JP3206949B2 - Polarization-independent optical isolator array - Google Patents

Polarization-independent optical isolator array

Info

Publication number
JP3206949B2
JP3206949B2 JP2467192A JP2467192A JP3206949B2 JP 3206949 B2 JP3206949 B2 JP 3206949B2 JP 2467192 A JP2467192 A JP 2467192A JP 2467192 A JP2467192 A JP 2467192A JP 3206949 B2 JP3206949 B2 JP 3206949B2
Authority
JP
Japan
Prior art keywords
polarization
light
birefringent crystal
crystal plate
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2467192A
Other languages
Japanese (ja)
Other versions
JPH05188324A (en
Inventor
今泉伸夫
助川正秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Namiki Precision Jewel Co Ltd
Adamant Namiki Precision Jewel Co Ltd
Original Assignee
Namiki Precision Jewel Co Ltd
Adamant Namiki Precision Jewel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Namiki Precision Jewel Co Ltd, Adamant Namiki Precision Jewel Co Ltd filed Critical Namiki Precision Jewel Co Ltd
Priority to JP2467192A priority Critical patent/JP3206949B2/en
Publication of JPH05188324A publication Critical patent/JPH05188324A/en
Application granted granted Critical
Publication of JP3206949B2 publication Critical patent/JP3206949B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4207Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms with optical elements reducing the sensitivity to optical feedback
    • G02B6/4208Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms with optical elements reducing the sensitivity to optical feedback using non-reciprocal elements or birefringent plates, i.e. quasi-isolators
    • G02B6/4209Optical features

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、光ファイバの偏光面に
影響されない偏波無依存型光アイソレータアレイで、多
分岐光通信,双方向光通信等の光回路中の反射戻り光遮
断用光学装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polarization-independent optical isolator array which is not affected by the polarization plane of an optical fiber. It concerns the device.

【0002】[0002]

【従来の技術および課題】双方向光通信,光計測等に使
用する偏光無依存型光アイソレータとしては、図2に示
す光サーキュレータがあり、二つの偏光ビームスプリッ
タ15,16、二つの全反射ミラー17,18、ファラデー回転
子19、光学旋光子20から構成され、光線入射口として1
1,12,13,14の4ポートを有し、11ポートからの入射
光は12ポートへ出射され、12ポートからの入射光は13ポ
ートへ出射されるために11ポートには戻らない。同様に
して14ポートから入射すると11ポートへ出射され、13ポ
ートから入射すると14ポートへ出射され、この関係は光
の偏光面に関係しない。
2. Description of the Related Art As a polarization-independent optical isolator used for bidirectional optical communication, optical measurement, and the like, there is an optical circulator shown in FIG. 2, two polarization beam splitters 15, 16 and two total reflection mirrors. Consists of 17, 18, Faraday rotator 19, and optical rotator 20.
It has four ports of 1, 12, 13, and 14, and the incident light from the 11 port is emitted to the 12 port, and the incident light from the 12 port is emitted to the 13 port, and therefore does not return to the 11 port. Similarly, when light enters from port 14, light is emitted to port 11, and when light enters from port 13, light is emitted to port 14, and this relationship is not related to the polarization plane of light.

【0003】これを双方向の偏光無依存型光アイソレー
タとして用いると、11→12と13→14のポートとして利用
することになるが、全体として光ファイバーケーブル中
に接続するためには、光の入出射ポートが90°づつ回転
し、接続上大きなシステムで光ファイバーの結線が複雑
になる。しかも偏光ビームスプリッタや全反射ミラー等
の高性能な誘電体多層膜を必要とし、システム全体で高
価になる。性能的な面では一体づつのファラデー回転
子,光学旋光子を含むため、温度変動や波長変動がある
場合、その楕円成分がそのまま回帰するので、消光特性
の劣化を誘起する。
If this is used as a bidirectional polarization-independent optical isolator, it will be used as 11 → 12 and 13 → 14 ports. The output port rotates by 90 °, which complicates the connection of the optical fiber in a large connection system. Moreover, a high-performance dielectric multilayer film such as a polarizing beam splitter or a total reflection mirror is required, and the entire system becomes expensive. In terms of performance, since it includes an integral Faraday rotator and optical rotator, if there is a temperature change or a wavelength change, the elliptic component returns as it is, which causes deterioration of the extinction characteristic.

【0004】しかも回線が一対しか構成できず、光線ポ
ート位置が分離して並列構成にできない、偏光ビームス
プリッタ等を用いるためデバイス寸法を小さくできない
等の欠点があった。
In addition, there are drawbacks in that only a pair of lines can be formed, the positions of the light beam ports cannot be separated to form a parallel structure, and the size of the device cannot be reduced because a polarizing beam splitter or the like is used.

【0005】[0005]

【課題を解決するための手段】本発明は、本出願人によ
る先願の特願平2-220555号発明を発展させたものであ
り、最大の特徴はファイバアレイに光アイソレータ機能
を同期させるため、 (1)ファイバアレイの先端に集光機能を付与する。もち
ろん従来技術を用いて球レンズアレイ、屈折率分布ロッ
ドレンズアレイを作成した場合、本発明の効果は得られ
るが、ビームが太くなり光学系の寸法が大きくなる。 (2)レンズアレイの寸法周期に合わせて複合偏光板を形
成する。ただし境界部分が機械加工上から100〜200μm
必要であり、偏光板の幅と複屈折結晶板の厚みが制約さ
れる。
SUMMARY OF THE INVENTION The present invention has been developed from the prior application of Japanese Patent Application No. 2-220555 filed by the present applicant. The most significant feature is to synchronize the optical isolator function with the fiber array. (1) A light collecting function is provided at the tip of the fiber array. Of course, when the spherical lens array and the gradient index rod lens array are produced using the conventional technology, the effect of the present invention can be obtained, but the beam becomes thick and the size of the optical system becomes large. (2) Form a composite polarizing plate in accordance with the dimensional cycle of the lens array. However, the boundary is 100-200 μm from the top
This is necessary, and the width of the polarizing plate and the thickness of the birefringent crystal plate are restricted.

【0006】(3)複屈折結晶板の結晶光軸の向きと複合
偏光板のアレイ化方向、すなわち常光,異常光に対する
偏光板の偏波面が一致するように形成する。 (4)二本ファイバで双方向光通信を行うとき、ファイバ
アレイを偶数のn本のファイバから形成するとき、複合
偏光板は(n+1)個の偏波方向が互いに直交する偏光子
片をアレイ状に配置すること。 (5)偏光子片をアレイ状に配置するとき同一平面上に隙
間なく形成することにより小型デバイスになる。 (6)構造上からファラデー回転子は短冊状に細長くな
り、飽和磁化するための永久磁石の磁界強度分布が十分
とれなければならない制約がある。
(3) The direction of the crystal optical axis of the birefringent crystal plate and the arraying direction of the composite polarizing plate, that is, the polarization plane of the polarizing plate with respect to ordinary light and extraordinary light are formed so as to match. (4) When performing bidirectional optical communication with two fibers, when forming a fiber array from an even number of n fibers, the composite polarizing plate is an array of (n + 1) pieces of polarizer pieces whose polarization directions are orthogonal to each other. Place in a shape. (5) When the polarizer pieces are arranged in an array, they can be formed on the same plane without any gaps, resulting in a small device. (6) Due to the structure, the Faraday rotator is elongated in a strip shape, and there is a restriction that the magnetic field intensity distribution of the permanent magnet for saturation magnetization must be sufficient.

【0007】これらを具体化すると、例えば4個の偏波
無依存型光アイソレータをアレイ化した場合図1のよう
な構造となり、結晶光軸が光線軸に対して傾いた第一の
複屈折結晶板BP1、偏波面を45°回転する第一のファ
ラデー回転子FR1、複数の直交偏波吸収型偏光子を組み
合わせた偏光板PR、偏波面を45°回転する第二のファ
ラデー回転子FR2、および第一の複屈折結晶板と光線進
行方向に同じ厚みであり、前記第一の複屈折結晶板と同
じ結晶光軸の向きに合わせて配置された第二の複屈折結
晶板BP2からなり、前記複数の偏光板の偏波方向が互い
に直交し、偏光板間が隙間なく配置することにより、複
数本のファイバから形成されたファイバアレイに対し
て、一個の光アイソレータを搭載するだけでよくなる。
When these are embodied, for example, when four polarization-independent optical isolators are arrayed, the structure becomes as shown in FIG. 1, and the first birefringent crystal in which the crystal optical axis is inclined with respect to the light axis. A plate BP1, a first Faraday rotator FR1 for rotating the plane of polarization by 45 °, a polarizing plate PR combining a plurality of orthogonal polarization absorbing polarizers, a second Faraday rotator FR2 for rotating the plane of polarization by 45 °, and Ri same thickness der the first birefringent crystal plate and the light traveling direction, the said first double refraction crystal plate
A second birefringent crystal plate BP2 arranged in accordance with the direction of the same crystal optical axis, the polarization directions of the plurality of polarizing plates are orthogonal to each other, and the plurality of It is sufficient to mount only one optical isolator on a fiber array formed from the above fibers.

【0008】この場合、双方向光通信用としては2対の
回線に適用できる。本発明の光アイソレータアレイで
は、隣接する光ポートは光透過,光遮断機構が互いに逆
向きとなる。例えば図1では、ファラデー回転子FR1,
FR2は同じ向きに飽和磁化した構成のとき、ポートP1
からポートP2、ポートP5からポートP6は順方向
(透過方向)の機能を示し、その隣接ファイバに対して
は、ポートP4からポートP3、およびポートP8から
ポートP7の方向が順方向として動作する。
In this case, two-way optical communication can be applied to two pairs of lines. In the optical isolator array of the present invention, adjacent optical ports have light transmission and light blocking mechanisms opposite to each other. For example, in FIG. 1, the Faraday rotators FR1,
When the FR2 is configured to be saturated in the same direction, the port P1
, The port P2 and the port P5 to the port P6 show a forward direction (transmission direction) function, and for the adjacent fiber, the port P4 to the port P3 and the port P8 to the port P7 operate as the forward direction.

【0009】本発明の動作を説明するため、P1−P
2、P3−P4間の光線の挙動をとりあげる。例えばP
1およびP3に図3のような偏波合成された光が伝播さ
れると、BP1により異常光が紙面上方へスプリットし常
光,異常光となるように、BP1の結晶光軸の向きを合わ
せてある場合、FR1,FR2の回転方向は、かりに時計方
向に45°回転とし、5分割された偏光板(PR1,PR2,
PR3,PR4,PR5)の透過直線偏波方向はPR1における
異常光の偏波の向きを基準(0°)にとると、PR1,PR
3,PR5は(+45°)、PR2,PR4は(−45°)の向き
に配置されている。またBP2はBP1と同じ結晶光軸の向
きに合わせてある。
To explain the operation of the present invention, P1-P
2. The behavior of the light beam between P3 and P4 is taken up. For example, P
When the polarization-combined light as shown in FIG. 3 is propagated to P1 and P3, the direction of the crystal optical axis of BP1 is adjusted so that the extraordinary light is split upward by the BP1 to become ordinary light and extraordinary light. In some cases, the rotation directions of FR1 and FR2 are rotated clockwise by 45 °, and the polarizing plate (PR1, PR2,
The transmission linear polarization directions of PR3, PR4, and PR5) are calculated based on the polarization direction of the extraordinary light in PR1 (0 °).
3 and PR5 are arranged at (+ 45 °), and PR2 and PR4 are arranged at (−45 °). BP2 is aligned with the same crystal optical axis as BP1.

【0010】P1→P2,P3→P4の光線の偏波状態
を追跡すると、ファイバレンズアレイFA,BP1,FR1,
PR,FR2,BP2を通過した光線の偏波状態をそれぞれ図
3〜に示すと、P1→P2,P4→P3は偏波にか
かわらず光線が結合し、互いに対向ポートへ伝播する
が、P2→P1,P3→P4は常光,異常光とも偏光板
で遮断され、ほとんど消光されしかも伝播途中で生じた
微小な(40dB以上)楕円成分も光線伝播軸上からはず
れ、最終的には50dB以上の消光状態を与える。また偏光
子アレイのP2,P4は双方向に寄与し、全体として光
アイソレータのアレイ化が実現できることがわかる。ポ
ート数を増したとき同様にして交互に反対向きの光アイ
ソレータ機構が得られる。
When the polarization states of the light beams P1 → P2, P3 → P4 are traced, the fiber lens arrays FA, BP1, FR1,
The polarization states of the light beams that have passed through PR, FR2, and BP2 are shown in FIG. 3 to FIG. 3, respectively. In P1 → P2, P4 → P3, the light beams are combined regardless of the polarization, and propagate to the opposite ports. For P1, P3 → P4, both ordinary light and extraordinary light are cut off by the polarizing plate, almost quenched, and the minute (40 dB or more) elliptical component generated during propagation also deviates from the ray propagation axis, and finally, 50 dB or more quenching Give the state. Also, it can be seen that P2 and P4 of the polarizer array contribute bidirectionally, and that an array of optical isolators can be realized as a whole. Similarly, when the number of ports is increased, an optical isolator mechanism of the opposite direction is obtained.

【0011】[0011]

【実施例】表1による構成部品の光アイソレータアレイ
を作成した。
EXAMPLE An optical isolator array of the components shown in Table 1 was prepared.

【表1】 [Table 1]

【0012】本構成の場合、球レンス゛間は約8.5mmである
が、実効光路長は約4.3mmとなる。したがって、球レン
ズの設計はレンズ面からビームウェイストまで約2.2mm
の光学結合をとれば十分である。ただしレンズはV溝構
造のセラミックス上に固定されるため、図1のように座
標をとればY軸方向と傾きやアオリ方向の角度ずれに対
して微調整がとれない欠点があり、セラミックス固定具
の寸法精度やレンズから出射する光線がZ軸方向から反
れないように製作することが重要である。
In the case of this configuration, the distance between the spherical lenses ゛ is about 8.5 mm, but the effective optical path length is about 4.3 mm. Therefore, the design of the spherical lens is approximately 2.2 mm from the lens surface to the beam waste.
It is sufficient to take the optical coupling of However, since the lens is fixed on a ceramic having a V-groove structure, if coordinates are taken as shown in FIG. 1, there is a drawback that fine adjustment cannot be performed with respect to the inclination with respect to the Y-axis direction or the tilt in the tilt direction. It is important to manufacture such that the dimensional accuracy of the lens and the light emitted from the lens do not warp from the Z-axis direction.

【0013】また光学部品はそれぞれ反射防止膜を施さ
なければならない。反射減衰量を抑えるため光学部品は
光線に対して2〜12°程度傾けることも重要な要素であ
る。本実施例では2個のファラデー回転子を同じ向きに
磁化したが、温度変化,波長広帯域化を考慮して磁化方
向を互いに反対に設計することも可能である。
Each of the optical components must be provided with an antireflection film. It is also an important factor that the optical component is tilted by about 2 to 12 ° with respect to the light beam in order to suppress the return loss. In the present embodiment, the two Faraday rotators are magnetized in the same direction. However, it is also possible to design the magnetization directions to be opposite to each other in consideration of temperature change and wavelength broadening.

【0014】表2はその光学特性を示す。Table 2 shows the optical characteristics.

【表2】 [Table 2]

【0015】設計波長は1.55μmとして作製した。消光
特性は50dB以上の数値が達成でき、実用に十分供するこ
とが確認された。なおファイバアレイによる4本のポー
ト間順方向挿入損失は−1.9±0.6dBとなり、やや変動幅
が認められた。ただしこれは、本質的な技術上の困難さ
ではなく、球レンズ端ファイバアレイの精度出しやファ
イバアレイ固定用V溝治具の寸法精度を向上させ、レン
ズ間の光結合効率を向上させることにより解決すること
ができる。
The design wavelength was 1.55 μm. The extinction characteristic can achieve a numerical value of 50 dB or more, and it has been confirmed that the extinction characteristic is sufficiently used for practical use. In addition, the forward insertion loss between the four ports by the fiber array was -1.9 ± 0.6 dB, and a slight fluctuation width was recognized. However, this is not an inherent technical difficulty, but by improving the precision of the fiber array at the end of the ball lens, improving the dimensional accuracy of the V-groove jig for fixing the fiber array, and improving the optical coupling efficiency between the lenses. Can be solved.

【0016】偏光子アレイの製作は、あらかじめ反射防
止膜を付与した偏光ガラス板を精密切断機で切断後にそ
の切断面を研磨加工し、平板面との直角度および平滑度
を仕上げ、光学接着剤にて固定した。ただし、互いに隣
接する偏光子片の偏波性は90°ずれるように形成した。
これは、二枚の偏光ガラスを完全な消光状態になるよう
調整し、仮止めしてからそのまま切断,研磨を実施すれ
ば偏波状態90°を維持したまま作製できる。偏光子アレ
イは接着のほか、ガラス融着,メタライズ後金属片と接
合してもよい。また隣接する2面は接合しないで光学的
に密着し、他の2辺を接着等で固定する構造も可能であ
る。
A polarizer array is manufactured by cutting a polarizing glass plate provided with an antireflection film in advance with a precision cutter, polishing the cut surface, finishing the squareness and smoothness with the flat plate surface, and forming an optical adhesive. Fixed with. However, the polarizer pieces adjacent to each other were formed so that the polarization was shifted by 90 °.
If the two polarizing glasses are adjusted so as to be in a completely quenched state, temporarily fixed, and then cut and polished as they are, the polarizing glass can be manufactured while maintaining the polarization state of 90 °. In addition to bonding, the polarizer array may be bonded to a metal piece after glass fusing and metallizing. Further, it is also possible to adopt a structure in which two adjacent surfaces are optically adhered to each other without being joined, and the other two sides are fixed by bonding or the like.

【0017】[0017]

【発明の効果】本発明は偏波無依存光アイソレータアレ
イを提供するものであり、2芯光ファイバ線を用いる双
方向光通信用はもちろんのこと、多芯光ファイバアレイ
を用いた並列光通信用インライン光アイソレータとして
最適であり、従来光ファイバごとに装着していた光アイ
ソレータをファイバアレイ毎に1個の光アイソレータで
済み、システムを構築する上で大幅な価格低減が期待で
き、広く産業用,民生用機器へ登用され情報通信の安定
化に寄与する。
The present invention provides a polarization-independent optical isolator array for parallel optical communication using a multi-core optical fiber array as well as for bidirectional optical communication using a two-core optical fiber line. It is most suitable as an in-line optical isolator for optical fiber, and the optical isolator that was conventionally mounted for each optical fiber can be replaced by one optical isolator for each fiber array. , Which is promoted to consumer equipment and contributes to stabilization of information communication.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の光ファイバーアレイの概略図。FIG. 1 is a schematic diagram of an optical fiber array of the present invention.

【図2】従来の光サーキュレータの概略図。FIG. 2 is a schematic diagram of a conventional optical circulator.

【図3】本発明の光ファイバーアレイにおけるP1−P
2,P3−P4の光線の偏波状態図。
FIG. 3 shows P1-P in the optical fiber array of the present invention.
FIG. 2 is a polarization state diagram of light rays P3 and P4.

【符号の説明】[Explanation of symbols]

BP 複屈折結晶板 FR ファラデー回転子 PR 直交偏波吸収型偏光子 FA ファイバレンズアレイ P ポート BP Birefringent crystal plate FR Faraday rotator PR Orthogonal polarization absorbing polarizer FA Fiber lens array P port

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 結晶光軸が光線軸に対して傾いた第一の
複屈折結晶板、偏波面を45°回転する第一のファラデ
ー回転子、複数の直交偏波吸収型偏光子を組み合わせた
偏光板、偏波面を45°回転する第二のファラデー回転
子、および第一の複屈折結晶板と光線進行方向に同じ厚
みであり、前記第一の複屈折結晶板と同じ結晶光軸の向
きに合わせて配置された第二の複屈折結晶板からなり、
前記複数の偏光板の偏波方向が互いに直交し、偏光板間
が隙間なく配置されていることを特徴とする偏波無依存
型光アイソレータアレイ。
1. A combination of a first birefringent crystal plate having a crystal optical axis inclined with respect to a ray axis, a first Faraday rotator rotating a polarization plane by 45 °, and a plurality of orthogonal polarization absorption polarizers. polarizing plate, a second Faraday rotator for rotating the polarization plane 45 °, and the first birefringent crystal plate and the same thickness der in light traveling direction is, the same crystal optical axis and the first birefringent crystal plate Direction
Consisting of a second birefringent crystal plate arranged according to the
A polarization independent optical isolator array, wherein the polarization directions of the plurality of polarizing plates are orthogonal to each other, and the polarizing plates are arranged without a gap.
【請求項2】 結晶光軸が光線軸に対して傾いた第一の
複屈折結晶板、偏波面を45°回転する第一のファラデ
ー回転子、複数の直交偏波吸収型偏光子を組み合わせた
偏光板、偏波面を45°回転する第二のファラデー回転
子、および第一の複屈折結晶板と光線進行方向に同じ厚
みであり、前記第一の複屈折結晶板と同じ結晶光軸の向
きに合わせて配置された第二の複屈折結晶板からなり、
前記偏光板がファイバアレイ本数nとすると(n+1)
個に分割され、隣接する偏光板の偏波方向が互いに直交
し、同一平面上に隙間なく配置されていることを特徴と
する偏波無依存型光アイソレータアレイ。
2. A combination of a first birefringent crystal plate in which the crystal optical axis is inclined with respect to the ray axis, a first Faraday rotator rotating the plane of polarization by 45 °, and a plurality of orthogonally polarized light absorbing polarizers. polarizing plate, a second Faraday rotator for rotating the polarization plane 45 °, and the first birefringent crystal plate and the same thickness der in light traveling direction is, the same crystal optical axis and the first birefringent crystal plate Direction
Consisting of a second birefringent crystal plate arranged according to the
When the number of the polarizing plates is n, (n + 1)
A polarization-independent optical isolator array, wherein the polarization directions of adjacent polarizers are orthogonal to each other and are arranged on the same plane without any gap.
【請求項3】 請求項1または2記載の偏波無依存型光
アイソレータアレイを中間に配置し、先端に集光機能を
有する一対のファイバーアレイを、順方向光線に対して
互いに光結合がとれて逆方向に対して遮断する位置に固
定された光学装置。
3. A polarization-independent optical isolator array according to claim 1 or 2, wherein a pair of fiber arrays having a light-collecting function at the tip end are optically coupled to each other with respect to a forward light beam. Optical device fixed at a position that blocks light in the opposite direction.
JP2467192A 1992-01-14 1992-01-14 Polarization-independent optical isolator array Expired - Fee Related JP3206949B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2467192A JP3206949B2 (en) 1992-01-14 1992-01-14 Polarization-independent optical isolator array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2467192A JP3206949B2 (en) 1992-01-14 1992-01-14 Polarization-independent optical isolator array

Publications (2)

Publication Number Publication Date
JPH05188324A JPH05188324A (en) 1993-07-30
JP3206949B2 true JP3206949B2 (en) 2001-09-10

Family

ID=12144605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2467192A Expired - Fee Related JP3206949B2 (en) 1992-01-14 1992-01-14 Polarization-independent optical isolator array

Country Status (1)

Country Link
JP (1) JP3206949B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2714740B1 (en) * 1994-01-03 1996-02-02 Alcatel Nv Optical isolation assembly and optical emission module comprising this assembly.
JP6681320B2 (en) * 2016-12-05 2020-04-15 信越化学工業株式会社 Polarization-independent optical isolator
CN111694100A (en) * 2019-03-13 2020-09-22 福州高意光学有限公司 Polarization-independent small-sized integrated free space isolator

Also Published As

Publication number Publication date
JPH05188324A (en) 1993-07-30

Similar Documents

Publication Publication Date Title
CN108153002B (en) Polarization independent optical isolator
JPH05196890A (en) Optical isolator
US5930422A (en) Optical circulator
JP3206949B2 (en) Polarization-independent optical isolator array
JP2542532B2 (en) Method for manufacturing polarization-independent optical isolator
JP3161885B2 (en) Optical isolator
JP2516463B2 (en) Polarization-independent optical isolator
US6549686B2 (en) Reflective optical circulator
CA2229959A1 (en) Optical circulator
CN111552099A (en) Polarization-dependent reflective optical isolator
JPH05313094A (en) Optical isolator
JPH04221922A (en) Polarization independent type optical isolator
JPH0611664A (en) Optical isolator
JPH0667118A (en) Optical coupler
JPS59228610A (en) Polarizing prism
JPH06160774A (en) Optical isolator
JPH0634916A (en) Optical isolator
JP2977927B2 (en) Optical circuit element
JPH04331929A (en) Module for optical amplification
JPH01291212A (en) Laser module with optical isolator
JP2004029335A (en) Optical isolator and optical isolator module
JP2001154149A (en) Optical module and optical circulator
JP2005227659A (en) Polarization-independent multicore optical isolator
JP2002323676A (en) Optical isolator
JPH06160771A (en) Optical isolator

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010611

LAPS Cancellation because of no payment of annual fees