JP3264711B2 - Optical isolator - Google Patents

Optical isolator

Info

Publication number
JP3264711B2
JP3264711B2 JP33656392A JP33656392A JP3264711B2 JP 3264711 B2 JP3264711 B2 JP 3264711B2 JP 33656392 A JP33656392 A JP 33656392A JP 33656392 A JP33656392 A JP 33656392A JP 3264711 B2 JP3264711 B2 JP 3264711B2
Authority
JP
Japan
Prior art keywords
light
birefringent crystal
optical
optical axis
ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33656392A
Other languages
Japanese (ja)
Other versions
JPH06160775A (en
Inventor
正人 蓼沼
一秋 池貝
良博 今野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Namiki Precision Jewel Co Ltd
Adamant Namiki Precision Jewel Co Ltd
Original Assignee
Namiki Precision Jewel Co Ltd
Adamant Namiki Precision Jewel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Namiki Precision Jewel Co Ltd, Adamant Namiki Precision Jewel Co Ltd filed Critical Namiki Precision Jewel Co Ltd
Priority to JP33656392A priority Critical patent/JP3264711B2/en
Publication of JPH06160775A publication Critical patent/JPH06160775A/en
Application granted granted Critical
Publication of JP3264711B2 publication Critical patent/JP3264711B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、光ファイバ通信等にお
ける光の偏波方向に依存しない光アイソレータに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical isolator that does not depend on the polarization direction of light in optical fiber communication or the like.

【0002】[0002]

【従来の技術】半導体レーザを信号光源とする光通信の
進歩に伴い、これまでは不可能であった数百メガヘルツ
を越える高速高密度な信号伝送が実用化され、かつ最近
の光増幅技術の目ざましい進展によって、光電変換の必
要なく膨大な情報伝達が光ファイバを経路として可能に
なり、ファイバ間に挿入する偏光方向に無関係な光アイ
ソレータや、光増幅用励起光の導入方法等に関する技術
的高度化、経済的低価格化の要求が高まり、様々な提案
がなされ、一部実用に供されている。
2. Description of the Related Art With the advance of optical communication using a semiconductor laser as a signal light source, high-speed and high-density signal transmission exceeding several hundred megahertz, which has been impossible until now, has been put to practical use. The remarkable progress has made it possible to transmit vast amounts of information through optical fibers without the need for photoelectric conversion, and the technological advances in optical isolators independent of the polarization direction inserted between the fibers and methods for introducing pumping light for optical amplification. There is a growing demand for cost reduction and economical reduction, and various proposals have been made and some of them have been put to practical use.

【0003】図2は光線入出射面が平行平面であり、光
結合が比較的容易であること、かつ部品点数が複屈折結
晶板とファラデー回転子の二種類で足りる構成部品上の
利点も共有する光の偏波方向に光学特性が依存しない光
アイソレータ(以下偏波無依存型光アイソレータと呼称
する)の実例であり、順方向の光線透過状態を追跡した
略図である。構成は、ファラデー回転子Fと3個の複屈
折結晶板R1,R2,R3を用いた構造(特公昭60-51690
号公報参照)である。
[0003] Fig. 2 shows that the light incidence and emission surfaces are parallel planes, so that the optical coupling is relatively easy, and that the advantages of the components which require only two types of components, a birefringent crystal plate and a Faraday rotator, are shared. FIG. 2 is an actual example of an optical isolator whose optical characteristics do not depend on the polarization direction of light (hereinafter, referred to as a polarization-independent optical isolator), and is a schematic diagram tracing a forward light transmission state. The structure is a structure using a Faraday rotator F and three birefringent crystal plates R1, R2, R3 (Japanese Patent Publication No. 60-51690).
Reference).

【0004】[0004]

【発明が解決しようとする課題】しかしながら、図2の
構成は常光,異常光の伝播経路が異なることから、二光
線間の位相ずれが生じ、信号特性の偏波分散の原因とな
っている。実際にファイバ間に用いる偏波無依存型光ア
イソレータを伝播するとき誘起される偏波分散特性は、
一般に信号の分解能から0.5ps(ピコ秒)以下に抑圧さ
れることが望ましいとされている。しかし図2構成の場
合、常光,異常光間に光線伝播速度差異があり、偏波分
散が必ず発生し、そのままでは今後予想される高速高密
度光通信用光学装置として無視できない問題になってい
る。
However, in the configuration of FIG. 2, since the propagation paths of the ordinary light and the extraordinary light are different, a phase shift occurs between the two rays, which causes the polarization dispersion of the signal characteristic. The polarization dispersion characteristics induced when actually propagating through a polarization independent optical isolator used between fibers are:
In general, it is desirable to suppress the signal resolution to 0.5 ps (picoseconds) or less from the resolution of the signal. However, in the case of the configuration shown in FIG. 2, there is a difference in the light propagation speed between the ordinary light and the extraordinary light, and polarization dispersion always occurs. .

【0005】[0005]

【課題を解決するための手段】一般に複屈折結晶板の常
光,異常光の屈折率の違いに基づく位相ずれは式1の関
係がある。ωは光線の角速度、te'、toはそれぞれ異常
光,常光の伝播時間
In general, the phase shift based on the difference in the refractive index between the ordinary light and the extraordinary light of the birefringent crystal plate has a relationship represented by the following equation (1). ω the light of the angular velocity, t e ', t o each extraordinary light, the propagation time of the ordinary

【数1】 (Equation 1)

【数2】 であり、位相遅れτは式1の関係を用いて式2によって
表現される。式中、ne'、noは常光,異常光の屈折率で
あり、結晶の厚みをd、光速度cおよび使用する光波長
λとして導かれた関係である。
(Equation 2) And the phase delay τ is expressed by Expression 2 using the relationship of Expression 1. Wherein, n e ', n o is the ordinary light, the refractive index of the extraordinary light, the relationship led the thickness of the crystal d, as the optical wavelength λ of light velocity c and use.

【0006】ただしne'は光線方向と結晶の光学軸との
なす角度θに依存するもので、異常光の屈折率をne
するときne'は式3の関係から導かれる。
[0006] However n e 'is intended to depend on the angle θ between the optical axis of the crystal and the beam direction, n e when the refractive index of extraordinary light and n e' is derived from the relationship of Equation 3.

【数3】 従って、式3から複屈折結晶板の切り出し光学軸となす
角度はne'=neとなる。これらの関係から、波長分散
δは式4となる。
(Equation 3) Therefore, the angle formed from the Formula 3 and cut the optical axis of the birefringent crystal plate becomes n e '= n e. From these relationships, the chromatic dispersion δ is given by Equation 4.

【数4】 (Equation 4)

【0007】以上の関係を図2の構成で説明すると、図
2では第二,第三の複屈折結晶板厚みをdとすれば、第
一の複屈折結晶板厚みは√2dである。第一から第三複
屈折結晶板を伝播したとき生ずる偏波伝播状態を追跡す
るとき、まず第一複屈折結晶板R1に入射した光線が常
光,異常光に分離される。次に第二の複屈折結晶板R2
に伝播するとき、R2はR1に対して光学軸の向きが鏡面
対象で、かつ光線伝播軸を回転軸として45゜回転された
状態だから、異常光だけが移動する。次に第三の複屈折
結晶板R3は、R2に対して鏡面対象配置であるため、R
2まで常光線であったものが異常光線となり、結局常
光,異常光の位相遅れはR1によって生じた成分が最後
まで保留されることになる。
The above relationship will be described with reference to the configuration of FIG. 2. In FIG. 2, if the thickness of the second and third birefringent crystal plates is d, the thickness of the first birefringent crystal plate is √2d. When tracking the state of polarization propagation that occurs when the light propagates through the first to third birefringent crystal plates, first, the light beam incident on the first birefringent crystal plate R1 is separated into ordinary light and extraordinary light. Next, the second birefringent crystal plate R2
When R2 propagates to R1, only the extraordinary light moves because R2 is in a state where the direction of the optical axis is mirror-symmetric with respect to R1 and is rotated by 45 ° with the ray propagation axis as the rotation axis. Next, since the third birefringent crystal plate R3 has a mirror-symmetrical arrangement with respect to R2, R3
What is an ordinary ray until 2 becomes an extraordinary ray, and as a result, as for the phase delay of the ordinary ray and the extraordinary ray, the component caused by R1 is retained until the end.

【0008】そこでR1の位相遅れを補償する意味から
第四の複屈折結晶板R4を挿入して補償するとき、常光
と異常光は再び分離することはできないので、複屈折に
よる常光,異常光の分離がなく、かつ常光と異常光の光
線伝播速度が異なる結晶方位を選択しなければならな
い。従ってR4は、光学軸方向が光線伝播軸に対して垂
直となるとき全ての要請が満たされ、図3のような常
光,異常光の光線速度面が楕円体切断面となる結晶切り
出し面をもつ平行平板となる。
When the fourth birefringent crystal plate R4 is inserted and compensated for the purpose of compensating for the phase delay of R1, ordinary light and extraordinary light cannot be separated again. It is necessary to select a crystal orientation that has no separation and has different ray propagation speeds of ordinary light and extraordinary light. Therefore, R4 satisfies all the requirements when the optical axis direction is perpendicular to the ray propagation axis, and has a crystal cut surface in which the ray speed surface of ordinary light and extraordinary light becomes an ellipsoidal cut surface as shown in FIG. It becomes a parallel plate.

【0009】ただし複屈折結晶には常光線が早く伝播す
る正の物質と、それとは反対に異常光が早く伝播する負
の結晶があるので、本発明の場合いずれも利用でき、か
つ、その複屈折結晶板の配置する位置も多様な組み合わ
せが考えられるが、それらの組み合わせは本発明の末梢
的な要素であり特に言及しないが、図1はそれらの一例
である。しかし本発明の主要点は、偏波分散補償に用い
る複屈折結晶板の光学軸方向と信号光線の伝播方向の直
交性にあり、複屈折結晶板の正負や配置する場所にかか
わる発明ではない。
However, birefringent crystals include a positive substance in which ordinary light propagates quickly and a negative crystal in which an extraordinary light propagates quickly, and therefore both can be used in the present invention. Various combinations are also conceivable for the position where the refraction crystal plate is arranged. These combinations are peripheral elements of the present invention and are not particularly mentioned, but FIG. 1 shows an example of them. However, the main point of the present invention lies in the orthogonality between the optical axis direction of the birefringent crystal plate used for polarization dispersion compensation and the propagation direction of the signal beam, and is not an invention relating to the sign of the birefringent crystal plate or the location of the birefringent crystal plate.

【0010】[0010]

【実施例】図1は、本発明を適用した無偏波光アイソレ
ータの構造の概略図である。基本構成は複屈折結晶板と
してルチル結晶を採用し、複屈折結晶板としての切り出
し角度はルチル結晶の光学軸に対して約45゜とした。ル
チル結晶は正の一軸結晶であり結晶の光学軸方向を図1
中に記す方位に配置する。それぞれの寸法はR1が3mm
×3mm、厚さ2mmであり、R2,R3の寸法は3mm×3m
m、厚さ約1.4mmとした。ファラデー回転子Fは、寸法が
3mm×3mm、厚さ約350μmで使用波長λ=1550nmに設定
したLPE法でGGG基板上に育成したBi置換希土類鉄
ガーネットを用いた。
FIG. 1 is a schematic view of the structure of a non-polarization optical isolator to which the present invention is applied. The basic configuration employs a rutile crystal as a birefringent crystal plate, and the cutout angle of the birefringent crystal plate is about 45 ° with respect to the optical axis of the rutile crystal. The rutile crystal is a positive uniaxial crystal, and the optical axis direction of the crystal is shown in FIG.
Place in the direction described inside. Each dimension is 3mm for R1
X 3mm, thickness 2mm, R2, R3 dimensions 3mm x 3m
m and a thickness of about 1.4 mm. The Faraday rotator F used was a Bi-substituted rare earth iron garnet grown on a GGG substrate by the LPE method having a size of 3 mm × 3 mm, a thickness of about 350 μm, and a used wavelength λ = 1550 nm.

【0011】ファラデー回転子による波長分散性は極微
弱なので、複屈折結晶板における寄与だけ推定すると
き、光線軸に対して45゜に切り出された複屈折結晶板R
1の異常光線屈折率ne'は、式3でθ=45゜、noおよび
eの1550nmにおける屈折率をそれぞれ2.453および2.70
9として、ne'=2.572だから式4に代入したとき偏波分
散δは、δ=0.79×10-12 すなわち、約0.8psの偏波分
散が生じる。実際に干渉光強度交流同期検波方式による
偏波分散測定では0.9psであり、ほぼ予想通りの数値で
あった。
Since the wavelength dispersion by the Faraday rotator is extremely weak, when estimating only the contribution in the birefringent crystal plate, the birefringent crystal plate R cut out at 45 ° to the ray axis is used.
1 of extraordinary refractive index n e 'is, theta = 45 ° in equation 3, n o and n e of the refractive index at 1550nm respectively 2.453 and 2.70
Assuming that ne = 2.572, the polarization dispersion δ when substituted into Equation 4 is δ = 0.79 × 10 −12, that is, about 0.8 ps. Actually, the polarization dispersion measurement by the AC synchronous detection method with the interference light intensity was 0.9 ps, which was almost the expected value.

【0012】もちろん、偏波分散の関係式から複屈折結
晶板の厚みが薄くなれば、偏波分散はそれだけ微弱に抑
制できるが、光アイソレータとしての逆方向挿入損失を
支配する光線分離幅が小さくなり、結果として、消光比
が劣化するため意味をなさない。そこで図3の構成を検
討すると、光学軸方向に切り出されたR4は、R1におけ
る異常光成分の遅れを補償するため、R1では常光成分
で、R4へは異常光線として伝播される光線をさらに遅
らせて偏波分散が消滅できる厚さdP4に調整すれば良い
ので、ne'=ne=2.709を用いて見積もると、
[0012] Of course, from the relational expression of polarization dispersion, if the thickness of the birefringent crystal plate is reduced, the polarization dispersion can be suppressed to a lesser extent, but the beam separation width that controls the reverse insertion loss as an optical isolator is small. As a result, the extinction ratio is degraded, and is meaningless. Considering the configuration of FIG. 3, R4 cut out in the optical axis direction is an ordinary light component in R1 to compensate for the delay of the extraordinary light component in R1, and further delays the light beam propagated to R4 as an extraordinary ray. since polarization dispersion may be adjusted to the thickness d P4 which can be extinguished, when estimated using a n e '= n e = 2.709 ,

【数5】 (Equation 5)

【0013】つまり、R4は約930μmの厚さがあれば位
相遅れによる偏波分散が補償できる。実際に厚さ約930
μmの光学軸に垂直な面で切り出した複屈折結晶板R4を
製作し、図1の構成の光アイソレータを組み立てた。こ
の光アイソレータの挿入損失は0.6dB、消光比43.4dBを
得た。光線の結合効率がR4を挿入したことで大きな劣
化を示さないので、R4を透過したときの常光,異常光
の再分離は全く認められない。また偏波分散を同様にし
て計測したところδ=0.05psとなり、R4の偏波分散の
補償寄与はほぼ理想的な効果を示すことがわかった。
That is, if R4 has a thickness of about 930 μm, polarization dispersion due to phase delay can be compensated. Actual thickness about 930
A birefringent crystal plate R4 cut out on a plane perpendicular to the optical axis of μm was manufactured, and an optical isolator having the configuration shown in FIG. 1 was assembled. The insertion loss of this optical isolator was 0.6 dB and the extinction ratio was 43.4 dB. Since the light coupling efficiency does not show any significant deterioration due to the insertion of R4, no re-separation of ordinary light and extraordinary light when transmitted through R4 is observed. When the polarization dispersion was measured in the same manner, it was found that δ = 0.05 ps, and it was found that the compensation contribution of the polarization dispersion of R4 showed an almost ideal effect.

【0014】[0014]

【発明の効果】本発明は比較的単純で、工業規模の生産
に適した構造の偏波無依存型光アイソレータにおける偏
波分散をほぼ消滅することが可能となり、今後光増幅を
導入した高速高密度光通信システムにおける伝播信号の
信頼性を高めることに貢献すると共に、本発明の偏波無
依存型光アイソレータの特別な部品,特別な組立システ
ムを採用しなくても容易に製造できる、経済的利点の波
及効果として光伝送システム構築のための経済的負担を
低減できることにも多大な貢献が期待できる。
According to the present invention, the polarization dispersion in the polarization independent optical isolator having a structure which is relatively simple and suitable for industrial scale production can be almost eliminated, and a high speed high speed optical amplifier will be introduced in the future. It contributes to improving the reliability of a propagated signal in a high-density optical communication system, and can be easily manufactured without employing special components and a special assembly system of the polarization independent optical isolator of the present invention. A great contribution can also be expected to be able to reduce the economic burden for constructing the optical transmission system as a ripple effect.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の光アイソレータの構成の概略図であ
る。
FIG. 1 is a schematic diagram of a configuration of an optical isolator of the present invention.

【図2】従来の偏光無依存型光アイソレータの構成の概
略図である。
FIG. 2 is a schematic diagram of a configuration of a conventional polarization-independent optical isolator.

【図3】本発明における偏波分散補償用複屈折結晶板の
光学軸と切り出し面の関係を示す説明図である。
FIG. 3 is an explanatory diagram showing a relationship between an optical axis and a cut surface of a birefringent crystal plate for polarization dispersion compensation according to the present invention.

【符号の説明】[Explanation of symbols]

R 複屈折結晶板 F ファラデー回転子 R Birefringent crystal plate F Faraday rotator

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 光線透過方向に対して傾斜した光学軸を
有する複数の複屈折結晶板とファラデー回転子およびフ
ァラデー回転子磁化用永久磁石からなる偏波無依存型光
アイソレータにおいて、光線伝播方向に対して垂直方向
の光学軸を有し、光学部品を光線が透過するとき生じる
常光線,異常光線間の位相遅れを補償するに必要な光線
透過方向の結晶厚さを有する複屈折結晶板が配置される
ことを特徴とした偏波無依存型光アイソレータ。
1. A polarization independent optical isolator comprising a plurality of birefringent crystal plates having an optical axis inclined with respect to the light transmission direction, a Faraday rotator, and a permanent magnet for Faraday rotator magnetization. A birefringent crystal plate having an optical axis perpendicular to the optical axis and having a crystal thickness in the light transmission direction necessary to compensate for a phase delay between an ordinary ray and an extraordinary ray generated when the light passes through the optical component is arranged. A polarization independent optical isolator characterized in that:
【請求項2】 光線透過方向の厚さの比が√2:1:1
である光線透過方向に対して傾斜した光学軸を示す第
一、第二および第三の複屈折結晶板の第一,第二の複屈
折結晶板間に永久磁石によって飽和磁化されたファラデ
ー回転子を配した構成において、光線伝播方向に対して
垂直方向の光学軸を有し、光学部品を光線が透過すると
き生じる常光線,異常光線間の位相遅れを補償するに必
要な光線透過方向の結晶厚さを有する複屈折結晶板が配
置されることを特徴とした偏波無依存型光アイソレー
タ。
2. The thickness ratio in the light transmission direction is √2: 1: 1.
Faraday rotator saturated with a permanent magnet between the first and second birefringent crystal plates of the first, second and third birefringent crystal plates having an optical axis inclined with respect to the light transmission direction. A crystal having an optical axis perpendicular to the light propagation direction and having a light transmission direction necessary for compensating for a phase delay between an ordinary ray and an extraordinary ray that occurs when a light ray passes through an optical component. A polarization independent optical isolator, wherein a birefringent crystal plate having a thickness is arranged.
JP33656392A 1992-11-24 1992-11-24 Optical isolator Expired - Fee Related JP3264711B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33656392A JP3264711B2 (en) 1992-11-24 1992-11-24 Optical isolator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33656392A JP3264711B2 (en) 1992-11-24 1992-11-24 Optical isolator

Publications (2)

Publication Number Publication Date
JPH06160775A JPH06160775A (en) 1994-06-07
JP3264711B2 true JP3264711B2 (en) 2002-03-11

Family

ID=18300440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33656392A Expired - Fee Related JP3264711B2 (en) 1992-11-24 1992-11-24 Optical isolator

Country Status (1)

Country Link
JP (1) JP3264711B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100378677B1 (en) * 2000-08-04 2003-03-31 한국과학기술원 Non-reciprocal optical wavelength filter apparatus
CN116222632B (en) * 2023-05-10 2023-07-25 武汉中科锐择光电科技有限公司 Fiber sweep frequency interference device based on birefringent crystal

Also Published As

Publication number Publication date
JPH06160775A (en) 1994-06-07

Similar Documents

Publication Publication Date Title
CA2141109C (en) Polarization independent optical isolator
EP2966459B1 (en) Current measuring device
JP3264711B2 (en) Optical isolator
EP2746839A1 (en) Optical isolator
JP3317999B2 (en) Optical isolator
JP3457711B2 (en) Fiber type optical isolator
US20070171528A1 (en) Polarized wave coupling optical isolator
JP2758457B2 (en) Waveguide type optical circulator
JPH1130766A (en) Optical non-reciprocal circuit
JP3166583B2 (en) Optical isolator and semiconductor laser module
JP3540826B2 (en) Fiber type optical isolator
JP2989982B2 (en) Fiber type optical isolator
JP3206949B2 (en) Polarization-independent optical isolator array
JP2004170798A (en) Optical module and optical amplifier using the same
JP3716981B2 (en) Optical isolator
JPH10288754A (en) Polarization independent optical isolator
JPH1068910A (en) Optical nonreciprocal circuit
JP2862630B2 (en) Waveguide type optical isolator
JPH0561000A (en) Optical isolator
JPH0894970A (en) Polarization independent type optical isolator
JP3707527B2 (en) Optical isolator
JPH01291212A (en) Laser module with optical isolator
JP2001242418A (en) Polarized wave non-dependence optical isolator
JPH0894971A (en) Polarization independent type optical isolator
JP2004145246A (en) Plane type two-dimensional waveguide and two-dimensional waveguide type optical device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20011130

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees