JP3257759B2 - Magnetoresistive material - Google Patents

Magnetoresistive material

Info

Publication number
JP3257759B2
JP3257759B2 JP26596495A JP26596495A JP3257759B2 JP 3257759 B2 JP3257759 B2 JP 3257759B2 JP 26596495 A JP26596495 A JP 26596495A JP 26596495 A JP26596495 A JP 26596495A JP 3257759 B2 JP3257759 B2 JP 3257759B2
Authority
JP
Japan
Prior art keywords
ferromagnetic
antiferromagnetic
matrix
magnetoresistive
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26596495A
Other languages
Japanese (ja)
Other versions
JPH09116208A (en
Inventor
文人 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP26596495A priority Critical patent/JP3257759B2/en
Publication of JPH09116208A publication Critical patent/JPH09116208A/en
Application granted granted Critical
Publication of JP3257759B2 publication Critical patent/JP3257759B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/0009Antiferromagnetic materials, i.e. materials exhibiting a Néel transition temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/0036Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity
    • H01F1/0045Zero dimensional, e.g. nanoparticles, soft nanoparticles for medical/biological use
    • H01F1/0063Zero dimensional, e.g. nanoparticles, soft nanoparticles for medical/biological use in a non-magnetic matrix, e.g. granular solids

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Thin Magnetic Films (AREA)
  • Hall/Mr Elements (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、磁気ヘッド、特に
再生ヘッド或いは位置センサー、回転センサーなどに用
いられる磁気抵抗効果素子用の磁気抵抗効果材料に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magneto-resistive material for a magneto-resistive element used for a magnetic head, in particular, a reproducing head or a position sensor or a rotation sensor.

【0002】[0002]

【従来の技術】従来の磁気抵抗(MR)効果材料として
は、例えば、FeーNi合金薄膜(パーマロイ薄膜)等
が用いられている。パーマロイ薄膜の磁気抵抗変化率は
2〜3%である。今後、磁気ヘッドの狭トラック化や磁
気センサーの高分解能化に対応するためには、より磁気
抵抗変化率(△MR)の大きい性質の磁気抵抗効果材料
が望まれていた。
2. Description of the Related Art As a conventional magnetoresistive (MR) effect material, for example, an Fe—Ni alloy thin film (permalloy thin film) is used. The magnetoresistance ratio of the permalloy thin film is 2-3%. In the future, in order to cope with a narrow track of the magnetic head and a high resolution of the magnetic sensor, a magnetoresistive effect material having a property of a larger magnetoresistance change (ΔMR) has been desired.

【0003】その後、磁気抵抗効果材料として、図5に
示すように、銅或いは銀等の導電性の非磁性体のマトリ
クス(母相)2中に、コバルト或いは鉄等の金属からな
る強磁性粒5を、粒径数nm〜数十nmの超微細な微結
晶粒子(ナノクラスター)として析出させて分散させ
た、CoーCu系或いはFeーAg系のグラニュラーG
MR材の薄膜について巨大磁気抵抗効果(GMR)が観
察された。
Thereafter, as a magnetoresistive material, as shown in FIG. 5, a ferromagnetic particle made of a metal such as cobalt or iron is placed in a matrix (mother phase) 2 of a conductive nonmagnetic material such as copper or silver. Co-Cu-based or Fe-Ag-based granular G is deposited and dispersed as ultrafine microcrystalline particles (nanoclusters) having a particle size of several nm to several tens nm.
The giant magnetoresistance effect (GMR) was observed for the thin film of the MR material.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、Coー
Cu系或いはFeーAg系の従来のグラニュラーGMR
材料においては、Co等の強磁性体の濃度が約20at
%(原子%)を越えると、磁気抵抗変化率が減少するこ
とが知られている。この理由は、Co等の強磁性粒5が
相互に接触する確率が高くなることにより、反強磁性磁
化配列が得られなくなるためである。強磁性体を高濃度
化することにより、磁気抵抗変化率をさらに飛躍的に増
加させることは、従来実現されていなかった。
However, the conventional granular GMR of the Co-Cu type or the Fe-Ag type.
In the material, the concentration of a ferromagnetic material such as Co is about 20 at.
% (Atomic%), it is known that the rate of change in magnetoresistance decreases. This is because an increase in the probability that the ferromagnetic grains 5 of Co or the like come into contact with each other makes it impossible to obtain an antiferromagnetic magnetization arrangement. Conventionally, it has not been possible to further increase the magnetoresistance change rate by increasing the concentration of the ferromagnetic material.

【0005】本発明は前記事情に鑑みてなされたもの
で、強磁性体を高濃度化することにより、磁気抵抗変化
率を飛躍的に増加させた磁気抵抗効果材料を提供するこ
とを課題とする。
The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a magnetoresistance effect material in which the rate of change in magnetoresistance is dramatically increased by increasing the concentration of a ferromagnetic material. .

【0006】[0006]

【課題を解決するための手段】本発明の磁気抵抗効果材
料は、導電性の非磁性体をマトリクスとし、該マトリク
ス中に、鉄(Fe)、コバルト(Co)、ニッケル(N
i)のうちの少なくとも1種の金属元素を含む強磁性体
からなるナノクラスターを少なくとも分散してなる磁気
抵抗効果材料に、更に、反強磁性体からなるナノクラス
ターを分散してなることを特徴とする。
The magnetoresistive material of the present invention comprises a conductive non-magnetic material as a matrix, in which iron (Fe), cobalt (Co), nickel (N
i) a magnetoresistance effect material in which at least a nanocluster made of a ferromagnetic material containing at least one metal element is dispersed, and a nanocluster made of an antiferromagnetic material further dispersed. And

【0007】[0007]

【発明の実施の形態】図1は本発明の磁気抵抗効果材料
の一実施形態の組織状態を示す模式図である。図1に示
すように、本発明の磁気抵抗効果材料は、導電性の非磁
性体からなるマトリクス2中に、Fe、Co、Niのう
ちの少なくとも1種の金属元素を含む強磁性体からなる
強磁性粒5をナノクラスターとして分散してなる磁気抵
抗効果材料に、更に、反強磁性体からなる反強磁性粒8
をナノクラスターとして分散してなるものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a schematic view showing the structure of an embodiment of the magnetoresistive material of the present invention. As shown in FIG. 1, the magnetoresistive material of the present invention is made of a ferromagnetic material containing at least one metal element of Fe, Co, and Ni in a matrix 2 made of a conductive nonmagnetic material. The magneto-resistance effect material in which the ferromagnetic particles 5 are dispersed as nanoclusters is further provided with an antiferromagnetic particle 8 made of an antiferromagnetic material.
Are dispersed as nanoclusters.

【0008】強磁性体としては、Co、Fe、Niのう
ちの少なくとも1種の金属元素を含む金属或いはこれら
の金属元素を含む合金で強磁性を示すものが挙げられ
る。本発明の磁気抵抗効果材料においては、反強磁性粒
8がナノクラスターとして導電性の非磁性体のマトリク
ス2中に存在するので、強磁性体の体積分率を20〜6
0%と高くすることができ、巨大磁気抵抗効果を発揮さ
せ、また外部磁界に対する抵抗変化の感度を高めること
ができる。
The ferromagnetic material includes a metal containing at least one metal element of Co, Fe, and Ni, or an alloy containing these metal elements, which exhibits ferromagnetism. In the magnetoresistive material of the present invention, since the antiferromagnetic particles 8 are present as nanoclusters in the conductive nonmagnetic matrix 2, the volume fraction of the ferromagnetic material is 20 to 6%.
It can be as high as 0%, exhibit a giant magnetoresistance effect, and can increase the sensitivity of resistance change to an external magnetic field.

【0009】前記体積分率が60%を超えると、強磁性
体が多すぎて、強磁性粒5同士が接触し易くなる。20
%未満だと磁気抵抗効果が低くなりやすい。従って、強
磁性体の、好ましい体積分率は20〜60%である。強
磁性体は、粒径10Å〜100Åの超微細な微結晶粒子
(ナノクラスター)としてマトリクス2中に分散せしめ
て、強磁性粒5を形成させる。
If the volume fraction exceeds 60%, the ferromagnetic material is too large, and the ferromagnetic grains 5 are likely to come into contact with each other. 20
%, The magnetoresistance effect tends to be low. Therefore, the preferable volume fraction of the ferromagnetic material is 20 to 60%. The ferromagnetic material is dispersed in the matrix 2 as ultrafine microcrystalline particles (nanoclusters) having a particle size of 10 ° to 100 ° to form ferromagnetic particles 5.

【0010】反強磁性体としては、FeMn、NiMn
若しくはPtMn等のマンガン(Mn)合金、Mn、N
iO、αーFe23、AlCr、CrO等の反強磁性体
が挙げられる。反強磁性体は、粒径5〜50Å、好まし
くは10Å程度のナノクラスターとしてマトリクス2中
に相分離により分散せしめて、反強磁性粒8を形成させ
る。また、反強磁性粒8の粒径は、強磁性粒5の粒径よ
くも小さい方が好ましい。反強磁性体の、好ましい体積
分率は1〜20%である。
As the antiferromagnetic material, FeMn, NiMn
Or a manganese (Mn) alloy such as PtMn, Mn, N
Antiferromagnetic substances such as iO, α-Fe 2 O 3 , AlCr, and CrO are exemplified. The antiferromagnetic material is dispersed as nanoclusters having a particle size of 5 to 50 °, preferably about 10 ° in the matrix 2 by phase separation to form antiferromagnetic particles 8. It is preferable that the particle diameter of the antiferromagnetic particles 8 be smaller or larger than that of the ferromagnetic particles 5. The preferred volume fraction of the antiferromagnetic material is 1 to 20%.

【0011】導電性の非磁性体としては、銅(Cu)、
銀(Ag)、金(Au)、ルテニウム(Ru)、チタン
(Ti)、アルミニウム(Al)、クロム(Cr)等の
非磁性金属或いはこれらの非磁性金属を含む、導電性の
合金等であって非磁性のものが挙げられる。導電性の非
磁性体は、微細な強磁性粒5と反強磁性粒8とを取り囲
んでマトリクス2を形成する。
As the conductive non-magnetic material, copper (Cu),
Non-magnetic metals such as silver (Ag), gold (Au), ruthenium (Ru), titanium (Ti), aluminum (Al) and chromium (Cr), or conductive alloys containing these non-magnetic metals. And non-magnetic ones. The conductive non-magnetic material forms the matrix 2 surrounding the fine ferromagnetic grains 5 and the antiferromagnetic grains 8.

【0012】導電性の非磁性体のマトリクス2中に、C
o等の強磁性体のみをその濃度が約20%以上になるよ
うに存在させると、強磁性粒5はいずれは接触してしま
う虞がある。しかしながら、反強磁性粒8をナノクラス
ターとして、マトリクス2中に共存させると、強磁性粒
5同士が近接し過ぎて、強磁性的に交換結合してしまう
距離になっても、強磁性粒5に接する反強磁性粒8中の
反強磁性体との交換結合により、確率的に強磁性的に交
換結合する割合が減少し、その分、強磁性体の濃度を高
めることができる。反強磁性体を高濃度に存在させ、そ
の粒径を大にすることは好ましくないため、反強磁性体
はナノクラスターとして、導電性の非磁性体のマトリク
ス2中に均一に分散させる。
In a matrix 2 of a conductive nonmagnetic material, C
If only a ferromagnetic material such as o is present at a concentration of about 20% or more, the ferromagnetic particles 5 may eventually come into contact. However, if the antiferromagnetic particles 8 coexist in the matrix 2 as nanoclusters, even if the ferromagnetic particles 5 are too close to each other and ferromagnetically exchange-coupled, the ferromagnetic particles 5 Due to the exchange coupling with the antiferromagnetic material in the antiferromagnetic particles 8 in contact with the ferromagnetic particles 8, the ratio of the ferromagnetic exchange coupling stochastically decreases, and the concentration of the ferromagnetic material can be increased accordingly. Since it is not preferable to make the antiferromagnetic substance exist at a high concentration and increase its particle size, the antiferromagnetic substance is uniformly dispersed in the conductive nonmagnetic matrix 2 as nanoclusters.

【0013】本発明の磁気抵抗効果材料は、汎用の技
術、例えば、スパッタや蒸着などの薄膜形成装置を用い
て、非晶質の多層膜を作製し、次いでアニール処理によ
り、強磁性体及び反強磁性体を微結晶化することにより
製造できる。則ち、まず、スパッタ等の装置を用い、ガ
ラス板或いはSi等の基板上に、数10Å(オングスト
ローム)程度に、図2に示すようにバッファ層11、非
磁性層12、強磁性層15、反強磁性層18を重ねて設
けた多層膜を作製する。
The magnetoresistive material of the present invention uses a general-purpose technique, for example, a thin film forming apparatus such as sputtering or vapor deposition to form an amorphous multilayer film, and then anneals the ferromagnetic material and the antiferromagnetic material. It can be manufactured by microcrystallizing a ferromagnetic material. That is, first, using a device such as sputtering, a buffer layer 11, a nonmagnetic layer 12, a ferromagnetic layer 15, as shown in FIG. A multilayer film in which the antiferromagnetic layers 18 are provided is manufactured.

【0014】強磁性層の膜厚は、10Å〜100Å(1
〜10nm)が好ましい。薄すぎると、常磁性体にな
り、100Åより厚いと、強磁性体をナノクラスターと
して分散しにくい。反強磁性層の膜厚は、5Å〜50Å
とすることが好ましい。次いで、前記多層膜を、200
〜600゜Cでアニール処理を真空中、或いは微量に酸
素を含んだ雰囲気中で施して、マトリクス2中に、強磁
性体及び反強磁性体をナノクラスターとして分散せしめ
て、磁気抵抗効果膜を得ることができる。
The thickness of the ferromagnetic layer is from 10 ° to 100 ° (1
To 10 nm). If it is too thin, it becomes paramagnetic, and if it is thicker than 100 °, it is difficult to disperse the ferromagnetic material as nanoclusters. The thickness of the antiferromagnetic layer is 5 to 50
It is preferable that Next, the multilayer film is coated with 200
Annealing treatment is performed in a vacuum or an atmosphere containing a slight amount of oxygen at ~ 600 ° C. to disperse the ferromagnetic material and the antiferromagnetic material as nanoclusters in the matrix 2, thereby forming a magnetoresistive film. Obtainable.

【0015】磁気抵抗効果材料の好ましい構成(強磁性
体ー導電性の非磁性体ー反強磁性体)は、CoーCuー
NiMn、FeーAgーNiMn、CoーAgーNiM
n、FeーAgーNiMn、CoーAgーPtMn等で
ある。
Preferred constitutions of the magnetoresistive material (ferromagnetic material-conductive nonmagnetic material-antiferromagnetic material) are Co-Cu-NiMn, Fe-Ag-NiMn, Co-Ag-NiMn.
n, Fe-Ag-NiMn, Co-Ag-PtMn and the like.

【0016】図4に、CoーAg系及びCoーAgーN
iMn系の磁気抵抗効果膜についての磁気抵抗変化率
の、Co濃度依存性を示す。但し、CoーAgーNiM
n系のNiMn濃度は一定で、体積分率で10%であ
る。図4から明らかな通り、CoーAg系では、Coの
体積分率が20%で抵抗変化率が12%であるのに対し
て、CoーAgーNiMn系では、Coの体積分率が5
0%で、磁気抵抗変化率は20%の極大値を示した。則
ち、前記いずれの材料も巨大磁気抵抗効果を示すことが
分かる。
FIG. 4 shows Co-Ag system and Co-Ag-N
4 shows the Co concentration dependence of the magnetoresistance ratio of an iMn-based magnetoresistance effect film. However, Co-Ag-NiM
The n-type NiMn concentration is constant and 10% by volume. As is clear from FIG. 4, the Co—Ag system has a Co volume fraction of 20% and a resistance change rate of 12%, whereas the Co—Ag—NiMn system has a Co volume fraction of 5%.
At 0%, the magnetoresistance change showed a maximum value of 20%. That is, it is understood that any of the above-mentioned materials exhibits a giant magnetoresistance effect.

【0017】[0017]

【実施例】以下本発明を実施例によりさらに詳しく説明
する。図2は本発明の磁気抵抗効果材料である磁気抵抗
効果膜の製造のために用いる多層膜の一例の断面図であ
る。RFーマグネトロンスパッタの装置を用い、次のよ
うにしてガラス基板10上に多層薄膜を作製した。
The present invention will be described in more detail with reference to the following examples. FIG. 2 is a cross-sectional view of an example of a multilayer film used for manufacturing a magnetoresistive film which is a magnetoresistive material of the present invention. Using an RF-magnetron sputtering apparatus, a multilayer thin film was formed on the glass substrate 10 as follows.

【0018】基板10上に、初期バッファ層11とし
て、Agを厚み20Åに成膜した。Ag層11は連続膜
を形成しにくく凹凸が多い。前記バッファ層11の上に
非磁性層12としてCuあるいはAgを厚み15Åに成
膜し、次いで非磁性層12の上に、強磁性層15として
Coを厚み20Åに、更に非磁性層12として Cuあ
るいはAgを厚み15Åに、反強磁性層18としてNi
Mnを厚み5Åに、順次に成膜して5層の薄膜とした。
Ag was deposited on the substrate 10 as the initial buffer layer 11 to a thickness of 20 °. The Ag layer 11 is difficult to form a continuous film and has many irregularities. On the buffer layer 11, a film of Cu or Ag is formed to a thickness of 15 ° as the nonmagnetic layer 12, and then, on the nonmagnetic layer 12, Co is formed to a thickness of 20 ° as the ferromagnetic layer 15. Alternatively, Ag is formed to a thickness of 15 °
Mn was sequentially formed to a thickness of 5 ° to form a five-layer thin film.

【0019】更にこの順序で成膜を繰り返して、非磁性
層12、強磁性層15、非磁性層12及び反強磁性層1
8からなる4層の薄膜をさらに9回重ねて設けることに
より、図2に示す多層薄膜を得た。この膜構成は次の通
りであった。 基板/Ag(20Å)/[Cu又はAg(15Å)/C
o(20Å)/ Cu又はAg(15Å)/NiMn
(5Å)]n 但しnは10である。
Further, the film formation is repeated in this order, and the nonmagnetic layer 12, the ferromagnetic layer 15, the nonmagnetic layer 12, and the antiferromagnetic layer 1 are formed.
The four-layered thin film of No. 8 was further superimposed nine times to obtain a multilayer thin film shown in FIG. The film configuration was as follows. Substrate / Ag (20 °) / [Cu or Ag (15 °) / C
o (20 °) / Cu or Ag (15 °) / NiMn
(5Å)] n where n is 10.

【0020】次いで、前記多層薄膜を、500゜Cでア
ニール処理し、図3に示す構造の磁気抵抗効果膜を得
た。該磁気抵抗効果膜は、基板10上に、銀層11を有
し、該銀層11の上に、銅あるいはAgをマトリクス2
とし、該マトリクス2中に、Coからなる強磁性粒5
と、NiMnからなる反強磁性粒8とが、ナノクラスタ
ーとして分散された、グラニュラー構造の磁気抵抗効果
材料であった。CuあるいはAgからなるマトリクス2
中に分散された、Coからなる強磁性粒5の粒径は20
Å、NiMnからなる反強磁性粒8の粒径は10Åであ
った。
Next, the multilayer thin film was annealed at 500 ° C. to obtain a magnetoresistive film having a structure shown in FIG. The magnetoresistive film has a silver layer 11 on a substrate 10 and a copper or Ag matrix 2 on the silver layer 11.
In the matrix 2, ferromagnetic grains 5 made of Co
And the antiferromagnetic particles 8 made of NiMn were dispersed as nanoclusters, and were a magnetoresistive material having a granular structure. Matrix 2 made of Cu or Ag
The particle size of the ferromagnetic grains 5 of Co dispersed in
And the particle diameter of the antiferromagnetic particles 8 made of NiMn was 10 °.

【0021】膜全体としては、Co36%ーCuあるい
はAg55%ーNiMn9%(但し、%は体積分率)の
構成の合金膜となるが、外部磁界、ー10kOeから+
10kOe(キロエルステット゛)の測定条件で20%
という大きな磁気抵抗変化率を示した。
The entire film is an alloy film having a composition of Co 36% -Cu or Ag 55% -NiMn 9% (where% is a volume fraction), but the external magnetic field, from -10 kOe to +
20% under measurement conditions of 10 kOe (kiloersted)
Large magnetoresistance change rate.

【0022】反強磁性粒8を存在させずに、Coのみを
その体積分率が20%以上となるように存在させると、
Coの強磁性粒5が接触してしまう虞があった。しかし
ながら、NiMnの反強磁性粒8をナノクラスターとし
て、マトリクス2中に共存させたので、強磁性粒5同士
が近接しすぎて、強磁性的に交換結合してしまう距離に
なっても、強磁性粒5に接する、反強磁性体(NiM
n)との交換結合により、確率的に強磁性的に交換結合
する割合が確率的に減少し、その分、Coの濃度を、3
6%と高めることができた。反強磁性体であるNiMn
を高濃度に存在させ、反強磁性粒8の粒径を大にするこ
とは好ましくない。従って、NiMnは、ナノクラスタ
ーとして、銅からなるマトリクス2中に均一に析出させ
て分散した。
When only Co is present without the antiferromagnetic grains 8 so that its volume fraction becomes 20% or more,
There was a possibility that the ferromagnetic grains 5 of Co would come into contact. However, since the antiferromagnetic particles 8 of NiMn coexist in the matrix 2 as nanoclusters, even if the ferromagnetic particles 5 are too close to each other and become ferromagnetically exchange-coupled to each other, strong An antiferromagnetic material (NiM) in contact with the magnetic grains 5
n), the ratio of stochastically ferromagnetic exchange coupling is stochastically reduced, and the Co concentration is accordingly reduced to 3%.
It was increased to 6%. NiMn is an antiferromagnetic material
It is not preferable to make the antiferromagnetic particles 8 have a large particle diameter by increasing the concentration thereof. Therefore, NiMn was uniformly precipitated and dispersed as a nanocluster in the matrix 2 made of copper.

【0023】[0023]

【発明の効果】以上説明したように本発明の磁気抵抗効
果材料は、強磁性粒に加えて反強磁性粒を少なくとも含
み、且つ該反強磁性粒は微細な結晶粒子であるナノクラ
スターとして、導電性の非磁性体マトリクス中に分散さ
れている。従って、強磁性体の体積分率を20〜60%
と高くすることができ、大きな磁気抵抗効果を発揮し、
また外部磁界に対する抵抗変化の感度に優れている。
As described above, the magnetoresistance effect material of the present invention contains at least antiferromagnetic grains in addition to ferromagnetic grains, and the antiferromagnetic grains are formed as nanoclusters, which are fine crystal grains. It is dispersed in a conductive non-magnetic matrix. Therefore, the volume fraction of the ferromagnetic material is set to 20 to 60%.
And a high magnetoresistance effect,
Also, it is excellent in sensitivity of resistance change to an external magnetic field.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の磁気抵抗効果材料の一例の組織状態を
示す模式図である。
FIG. 1 is a schematic view showing the structure of an example of the magnetoresistive material of the present invention.

【図2】本発明の磁気抵抗効果材料の製造に用いる多層
膜の断面図である。
FIG. 2 is a sectional view of a multilayer film used for manufacturing the magnetoresistive material of the present invention.

【図3】磁気抵抗効果膜の組織状態を示す模式図であ
る。
FIG. 3 is a schematic diagram showing a structure state of a magnetoresistive film.

【図4】強磁性体の体積分率と磁気抵抗変化率の関係を
示すグラフである。
FIG. 4 is a graph showing a relationship between a volume fraction of a ferromagnetic material and a rate of change in magnetoresistance.

【図5】従来例の磁気抵抗効果材料の組織状態を示す模
式図である。
FIG. 5 is a schematic diagram showing the structure of a conventional magnetoresistive material.

【符号の説明】[Explanation of symbols]

2 マトリクス 5 強磁性粒 8 反強磁性粒 10 基板 11 バッファ層 12 非磁性層 15 強磁性層 18 反強磁性層 2 Matrix 5 Ferromagnetic particles 8 Antiferromagnetic particles 10 Substrate 11 Buffer layer 12 Nonmagnetic layer 15 Ferromagnetic layer 18 Antiferromagnetic layer

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平6−97534(JP,A) 特開 平7−312448(JP,A) 特開 平9−63823(JP,A) 特開 平9−111418(JP,A) 特開 平8−225871(JP,A) Applied Physics L etters,1992年10月12日,Vo l.61,No.15,pp.1855−1857 Physical Review L etters,1992年6月22日,Vo l.68,No.25,pp.3745−3748 Physical Review L etters,1992年6月22日,Vo l.68,No.25,pp.3749−3752 (58)調査した分野(Int.Cl.7,DB名) H01L 43/08 H01F 10/08 H01L 43/10 JICSTファイル(JOIS)──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-6-97534 (JP, A) JP-A-7-312448 (JP, A) JP-A-9-63823 (JP, A) JP-A 9-96 111418 (JP, A) JP-A-8-225871 (JP, A) Applied Physics Letters, October 12, 1992, Vol. 61, No. 15, pp. 1855-1857 Physical Review Letters, June 22, 1992, Vol. 68, no. 25, pp. 3745-3748 Physical Review Letters, June 22, 1992, Vol. 68, no. 25, pp. 3749−3752 (58) Fields investigated (Int. Cl. 7 , DB name) H01L 43/08 H01F 10/08 H01L 43/10 JICST file (JOIS)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 導電性の非磁性体をマトリクスとし、該
マトリクス中に、Fe、Co、Niのうちの少なくとも
1種の金属元素を含む強磁性体からなるナノクラスター
を少なくとも分散してなる磁気抵抗効果材料に、更に、
反強磁性体からなるナノクラスターを分散してなる磁気
抵抗効果材料。
1. A magnetic material comprising a conductive nonmagnetic material as a matrix, and at least nanoclusters made of a ferromagnetic material containing at least one metal element of Fe, Co, and Ni dispersed in the matrix. In addition to the resistance effect material,
A magnetoresistive material made of dispersed antiferromagnetic nanoclusters.
JP26596495A 1995-10-13 1995-10-13 Magnetoresistive material Expired - Fee Related JP3257759B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26596495A JP3257759B2 (en) 1995-10-13 1995-10-13 Magnetoresistive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26596495A JP3257759B2 (en) 1995-10-13 1995-10-13 Magnetoresistive material

Publications (2)

Publication Number Publication Date
JPH09116208A JPH09116208A (en) 1997-05-02
JP3257759B2 true JP3257759B2 (en) 2002-02-18

Family

ID=17424504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26596495A Expired - Fee Related JP3257759B2 (en) 1995-10-13 1995-10-13 Magnetoresistive material

Country Status (1)

Country Link
JP (1) JP3257759B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19908054C2 (en) * 1999-02-25 2001-06-28 Forschungszentrum Juelich Gmbh Uncoupled GMR sensor

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Applied Physics Letters,1992年10月12日,Vol.61,No.15,pp.1855−1857
Physical Review Letters,1992年6月22日,Vol.68,No.25,pp.3745−3748
Physical Review Letters,1992年6月22日,Vol.68,No.25,pp.3749−3752

Also Published As

Publication number Publication date
JPH09116208A (en) 1997-05-02

Similar Documents

Publication Publication Date Title
US6770382B1 (en) GMR configuration with enhanced spin filtering
JP2690623B2 (en) Magnetoresistance effect element
JP2778626B2 (en) Magnetoresistance effect film, method of manufacturing the same, and magnetoresistance effect element
KR100288466B1 (en) Magnetoresistive element, magnetoresistive head, memory element and amplification element using the same
US6341053B1 (en) Magnetic tunnel junction elements and their fabrication method
JP3033934B2 (en) Spin valve magnetoresistive element and related devices
US7265948B2 (en) Magnetoresistive element with oxide magnetic layers and metal magnetic films deposited thereon
US5476680A (en) Method for manufacturing granular multilayer mangetoresistive sensor
JP3184352B2 (en) Memory element
JPH0660336A (en) Magnetoresistance sensor based on spin valve effect and system utilizing magnetoresistance sensor thereof
JPH0821166B2 (en) Magnetoresistive sensor
GB2422712A (en) CPP giant magnetoresistive element
JPH09199325A (en) Multilayered structure, sensor and its manufacture
JP3231313B2 (en) Magnetic head
JPH0758375A (en) Granular reluctance film and forming method thereof
JPH11259820A (en) Magnetoresistive effect film and magnetoresistive effect head
JP3497573B2 (en) Exchange coupling film and magnetoresistive element
JP3323098B2 (en) Magnetoresistance effect multilayer film
JPH06314617A (en) Exchange connection film and magnetoresistance effect element
JP3257759B2 (en) Magnetoresistive material
JP3393963B2 (en) Exchange coupling film and magnetoresistive element
JP3321615B2 (en) Magnetoresistive element and magnetic transducer
JP2830513B2 (en) Magnetoresistive material and method of manufacturing the same
US20020101689A1 (en) High sensitivity spin valve stacks using oxygen in spacer layer deposition
JP2002314171A (en) Layer to be fixed, forming method therefor, spin valve structure and forming method therefor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20011120

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071207

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081207

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091207

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091207

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091207

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees