 60 mm. Furthermore, as a result of evaluating the mechanical properties of the substrate in accordance with the standard of the current optical disk (ISO / IEC13549), those that cleared with a sufficient margin were indicated by ○, those that cleared the marginally but clear were indicated by △, and those that did not meet the standard were indicated by ×. .

【0048】また、溝及びセクター部のピットの転写製
をやはり、上記規格に従って評価し、十分なマージンを
もってクリアするものを○、ぎりぎりではあるがクリア
するものを△、規格外のものを×で表した。実施例1
0、11はP3、P4を2段階に分割した例であり、機
械特性の改善に効果がある。
The quality of the transfer of the pits in the groove and the sector portion was also evaluated in accordance with the above-mentioned standards, and those which were cleared with a sufficient margin were evaluated as ○, those which were cleared slightly but cleared, and those which were out of the standard as ×. expressed. Example 1
0 and 11 are examples in which P3 and P4 are divided into two stages, and are effective in improving mechanical characteristics.

【0049】実施例15、比較例17、18 実施例1の基板を120℃、1時間でアニールした結果
を実施例15(表1)に示した。機械特性は良好であっ
た。アニールにより垂直複屈折は約80×10-6低減で
きた。面内複屈折は特に、最外周部で負の大きな値が低
減でき、+10×10-6から−10×10-6の範囲に収
まり全体的に良好な光学特性が得られ、光磁気ディスク
でも使用できるレベルとなった。
Example 15, Comparative Examples 17 and 18 The results of annealing the substrate of Example 1 at 120 ° C. for 1 hour are shown in Example 15 (Table 1). The mechanical properties were good. The annealing reduced the vertical birefringence by about 80 × 10 −6 . In particular, the in-plane birefringence can reduce a large negative value at the outermost peripheral portion, falls within a range of + 10 × 10 −6 to −10 × 10 −6 , and obtains good optical characteristics as a whole. You can now use it.

【0050】実施例1の基板を90℃でアニールした結
果を比較例17(表2)、130℃でアニールした結果
を比較例18(表2)に示した。90℃では面内複屈折
は低減できたものの、垂直複屈折はほとんど効果がな
く、130℃では、ガラス転移点に近すぎて基板が若干
軟化し、機械特性が悪化した。
The results of annealing the substrate of Example 1 at 90 ° C. are shown in Comparative Example 17 (Table 2), and the results of annealing at 130 ° C. are shown in Comparative Example 18 (Table 2). At 90 ° C., the in-plane birefringence could be reduced, but the vertical birefringence had little effect. At 130 ° C., the substrate was too close to the glass transition point and the substrate softened slightly, deteriorating the mechanical properties.

【0051】[0051]

【表1】 [Table 1]

【0052】[0052]

【表2】 [Table 2]

【0053】[0053]

【表3】 [Table 3]

【0054】[0054]

【表4】 [Table 4]

【0055】[0055]

【発明の効果】本発明の方法によれば、光学異方性、す
なわち複屈折が小さく、かつ機械的安定性に優れた基板
が得られる。
According to the method of the present invention, a substrate having a small optical anisotropy, that is, a small birefringence, and having excellent mechanical stability can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の方法に用いる装置の一例の縦断面図FIG. 1 is a longitudinal sectional view of an example of an apparatus used in the method of the present invention.

【図2】本発明の方法の圧力制御の模式図FIG. 2 is a schematic diagram of pressure control in the method of the present invention.

【符号の説明】 10 成形装置 11 可動金型 12 固定金型 13 基板 14 スタンパー 18 スプルー部 19 キャビティー[Description of Signs] 10 Molding apparatus 11 Movable mold 12 Fixed mold 13 Substrate 14 Stamper 18 Sprue part 19 Cavity

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI // B29K 69:00 B29K 69:00 B29L 17:00 B29L 17:00 (56)参考文献 特開 昭62−222812(JP,A) (58)調査した分野(Int.Cl.7,DB名) B29C 45/64 - 45/78 B29K 69:00 B29L 17:00 ────────────────────────────────────────────────── ─── Continued on the front page (51) Int.Cl. 7 Identification code FI // B29K 69:00 B29K 69:00 B29L 17:00 B29L 17:00 (56) References JP-A-62-222812 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) B29C 45/64-45/78 B29K 69:00 B29L 17:00

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 射出圧縮成形によって形成される、直径
80mmφ以上150mmφ未満、厚み1.0mm以上
1.5mm以下の光学的記録媒体用のポリカーボネート
樹脂基板の製造法であって、溶融樹脂を金型内に充填す
る第1過程と、圧縮してスタンパ上の微細パターンを転
写する第2過程と、金型内に樹脂を保持して冷却する第
3過程と、金型を開いて成形品を知り出す第4過程とか
らなり、金型温度を樹脂のガラス転移点Tgに対して1
0から40℃低い温度に保持し、第1過程において基板
の単位面積あたりに印加する圧力P1を0≦P1<22
0kgf/cm2 とし、第2過程の圧力P2を220≦
P2≦430kgf/cm2 とし、第3過程において圧
力を2段階に制御し、その圧力P3、P4をP4+60
≦P3≦P2−40kgf/cm2 、かつ、80≦P3
<220kgf/cm2 、0≦P4<80kgf/cm
2 となるように設定し、かつ、上記第1過程及び第2過
程に要する時間、すなわち、樹脂充填開始から圧力P2
の印加を終了し、圧力P3の印加開始までの時間を3秒
未満とし、圧力P3から圧力P4へ圧力を変化させるタ
イミングを樹脂充填より3秒以上経過し、かつ5秒は経
過しない時間とする光学的情報記録媒体用樹脂基板の製
造方法。
1. A method for producing a polycarbonate resin substrate for an optical recording medium having a diameter of 80 mmφ or more and less than 150 mmφ and a thickness of 1.0 mm or more and 1.5 mm or less, which is formed by injection compression molding. A first step of filling the inside, a second step of compressing and transferring the fine pattern on the stamper, a third step of holding and cooling the resin in the mold, and opening the mold to know the molded product. And a fourth step of discharging the mold, wherein the mold temperature is set at 1 with respect to the glass transition point Tg of the resin.
The temperature is kept lower by 0 to 40 ° C., and the pressure P1 applied per unit area of the substrate in the first step is 0 ≦ P1 <22.
0 kgf / cm 2, and the pressure P2 in the second step is 220 ≦
P2 ≦ 430 kgf / cm 2 , the pressure is controlled in two stages in the third step, and the pressures P3 and P4 are set to P4 + 60
≦ P3 ≦ P2-40 kgf / cm 2 and 80 ≦ P3
<220 kgf / cm 2 , 0 ≦ P4 <80 kgf / cm
2 and the time required for the first and second steps, ie, the pressure P2 from the start of resin filling.
Is completed, the time until the start of application of the pressure P3 is set to less than 3 seconds, and the timing at which the pressure is changed from the pressure P3 to the pressure P4 is set to a time after 3 seconds or more from the resin filling and 5 seconds or less. A method for manufacturing a resin substrate for an optical information recording medium.
【請求項2】 圧力P4を0とすることを特徴とする請
求項1に記載の光学的情報記録媒体用樹脂基板の製造方
法。
2. The method for producing a resin substrate for an optical information recording medium according to claim 1, wherein the pressure P4 is set to 0.
【請求項3】 成形後の樹脂基板を基板を形成する樹脂
の示差走査熱量計で測定したガラス転移点Tgに対し、
Tg−40≦Ta≦Tg−10℃なる温度Taで少なく
とも30分アニールすることを特徴とする請求項1に記
載の光学的情報記録媒体用樹脂基板の製造方法。
3. The resin substrate after molding has a glass transition point Tg measured by a differential scanning calorimeter of a resin forming the substrate.
2. The method for producing a resin substrate for an optical information recording medium according to claim 1, wherein the annealing is performed at a temperature Ta satisfying Tg-40 ≦ Ta ≦ Tg−10 ° C. for at least 30 minutes.
【請求項4】 金型キャビティーの外径を、所望の樹脂
基板の外径より3mm以上10mm未満大きいものと
し、樹脂基板を成形したのち、所定の外径まで樹脂基板
の外周部を切削することを特徴とする請求項1ないし3
のいずれかに記載の光学的情報記録媒体用樹脂基板の製
造方法。
4. An outer diameter of a mold cavity is set to be 3 mm or more and less than 10 mm larger than an outer diameter of a desired resin substrate, and after molding the resin substrate, an outer peripheral portion of the resin substrate is cut to a predetermined outer diameter. 4. The method according to claim 1, wherein:
The method for producing a resin substrate for an optical information recording medium according to any one of the above.
【請求項5】 圧力P3及び圧力P4の印加時間を分割
し、圧力P3、圧力P4を経時的に減少させることを特
徴とする請求項1ないし4のいずれかに記載の光学的情
報記録媒体用樹脂基板の製造方法。
5. The optical information recording medium according to claim 1, wherein the application time of the pressure P3 and the pressure P4 is divided to decrease the pressure P3 and the pressure P4 with time. A method for manufacturing a resin substrate.
JP584195A 1995-01-18 1995-01-18 Method for manufacturing resin substrate for optical information recording medium Expired - Lifetime JP3269308B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP584195A JP3269308B2 (en) 1995-01-18 1995-01-18 Method for manufacturing resin substrate for optical information recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP584195A JP3269308B2 (en) 1995-01-18 1995-01-18 Method for manufacturing resin substrate for optical information recording medium

Publications (2)

Publication Number Publication Date
JPH08192450A JPH08192450A (en) 1996-07-30
JP3269308B2 true JP3269308B2 (en) 2002-03-25

Family

ID=11622251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP584195A Expired - Lifetime JP3269308B2 (en) 1995-01-18 1995-01-18 Method for manufacturing resin substrate for optical information recording medium

Country Status (1)

Country Link
JP (1) JP3269308B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4810496B2 (en) * 2007-04-25 2011-11-09 株式会社東芝 Pattern forming apparatus, pattern forming method, and template
JP6209965B2 (en) * 2013-12-20 2017-10-11 日本ゼオン株式会社 Plastic transmissive optical element molding method

Also Published As

Publication number Publication date
JPH08192450A (en) 1996-07-30

Similar Documents

Publication Publication Date Title
US4409169A (en) Method for manufacturing disk-shaped information carriers
US6154442A (en) Multilayered optical information-recording media laminated with thermal plastic resin sheets and process for manufacturing thereof
US4961884A (en) Process for producing substrate of optical disc
JP2001266417A (en) Transfer method
US5705105A (en) Process for making optical disk substrates
US7365919B2 (en) Forming methods, forming devices for articles having a micro-sized shape and optical elements
JP3269308B2 (en) Method for manufacturing resin substrate for optical information recording medium
US6973021B2 (en) Multilayered optical information-recording media and process for manufacture thereof
JP5650641B2 (en) Disc substrate molding apparatus, disc substrate molding method, and disc substrate molding die
EP1447800B1 (en) Method of manufacturing an optical recording substrate
JP2004046053A (en) Objective and optical head device
USRE38107E1 (en) Method for producing optical disc substrates
JPH11514601A (en) Injection molding of compact disc
JPH11242829A (en) Photorecord medium and its manufacture
JPH07201091A (en) Molding method for substrate for magneto-optical disk
JP4576838B2 (en) Molding method
JPH09198722A (en) Manufacture of substrate of optical recording medium and optical recording medium
JPH0866945A (en) Manufacture of base plate for disk and device therefor
JP2002074766A (en) Method for manufacturing optical recording medium
JP2002127193A (en) Optical disk substrate molding die, and molding method for optical disk substrate
JP2001058341A (en) Optical disk substrate and mold therefor
JP3228026B2 (en) Apparatus and method for manufacturing optical disc substrate
JP4098592B2 (en) Optical recording medium, molding die for optical recording medium, and substrate for optical recording medium
JPH06166074A (en) Manufacture of optical disk base
JPH07107746B2 (en) Optical information recording medium and manufacturing method thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090118

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090118

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100118

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140118

Year of fee payment: 12

EXPY Cancellation because of completion of term