JP3267057B2 - Method for analyzing colored components in high refractive index solutions - Google Patents

Method for analyzing colored components in high refractive index solutions

Info

Publication number
JP3267057B2
JP3267057B2 JP16885794A JP16885794A JP3267057B2 JP 3267057 B2 JP3267057 B2 JP 3267057B2 JP 16885794 A JP16885794 A JP 16885794A JP 16885794 A JP16885794 A JP 16885794A JP 3267057 B2 JP3267057 B2 JP 3267057B2
Authority
JP
Japan
Prior art keywords
sample
carrier
refractive index
concentration
absorbance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16885794A
Other languages
Japanese (ja)
Other versions
JPH0815159A (en
Inventor
昌弘 徳田
豊 林部
恭正 佐山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP16885794A priority Critical patent/JP3267057B2/en
Publication of JPH0815159A publication Critical patent/JPH0815159A/en
Application granted granted Critical
Publication of JP3267057B2 publication Critical patent/JP3267057B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、フローインジェクショ
ン法による高屈折率溶液中の有色成分の分析方法に関す
る。本発明の方法は、高塩濃度溶液中の有色成分の定量
分析に特に有用である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for analyzing a colored component in a high refractive index solution by a flow injection method. The method of the present invention is particularly useful for quantitative analysis of colored components in a high salt concentration solution.

【0002】[0002]

【従来技術】フローインジェクション法は、細管で構成
された流路内にキャリアを連続的に流し、これに少量の
試料溶液を注入して該キャリアによってフロースルー型
の検出器に導き、試料中の目的成分濃度を検出する方法
である。多数の試料を連続して分析することが可能であ
るので、迅速な分析が必要な生理学的検査や測定対象の
経時的変化を解析するには特に有効な分析方法である。
測定系の概略を模式図6に示す。図示するように、試料
注入部5から弁13を通じて少量の試料溶液が管路12
に導入され、管内を流れるキャリア1によって検出器1
1に送られる。検出定量には様々な方法が用いられる
が、最も典型的な方法は吸光光度法である。この場合、
測定対象成分は有色でも無色でもよい。無色の場合に
は、例えば、キャリア中に発色試薬を含有させ、検出器
11に至るまでの管路12内で試料2とキャリア1とを
混合することにより試料中の測定対象成分を発色試薬と
反応させ、検出器により検出が可能な有色の化学種3に
転換して定量する。
2. Description of the Related Art In the flow injection method, a carrier is continuously flowed into a flow path constituted by a thin tube, a small amount of a sample solution is injected into the flow path, and the carrier is guided to a flow-through type detector by the carrier, whereby a sample contained in the sample is subjected to flow. This is a method for detecting the concentration of the target component. Since it is possible to analyze a large number of samples continuously, it is a particularly effective analysis method for analyzing physiological tests requiring rapid analysis and changes over time of a measurement object.
FIG. 6 schematically shows the measurement system. As shown in FIG.
The detector 1 is introduced by the carrier 1
Sent to 1. Various methods are used for detection and quantification, and the most typical method is a spectrophotometric method. in this case,
The component to be measured may be colored or colorless. In the case of colorless, for example, a coloring reagent is contained in the carrier, and the sample 2 and the carrier 1 are mixed in the pipe 12 leading to the detector 11 to thereby convert the component to be measured in the sample to the coloring reagent. The reaction is allowed to proceed, and it is converted to a colored chemical species 3 that can be detected by a detector and quantified.

【0003】しかし、試料溶液が塩分等を高濃度で含有
する場合など高い屈折率を有する場合、キャリア1によ
って試料2を送液する際に濃度の不均一による屈折率の
乱れが生じ、これが疑似的な、すなわち測定対象成分の
濃度とは無関係な吸光ピークとして検出され誤差原因と
なる問題がある。かかる疑似ピークの発生は、キャリア
自体の屈折率を試料と同程度とするか、試料の注入量を
減らして試料をキャリア中に均一に混合させることで抑
制ないし防止できるが、前者の方法では屈折率の範囲が
広範囲に亘る試料ではキャリアの調整に余計な手間が必
要となり、多数の試料を迅速に処理できる利点を失うこ
とになる。また後者の方法では分析対象成分の濃度が過
剰に希釈されて測定精度や感度が低下する虞があり、ま
た試料の均一混合のために反応流路も長くなる欠点があ
る。この他に、異常値の棄却検定を行って測定精度を向
上させる方法も提案されている(特開平2-52240 号公
報)が、かかる方法では同一試料について複数回の測定
が必須であり、迅速な測定を簡単に行なうというフロー
インジェクション法の特長を減殺する。このため、例え
ば、亜鉛電解液中の銅イオン濃度の変化を追跡する場合
など、塩分含有量の高い液中の有色成分の定量を高い測
定精度及び感度を維持しつつ継続的に行なうための改良
されたフローインジェクション法が求められていた。
However, when the sample solution has a high refractive index, such as when the sample solution contains a high concentration of salt or the like, when the sample 2 is sent by the carrier 1, the refractive index is disturbed due to the non-uniform concentration. However, there is a problem that it is detected as a light absorption peak irrelevant to the concentration of the component to be measured, that is, an error. The occurrence of such a pseudo peak can be suppressed or prevented by making the refractive index of the carrier itself substantially equal to that of the sample or reducing the injection amount of the sample and uniformly mixing the sample in the carrier. In the case of a sample having a wide range of the rate, extra labor is required for adjusting the carrier, and the advantage of rapidly processing a large number of samples is lost. In the latter method, there is a possibility that the concentration of the component to be analyzed is excessively diluted, thereby lowering the measurement accuracy and sensitivity. In addition, there is a drawback that the reaction channel becomes long for uniform mixing of the sample. In addition to this, a method of improving the measurement accuracy by performing a rejection test of an abnormal value has been proposed (Japanese Patent Application Laid-Open No. 2-52240). The advantage of the flow injection method, which makes simple measurements simple. For this reason, for example, when tracking changes in the concentration of copper ions in a zinc electrolyte, an improvement for continuously determining the color components in a solution having a high salt content while maintaining high measurement accuracy and sensitivity. There has been a need for a flow injection method that has been used.

【0004】[0004]

【発明の解決課題】本発明は、高屈折率溶液、例えば高
塩分濃度溶液中の有色試料について、キャリアの塩分濃
度の調整等、複雑な前処理を必要とせず、高い測定感度
および精度で迅速に目的成分を定量することができるフ
ローインジェクション法に基づく分析方法を提供するも
のである。
The present invention does not require complicated pretreatment such as adjustment of the salt concentration of a carrier for a colored sample in a solution having a high refractive index, for example, a solution having a high salt concentration, and has a high measurement sensitivity and accuracy. And an analysis method based on a flow injection method that can quantify a target component.

【0005】[0005]

【課題の解決手段】本発明者等は上記課題解決の手段に
ついて鋭意検討した結果、屈折率差の大きい、従って通
常、濃度差も大きいキャリアと試料との組合わせでは、
両者の完全な混合を図るよりはむしろ、キャリアの連続
流れ中において試料の無希釈層(屈折率安定層)を維持
させ、この安定層を維持して吸光度曲線を求めると、試
料の該安定層の両端付近に濃度差による屈折率の乱れに
対応した疑似ピークが生じるものの、この疑似ピークの
間に位置する平坦部の吸光度測定値は当該試料中の測定
対象成分の濃度と高精度で対応しており、疑似ピークを
指標に平坦部の測定値を求めれば信頼性の高い定量分析
が可能であることを見出した。
The present inventors have conducted intensive studies on the means for solving the above-mentioned problems, and as a result, in the case of a combination of a carrier and a sample having a large difference in refractive index and, therefore, usually having a large concentration difference,
Rather than trying to completely mix the two, the undiluted layer (refractive index stable layer) of the sample is maintained in the continuous flow of the carrier, and the absorbance curve is obtained while maintaining this stable layer. Although a pseudo peak corresponding to the disorder of the refractive index due to the concentration difference occurs near both ends of the sample, the absorbance measurement value of the flat part located between the pseudo peaks corresponds to the concentration of the measurement target component in the sample with high accuracy. It was found that a reliable quantitative analysis was possible if the measured value of the flat part was obtained using the pseudo peak as an index.

【0006】本発明は上記知見に基づくものであり、本
発明によれば以下の構成を有する高屈折率溶液中の有色
成分の分析方法が提供される。 (1)フローインジェクション法による高屈折率溶液試
料中の有色成分の分析方法であって、上記試料をキャリ
アによって送液する際に、実質的に上記試料からなる屈
折率安定層を保ってこれを吸光光度計に導き、吸光光度
計によって検出される吸光度曲線において、上記屈折率
安定層の両端に現れる疑似ピークの間に位置する平坦部
の吸光度測定値によって有色成分を定量する方法。 (2)キャリア中で上記試料が屈折率安定層を保つに必
要な量をキャリア中に注入する上記(1) に記載の方法。 (3)疑似ピークの間に位置する平坦部の吸光度測定値
を予め作成した検量線と対照することによって有色成分
を定量する上記(1) または(2) に記載の方法。 (4)上記試料が有色成分を含有する高濃度塩であり、
該試料からなる屈折率安定層の両端に塩濃度差に起因す
る吸光度曲線の疑似ピークが生じるものの定量分析を行
う上記(1) 〜(3) のいずれかに記載の方法。 (5) 上記試料が高濃度亜鉛塩である上記(4) に記載
の方法。 (6) キャリアが0.01〜36%塩酸である上記
(1) 〜(5) のいずれかに記載の方法。
The present invention is based on the above findings, and according to the present invention, there is provided a method for analyzing a colored component in a high refractive index solution having the following constitution. (1) A method for analyzing a colored component in a high-refractive-index solution sample by a flow injection method, wherein when the sample is sent by a carrier, a refractive index stabilizing layer substantially consisting of the sample is maintained and removed. A method of quantifying a colored component by measuring the absorbance of a flat portion located between pseudo peaks appearing at both ends of the refractive index stabilizing layer in an absorbance curve detected by the absorptiometer, which is led to an absorptiometer. (2) The method according to (1), wherein the sample is injected into the carrier in an amount necessary to maintain the refractive index stable layer in the carrier. (3) The method according to the above (1) or (2), wherein the colored component is quantified by comparing the measured absorbance value of the flat portion located between the pseudo peaks with a previously prepared calibration curve. (4) the sample is a high-concentration salt containing a colored component,
The method according to any one of the above (1) to (3), wherein a quantitative analysis is performed for the occurrence of pseudo peaks in the absorbance curve due to the difference in salt concentration at both ends of the refractive index stable layer comprising the sample. (5) The method according to (4), wherein the sample is a high-concentration zinc salt. (6) The above wherein the carrier is 0.01 to 36% hydrochloric acid.
The method according to any one of (1) to (5).

【0007】本発明においては、キャリアに注入された
試料がキャリア中で実質的にほぼ無希釈の安定層を保っ
て吸光光度計に送液されることが必要である。かかる試
料溶液の送液は、基本的には、通常のフローインジェク
ション法による分析装置において以下のようにして行な
われる。図1において、キャリア1および試料2は容器
6、7に貯溜されており、管路12内には送液ポンプ1
0によりキャリアの連続流れが形成されている。管路1
2の一部には切換弁13と14とが設けられており、弁
13には試料2の容器7が連通し、弁14には廃液溜8
が接続し、弁13と弁14の間には管状の試料注入部5
が併設されている。これらを同時に操作することによ
り、キャリアの連続流れ中に実質的に乱流を生じること
なく一時に試料を注入することができる。具体的には、
弁13および弁14を試料注入部5側に切り替えること
により、キャリアを該注入部5に導き、該注入部5に充
填されている試料溶液2をキャリアによって弁14を経
て管路12bに押し出し、検出器(吸光光度計)11に
送る。試料注入後は弁13、14を管路12b側に切り
替えてキャリアを管路12a、12bに導く一方、試料
溶液2を注入部5に導き、残液を廃液溜8に押し出すと
共に注入部5内に試料溶液2を充填する。試料溶液2
は、送液過程でのキャリア中への不可避的な分散にも拘
らず上記安定層を形成するのに必要な量を注入する。
In the present invention, it is necessary that the sample injected into the carrier be sent to the absorptiometer while maintaining a substantially substantially undiluted stable layer in the carrier. The sending of such a sample solution is basically performed as follows in an analyzer using a normal flow injection method. In FIG. 1, a carrier 1 and a sample 2 are stored in containers 6 and 7, and a liquid sending pump 1
0 forms a continuous flow of carriers. Pipe line 1
2 are provided with switching valves 13 and 14, the container 13 of the sample 2 communicates with the valve 13, and the waste liquid reservoir 8 with the valve 14.
Is connected, and between the valve 13 and the valve 14 is a tubular sample injection part 5.
Is attached. By operating these simultaneously, the sample can be injected at a time without substantially causing turbulence in the continuous flow of the carrier. In particular,
By switching the valves 13 and 14 to the sample injection part 5 side, the carrier is guided to the injection part 5, and the sample solution 2 filled in the injection part 5 is pushed out by the carrier into the pipe 12b via the valve 14; It is sent to a detector (absorptiometer) 11. After the sample injection, the valves 13 and 14 are switched to the pipe 12b side to guide the carrier to the pipes 12a and 12b, while the sample solution 2 is guided to the injection section 5 and the remaining liquid is pushed out to the waste liquid reservoir 8 and the inside of the injection section 5 Is filled with the sample solution 2. Sample solution 2
Is injected in an amount necessary to form the above-mentioned stable layer despite the unavoidable dispersion in the carrier during the liquid sending process.

【0008】上記管路や弁の材質等は既知のものを用い
ることができる。好ましい材料および装置の種類として
は、送液ポンプにはペリスタ型ポンプまたはプランジャ
ーポンプ等が用いられ、管路系にはテフロンチューブ
等、弁には四フッ化エチレン等が用いられる。また試料
注入部5と弁13、14とは六方弁によって形成しても
良い。この例を図2(a)(b)に示す。同図におい
て、注入部(管)5は、円周に沿って等間隔に配設され
た6個の通孔a〜fを有する回転自在な弁体5aに一体
に装着されている。注入管5の一端は通孔cに接続さ
れ、他端は通孔fに接続されている。また通孔a、bは
キャリア管路12に連通しており、通孔d,eは試料溶
液の供給管路に連通している。試料注入管5が管路12
に対して閉鎖された位置のとき、弁体の内部流路を介し
て通孔aとbが連通しており、また通孔cとd、eとf
がおのおの連通している。キャリアは通孔aおよびbを
経て管路12に流れる。一方、注入管5には通孔c,
d,e,fを通じて試料溶液が充填される。試料を管路
12に注入する場合には、弁体5aを回転して弁体内部
の流路を切り換え、通孔cからdに至る流路および通孔
eからfに至る流路を遮断する一方、通孔aからfに至
る流路および通孔bからcに至る流路を開き、通孔a,
fを通じてキャリアを注入管5に導き、管内に充填され
ている試料2をキャリアによって押し出し、通孔c、b
を通じて管路12に送り出す。
Known materials can be used for the pipes and valves. As a preferable material and the type of the device, a peristaltic pump or a plunger pump is used as the liquid sending pump, a Teflon tube or the like is used as the pipe system, and ethylene tetrafluoride or the like is used as the valve. The sample injection section 5 and the valves 13 and 14 may be formed by a six-way valve. This example is shown in FIGS. In the figure, an injection part (pipe) 5 is integrally mounted on a rotatable valve element 5a having six through holes a to f arranged at equal intervals along the circumference. One end of the injection tube 5 is connected to the through hole c, and the other end is connected to the through hole f. The through holes a and b communicate with the carrier line 12, and the through holes d and e communicate with the supply line of the sample solution. The sample injection pipe 5 is connected to the pipe 12
Are closed, the through holes a and b communicate with each other via the internal flow path of the valve body, and the through holes c and d, and e and f
Are communicating with each other. The carrier flows into the conduit 12 via the through holes a and b. On the other hand, the injection pipe 5 has through holes c,
The sample solution is filled through d, e, and f. When the sample is injected into the conduit 12, the valve body 5a is rotated to switch the flow path inside the valve body, and the flow path from the through holes c to d and the flow path from the through holes e to f are shut off. On the other hand, the flow path from the through holes a to f and the flow path from the through holes b to c are opened, and the through holes a,
f, the carrier is guided to the injection tube 5, the sample 2 filled in the tube is pushed out by the carrier, and the through holes c, b
Through the pipe 12.

【0009】試料を搬送するための管路構成は、混合用
のコイル等を設けないほか管路内での試料の分散・混合
を防ぐ点を除けば従来のフローインジェクション法にお
いて慣用されている構成とほぼ同様であるが、試料の安
定層を形成するために注入量を増す必要から試料注入管
5は従来のものより管長ないし管径の大きいものが用い
られる。一例として、後述の実施例1に示す亜鉛電解液
を試料溶液とする場合には管長0.1〜5m、内径0.
1〜2mm程度が好ましい。また、キャリア流量はキャ
リアの成分、試料の種類や濃度、粘性などに応じてその
最適範囲が定められるが、上記亜鉛電解液を試料溶液と
する場合には2.0〜5.5cm3 /min程度が好ましい。
2.0cm3 /min未満であると測定に長い時間を要する。
また5.5cm3 /minを超えると乱流の発生などにより管
路内でのキャリアと試薬との混合が進行するので好まし
くない。光度計11において測定の終了した試料は排出
口13から系外に排出される。
[0009] The configuration of the pipeline for transporting the sample is a configuration commonly used in the conventional flow injection method except that a coil for mixing is not provided and that the sample is prevented from being dispersed and mixed in the pipeline. However, since the injection amount needs to be increased in order to form a stable layer of the sample, a sample injection tube 5 having a larger tube length or diameter than the conventional one is used. As an example, when the zinc electrolyte shown in Example 1 described below is used as a sample solution, the tube length is 0.1 to 5 m, and the inner diameter is 0.1 mm.
About 1-2 mm is preferable. The optimum range of the flow rate of the carrier is determined according to the components of the carrier, the type and concentration of the sample, the viscosity, and the like. However, when the zinc electrolyte is used as a sample solution, 2.0 to 5.5 cm 3 / min. The degree is preferred.
If it is less than 2.0 cm 3 / min, a long time is required for measurement.
On the other hand, when the flow rate exceeds 5.5 cm 3 / min, mixing of the carrier and the reagent in the pipeline proceeds due to generation of turbulence or the like, which is not preferable. The sample whose measurement has been completed in the photometer 11 is discharged from the discharge port 13 to the outside of the system.

【0010】本発明の上記測定系では、図3に示すよう
に、試料溶液2がキャリア流れ中で安定層16を形成
し、これを維持したまま吸光光度計11に導かれる。試
料溶液の安定層16の両端はキャリアとの混合部15、
17を形成し、この部分は濃度が不均一であるために屈
折率の乱れを生じ、この乱れが吸光度曲線に反映し、吸
光度曲線において測定対象濃度とは無関係な疑似ピーク
P1 、P2 が現れるものの、十分な安定層が保たれてい
れば疑似ピークP1 、P2 の間に一定の測定値が継続す
る平坦部Lが現れる。この平坦部Lの測定値は上記屈折
率の乱れによって影響を受けない部分であり、測定対象
濃度を正確に反映している。そこで、この平坦部Lの測
定値に基づき測定対象成分を定量することができる。具
体的には、例えば、予め濃度既知の試料により作成し、
あるいは標準添加法等により作成した検量線と上記測定
値を対照することにより、試料中の測定対象成分の濃度
を定量する。
In the above-mentioned measuring system of the present invention, as shown in FIG. 3, the sample solution 2 forms a stable layer 16 in the flow of the carrier, and is led to the absorptiometer 11 while maintaining this. Both ends of the stable layer 16 of the sample solution are mixed with the carrier 15,
17 is formed, and this portion causes unevenness of the refractive index due to the non-uniform concentration, which is reflected in the absorbance curve. In the absorbance curve, pseudo peaks P1 and P2 irrespective of the concentration to be measured appear. If a sufficient stable layer is maintained, a flat portion L where a constant measured value continues between the pseudo peaks P1 and P2 appears. The measured value of the flat portion L is a portion which is not affected by the disorder of the refractive index, and accurately reflects the concentration to be measured. Therefore, the measurement target component can be quantified based on the measured value of the flat portion L. Specifically, for example, it is created from a sample whose concentration is known in advance,
Alternatively, the concentration of the component to be measured in the sample is quantified by comparing the measured value with a calibration curve prepared by a standard addition method or the like.

【0011】平坦部Lは、典型的には、安定層16が測
定時間に対して十分に長ければ、疑似ピークP1 、P2
の間で吸光度曲線が時間軸(横軸)に沿って延びた領域
として現れる(図4(a) )。安定層16が比較的短いと
きには平坦部Lの長さは限られたものになるが(図4
(b) )、平坦部Lは測定値が時間軸に沿って継続するこ
とを確認できれば足り、従って、一方の疑似ピークP1
から他方の疑似ピークP2 に至る移行部分において疑似
ピークP1 の終点aと疑似ピークP2 の始点bとが同一
の点でなければ良い。本発明において平坦部とはこのも
のをも含む。疑似ピークの傾斜が緩やかであるために平
坦部が限られる場合(図4(c) )も同様である。
The flat portion L typically has pseudo peaks P1, P2 if the stable layer 16 is sufficiently long for the measurement time.
The absorbance curve appears as a region extending along the time axis (horizontal axis) (FIG. 4 (a)). When the stable layer 16 is relatively short, the length of the flat portion L is limited (see FIG. 4).
(b)) The flat part L is sufficient if it can be confirmed that the measured value continues along the time axis, and therefore, one of the pseudo peaks P1
It is sufficient that the end point a of the pseudo peak P1 and the start point b of the pseudo peak P2 are not the same point in a transition portion from the pseudo peak P2 to the other pseudo peak P2. In the present invention, the flat portion includes the flat portion. The same applies to the case where the flat part is limited due to the gentle slope of the pseudo peak (FIG. 4 (c)).

【0012】なお、試料の分析をより確実かつ自動的に
行なうために、装置全体を適当な手段で制御し、疑似ピ
ーク間の吸光度測定値が一定時間継続したときに、この
値によって試料安定層16の測定対象成分の濃度定量を
行い、疑似ピーク間で吸光度が一定値を示す時間が設定
時間未満である場合には、送液ポンプおよび/または試
料注入部を制御して送液速度または試料注入量を制御し
て再度の分析操作を行なうことようにしてもよい。一般
に、試料注入量の調整ないし再試行は、試料保持部5を
容量の異なる複数の保持部を包含する多重構造とし、各
容量に切り換えるか、試料保持部5の一部に可変長部分
を設けて弁切換により保持部内に試料を補充して行なう
ことができる。因みに、試料安定層の長さ(測定時間)
は送液速度に対する試料溶液の単位流量(試料注入量÷
管断面積÷送液速度)によって定まるが、一般的には1
秒程度一定の吸光度が継続すれば、その値をもって無希
釈試料の吸光度とみなすことができる。
In order to perform the analysis of the sample more reliably and automatically, the whole apparatus is controlled by appropriate means, and when the measured absorbance between the pseudo peaks continues for a certain period of time, this value is used as the sample stability layer. If the time during which the absorbance shows a constant value between the pseudo peaks is less than the set time, the liquid sending pump and / or the sample injection unit is controlled to control the liquid sending speed or the sample. The analysis operation may be performed again by controlling the injection amount. Generally, for adjusting or retrying the sample injection amount, the sample holding unit 5 has a multiplex structure including a plurality of holding units having different capacities, and is switched to each capacity or a variable length portion is provided in a part of the sample holding unit 5. The sample can be replenished in the holding section by switching the valve. By the way, the length of the sample stable layer (measurement time)
Is the unit flow rate of the sample solution relative to the liquid sending speed (sample injection amount
It is determined by the cross-sectional area of the tube divided by the liquid feed rate.
If the constant absorbance continues for about a second, the value can be regarded as the absorbance of the undiluted sample.

【0013】本発明の方法は、高屈折率溶液中の有色成
分の分析に特に有用である。ここで、高屈折率溶液と
は、キャリアの屈折率に対する溶液の屈折率(屈折率
比)が1.5以上であるものをいい、典型的には高塩濃
度溶液である。塩の種類は特に限定されないが、通常
は、各種金属のハロゲン化物、硫酸塩、硝酸塩等であ
る。塩濃度としては、10mol/l 以下のものが測定可能
である。有色成分とは、試料溶液中でそれ自体有色を呈
するものに限らず、発色試薬の添加により有色を呈する
ものを含む。有色成分の例としては、有色イオンや有色
化合物が挙げられる。有色イオンの具体例としては、酸
性溶液中のNi(II)水和イオン、Mn(II)水和イオン等
が挙げられる。なお、金属イオンを測定対象とする場
合、当該イオンが上記塩の構成成分でもよく、また異な
るものでもよい。有色化合物の例としては、オルトフェ
ナントロリン鉄錯塩等が挙げられる。本発明の方法は、
特に亜鉛電解液中の銅の定量の分析に有用である。
The method of the present invention is particularly useful for analyzing colored components in high refractive index solutions. Here, the high-refractive-index solution refers to a solution in which the refractive index (refractive index ratio) of the solution to the refractive index of the carrier is 1.5 or more, and is typically a high salt concentration solution. The type of the salt is not particularly limited, but is usually a halide, a sulfate, a nitrate, or the like of various metals. A salt concentration of 10 mol / l or less can be measured. The colored component is not limited to a component that exhibits a color in the sample solution itself, but includes a component that exhibits a color by adding a coloring reagent. Examples of the colored component include a colored ion and a colored compound. Specific examples of the colored ions include hydrated Ni (II) ions and hydrated Mn (II) ions in an acidic solution. When a metal ion is to be measured, the ion may be a component of the salt or may be a different component. Examples of the colored compound include an orthophenanthroline iron complex salt. The method of the present invention comprises:
In particular, it is useful for analyzing the determination of copper in a zinc electrolyte.

【0014】本発明の方法において、キャリアの種類は
本質的には重要ではなく、それぞれの分析にあたって妨
害とならない溶液であれば良い。なお、上記亜鉛電解液
中の銅の定量分析においては、系内洗浄および溶液の調
製が容易であるなどの理由から0.01〜36%塩酸が
好適に用いられる。
In the method of the present invention, the type of the carrier is not essential, and any solution may be used as long as it does not hinder the analysis. In addition, in the quantitative analysis of copper in the zinc electrolyte, 0.01 to 36% hydrochloric acid is preferably used because it is easy to wash the inside of the system and prepare the solution.

【0015】[0015]

【実施例】実施例1 図1に概略を示すフローインジェクション装置を用い、
濃度既知の亜鉛電解液(Zn2+濃度:2.2mol/
l,Cu2+濃度:0.0126mol/l)2.7m
lを内径1.0mm、長さ350cmのテフロン製試料
保持管に充填し、塩酸(0.5mol/l)をキャリア
として流量3.0ml/minで管路に流れる中に上記
亜鉛電解液を注入して吸光光度計(日立製作所製U−1
000)に導き、亜鉛電解液中の銅濃度を吸光度(波長
810mm)により測定した。この結果を図5に示し
た。図示するように、連続した数回の測定ごとに1組の
疑似ピークが現われ、その間にほぼ一定の吸光度を示す
領域が確認できる。この一定の吸光度を予め作成した検
量線と対照した結果、Cu2+濃度は0.0124mo
l/lであり、測定誤差は1.8%であった。
EXAMPLE 1 Using a flow injection device schematically shown in FIG.
Known concentration of zinc electrolyte (Zn 2+ concentration: 2.2 mol /
1, Cu 2+ concentration: 0.0126 mol / l) 2.7 m
is filled into a Teflon sample holding tube having an inner diameter of 1.0 mm and a length of 350 cm, and the above zinc electrolyte is injected into the tube at a flow rate of 3.0 ml / min using hydrochloric acid (0.5 mol / l) as a carrier. Spectrophotometer (U-1 manufactured by Hitachi, Ltd.)
000) and the copper concentration in the zinc electrolyte was measured by absorbance (wavelength 810 mm). The result is shown in FIG. As shown in the figure, one set of pseudo peaks appears every several consecutive measurements, during which a region showing a substantially constant absorbance can be confirmed. As a result of comparing this constant absorbance with a previously prepared calibration curve, the Cu 2+ concentration was 0.0124 mo.
1 / l, and the measurement error was 1.8%.

【0016】実施例2 0.500 g/lの銅を含有する亜鉛溶液(Zn2+濃度:
2.2mol/l )について実施例1と同様にして104回の
自動測定を行なったところ、平均値は0.504 g/lで
あり、標準偏差(σn-1 ) は0.027であった。な
お、1回の測定に要した時間は試料充填時間を含め7分
間であり、迅速な分析が可能であり、多数試料を分析し
ても異常値の出現は実質的に見られないことが確認でき
た。
Example 2 A zinc solution containing 0.500 g / l of copper (Zn 2+ concentration:
As a result, the average value was 0.504 g / l and the standard deviation (σ n-1 ) was 0.027. . The time required for one measurement is 7 minutes including the time for filling the sample, which enables quick analysis, and confirms that no abnormal values appear substantially even when many samples are analyzed. did it.

【0017】[0017]

【発明の効果】本発明によれば、試料中の有色成分の定
量を試料成分をほとんど希釈することなくフローインジ
ェクション法により行なうことができるので高精度かつ
高感度な自動分析が可能である。特に、亜鉛電解液など
のように塩濃度が高いため屈折率の乱れが生じる試料に
ついて、前処理を必要とせずに試料中の目的成分濃度を
迅速に定量することができる。また分析の際、有色成分
による本来の吸光度を利用しているので、特別な発色試
薬を必要とせず経済的である。
According to the present invention, the color components in a sample can be quantitatively determined by the flow injection method without diluting the sample components, so that highly accurate and highly sensitive automatic analysis is possible. In particular, for a sample such as a zinc electrolytic solution in which the refractive index is disordered due to a high salt concentration, the concentration of the target component in the sample can be quickly determined without the need for pretreatment. In addition, at the time of analysis, since the original absorbance of the colored component is used, it is economical because no special coloring reagent is required.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に使用されるフローインジェクション分
析装置の模式図。
FIG. 1 is a schematic view of a flow injection analyzer used in the present invention.

【図2】試料注入部を形成する六方弁の概念図であり、
(a)は試料保持位置、(b)は試料の注入位置を示
す。
FIG. 2 is a conceptual diagram of a six-way valve forming a sample injection part,
(A) shows the sample holding position, and (b) shows the sample injection position.

【図3】本発明に係る分析方法の原理を示す模式図。FIG. 3 is a schematic view showing the principle of the analysis method according to the present invention.

【図4】(a)(b)(c)は本発明による吸光度曲線
を示すグラフ。
4 (a), (b) and (c) are graphs showing absorbance curves according to the present invention.

【図5】実施例1の測定結果を示す吸光度曲線グラフ。FIG. 5 is an absorbance curve graph showing the measurement results of Example 1.

【図6】従来のフローインジェクション法における試料
の拡散状態を示す模式図。
FIG. 6 is a schematic view showing a diffusion state of a sample in a conventional flow injection method.

【符号の説明】[Explanation of symbols]

1…キャリア、 2…試料、 3…試料と発色試薬との
混合層、5…試料保持部、 6、7…容器、 8…廃液
溜、 10…送液ポンプ、11…検出器(吸光光度
計)、 12…送液管路、 13、14…弁、15、1
7…屈折率の不均一なキャリアと試料との混合層、16
…試料の安定層
DESCRIPTION OF SYMBOLS 1 ... Carrier, 2 ... Sample, 3 ... Mixed layer of sample and coloring reagent, 5 ... Sample holding part, 6, 7 ... Container, 8 ... Waste liquid reservoir, 10 ... Liquid sending pump, 11 ... Detector (absorbance photometer ), 12 ... liquid feed line, 13, 14 ... valve, 15, 1
7 ... mixed layer of carrier and sample having non-uniform refractive index, 16
... Stable layer of sample

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平7−294535(JP,A) 特開 平2−52240(JP,A) 特開 平4−32764(JP,A) 特開 昭60−67861(JP,A) 特開 平5−223744(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01N 35/00 - 35/10 G01N 1/00 - 1/44 G01N 21/75 - 21/83 JICSTファイル(JOIS)──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-7-294535 (JP, A) JP-A-2-52240 (JP, A) JP-A-4-32764 (JP, A) JP-A-60-1985 67861 (JP, A) JP-A-5-223744 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G01N 35/00-35/10 G01N 1/00-1/44 G01N 21/75-21/83 JICST File (JOIS)

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 フローインジェクション法による高屈折
率溶液試料中の有色成分の分析方法であって、上記試料
をキャリアによって送液する際に、実質的に上記試料か
らなる屈折率安定層を保ってこれを吸光光度計に導き、
吸光光度計によって検出される吸光度曲線において、上
記屈折率安定層の両端に現れる疑似ピークの間に位置す
る平坦部の吸光度測定値によって有色成分を定量する方
法。
1. A method for analyzing a colored component in a high-refractive-index solution sample by a flow injection method, wherein when the sample is sent by a carrier, a refractive index stable layer substantially consisting of the sample is maintained. This is led to an absorptiometer,
A method of quantifying a colored component by an absorbance measurement value of a flat portion located between pseudo peaks appearing at both ends of the refractive index stable layer in an absorbance curve detected by an absorptiometer.
【請求項2】 キャリア中で上記試料が屈折率安定層を
保つに必要な量をキャリア中に注入する請求項1に記載
の方法。
2. The method according to claim 1, wherein the sample is injected into the carrier in an amount necessary to maintain the refractive index stable layer in the carrier.
【請求項3】 疑似ピークの間に位置する平坦部の吸光
度測定値を予め作成した検量線と対照することによって
有色成分を定量する請求項1または2に記載の方法。
3. The method according to claim 1, wherein the color component is quantified by comparing the measured absorbance of the flat portion located between the pseudo peaks with a previously prepared calibration curve.
【請求項4】 上記試料が有色成分を含有する高濃度塩
であり、該試料からなる屈折率安定層の両端に塩濃度差
に起因する吸光度曲線の疑似ピークが生じるものの定量
分析を行う請求項1〜3のいずれかに記載の方法。
4. The method according to claim 1, wherein the sample is a high-concentration salt containing a color component, and quantitative analysis is performed on a sample in which a pseudo-peak of an absorbance curve due to a difference in salt concentration occurs at both ends of a refractive index stable layer formed of the sample. The method according to any one of claims 1 to 3.
【請求項5】 上記試料が高濃度亜鉛塩である請求項4
に記載の方法。
5. The method according to claim 4, wherein the sample is a high-concentration zinc salt.
The method described in.
【請求項6】 キャリアが0.01〜36%塩酸である
請求項1〜5のいずれかに記載の方法。
6. The method according to claim 1, wherein the carrier is 0.01 to 36% hydrochloric acid.
JP16885794A 1994-06-28 1994-06-28 Method for analyzing colored components in high refractive index solutions Expired - Fee Related JP3267057B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16885794A JP3267057B2 (en) 1994-06-28 1994-06-28 Method for analyzing colored components in high refractive index solutions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16885794A JP3267057B2 (en) 1994-06-28 1994-06-28 Method for analyzing colored components in high refractive index solutions

Publications (2)

Publication Number Publication Date
JPH0815159A JPH0815159A (en) 1996-01-19
JP3267057B2 true JP3267057B2 (en) 2002-03-18

Family

ID=15875852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16885794A Expired - Fee Related JP3267057B2 (en) 1994-06-28 1994-06-28 Method for analyzing colored components in high refractive index solutions

Country Status (1)

Country Link
JP (1) JP3267057B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4220184B1 (en) * 2014-08-13 2024-04-03 Sartorius BioAnalytical Instruments, Inc. Method and apparatus for rapid sequential flow injection

Also Published As

Publication number Publication date
JPH0815159A (en) 1996-01-19

Similar Documents

Publication Publication Date Title
Christian Sequential injection analysis for electrochemical measurements and process analysis
JPH048736B2 (en)
US11454619B2 (en) Methods for colorimetric endpoint detection and multiple analyte titration systems
US5624846A (en) Continuous flow analyzing method and apparatus
Van Staden et al. Spectrophotometric determination of thiocyanate by sequential injection analysis
Mesquita et al. Turbidimetric determination of chloride in different types of water using a single sequential injection analysis system
Capitan-Vallvey et al. Flow-injection method for the determination of tin in fruit juices using solid-phase spectrophotometry
US5783740A (en) Analytical system for trace element
DE2716560A1 (en) METHOD AND DEVICE FOR ANALYSIS OF LIQUID SAMPLE
Oms et al. Preconcentration by flow reversal in conductometric sequential injection analysis of ammonium
EP0527900A1 (en) Liquid composition analyzer and method
JP3267057B2 (en) Method for analyzing colored components in high refractive index solutions
US5849592A (en) Carrierless sequential injection analysis
JP2005164289A (en) Method of measuring nitrite ion and nitrate ion, and its instrument
Oliveira et al. Automated solid-phase spectrophotometric system for optosensing of bromate in drinking waters
KR20200017660A (en) Method and Device for analyzing inorganic ion concentration in sample
Albertús et al. A robust multisyringe system for process flow analysis. Part II. For Part 1 see ref. 2. A multi-commuted injection system applied to the photometric determination of free acidity and iron (iii) in metallurgical solutions
JP2936289B2 (en) Sample solution dilution method
Almeida et al. Precipitation titrations using an automatic titrator based on a multicommutated unsegmented flow system
Hattingh Incorporation of electrodialysers into the conduits of flow injection–atomic absorption spectrometry systems. Determination of copper (ii) ions in multivitamin tablets after enhancement of mass transfer through a passive neutral membrane
JPH10160668A (en) Method and device for measuring nitric acid concentration by continuous flow analysis method
López-García et al. Automatic calibration in continuous flow analysis
JP2841839B2 (en) Automatic analyzer for metals in biological fluids
van Staden et al. Simultaneous flow injection determination of ammoniacal nitrogen and chloride in industrial effluent water with a combined on-line gas diffusion/dialyser unit
DE19903860A1 (en) Titration process to determine the concentration of a substance within samples taken without recalibration of the test instruments

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20011211

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080111

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090111

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090111

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100111

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100111

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100111

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees