JP3266003B2 - Ground fault detector - Google Patents

Ground fault detector

Info

Publication number
JP3266003B2
JP3266003B2 JP23633096A JP23633096A JP3266003B2 JP 3266003 B2 JP3266003 B2 JP 3266003B2 JP 23633096 A JP23633096 A JP 23633096A JP 23633096 A JP23633096 A JP 23633096A JP 3266003 B2 JP3266003 B2 JP 3266003B2
Authority
JP
Japan
Prior art keywords
potential difference
phase
zero
unit
ground fault
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23633096A
Other languages
Japanese (ja)
Other versions
JPH1082819A (en
Inventor
孝二 笠井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP23633096A priority Critical patent/JP3266003B2/en
Publication of JPH1082819A publication Critical patent/JPH1082819A/en
Application granted granted Critical
Publication of JP3266003B2 publication Critical patent/JP3266003B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Transformers For Measuring Instruments (AREA)
  • Emergency Protection Circuit Devices (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は三相交流配電線路に
発生した地絡事故時に発生する零相電圧を検出する地絡
検出装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ground fault detecting device for detecting a zero-phase voltage generated at the time of a ground fault in a three-phase AC distribution line.

【0002】[0002]

【従来の技術】従来の地絡検出装置を、図12及び図1
3に沿って説明する。
2. Description of the Related Art A conventional ground fault detecting apparatus is shown in FIGS.
3 will be described.

【0003】三相交流配電線路に発生した地絡事故時に
発生する零相電圧の検出方法としては、図12に示すよ
うに、三相交流配電線3のR、S及びTの各相にコンデ
ンサC1、C2及びC3の一端を接続し、他の一端を共
通に接続して零相検出用コンデンサC0の一端に接続
し、零相検出用コンデンサC0の他端を大地に接続し、
更に零相検出用コンデンサC0に並列に降圧用絶縁トラ
ンス27を接続する構成の零相電圧検出器(以下、ZP
Dと称す)が一般的である。
As a method for detecting a zero-sequence voltage generated at the time of a ground fault occurring in a three-phase AC distribution line, as shown in FIG. One ends of C1, C2 and C3 are connected, the other ends are connected in common, connected to one end of a zero-phase detection capacitor C0, the other end of the zero-phase detection capacitor C0 is connected to the ground,
Further, a zero-phase voltage detector (hereinafter referred to as ZP) configured to connect a step-down insulating transformer 27 in parallel with the zero-phase detection capacitor C0.
D) is common.

【0004】更に特開平4−27775号公報に記載さ
れているように、図13において三相交流配電線路の任
意の一相に高圧コンデンサCp25と低圧コンデンサC
s26を直列に接続し、またCs26に並列に降圧用絶
縁トランス28が接続された構成の地絡検出装置があ
る。この構成の地絡検出装置は高圧コンデンサCp25
の一端を三相高圧配電線3の任意の相、例えばS相に接
続し、低圧コンデンサCs26の一端を大地に接続し、
前記地絡検出装置に接続されたS相の対地間電圧の計測
を行うことにより計測値の変化量差から零相電圧を得る
ようにしている。
Further, as described in Japanese Patent Application Laid-Open No. Hei 4-27775, in FIG. 13, a high-voltage capacitor Cp25 and a low-voltage capacitor C
There is a ground fault detecting device having a configuration in which s26 is connected in series and a step-down insulating transformer 28 is connected in parallel with Cs26. The ground fault detecting device of this configuration is a high-voltage capacitor Cp25.
Is connected to an arbitrary phase of the three-phase high-voltage distribution line 3, for example, the S-phase, and one end of the low-voltage capacitor Cs26 is connected to the ground,
The zero-phase voltage is obtained from the difference between the measured values by measuring the S-phase voltage to ground connected to the ground fault detecting device.

【0005】地絡検出装置による電圧計測出力値V2は
V2=Vs×Cp/(Cp+Cs) となる。
The voltage measurement output value V2 by the ground fault detecting device is
V2 = Vs × Cp / (Cp + Cs)

【0006】零相電圧発生時のV2gは V2g=Vsg×
Cp/(Cp+Cs) となる。事故時の対地間電圧Vsg
はVsをS相の対地間電圧とするとVsg=Vs−Voより
零相電圧Voは −Vo=Vsg−Vs=(Cp+Cs)/Cp
×(V2g−V2)となり、降圧用絶縁トランス28を介
し、上記V2及びV2gを計測することにより、Voを算出
するための信号処理を波形処理回路29で実行すること
で零相電圧を検出している。
When the zero-phase voltage is generated, V2g is given by: V2g = Vsg ×
Cp / (Cp + Cs). Voltage Vsg to ground at the time of accident
Is Vsg = Vs−Vo, and Vsg = Vs−Vo, the zero-phase voltage Vo is −Vo = Vsg−Vs = (Cp + Cs) / Cp
× (V2g−V2), and by measuring the above V2 and V2g via the step-down insulating transformer 28, the signal processing for calculating Vo is executed by the waveform processing circuit 29 to detect the zero-phase voltage. ing.

【0007】また、光電圧センサにより構成された電圧
計測手段を三相交流配電線の各相に設置し、同電圧計測
手段の計測値を各相の対地間電圧に比例した等価的な信
号とみなし、前記計測値を3相ベクトル演算し零相電圧
を検出する方法もある。
Further, voltage measuring means constituted by an optical voltage sensor is installed in each phase of a three-phase AC distribution line, and the measured value of the voltage measuring means is converted to an equivalent signal proportional to the voltage between each phase to ground. There is also a method of detecting the zero-phase voltage by performing a three-phase vector operation on the measured value.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、従来の
ZPDによる方式及び特開平4−27775号公報に記
載された零相電圧の検出方式の場合、次のような問題点
があった。
However, the conventional ZPD system and the zero-phase voltage detection system described in Japanese Patent Application Laid-Open No. 4-27775 have the following problems.

【0009】(1)各相の対地間電圧を計測するために
高圧配電線の充電部に、直接計測部を接続しなければな
らず、作業中は停電にする必要があった。
(1) In order to measure the voltage between each phase and the ground, a measuring section must be directly connected to the charging section of the high-voltage distribution line, and it is necessary to stop the power during the operation.

【0010】(2)高圧活線状態で設置する場合に於い
ては、配電線の被服を剥ぐか予め設置された開閉器もし
くは変圧器等の接続部分のクランプカバーを外し、直接
充電部に接続する必要があるため非常に危険な作業が伴
い設置作業が複雑になる。
(2) In the case of installation in a high-voltage live state, remove the covering of the distribution line or remove the clamp cover of the connection part such as a switch or a transformer installed beforehand, and connect directly to the charging part. Requires very dangerous work and complicates the installation work.

【0011】(3)信頼性面においては、機器の耐電圧
特性を高くするため絶縁距離を充分にとる必要があり機
器が大型化してしまう。
(3) In terms of reliability, it is necessary to provide a sufficient insulation distance in order to increase the withstand voltage characteristics of the device, and the device becomes large.

【0012】(4)使用方法に於いては、一端を高圧充
電部に直接接続するため一般的には高圧受電設備等の防
水構造がなされた筐体内で使用されるのが一般的である
が、万が一本装置の高圧コンデンサの絶縁不良による短
絡現象が発生した場合、低圧コンデンサに直接高圧が印
加されるため機器不良による配電線事故及び計測装置へ
の事故波及が発生してしまう。逆に低圧側に事故が発生
した場合でも、電気的に接続されているため高圧配電線
に事故が波及してしまう恐れもある。
(4) In the method of use, since one end is directly connected to a high-voltage charging unit, it is generally used in a waterproof housing such as a high-voltage power receiving facility. In the event that a short circuit occurs due to poor insulation of the high-voltage capacitor of the apparatus, a high voltage is directly applied to the low-voltage capacitor, which may cause an accident in the distribution line due to equipment failure and an accident spread to the measuring device. Conversely, even if an accident occurs on the low voltage side, the accident may spread to the high voltage distribution line because it is electrically connected.

【0013】ところで、光電圧センサから構成された電
圧計測手段を用いた3相ベクトル演算方式により零相電
圧を検出する場合、各相の計測装置の特性を平衡に保つ
必要があり製造上、また管理面が特に難しくなってしま
う。また、光電圧センサからなる電圧計測手段により計
測される電位差信号は、各相配電線により形成される容
量係数により、対地間電圧に比例した電位差信号とはな
らないため、配電線が三相平衡状態に於いてベクトル演
算を実行してもその演算値は零とはならず、演算値の信
号処理を行って零相電圧を検出する必要がある。そして
光電圧センサの場合は、高価であるため各相分の光電圧
センサを用意する場合は、地絡検出装置が特に高価格に
なってしまう。
When a zero-phase voltage is detected by a three-phase vector operation method using a voltage measuring means constituted by an optical voltage sensor, it is necessary to keep the characteristics of the measuring device of each phase in equilibrium. Management becomes particularly difficult. In addition, the potential difference signal measured by the voltage measuring means composed of the optical voltage sensor is not a potential difference signal proportional to the voltage between the ground and the potential difference signal due to the capacity coefficient formed by each phase distribution line. Even if a vector operation is executed, the operation value does not become zero, and it is necessary to perform signal processing of the operation value to detect a zero-phase voltage. In the case of an optical voltage sensor, which is expensive, when an optical voltage sensor for each phase is prepared, the ground fault detecting device becomes particularly expensive.

【0014】また、三相交流配電線の地絡事故を検出し
事故区間を限定する場合には、配電線路上に多数の方向
性地絡検出装置を設置する必要があり、従って方向性地
絡検出装置を構成する地絡検出装置も必要になる。
Further, when detecting a ground fault in a three-phase AC distribution line and limiting the fault section, it is necessary to install a large number of directional ground fault detectors on the distribution line. A ground fault detection device constituting the detection device is also required.

【0015】そしてこの場合、地絡検出装置は高圧充電
部と直接接続されるため装置自身の信頼性を長期的に保
証する必要があり、更に装置自体の耐電圧特性を満足さ
せるためには装置が大型化し、かつ設置工事の安全性に
伴う設置作業の複雑さが発生し、ユーザにとってはトー
タルコストアップにつながってしまう。また装柱した場
合の美観を損ねる等の問題もあげられる。
In this case, since the ground fault detecting device is directly connected to the high voltage charging section, it is necessary to guarantee the reliability of the device itself for a long time. Further, in order to satisfy the withstand voltage characteristic of the device itself, the device is required. In addition, the installation work becomes complicated and the installation work becomes complicated due to the safety of the installation work, which leads to an increase in the total cost for the user. There are also problems such as impairing the aesthetics when the pillars are mounted.

【0016】本発明は上記課題を解決するもので、地絡
事故時に発生する零相電圧を検出する地絡検出装置を提
供することを目的としている。
An object of the present invention is to solve the above-mentioned problem, and an object of the present invention is to provide a ground fault detecting device for detecting a zero-sequence voltage generated at the time of a ground fault.

【0017】[0017]

【課題を解決するための手段】この目的を達成するため
に、請求項1記載の地絡検出装置は、三相交流配電線の
電界強度を測定することにより電位差を算出する電位差
計測手段と、前記電位差計測手段からの現周期の電位差
と少なくとも1周期前の健全時の電位差との差を比較演
算する変化量検出手段と、前記変化量検出手段からの出
力データにより零相電圧を検出する零相電圧検出手段と
を備えている。
In order to achieve this object, a ground fault detecting device according to claim 1 comprises a potential difference measuring means for calculating a potential difference by measuring an electric field strength of a three-phase AC distribution line; A change amount detecting means for comparing and calculating a difference between a potential difference in a current cycle from the potential difference measuring means and a potential difference in a normal state at least one cycle before; and a zero detecting means for detecting a zero-phase voltage based on output data from the change amount detecting means. Phase voltage detecting means.

【0018】また請求項2記載の地絡検出装置は、変化
量検出手段で算出される電位差の変化量を補正する補正
演算手段と、前記補正演算手段への補正パラメータを入
力する補正要素入力手段とを備えている。
The ground fault detecting device according to a second aspect of the present invention provides a correction calculating means for correcting a change in the potential difference calculated by the change detecting means, and a correction element input means for inputting a correction parameter to the correction calculating means. And

【0019】また請求項3記載の地絡検出装置は、補正
要素入力手段と補正演算手段を送受信可能な通信ができ
るようにしたものである。
The ground fault detecting device according to a third aspect of the present invention is capable of communication capable of transmitting and receiving the correction element input means and the correction calculation means.

【0020】[0020]

【0021】また請求項4記載の地絡検出装置は、電位
差計測手段には光電圧センサを用い、前記光電圧センサ
からの信号を光ファイバケーブルで伝送したものであ
る。
According to a fourth aspect of the present invention, in the ground fault detecting apparatus, an optical voltage sensor is used as the potential difference measuring means, and a signal from the optical voltage sensor is transmitted through an optical fiber cable.

【0022】また請求項5記載の地絡検出装置は、補正
要素入力手段は、補正パラメータを入力するデータ入力
部と、前記データ入力部から入力されたデータを所定の
データに変換するデータ変換部と、前記データ変換部に
より変換されたデータを出力する送受信可能なデータ通
信部とを備えたものである。
According to a fifth aspect of the present invention, in the ground fault detecting device, the correction element input means includes a data input section for inputting a correction parameter, and a data conversion section for converting data input from the data input section into predetermined data. And a data communication unit capable of transmitting and receiving the data converted by the data conversion unit.

【0023】さらに請求項6記載の地絡検出装置は、三
相交流配電線の電界強度を測定することにより電位差を
算出する電位差計測手段と、前記電位差計測手段からの
現周期の電位差と少なくとも1周期前の健全時の電位差
との差を比較演算する変化量検出手段と、前記変化量検
出手段からの出力データにより零相電圧を検出する零相
電圧検出手段と、三相交流配電線の零相電流を検出する
零相電流検出手段と、前記零相電圧検出手段からの零相
電圧検出信号と前記零相電流検出手段からの零相電流信
号とにより地絡事故方向を判定する地絡事故方向判定手
段とを備えたものである。
Further, the ground fault detecting device according to claim 6 is a potential difference measuring means for calculating a potential difference by measuring the electric field strength of the three-phase AC distribution line, and at least one potential difference from the current cycle from the potential difference measuring means. A change amount detecting means for comparing and calculating a difference from a potential difference at a healthy state before the cycle; a zero-phase voltage detecting means for detecting a zero-sequence voltage based on output data from the change amount detecting means; Zero-phase current detection means for detecting a phase current; a ground fault which determines a ground fault direction based on a zero-phase voltage detection signal from the zero-phase voltage detection means and a zero-phase current signal from the zero-phase current detection means. Direction determining means.

【0024】[0024]

【発明の実施の形態】上記構成により請求項1記載の発
明は、三相交流配電線の電界強度を測定するため、万
一、本発明の地絡検出装置の機器不良による事故が発生
しても低圧部および配電線への事故波及の恐れはなく、
また、高圧充電部に非接触で零相電圧を検出できる。
According to the first aspect of the present invention, since an electric field strength of a three-phase AC distribution line is measured, an accident due to equipment failure of the ground fault detecting device of the present invention may occur. There is no risk of accidents spreading to the low-voltage section and distribution lines.
Further, the zero-phase voltage can be detected in a non-contact manner with the high voltage charging unit.

【0025】請求項2に記載の発明は、請求項1の発明
において、算出される電位差の変化量を補正するため、
より精度の高い零相電圧を検出できる。
According to a second aspect of the present invention, in the first aspect of the invention, the amount of change in the calculated potential difference is corrected.
A more accurate zero-sequence voltage can be detected.

【0026】請求項3に記載の発明は、補正要素入力手
段と補正演算手段を送受信可能な通信ができるようにし
たもので、補正値の入力は、地絡検出装置を取り外すこ
となく、かつ再度の柱上作業をすることなく補正値の変
更が可能である。
According to a third aspect of the present invention, a communication capable of transmitting and receiving the correction element input means and the correction operation means can be performed. The input of the correction value can be performed without removing the ground fault detecting device and again. The correction value can be changed without working on the pillar.

【0027】[0027]

【0028】請求項4に記載の発明は、電位差計測手段
に光電圧センサを用い、光電圧センサからの信号を光フ
ァイバケーブルで伝送したもので、高絶縁・無誘導形
で、耐ノイズ性がよい。
According to a fourth aspect of the present invention, an optical voltage sensor is used as a potential difference measuring means, and a signal from the optical voltage sensor is transmitted through an optical fiber cable. Good.

【0029】請求項5に記載の発明は、補正要素入力手
段は、補正パラメータのデータ入力部と、データ変換部
と、データを出力する送受信可能なデータ通信部とを備
えたもので、補正値の入力は、地絡検出装置を取り外す
ことなく、かつ再度の柱上作業をすることなく補正値の
変更が可能であり、補正要素入力手段1つで複数の地絡
検出装置の補正値設定が可能となる。
According to a fifth aspect of the present invention, the correction element input means includes a data input section for correction parameters, a data conversion section, and a data communication section capable of transmitting and receiving data, and capable of transmitting and receiving the correction value. The correction value can be changed without removing the ground fault detecting device and without performing the work on the pillar again, and the correction value setting of a plurality of ground fault detecting devices can be performed by one correction element input means. It becomes possible.

【0030】請求項6に記載の発明は、三相交流配電線
の電界強度を測定することにより電位差を算出し、現周
期の電位差と少なくとも1周期前の健全時の電位差との
差を比較演算することにより零相電圧を検出し、地絡事
故方向も判定しているので、万一、本発明の地絡検出装
置の機器不良による事故が発生しても低圧部および配電
線への事故波及の恐れはなく、また、高圧充電部に非接
触で零相電圧を検出できる。さらに常設用・非常用とし
て使用できる地絡の方向性が判断できる。
According to a sixth aspect of the present invention, the potential difference is calculated by measuring the electric field strength of the three-phase AC distribution line, and the difference between the potential difference in the current cycle and the potential difference in the normal state at least one cycle before is calculated. By detecting the zero-sequence voltage and determining the direction of the ground fault accident, even if an accident occurs due to equipment failure of the ground fault detecting device of the present invention, the fault is transmitted to the low-voltage part and the distribution line. The zero-phase voltage can be detected without contact with the high voltage charging unit. Furthermore, the direction of the ground fault that can be used for permanent use and emergency use can be determined.

【0031】以下本発明の実施の形態について図面を基
に説明する。 (実施の形態1)図1は本発明の実施の形態1の地絡検
出装置の全体構成図であり、電位差計測手段4及び信号
処理回路手段7より構成されおり、それぞれの構成を以
下に説明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. (Embodiment 1) FIG. 1 is an overall configuration diagram of a ground fault detecting device according to Embodiment 1 of the present invention, which is composed of a potential difference measuring means 4 and a signal processing circuit means 7, and each configuration will be described below. I do.

【0032】電位差計測手段4は三相交流配電線3の任
意の一相の周囲に形成された電界の電界強度を効率よく
測定するための電極1及び電極2(電極1及び電極2は
予め相対位置が決定した構成とする)と電極1、電極2
間の電位差を入力し、前記電位差に比例した光変調信号
に変換する光電圧センサ5と、電極1及び電極2並びに
光電圧センサ5を内蔵し、三相交流配電線3に対し前記
電極の位置関係が予め設定された位置関係になるよう構
成された第1の計測ユニット部6と、光電圧センサ5及
び入出力変換部8の間の信号伝送媒体である光ファイバ
ケーブル13より構成されている。
The potential difference measuring means 4 is an electrode 1 and an electrode 2 for efficiently measuring the electric field strength of an electric field formed around any one phase of the three-phase AC distribution line 3 (the electrode 1 and the electrode 2 Electrode 1 and electrode 2)
A voltage sensor 5 for inputting a potential difference between the electrodes and converting the voltage into a light modulation signal proportional to the potential difference; electrodes 1 and 2; The first measuring unit 6 is configured to have a predetermined positional relationship, and the optical fiber cable 13 is a signal transmission medium between the optical voltage sensor 5 and the input / output converter 8. .

【0033】一方、信号処理回路手段7は電位差計測手
段4により計測された光変調信号を入力し光変調信号に
比例した電気信号に変換する入出力変換部8と、電位差
計測手段4により計測される電位差信号を、少なくとも
1周期前に計測した健全時の電位差信号と差分演算する
ことにより電位差信号の変化量を検出する変化量検出部
9と、電位差計測手段4が設置された三相交流配電線3
の装柱状態及び電位差計測手段4の配置位置に応じた補
正パラメータ値を入力する入力部10と、入力部10に
より入力された補正パラメータ値により補正演算値を決
定し記憶する補正演算部11と、変化量検出部9と補正
演算部11の結果を入力し信号処理を行うことで零相電
圧を検出する零相電圧検出部12より構成されている。
On the other hand, the signal processing circuit means 7 inputs and outputs the optical modulation signal measured by the potential difference measuring means 4 and converts it into an electric signal proportional to the optical modulation signal. Of the potential difference signal, which is at least one cycle before, and a change amount detection unit 9 for detecting an amount of change in the potential difference signal, and a three-phase AC distribution system in which the potential difference measuring means 4 is installed. Electric wire 3
An input unit 10 for inputting a correction parameter value according to the mounting condition of the column and the arrangement position of the potential difference measuring means 4, a correction operation unit 11 for determining and storing a correction operation value based on the correction parameter value input from the input unit 10. , A zero-phase voltage detector 12 that detects a zero-phase voltage by inputting the results of the change amount detector 9 and the correction calculator 11 and performing signal processing.

【0034】なお、電位差計測手段4の電位差計測法及
び計測信号の伝送媒体は、光電センサ5及び光ファイバ
ケーブル13に限らず、電界強度計を利用した電位差計
測法、伝送手段は赤外線通信や電波等による通信手段で
あっても良い。
The potential difference measuring method of the potential difference measuring means 4 and the transmission medium of the measurement signal are not limited to the photoelectric sensor 5 and the optical fiber cable 13, but the potential difference measuring method using an electric field strength meter, and the transmission means are infrared communication or radio wave. Communication means such as this may be used.

【0035】上記構成による本実施の形態の地絡検出装
置の動作について、図1ないし図7に沿って説明する。
The operation of the ground fault detecting device according to the present embodiment having the above configuration will be described with reference to FIGS.

【0036】図2は電位差計測手段4と三相交流配電線
3による関係図であり、以下電位差計測手段4による電
位差の計測手段を図1、図2に沿って説明する。
FIG. 2 is a diagram showing the relationship between the potential difference measuring means 4 and the three-phase AC distribution line 3. Hereinafter, the means for measuring the potential difference by the potential difference measuring means 4 will be described with reference to FIGS.

【0037】R、S、Tは三相交流配電線3、Qr,Q
s及びQtは三相交流配電線3の各相配電線が持つ電荷
量Q、Cr1,Cr2,Cs1,Cs2,Ct1及びCt2は各相配
電線と電極1及び電極2の位置関係により形成される容
量係数を示すものである。
R, S, T are three-phase AC distribution lines 3, Qr, Q
s and Qt are the electric charges Q of each phase distribution line of the three-phase AC distribution line 3, and Cr1, Cr2, Cs1, Cs2, Ct1 and Ct2 are capacitance coefficients formed by the positional relationship between each phase distribution line and the electrodes 1 and 2. It shows.

【0038】ここで電極1、電極2におけるそれぞれの
電界強度E1、電界強度E2は E1=Qr/Cr1+Qs/Cs1+Qt/Ct1(V/m) E2=Qr/Cr2+Qs/Cs2+Qt/Ct2(V/m) で示される。よって電極1、電極2間に発生する電位差
Eは E=E1−E2=Qr×(1/Cr1−1/Cr2)+Qs
×(1/Cs1−1/Cs2)+Qt×(1/Ct1−1/C
t2)(V) である。
Here, the electric field intensity E1 and the electric field intensity E2 of the electrode 1 and the electrode 2 are respectively E1 = Qr / Cr1 + Qs / Cs1 + Qt / Ct1 (V / m) E2 = Qr / Cr2 + Qs / Cs2 + Qt / Ct2 (V / m) Is shown. Therefore, the potential difference E generated between the electrode 1 and the electrode 2 is E = E1-E2 = Qr × (1 / Cr1-1 / Cr2) + Qs
× (1 / Cs1-1 / Cs2) + Qt × (1 / Ct1-1 / C
t2) (V).

【0039】(1/Cr1−1/Cr2)=Cre (1/Cs1−1/Cs2)=Cse (1/Ct1−1/Ct2)=Cte とおくと、 電位差E=Cre×Qr+Cse×Qs+Cte×Qt(V) として示される。Cre,Cse,Cteは公知の通り三相配
電線と電極の位置関係および電極長で決定される。
When (1 / Cr1-1 / Cr2) = Cre (1 / Cs1-1 / Cs2) = Cse (1 / Ct1-1 / Ct2) = Cte, the potential difference E = Cre × Qr + Cse × Qs + Cte × Qt (V). As is well known, Cre, Cse, and Cte are determined by the positional relationship between the three-phase distribution line and the electrode and the electrode length.

【0040】なお上記により形成された電位差は、光電
圧センサ5により電位差に比例した光変調信号に変換さ
れ、信号処理回路手段7により計測する構成としてい
る。
The potential difference formed as described above is converted into an optical modulation signal proportional to the potential difference by the optical voltage sensor 5 and measured by the signal processing circuit means 7.

【0041】以上のように電位差計測手段4として三相
交流配電線3の任意の一相と非接触な電極1及び電極2
と光電圧センサ5により計測を行い、かつ計測信号の伝
送媒体としてノンメタリックの光ファイバケーブル13
を用いているため、高圧部と低圧部が絶縁分離でき絶縁
信頼性に優れた、かつノイズに対し無誘導形の装置を提
供することができる。
As described above, the electrode 1 and the electrode 2 which are not in contact with any one phase of the three-phase AC distribution line 3 are used as the potential difference measuring means 4.
And a light voltage sensor 5 for measurement, and a non-metallic optical fiber cable 13 as a transmission medium of the measurement signal.
Therefore, a high-voltage part and a low-voltage part can be insulated and separated from each other, so that a device that is excellent in insulation reliability and is non-inductive to noise can be provided.

【0042】図3は電位差計測手段4により計測された
電位差信号Eに比例した光変調信号を電気信号に変換す
る入出力変換部8と、入出力変換部8により電気信号に
変換された電位差信号Eより少なくとも1周期前に計測
した健全時の電位差信号Eoとを差分演算することによ
り電位差信号の変化量ΔVを検出する変化量検出部9の
構成図を示すものであり、地絡事故発生による零相電圧
の発生に伴う電位差信号の変化量ΔVを検出するまでの
機能を示したものである。
FIG. 3 shows an input / output converter 8 for converting a light modulation signal proportional to the potential difference signal E measured by the potential difference measuring means 4 into an electric signal, and a potential difference signal converted into an electric signal by the input / output converter 8. FIG. 4 is a diagram showing the configuration of a change amount detection unit 9 for detecting a change amount ΔV of a potential difference signal by calculating a difference between the potential difference signal Eo in a healthy state at least one cycle before E and detecting a ground fault accident. This shows the function up to detection of the amount of change ΔV in the potential difference signal accompanying the generation of the zero-sequence voltage.

【0043】電位差計測手段4により計測された電位差
信号Eは、入出力変換部8により電位差信号Eに比例し
た電気信号に変換され変化量検出部9に出力される。変
化量検出部9は入出力変換部8により変換された電位差
信号の最新の電位差信号Enから少なくとも1周期前の
電位差信号Eoをベクトル演算することにより、三相交
流配電線の地絡事故発生による零相電圧の発生に伴う電
位差信号の変化量ΔVを検出する構成となっている。図
3を基に更に詳細な説明を行う。
The potential difference signal E measured by the potential difference measuring means 4 is converted by the input / output converter 8 into an electric signal proportional to the potential difference signal E, and output to the change amount detector 9. The change amount detection unit 9 performs a vector operation on the potential difference signal Eo at least one cycle earlier from the latest potential difference signal En of the potential difference signal converted by the input / output conversion unit 8, thereby causing a ground fault accident in the three-phase AC distribution line. The configuration is such that the amount of change ΔV of the potential difference signal accompanying the generation of the zero-phase voltage is detected. A more detailed description will be given based on FIG.

【0044】入出力変換部8は、光ファイバケーブル1
3を信号伝送媒体とし光電圧センサ5に一定光量を供給
する発光部8Aと、光電圧センサ5により変調された光
変調信号を受光する受光部8Bと、受光部8Bにより受
光された光信号に比例した電気信号に変換するI/V変
換部8Cと、I/V変換部8Cの信号を適当な信号レベ
ルに増幅する増幅部8Dより構成されている。また増幅
部8Dから出力された電位差変換信号Eを入力し電位差
の変化量を検出する変化量検出部9は、入力された変換
信号Eを1周期単位に一定時間メモリする記憶部9A
と、電位差信号Eの最新入力信号と記憶部9Aにより記
憶された電位差信号Eをベクトル演算し、かつ記憶部9
Aにメモリデータの更新指令を出力する演算部9Bと、
演算部9Bの結果を出力する変化量出力部9Cから構成
されている。
The input / output conversion unit 8 includes the optical fiber cable 1
3 as a signal transmission medium, a light emitting unit 8A for supplying a constant amount of light to the optical voltage sensor 5, a light receiving unit 8B for receiving an optical modulation signal modulated by the optical voltage sensor 5, and an optical signal received by the light receiving unit 8B. It comprises an I / V converter 8C for converting the signal into a proportional electric signal, and an amplifier 8D for amplifying the signal of the I / V converter 8C to an appropriate signal level. The change amount detection unit 9 which receives the potential difference conversion signal E output from the amplifying unit 8D and detects the amount of change in the potential difference is stored in a storage unit 9A which stores the input conversion signal E for a period of time in units of one cycle.
Vector operation of the latest input signal of the potential difference signal E and the potential difference signal E stored by the storage unit 9A;
A computing unit 9B that outputs a memory data update command to A,
It comprises a variation output section 9C that outputs the result of the calculation section 9B.

【0045】図3、図4を基に変化量検出部9の説明を
行う。入出力変換部8から出力された電位差信号は記
憶部9Aにメモリされると、次周期の電位差信号は記
憶部9Aに入力されると共に演算部9Bにも入力され
る。演算部9Bに於いては。
The change amount detecting section 9 will be described with reference to FIGS. When the potential difference signal output from the input / output conversion unit 8 is stored in the storage unit 9A, the potential difference signal of the next cycle is input to the storage unit 9A and also to the calculation unit 9B. In the calculation unit 9B.

【0046】(1)「次周期の電位差信号(A)−メモリ
された電位差信号(B)」=電位差変化量(ΔV) (2)電位差変化量ΔV≧一定値(Sh)の判定処理。
及び (3)電位差変化量ΔVが一定値以下の場合は記憶部9
Aにメモリ更新指令Rsを出力する記憶部9A制御。 を行う。
(1) “Potential difference signal (A) in next cycle−stored potential difference signal (B)” = potential difference change amount (ΔV) (2) Determination process of potential difference change amount ΔV ≧ constant value (Sh).
And (3) when the potential difference change amount ΔV is equal to or less than a certain value, the storage unit 9
A storage unit 9A control for outputting a memory update command Rs to A. I do.

【0047】記憶部9Aは、演算部9Bからメモリ更新
指令Rsを入力するとメモリしているメモリデータを消
去し、新たに入力された電位差信号をメモりする。
When the memory update command Rs is input from the arithmetic unit 9B, the storage unit 9A deletes the memory data stored therein and records the newly input potential difference signal.

【0048】図4によると、電位差信号はメモリされ
た電位差信号とベクトル演算を行い変化量ΔVを計測
する。この場合、変化量ΔVは一定値以下であるため演
算部9Bは記憶部9Aにメモリ更新指令Rsを出力する
と、記憶部9Aはメモリデータを電位差信号に更新す
る。以下同様に電位差信号、をメモりされた電位差
信号、とベクトル演算を行い変化量ΔVを計測す
る。図4に示すように、電位差信号とメモリデータ
のベクトル演算後変化量ΔVが一定値(Sh)以上を検
出すると、メモリ更新指令Rsは出力されずメモリデー
タは電位差信号で固定され、以後電位差変化量状態を
計測する。
According to FIG. 4, the potential difference signal is subjected to a vector operation with the stored potential difference signal to measure a change amount ΔV. In this case, since the change amount ΔV is equal to or smaller than the fixed value, when the calculation unit 9B outputs the memory update command Rs to the storage unit 9A, the storage unit 9A updates the memory data to a potential difference signal. In the same manner, the potential difference signal, the memoized potential difference signal, and a vector operation are performed to measure the change amount ΔV. As shown in FIG. 4, when the change amount ΔV between the potential difference signal and the memory data after the vector calculation detects a constant value (Sh) or more, the memory update command Rs is not output and the memory data is fixed by the potential difference signal. Measure the quantity state.

【0049】なお本実施の形態によると三相交流配電線
が健全時の場合、1周期単位にメモり波形の更新制御を
行っているが、初期電位差信号のメモり制御以後、メモ
リ波形の更新はM周期(M≧2)更新またはメモリ更新
制御を行わない。もしくは予め設定された電位差信号を
メモリ信号としメモリ制御を未制御とする方法であって
も良いものとする。
According to the present embodiment, when the three-phase AC distribution line is in a healthy state, the control of updating the memory waveform is performed in one cycle unit, but after the memory control of the initial potential difference signal, the memory waveform is updated. Does not perform M cycle (M ≧ 2) update or memory update control. Alternatively, a method may be used in which a preset potential difference signal is used as a memory signal and memory control is not controlled.

【0050】次に図5に沿って、電位差計測手段4が設
置された三相交流配電線3の装柱状態(例えば配電線の
配列、地上高、線間距離、回線数)及び電位差計測手段
4の配置位置を補正パラメータとした補正パラメータ値
を入力する入力部10と、入力部10により入力された
補正パラメータ値により補正値を決定する補正演算部1
1について説明を行う。
Next, referring to FIG. 5, the state of the poles of the three-phase AC distribution line 3 on which the potential difference measuring means 4 is installed (for example, the arrangement of the distribution lines, the ground height, the distance between lines, the number of lines) and the potential difference measuring means An input unit 10 for inputting a correction parameter value using the arrangement position of 4 as a correction parameter, and a correction operation unit 1 for determining a correction value based on the correction parameter value input from the input unit 10
1 will be described.

【0051】図5は三相交流配電線の装柱状態及び各相
配電線と大地により形成される容量係数を示したもので
ある。Cr,Cs,Ctは各相配電線と大地間に形成さ
れる容量係数。Crs,Cst,Ctrは各相配電線間に形成
される容量係数、Qr,Qs,Qtは三相交流配電線3
の各相配電線が持つ電荷量Qである。ここで各電荷量Q
は、 Qr=Vr×Cr+Vs×Crs+Vt×Ctr Qs=Vr×Crs+Vs×Cs+Vt×Cst Qt=Vr×Ctr+Vs×Cst+Vt×Ct により表すことができる。ここで、Vr,Vs,Vtは三
相交流配電線3の各相対地間電圧を示す。
FIG. 5 shows the mounting condition of the three-phase AC distribution line and the capacity coefficient formed by each phase distribution line and the ground. Cr, Cs, and Ct are capacity coefficients formed between each phase distribution line and the ground. Crs, Cst, and Ctr are capacity coefficients formed between the phase distribution lines, and Qr, Qs, and Qt are three-phase AC distribution lines 3.
Is the charge amount Q of each phase distribution line. Where each charge Q
Qr = Vr × Cr + Vs × Crs + Vt × Ctr Qs = Vr × Crs + Vs × Cs + Vt × Cst Qt = Vr × Ctr + Vs × Cst + Vt × Ct Here, Vr, Vs, and Vt indicate respective relative ground voltages of the three-phase AC distribution line 3.

【0052】次に三相交流配電線3の地絡事故により発
生する零相電圧Voによる各相対地間電圧(Vrg,Vs
g,Vtg)は、 Vrg=Vr−Vo Vsg=Vs−Vo Vtg=Vt−Vo で表され、この時の各相配電線が持つ電荷量Qgは Qrg=Vrg×Cr+Vsg×Crs+Vtg×Ctr Qsg=Vrg×Crs+Vsg×Cs+Vtg×Cst Qtg=Vrg×Ctr+Vsg×Cst+Vtg×Ct で表される。
Next, the relative ground-to-ground voltages (Vrg, Vs) due to the zero-phase voltage Vo generated by the ground fault of the three-phase AC distribution line 3
g, Vtg) is expressed as Vrg = Vr-VoVsg = Vs-Vo Vtg = Vt-Vo, and the charge Qg of each phase distribution line at this time is Qrg = Vrg * Cr + Vsg * Crs + Vtg * Ctr Qsg = Vrg * Crs + Vsg × Cs + Vtg × Cst Qtg = Vrg × Ctr + Vsg × Cst + Vtg × Ct

【0053】三相交流配電線の健全時及び地絡事故時の
電位差Eを表すと 健全時電位差 Ea=Cre×Qr+Cse×Qs+Cte×Qt(V) 地絡事故時電位差 Eg=Cre×Qrg+Cse×Qsg+Cte×Qtg(V) で表される。
When the potential difference E of the three-phase AC distribution line at the time of sound and at the time of a ground fault is expressed, the potential difference at the time of sound Ea = Cre × Qr + Cse × Qs + Cte × Qt (V) The potential difference at the time of a ground fault Eg = Cre × Qrg + Cse × Qsg + Cte × It is represented by Qtg (V).

【0054】三相交流配電線の健全時及び地絡事故時の
電位差Ea、Eg信号を電位差計測手段4により計測し、
入出力変換部8及び変化量検出部9の構成により求めら
れる電位差変化量信号ΔVは ΔV=Eg−Ea =Cre×(Qrg−Qr)+Cse×(Qsg−Qs)+Cte×(Qtg−Qt) であり、三相交流配電線3の装柱状態および各相配電線
と電極の位置関係が一定であるならば、これは各相配電
線が持つ電荷量の変化量により決定する。
The potential difference Ea and Eg signals are measured by the potential difference measuring means 4 when the three-phase AC distribution line is sound and when there is a ground fault.
The potential difference change signal ΔV obtained by the configuration of the input / output converter 8 and the change detector 9 is ΔV = Eg−Ea = Cre × (Qrg−Qr) + Cse × (Qsg−Qs) + Cte × (Qtg−Qt) If the mounting state of the three-phase AC distribution line 3 and the positional relationship between the phase distribution lines and the electrodes are constant, this is determined by the amount of change in the amount of charge of each phase distribution line.

【0055】 Qrg−Qr=−(Vo×Cr+Vo×Crs+Vo×Ctr) =−Vo×(Cr+Crs+Ctr)=−Vo×C1 Qsg−Qs=−(Vo×Crs+Vo×Cs+Vo×Cst) =−Vo×(Crs+Cs+Cst)=−Vo×C2 Qtg−Qt=−(Vo×Ctr+Vo×Cst+Vo×Ct) =−Vo×(Ctr+Cst+Ct)=−Vo×C3 より、電位差変化量ΔVは ΔV =−Vo×C1×Cre−Vo×C2×Cse−Vo×C3×Cte =−Vo×(C1×Cre+C2×Cse+C3×Cte)=−Vo×H (H=C1×Cre+C2×Cse+C3×Cte) により表される。電位差変化量ΔVが上記で表されると
いうことは、変化量検出部9により検出された変化量信
号ΔVを補正演算値Hで除算処理を行えば零相電圧Vo
が検出できることを意味している(Vo=−ΔV/
H)。本装置の補正演算値とは、三相交流配電線の装柱
状態及び電位差計測手段の配置位置により決定される前
記補正係数Hを示すものである。
QRg−Qr = − (Vo × Cr + Vo × Crs + Vo × Ctr) = − Vo × (Cr + Crs + Ctr) = − Vo × C1 Qsg−Qs = − (Vo × Crs + Vo × Cs + Vo × Cst) = − Vo × (Crs + Cs + Cst) = −Vo × C2 Qtg−Qt = − (Vo × Ctr + Vo × Cst + Vo × Ct) = − Vo × (Ctr + Cst + Ct) = − Vo × C3 From the equation, the potential difference variation ΔV is ΔV = −Vo × C1 × Cre−Vo × C2. × Cse−Vo × C3 × Cte = −Vo × (C1 × Cre + C2 × Cse + C3 × Cte) = − Vo × H (H = C1 × Cre + C2 × Cse + C3 × Cte) The fact that the potential difference change amount ΔV is expressed as above means that if the change amount signal ΔV detected by the change amount detection unit 9 is divided by the correction operation value H, the zero-phase voltage Vo
Can be detected (Vo = −ΔV /
H). The correction calculation value of the present apparatus indicates the correction coefficient H determined by the mounting condition of the three-phase AC distribution line and the arrangement position of the potential difference measuring means.

【0056】入力部10及び補正演算部11は、電位差
計測手段4を配置する三相交流配電線3の装柱状態及び
電位差計測手段4の配置位置を示す補正パラメータ値を
入力するための入力手段であり、且つ前記補正パラメー
タ値に基づき補正演算値Hを算出するために構成された
手段である。
The input section 10 and the correction operation section 11 are input means for inputting correction parameter values indicating the mounting condition of the three-phase AC distribution line 3 on which the potential difference measuring means 4 is disposed and the arrangement position of the potential difference measuring means 4. And a means configured to calculate a correction operation value H based on the correction parameter value.

【0057】零相電圧検出部12は、変化量検出部9に
より検出された変化量信号ΔVと補正演算部11により
算出された補正演算値Hを入力し、除算処理(ΔV÷
H)を行うことで零相電圧Voを検出するよう構成して
いる。
The zero-phase voltage detector 12 receives the change amount signal ΔV detected by the change amount detector 9 and the correction operation value H calculated by the correction operation unit 11, and performs a division process (ΔV ÷
H), the zero-phase voltage Vo is detected.

【0058】次に、電極1及び電極2並びに光電圧セン
サ5を内蔵し、三相交流配電線3に対し前記電極の位置
関係が予め設定された位置関係になるよう構成された第
1の計測ユニット部6と、電位差計測手段4の配置位置
を調整可能な構成とした電位差計測手段4について説明
する。
Next, a first measurement which incorporates the electrodes 1 and 2 and the optical voltage sensor 5 and is configured so that the positional relationship of the electrodes with respect to the three-phase AC distribution line 3 becomes a preset positional relationship. The unit 6 and the potential difference measuring means 4 having a configuration in which the arrangement position of the potential difference measuring means 4 can be adjusted will be described.

【0059】図6は電極1及び電極2並びに光電圧セン
サ5を内蔵し、三相交流配電線3に対し前記電極の位置
関係が予め設定された位置関係になるよう構成された、
第1の計測ユニット部6の構成図を示すものであり、6
Aは第1の計測ユニット部6の上ユニット、6Bは第1
の計測ユニット部6の下ユニット、6Cは上下ユニット
を組み合わせた時に構成される配電線をクランプするた
めのクランプ部を示す。
FIG. 6 incorporates the electrode 1 and the electrode 2 and the optical voltage sensor 5, and is configured so that the positional relationship of the electrodes with respect to the three-phase AC distribution line 3 becomes a preset positional relationship.
FIG. 3 is a diagram illustrating a configuration of a first measurement unit 6;
A is the upper unit of the first measuring unit 6, and 6B is the first unit.
The lower unit 6C of the measuring unit 6 of FIG. 1 shows a clamp unit for clamping a distribution line formed when the upper and lower units are combined.

【0060】クランプ部6Cにおいては配電線の電線径
を問わず、常に三相交流配電線3の任意の一相であるS
相3Aが、クランプ部6Cの中心になるよう電線径に応
じたスペーサ6Dを挿入し、クランプ部6Cの中心にな
るよう固定、確定させる。そして図6に示すよう電極1
及び電極2は、クランプ部6Cの中心よりr1,r2の
位置になるよう予め下ユニット6Bに構成しておくこと
で、三相交流配電線3の任意の一相に対する相対位置を
確保する構造としている。
In the clamp section 6C, S which is an arbitrary phase of the three-phase AC distribution line 3 is always set regardless of the diameter of the distribution line.
The spacer 6D corresponding to the wire diameter is inserted so that the phase 3A is at the center of the clamp 6C, and is fixed and fixed so as to be at the center of the clamp 6C. Then, as shown in FIG.
The electrode 2 is configured in the lower unit 6B in advance so as to be located at r1 and r2 from the center of the clamp portion 6C, so that the three-phase AC distribution line 3 has a structure for securing a relative position to any one phase. I have.

【0061】図7は腕金4Aの一端に、腕金4Aとは絶
縁した状態で第2の計測ユニット部6Eを構成した電位
差計測手段4の構成・外観図を示すものであり、上ユニ
ット6A、クランプ部6C及びスペーサ6Dの構造を省
いた以外は、電極1及び電極2並びに光電圧センサ5か
らなる基本構成及び構造は、図6に示す第1の計測ユニ
ット部6と同等である。更に第2の計測ユニット部6E
に、絶縁体24からなる取り外し可能な位置決め定規4
Bを設け、配電線との相対位置が決定できる構成となっ
ている。腕金4Aの他端は電柱23に固定するものとす
る。
FIG. 7 shows a configuration and an external view of the potential difference measuring means 4 which constitutes the second measuring unit 6E at one end of the arm 4A while being insulated from the arm 4A. Except for omitting the structures of the clamp unit 6C and the spacer 6D, the basic configuration and structure including the electrodes 1 and 2 and the optical voltage sensor 5 are the same as those of the first measurement unit unit 6 shown in FIG. Further, the second measuring unit 6E
A removable positioning ruler 4 made of an insulator 24;
B is provided so that the relative position to the distribution line can be determined. The other end of the arm 4A is fixed to the utility pole 23.

【0062】なお、図6及び図7記載の実施の形態と
も、電極1及び電極2による電位差の計測は光電圧セン
サ5によるものであり、計測信号の伝送媒体は光ファイ
バケーブル13によるものである。
In both the embodiments shown in FIGS. 6 and 7, the measurement of the potential difference between the electrodes 1 and 2 is based on the optical voltage sensor 5 and the transmission medium of the measurement signal is based on the optical fiber cable 13. .

【0063】以上のことから、通常必要なバケット車等
を用いることなく柱上作業で電位差計測手段4の設置が
可能であり、設置作業の容易化及び設置工事費の低減を
図ることが可能となる。そして取り外し可能な位置決め
定規4Bを設けることで、配電線の電線径を与えるだけ
で任意の一相に対する相対位置が決定する他、設置作業
時には設置するための指示器となるため一層の設置作業
の容易化を図ることができる。設置後は前記定規を取り
外すことで、配電線とは完全に非接続状態とする構成が
可能となる。
From the above, it is possible to install the potential difference measuring means 4 on a pole without using a bucket truck or the like which is normally required, and it is possible to simplify the installation work and reduce the installation work cost. Become. By providing the removable positioning ruler 4B, the relative position with respect to any one phase can be determined only by giving the wire diameter of the distribution line, and since it becomes an indicator for installation at the time of installation work, further installation work can be performed. It can be facilitated. After installation, by removing the ruler, a configuration in which it is completely disconnected from the distribution line becomes possible.

【0064】また配電線が多回線の場合は、それぞれの
配電線により形成される容量係数を演算し多回線状態に
応じた補正演算値を算出すればよく、三相交流配電線の
装柱状態を入力することにより零相電圧を検出するに必
要な補正演算値Hの算出が可能となる。
When the distribution line has multiple lines, the capacity coefficient formed by each distribution line may be calculated to calculate a correction operation value according to the state of the multi-line. , The correction operation value H required to detect the zero-phase voltage can be calculated.

【0065】さらに、前記した1構成の電位差計測手段
で精度のよい零相電圧の検出ができ、1構成の電位差計
測手段から零相電圧の検出を可能にしているため、経済
的に優れた零相電圧検出装置の提供を可能にし、1構成
の電位差計測手段の計測信号から零相電圧を検出するた
め、従来(三相加算方式を適用した零相電圧検出装置)
は必要であった各相計測装置の特性を平衡に保つ制御を
不要にし、製造上また管理面上の作業の容易化を図るこ
とが可能であり、装置の低コスト化を可能にしている。
Further, the zero-phase voltage can be detected with high accuracy by the above-described one-potential difference measuring means, and the zero-phase voltage can be detected by the one-potential difference measuring means. Conventionally (a zero-phase voltage detection apparatus to which a three-phase addition method is applied) to provide a phase voltage detection apparatus and detect a zero-phase voltage from a measurement signal of a potential difference measuring means having one configuration
Can eliminate the need for control for keeping the characteristics of each phase measurement device in equilibrium, and can facilitate the work in terms of manufacturing and management, thereby making it possible to reduce the cost of the device.

【0066】(実施の形態2)本実施の形態2は、実施
の形態1の入力部を送信部14Aと受信部14Bから成
る送受信可能な通信手段14で構成した零相電圧検出装
置であり、図8にその構成を示す。
(Embodiment 2) The present embodiment 2 is a zero-phase voltage detecting device in which the input section of Embodiment 1 is constituted by a communication means 14 capable of transmitting and receiving, comprising a transmitting section 14A and a receiving section 14B. FIG. 8 shows the configuration.

【0067】本構成は、電位差計測手段4が設置される
三相交流配電線3の装柱状態を示す補正パラメータ値
を、地絡検出装置とは別の装置として構成された補正要
素入力装置15に入力し、補正要素入力装置15から各
補正パラメータ値を得るようにした地絡検出装置であ
る。
In this configuration, the correction parameter value indicating the mounting state of the three-phase AC distribution line 3 on which the potential difference measuring means 4 is installed is converted into a correction element input device 15 configured as a device different from the ground fault detection device. , And obtains respective correction parameter values from the correction element input device 15.

【0068】また図9は、本実施の形態2の通信手段1
4の出力を直接零相電圧検出部に入力するよう構成した
地絡検出装置であり、補正演算値Hを算出する補正演算
部11を補正要素入力装置15内に構成し、補正要素入
力装置15にて補正演算値Hを算出し、補正要素入力装
置15から補正演算値Hを得るよう構成した地絡検出装
置である。2実施の形態とも、その他の構成及び各構成
機能は実施の形態1と同様である。なお、図9に示す実
施の形態2の場合、補正演算値Hを記憶する機能を零相
電圧検出部12に付加している。
FIG. 9 shows communication means 1 according to the second embodiment.
4 is a ground fault detection device configured to directly input the output of the zero-phase voltage detection unit to the zero-phase voltage detection unit, wherein the correction calculation unit 11 for calculating the correction calculation value H is configured in the correction element input device 15, and the correction element input device 15 Is a ground fault detecting device configured to calculate the correction calculation value H from the correction element input device 15 and obtain the correction calculation value H from the correction element input device 15. In the two embodiments, the other configurations and respective functions are the same as those in the first embodiment. In the case of the second embodiment shown in FIG. 9, a function of storing the correction operation value H is added to the zero-phase voltage detection unit 12.

【0069】図10は補正要素入力装置15の構成を示
すものである。補正要素入力装置15は、電位差計測手
段4が設置される三相交流配電線3の装柱状態を示す補
正パラメータ値を入力する入力部16と、入力部16に
より入力された補正パラメータ値を所定のデータに変換
するデータ変換部17と、データ変換部17により変換
された補正演算値に係わるデータを、前記地絡検出装置
に出力する送受信可能な通信手段18で構成されてい
る。また補正要素入力装置15に補正演算値Hを算出す
る機能を付加する場合は、データ変換部17に補正演算
部11と同機能を付加する構成とすればよい。
FIG. 10 shows the configuration of the correction element input device 15. The correction element input device 15 includes an input unit 16 for inputting a correction parameter value indicating a mounting state of the three-phase AC distribution line 3 on which the potential difference measuring unit 4 is installed, and a correction parameter value input by the input unit 16 for a predetermined value. And a communication unit 18 capable of transmitting and receiving the data relating to the correction operation value converted by the data conversion unit 17 to the ground fault detection device. When a function of calculating the correction calculation value H is added to the correction element input device 15, the same function as that of the correction calculation unit 11 may be added to the data conversion unit 17.

【0070】本実施の形態2によると、三相交流配電線
3に設置された後も補正パラメータ値の入力が可能であ
り、補正パラメータ値の誤入力があった場合でも設置さ
れた地絡検出装置を取り外すことなく、かつ再度の柱上
作業を発生させることなく補正パラメータ値を再入力す
ることが可能であり、作業の容易化を図ることができ
る。
According to the second embodiment, it is possible to input the correction parameter value even after the three-phase AC distribution line 3 is installed, and even if the correction parameter value is erroneously input, the installed ground fault is detected. Correction parameter values can be re-input without removing the device and without re-performing the work on the pole, thereby facilitating the work.

【0071】また、補正パラメータ値を通信にて入力す
ることができるため、補正パラメータ値を入力するに必
要である入力端末部を地絡検出装置に構成する必要がな
く地絡検出装置を小型・軽量にて構成することができ
る。
Further, since the correction parameter value can be input by communication, it is not necessary to configure an input terminal unit necessary for inputting the correction parameter value in the ground fault detecting device, and the ground fault detecting device can be reduced in size and size. It can be made lightweight.

【0072】また補正演算値Hを算出する補正演算部1
1を専用装置化することで補正演算値Hの精度を向上さ
せることも可能であり、また補正演算値Hの精度向上の
ための回路部及びソフトプログラム構成を追加すること
も容易に行える。
A correction operation unit 1 for calculating a correction operation value H
It is also possible to improve the accuracy of the correction operation value H by making the device 1 a dedicated device, and it is also possible to easily add a circuit unit and a software program configuration for improving the accuracy of the correction operation value H.

【0073】更に経済的効果を考えると、三相交流配電
線3に多数設置し使用する方向を認識する地絡検出装置
の用途には、その分の地絡検出装置が必要になるため、
個々の地絡検出装置に入力端末部(及び補正演算部1
1)を構成するよりも、補正要素入力装置15として専
用装置化することで、補正要素入力装置15を1台で地
絡検出装置の補正要素設定を行えるよう構成すればよ
い。
Considering further the economic effect, the use of the ground fault detecting device installed in the three-phase AC distribution line 3 and recognizing the direction of use requires the ground fault detecting device corresponding to the use.
The input terminal unit (and the correction operation unit 1) is connected to each ground fault detection device.
Rather than configuring the method 1), a dedicated device may be used as the correction element input device 15 so that the correction element setting of the ground fault detection device can be performed by one correction element input device 15.

【0074】なお本実施の形態2において、通信手段1
8に送信部18Aおよび受信部18Bを設けた構成とし
ているが、これは補正要素入力装置15により送信され
た送信データを地絡検出装置が受信すると、前記地絡検
出装置は受信データに応答をする形で受信データを補正
要素入力装置15に応答送信する構成としている。そし
て補正要素入力装置15は前記応答送信の受信結果を表
示する表示部19を設けた構成とすると、地絡検出装置
が補正要素入力装置15からの送信データを正しく受信
できているか確認する手段として、また補正パラメータ
値の入力に誤入力がなかったか再確認する手段として構
成することも可能である。
In the second embodiment, the communication means 1
8, a transmission unit 18A and a reception unit 18B are provided. This is because when the ground fault detection device receives the transmission data transmitted by the correction element input device 15, the ground fault detection device responds to the received data. Then, the received data is transmitted as a response to the correction element input device 15 in such a manner. When the correction element input device 15 is provided with a display unit 19 for displaying the result of the response transmission, as a means for confirming whether the ground fault detecting device has correctly received the transmission data from the correction element input device 15. Alternatively, it may be configured as a means for reconfirming whether or not an erroneous input has been made in the input of the correction parameter value.

【0075】(実施の形態3)図11は本実施の形態3
の地絡検出装置を用いた方向を認識する地絡検出装置の
構成図を示すものであり、R,S,Tは三相交流配電線
3の各相、16は本実施の形態3の地絡検出装置からな
る零相電圧検出部、20は零相電流検出部であり、三相
交流配電線3の各相電流をコア及び光電流センサ(図示
せず)により検出する各相電流検出部20Aと、各相電
流検出部20Aにより検出された各相電流を三相加算
(ベクトル演算)することにより零相電流を検出するた
めの演算部20Bより構成されている。21は零相電圧
検出部12と零相電流検出部20の出力を入力し地絡事
故方向を判定する地絡事故方向判定部、22は地絡事故
方向判定部21により検出された地絡事故方向判定結果
を出力する出力部である。
(Embodiment 3) FIG. 11 shows Embodiment 3 of the present invention.
1 is a configuration diagram of a ground fault detecting device for recognizing a direction using a ground fault detecting device of the present embodiment, where R, S, and T are each phase of the three-phase AC distribution line 3, and 16 is a ground fault of the third embodiment. A zero-phase voltage detector, which is a short-circuit detector, and a zero-phase current detector 20, which detects each phase current of the three-phase AC distribution line 3 by a core and a photocurrent sensor (not shown). 20A, and an operation unit 20B for detecting a zero-phase current by performing three-phase addition (vector operation) of each phase current detected by each phase current detection unit 20A. Reference numeral 21 denotes a ground fault direction determining unit which receives outputs of the zero-phase voltage detecting unit 12 and the zero-phase current detecting unit 20 to determine a ground fault direction, and 22 denotes a ground fault detected by the ground fault direction determining unit 21. This is an output unit that outputs a direction determination result.

【0076】本構成によると、三相交流配電線3に地絡
事故が発生すると三相交流配電線3は不平衡状態になる
ため、各相電流検出部20Aで計測された各相電流を三
相加算する演算部20B出力に零相電流が検出される。
また零相電圧検出部12においても、前記した通り各相
配電線が持つ電荷量に変化が生ずるため電位差変化量が
発生し零相電圧が検出される。公知の通り、零相電圧と
零相電流には地絡事故方向に応じ特定の位相関係にある
ことから、前記した零相電流と零相電圧の検出レベルお
よび位相差から地絡事故および地絡事故方向を検出する
ことが可能になる。
According to this configuration, if a ground fault occurs in the three-phase AC distribution line 3, the three-phase AC distribution line 3 becomes unbalanced. A zero-phase current is detected at the output of the operation unit 20B that performs phase addition.
Also in the zero-phase voltage detection unit 12, as described above, a change occurs in the charge amount of each phase distribution line, so that a potential difference change amount is generated and the zero-phase voltage is detected. As is known, since the zero-phase voltage and the zero-phase current have a specific phase relationship according to the direction of the ground-fault accident, the ground-fault and the ground-fault are determined from the detection level and the phase difference between the zero-phase current and the zero-phase voltage. The direction of the accident can be detected.

【0077】本実施の形態3によると光計測によるた
め、高絶縁・無誘導形の装置が実現でき信頼性の高い、
また設置作業時に停電させることなく本装置の設置が可
能であり配電線への取り付けが容易に行えるため常設用
・非常用として使用できる方向を認識する地絡検出装置
の提供が可能である。
According to the third embodiment, since optical measurement is used, a highly insulated and non-inductive type device can be realized and high reliability is achieved.
Further, since the present apparatus can be installed without a power failure during the installation work and can be easily attached to a distribution line, it is possible to provide a ground fault detecting apparatus that recognizes a direction in which the apparatus can be used for permanent use and emergency use.

【0078】[0078]

【発明の効果】本発明によると、次のすぐれた効果が得
られる。
According to the present invention, the following excellent effects can be obtained.

【0079】(1)三相交流配電線の電界強度を測定す
ることにより電位差を算出しているので、高圧充電部に
非接触であるため、設置作業の容易化、優れた安全性を
図ることができる。
(1) Since the potential difference is calculated by measuring the electric field strength of the three-phase AC distribution line, since it is not in contact with the high-voltage charging section, installation work is facilitated and excellent safety is achieved. Can be.

【0080】(2)電位差の変化量を補正するため、よ
り精度の高い零相電圧を検出することができる。
(2) Since the amount of change in the potential difference is corrected, a more accurate zero-phase voltage can be detected.

【0081】(3)補正要素入力手段と補正演算手段を
送受信可能な通信ができるようにしたため、地絡検出装
置から入力端末部が省け、地絡検出装置を小型・軽量に
できるため優れた経済性と、作業の容易化が図れる。
(3) Since the communication capable of transmitting and receiving between the correction element input means and the correction calculation means can be performed, the input terminal unit can be omitted from the ground fault detecting device, and the ground fault detecting device can be made small and light, so that excellent economy can be achieved. Simplicity and workability.

【0082】[0082]

【0083】(5)電位差計測手段に光電圧センサを用
い、光電圧センサからの信号を光ファイバケーブルで伝
送したので、高絶縁・無誘導形の地絡検出装置が実現で
き、耐ノイズ性の向上が図れる。
(5) Since the optical voltage sensor is used as the potential difference measuring means and the signal from the optical voltage sensor is transmitted through the optical fiber cable, a highly insulated and non-inductive ground fault detecting device can be realized, and the noise resistance can be improved. Improvement can be achieved.

【0084】(6) 補正要素入力手段は、補正パラメ
ータのデータ入力部と、その入力されデータを所定のデ
ータに変換するデータ変換部と、変換されたデータを出
力する送受信可能なデータ通信部とを備えているので、
地絡検出装置に補正パラメータ値のデータ入力部を設け
る必要がなく、1つの補正要素入力手段で複数の地絡検
出装置の補正値設定ができるため、地絡検出装置が複数
必要な場合は特に経済的な効果を向上できる。
(6) The correction element input means includes: a data input section for correction parameters; a data conversion section for converting the input data into predetermined data; and a data communication section capable of transmitting and receiving the converted data. Because it has
There is no need to provide a data input section for correction parameter values in the ground fault detection device, and correction values for a plurality of ground fault detection devices can be set by one correction element input unit. The economic effect can be improved.

【0085】(7)三相交流配電線の電界強度を測定す
ることにより電位差を算出し、現周期の電位差と少なく
とも1周期前の健全時の電位差との差を比較演算するこ
とにより零相電圧を検出し、地絡事故方向も判定してい
るので、正確な零相電圧を得ることが出来るとともに、
常設用・非常用として使用できる地絡の方向性を判断す
ることができる。
(7) The potential difference is calculated by measuring the electric field strength of the three-phase AC distribution line, and the zero-phase voltage is calculated by comparing the difference between the potential difference in the current cycle and the potential difference in the normal state at least one cycle before. And the direction of the ground fault accident is also determined, so that an accurate zero-sequence voltage can be obtained,
It is possible to determine the direction of a ground fault that can be used for permanent and emergency use.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態1における零相電圧検出装
置の全体構成図
FIG. 1 is an overall configuration diagram of a zero-sequence voltage detection device according to a first embodiment of the present invention.

【図2】同実施の形態1における電位差計測手段と三相
交流配電線の関係図
FIG. 2 is a diagram showing a relationship between a potential difference measuring unit and a three-phase AC distribution line according to the first embodiment.

【図3】同実施の形態1における入出力変換部と変化量
検出部の構成図
FIG. 3 is a configuration diagram of an input / output conversion unit and a change amount detection unit according to the first embodiment.

【図4】同実施の形態1における変化量検出部の機能概
念図
FIG. 4 is a functional conceptual diagram of a change amount detection unit according to the first embodiment.

【図5】同実施の形態1における三相交流配電線が形成
する静電容量を示す状態図
FIG. 5 is a state diagram showing a capacitance formed by the three-phase AC distribution line according to the first embodiment.

【図6】同実施の形態1における第1の計測ユニット部
を示す構成図
FIG. 6 is a configuration diagram showing a first measurement unit unit according to the first embodiment.

【図7】同実施の形態1における電位差計測手段を示す
構成・外観図
FIG. 7 is a configuration and external view showing a potential difference measuring unit according to the first embodiment.

【図8】同実施の形態2における地絡検出装置の全体構
成図
FIG. 8 is an overall configuration diagram of a ground fault detecting device according to the second embodiment.

【図9】同実施の形態2における第2の地絡検出装置の
全体構成図
FIG. 9 is an overall configuration diagram of a second ground fault detecting device according to the second embodiment.

【図10】同実施の形態2における補正要素入力装置の
全体構成図
FIG. 10 is an overall configuration diagram of a correction element input device according to the second embodiment.

【図11】同実施の形態3における地絡検出装置を用い
た方向を認識する地絡検出装置の全体構成図
FIG. 11 is an overall configuration diagram of a ground fault detection device that recognizes a direction using the ground fault detection device according to the third embodiment.

【図12】従来の地絡検出装置を示す第1の構成図FIG. 12 is a first configuration diagram showing a conventional ground fault detection device.

【図13】従来の地絡検出装置を示す第2の構成図FIG. 13 is a second configuration diagram showing a conventional ground fault detection device.

【符号の説明】[Explanation of symbols]

1 電極1 2 電極2 3 三相交流配電線 3A 三相交流配電線の任意の一相であるS相 4 電位差計測手段 4A 腕金 4B 定規 5 光電圧センサ 6 第1の計測ユニット部 6A 上ユニット 6B 下ユニット 6C クランプ部 6D スペーサ 6E 第2の計測ユニット部 7 信号処理回路手段 8 入出力変換部 8A 発光部 8B 受光部 8C I/V変換部 8D 増幅部 9 変化量検出部 9A 記憶部 9B 演算部(ベクトル演算) 9C 変化量出力部 10 入力部 11 補正演算部 12 零相電圧検出部 13 光ファイバケーブル 14 通信手段 14A 送信部 14B 受信部 15 補正要素入力装置 16 入力部 17 データ変換部 18 通信手段 18A 送信部 18B 受信部 19 表示部 20 零相電流検出部 20A 各相電流検出部 20B 演算部 21 地絡事故方向判定部 22 出力部 23 電柱 24 絶縁体 25 高圧用コンデンサCp 26 低圧用コンデンサCs 27,28 降圧用絶縁トランス 29 波形処理回路 DESCRIPTION OF SYMBOLS 1 electrode 1 2 electrode 2 3 Three-phase alternating current distribution line 3A S phase which is an arbitrary phase of three-phase alternating current distribution line 4 Potential difference measuring means 4A Arm 4B Ruler 5 Optical voltage sensor 6 First measuring unit 6A Upper unit 6B Lower unit 6C Clamp unit 6D Spacer 6E Second measurement unit unit 7 Signal processing circuit unit 8 Input / output conversion unit 8A Light emission unit 8B Light reception unit 8C I / V conversion unit 8D amplification unit 9 Change amount detection unit 9A Storage unit 9B calculation Unit (vector operation) 9C change amount output unit 10 input unit 11 correction operation unit 12 zero-phase voltage detection unit 13 optical fiber cable 14 communication means 14A transmission unit 14B reception unit 15 correction element input device 16 input unit 17 data conversion unit 18 communication Means 18A Transmission section 18B Receiving section 19 Display section 20 Zero-phase current detection section 20A Each phase current detection section 20B Operation section 21 Ground Accident direction determination section 22 output section 23 utility pole 24 insulator 25 for step-down high-voltage capacitor Cp 26 low capacitor Cs 27, 28 insulation transformer 29 waveform processing circuit

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01R 29/16 G01R 31/02 G01R 31/08 - 31/11 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) G01R 29/16 G01R 31/02 G01R 31/08-31/11

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 三相交流配電線の電界強度を測定するこ
とにより電位差を算出する電位差計測手段と、前記電位
差計測手段からの現周期の電位差と少なくとも1周期前
の健全時の電位差との差を比較演算する変化量検出手段
と、前記変化量検出手段からの出力データにより零相電
圧を検出する零相電圧検出手段とを備えた地絡検出装
置。
1. A potential difference measuring means for calculating a potential difference by measuring an electric field strength of a three-phase AC distribution line, and a difference between a potential difference in a current cycle from the potential difference measuring means and a potential difference in a healthy state at least one cycle before. And a ground fault detection device comprising: a zero-phase voltage detection unit that detects a zero-phase voltage based on output data from the variation detection unit.
【請求項2】 変化量検出手段で算出される電位差の変
化量を補正する補正演算手段と、前記補正演算手段への
補正パラメータを入力する補正要素入力手段とを備えた
請求項1記載の地絡検出装置。
2. The ground according to claim 1, further comprising: a correction operation unit that corrects a change amount of the potential difference calculated by the change amount detection unit; and a correction element input unit that inputs a correction parameter to the correction operation unit. Tangle detection device.
【請求項3】 補正要素入力手段と補正演算手段は送受
信可能な通信ができる請求項2記載の地絡検出装置。
3. The ground fault detecting device according to claim 2, wherein the correction element input means and the correction calculation means are capable of transmitting and receiving communication.
【請求項4】 電位差計測手段には光電圧センサを用
い、前記光電圧センサからの信号を光ファイバケーブル
で伝送した請求項1または2記載の地絡検出装置。
4. The ground fault detecting device according to claim 1, wherein an optical voltage sensor is used as the potential difference measuring means, and a signal from the optical voltage sensor is transmitted through an optical fiber cable.
【請求項5】 補正要素入力手段は、補正パラメータを
入力するデータ入力部と、前記データ入力部から入力さ
れたデータを所定のデータに変換するデータ変換部と、
前記データ変換部により変換されたデータを出力する送
受信可能なデータ通信部とを備えた請求項3記載の地絡
検出装置。
5. A correction element input unit, comprising: a data input unit for inputting a correction parameter; a data conversion unit for converting data input from the data input unit into predetermined data;
The ground fault detecting device according to claim 3, further comprising a data communication unit capable of transmitting and receiving the data converted by the data conversion unit.
【請求項6】 三相交流配電線の電界強度を測定するこ
とにより電位差を算出する電位差計測手段と、前記電位
差計測手段からの現周期の電位差と少なくとも1周期前
の健全時の電位差との差を比較演算する変化量検出手段
と、前記変化量検出手段からの出力データにより零相電
圧を検出する零相電圧検出手段と、三相交流配電線の零
相電流を検出する零相電流検出手段と、前記零相電圧検
出手段からの零相電圧検出信号と前記零相電流検出手段
からの零相電流信号とにより地絡事故方向を判定する地
絡事故判定手段とを備えた地絡検出装置。
6. A potential difference measuring means for calculating a potential difference by measuring an electric field strength of a three-phase AC distribution line, and a difference between a potential difference in a current cycle from the potential difference measuring means and a potential difference in a healthy state at least one cycle before. , A zero-phase voltage detecting means for detecting a zero-phase voltage based on output data from the variation detecting means, and a zero-phase current detecting means for detecting a zero-phase current of the three-phase AC distribution line. And a ground fault detection means for determining a ground fault direction based on a zero-phase voltage detection signal from the zero-phase voltage detection means and a zero-phase current signal from the zero-phase current detection means. .
JP23633096A 1996-09-06 1996-09-06 Ground fault detector Expired - Fee Related JP3266003B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23633096A JP3266003B2 (en) 1996-09-06 1996-09-06 Ground fault detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23633096A JP3266003B2 (en) 1996-09-06 1996-09-06 Ground fault detector

Publications (2)

Publication Number Publication Date
JPH1082819A JPH1082819A (en) 1998-03-31
JP3266003B2 true JP3266003B2 (en) 2002-03-18

Family

ID=16999215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23633096A Expired - Fee Related JP3266003B2 (en) 1996-09-06 1996-09-06 Ground fault detector

Country Status (1)

Country Link
JP (1) JP3266003B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4919592B2 (en) * 2004-10-04 2012-04-18 株式会社三英社製作所 Zero phase voltage detector
KR100718535B1 (en) 2005-09-07 2007-05-17 주식회사 미르코 Check valve device
CN103354161B (en) * 2013-08-02 2015-12-23 国网新疆电力公司电力科学研究院 High-voltage mutual inductor
JP7016159B2 (en) * 2018-06-18 2022-02-04 国立研究開発法人産業技術総合研究所 Sensor device
JP7270945B2 (en) * 2021-10-08 2023-05-11 Igr技研株式会社 Leakage current interrupter

Also Published As

Publication number Publication date
JPH1082819A (en) 1998-03-31

Similar Documents

Publication Publication Date Title
US7518529B2 (en) Monitoring device for a medium voltage overhead line
JP3266003B2 (en) Ground fault detector
CN203405561U (en) Direct current power source grounding fault searching device
CN105486984A (en) Dynamic voltage source control-based direct-current grounding searching method and apparatus
JPH05133993A (en) Contactless electric field/magnetic field sensor
KR100538018B1 (en) A new measurement equipment for the shieth currents of grounding power cables
JP3341485B2 (en) Transmission line fault location method
CN210401531U (en) Electric safety monitoring device
JP3457990B2 (en) Method and apparatus for determining disconnection point of high-voltage distribution line
JPH0311743Y2 (en)
JP3455077B2 (en) Directional ground fault detector
JP2020106407A (en) Device and method for diagnosing deterioration of insulator of connection body for high voltage overhead cable
CN113325358B (en) Rapid detection method and system for residual current of intelligent ammeter
CN217085087U (en) Detection apparatus for three-phase four-wire is zero line dual supply residual current altogether
JPH08103022A (en) Power system and monitor for electric facility
JP3013488B2 (en) Ground fault fault location method
CN117638791A (en) Power line control method and device and power system
JPH04268464A (en) Fault point detector for power transmission line
JP2000284016A (en) Method for detecting ground-fault point in trolley power transmission line
JP2561984B2 (en) Substation fault section detection system
JP3013491B2 (en) Short-circuit fault location method
JPH0428065Y2 (en)
JP2001050997A (en) Measuring device for capacitance to ground and measuring method thereof
JPH03199982A (en) System for spotting fault point in transmission line
JP2678217B2 (en) Fault location method for power transmission system

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090111

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090111

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100111

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees