JP3257697B2 - Nitrogen oxide removal method - Google Patents

Nitrogen oxide removal method

Info

Publication number
JP3257697B2
JP3257697B2 JP17194092A JP17194092A JP3257697B2 JP 3257697 B2 JP3257697 B2 JP 3257697B2 JP 17194092 A JP17194092 A JP 17194092A JP 17194092 A JP17194092 A JP 17194092A JP 3257697 B2 JP3257697 B2 JP 3257697B2
Authority
JP
Japan
Prior art keywords
ammonia
reactor
desorption
nitrogen oxide
nox
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17194092A
Other languages
Japanese (ja)
Other versions
JPH05337339A (en
Inventor
良延 鈴木
智明 梶間
弘 佐藤
潔 千葉
直哉 今野
文彦 糟谷
円 高橋
邦夫 大坂
良吉 杉岡
晶士 藤本
繁樹 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Shimizu Corp
Original Assignee
Kobe Steel Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd, Shimizu Corp filed Critical Kobe Steel Ltd
Priority to JP17194092A priority Critical patent/JP3257697B2/en
Publication of JPH05337339A publication Critical patent/JPH05337339A/en
Application granted granted Critical
Publication of JP3257697B2 publication Critical patent/JP3257697B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は自動車用トンネル内での
排気や屋内自動車駐車場での排気等の各種排ガスに含ま
れる窒素酸化物(以下単にNOxということもある)の
除去方法に関し、詳細には分解反応に使用するアンモニ
アの注入量を調節し、アンモニアや未反応のNOxが系
外へ放出されるのを防止することのできる窒素酸化物の
除去方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for removing nitrogen oxides (hereinafter sometimes simply referred to as "NOx") contained in various kinds of exhaust gas such as exhaust gas in a car tunnel and exhaust gas in an indoor car parking lot. The present invention relates to a method for removing nitrogen oxide which can adjust the injection amount of ammonia used for a decomposition reaction and prevent ammonia and unreacted NOx from being released out of the system.

【0002】[0002]

【従来の技術】排ガス中のNOxを除去する方法として
は、還元触媒の充填された反応器内でアンモニアと反応
させ、脱硝する方法が利用されている。このアンモニア
の注入量は多過ぎると大気へのアンモニア放出を招き、
逆に少な過ぎると未反応のNOxが排出されることとな
りNOx除去率が低くなるという不都合がある。また排
ガス中のNOx濃度が大きく変動する様なときには、こ
の濃度変動に対応してアンモニア注入量を調節する必要
があり、調節が適正に行なわれないと、上記の不都合を
生じる。
2. Description of the Related Art As a method of removing NOx in exhaust gas, a method of reacting with ammonia in a reactor filled with a reduction catalyst and denitrifying is used. If the injection amount of this ammonia is too large, it will release ammonia to the atmosphere,
Conversely, if the amount is too small, unreacted NOx will be discharged and the NOx removal rate will be low. Further, when the NOx concentration in the exhaust gas fluctuates greatly, it is necessary to adjust the ammonia injection amount in accordance with the fluctuation of the concentration. If the adjustment is not performed properly, the above-described inconvenience occurs.

【0003】そこで特開昭60−257823号や特公
昭63−12650号が提案されている。前者はNOx
量が少ないときに余剰のアンモニアを反応器内の触媒に
吸着させておく制御方法であり、NOx量が急増したと
きに上述の吸着されたアンモニアを利用して短時間内に
大量のアンモニアを注入しなくても脱硝追従性を確保で
きる様にした技術である。しかしながら触媒の吸着能力
は元来低いのもであり、吸着されるアンモニアが系外へ
漏出していく可能性が高く、2次公害を起こす恐れがあ
る。
For this reason, Japanese Patent Application Laid-Open No. 60-257823 and Japanese Patent Publication No. 63-12650 have been proposed. The former is NOx
A control method in which excess ammonia is adsorbed on the catalyst in the reactor when the amount is small, and when a large amount of NOx is used, a large amount of ammonia is injected in a short time by using the above-mentioned adsorbed ammonia. This is a technology that can ensure the denitration follow-up without having to do this. However, the adsorption capacity of the catalyst is originally low, and there is a high possibility that the adsorbed ammonia leaks out of the system, which may cause secondary pollution.

【0004】また後者の技術は、反応器入側のNOx濃
度によりアンモニア注入量をフィードフォワード制御す
ると共に、反応器出側のNOx濃度により該注入量をフ
ィードバック制御することにより、制御精度の向上を計
る方法であり、反応器入側のNOx濃度が急変したとき
にも短時間でアンモニア注入量を調節できる様にしたも
のである。なるほどこの制御方法であれば制御精度は高
められるが、NOx量が急激に増加する様な場合、多量
のアンモニアを直ちに短時間内に注入しなければなら
ず、アンモニア注入管やアンモニアタンクを大きく設定
する必要があり、設備コストが高くつくという不具合が
ある。
In the latter technique, the control accuracy is improved by controlling the injection amount of ammonia by feedforward control based on the NOx concentration at the inlet of the reactor and by feedback controlling the injection amount by the NOx concentration at the outlet of the reactor. This is a method for measuring the amount of ammonia to be injected in a short time even when the NOx concentration on the inlet side of the reactor changes suddenly. This control method can improve the control accuracy, but if the NOx amount increases rapidly, a large amount of ammonia must be immediately injected in a short time, and the ammonia injection pipe and the ammonia tank are set large. And there is a problem that the equipment cost is high.

【0005】[0005]

【発明が解決しようとする課題】そこで本発明者らは、
大きな容量のアンモニア注入設備を必要とせず、しかも
系外へアンモニアや未反応のNOxを系外へ放出する様
なことのない窒素酸化物の除去方法を提供する目的で研
究を重ね、本発明を完成した。
SUMMARY OF THE INVENTION Accordingly, the present inventors
With the aim of providing a method for removing nitrogen oxides that does not require a large-capacity ammonia injection facility and that does not release ammonia or unreacted NOx to the outside of the system, studies have been repeated and the present invention has been carried out. completed.

【0006】[0006]

【課題を解決するための手段】上記目的を達成し得た本
発明は、窒素酸化物吸着材から脱着された脱着ガスにア
ンモニアを添加し、還元触媒の充填された反応器内で分
解する窒素酸化物の除去方法において、上記脱着ガスは
前記脱着工程中の吸着材と反応器を含む循環系路内で循
環させ、脱着量によって変化する窒素酸化物濃度の反応
器入側での変化が、脱着の開始から小さくなるまでの期
間は、予め計算された一定量のアンモニアを上記循環系
路内へ供給することとし、窒素酸化物濃度の反応器入側
での変化が小さくなった後は上記反応器入側の窒素酸化
物流量変化に応じてアンモニア供給量を調節することを
要旨とするものである。また、窒素酸化物吸着材から脱
着された脱着ガスにアンモニアを添加し、還元触媒の充
填された反応器内で分解する窒素酸化物の除去方法にお
いて、上記脱着ガスは前記脱着工程中の吸着材と反応器
を含む循環系路内で循環させ、脱着量によって変化する
窒素酸化物濃度の反応器入側での変化が、脱着の開始か
ら小さい場合は、上記反応器入側の窒素酸化物流量変化
に応じてアンモニア供給量を調節しても良い。
According to the present invention, which has achieved the above objects, there is provided a nitrogen gas which is decomposed in a reactor filled with a reduction catalyst by adding ammonia to a desorption gas desorbed from a nitrogen oxide adsorbent. In the method for removing oxides, the desorption gas is circulated in a circulation system including the adsorbent and the reactor during the desorption step, and the nitrogen oxide concentration that changes depending on the amount of desorption on the reactor inlet side is During the period from the start of desorption to the time when it becomes smaller, a predetermined amount of ammonia calculated in advance is supplied into the circulation path, and after the change in the nitrogen oxide concentration at the reactor inlet side becomes smaller, The gist of the invention is to adjust the amount of ammonia supplied in accordance with the change in the flow rate of nitrogen oxides on the inlet side of the reactor. Further, in the method for removing nitrogen oxide decomposed in a reactor filled with a reduction catalyst by adding ammonia to the desorbed gas desorbed from the nitrogen oxide adsorbent, the desorbed gas may be an adsorbent in the desorption step. When the change at the reactor inlet side of the nitrogen oxide concentration, which varies with the amount of desorption, is small from the start of desorption, the nitrogen oxide flow rate at the reactor inlet side The ammonia supply amount may be adjusted according to the change.

【0007】[0007]

【作用及び実施例】図1は本発明に使用されるNOx除
去装置の実施例を示す説明図である。被処理ガス供給管
1は2塔の吸着塔4a,4bに自動開閉弁(以下単に弁
という)V1 ,V2 を介して接続され、該吸着塔4a,
4bの下流側には弁V3 ,V4 を介して吸着排ガス排出
管5が接続される。また該吸着塔4a,4bの下流側に
は弁V7 ,V8 を介して脱着ガス排出管2が接続され、
該排出管2は循環用配管8に弁V11を介して接続され、
該循環用配管8にはブロア12、加熱器7及び反応器10が
設けられ、該反応器10の下流側は弁V15,V5 ,V6
介して吸着塔4a,4bの上流側に接続される。そして
上記循環路8におけるブロア12上流側には弁V12を介し
て大気導入管6を接続すると共に、反応器10の上流側に
は弁V16を介してアンモニア供給器9を接続する。
FIG. 1 is an explanatory view showing an embodiment of a NOx removing apparatus used in the present invention. Treated gas supply pipe 1 is the adsorption tower 4a of two towers, 4b automatically opening and closing valve (hereinafter simply referred to as a valve) through a V 1, V 2 is connected to, adsorption column 4a,
The downstream side of the 4b is adsorbed exhaust gas discharge pipe 5 is connected via a valve V 3, V 4. The adsorption tower 4a, desorption gas exhaust pipe 2 via a valve V 7, V 8 is connected to the downstream side of the 4b,
Exhaust extraction pipe 2 is connected through a valve V 11 to the circulation pipe 8,
Blower 12 to the circulation pipe 8, a heater 7 and the reactor 10 is provided, the adsorption tower 4a downstream through the valve V 15, V 5, V 6 of the reactor 10, on the upstream side of 4b Connected. And the blower 12 upstream in the circulation path 8 with connecting atmospheric air introducing pipe 6 via a valve V 12, on the upstream side of the reactor 10 for connecting the ammonia supply device 9 via a valve V 16.

【0008】上記除去装置の運転方法は以下の通りであ
る。被処理ガス供給管1より導入されるNOxを含む被
処理ガスは弁V1 ,V2 ,V3 ,V4 を開閉操作するこ
とにより、吸着塔4a,4bのいずれかへ導入し、塔内
の吸着材へNOxを吸着し、NOxを除去された吸着排
ガスは排出管5より大気へ放出する。この吸着工程は吸
着塔4a,4bを交互に使用することによって連続的に
行なわれる。
[0008] The operation method of the above-mentioned removal device is as follows. By the gas to be treated for opening and closing the valves V 1, V 2, V 3 , V 4 containing NOx is introduced from the processing gas supply pipe 1 is introduced into one of the adsorption columns 4a, 4b, the tower NOx is adsorbed to the adsorbent, and the adsorbed exhaust gas from which NOx has been removed is discharged from the discharge pipe 5 to the atmosphere. This adsorption step is continuously performed by alternately using the adsorption towers 4a and 4b.

【0009】一方吸着工程を休止しているいずれかの吸
着塔は例えば後述する加熱工程、吸着塔冷却工程、反応
器予熱工程を行ない、吸着材に吸着されたNOxの脱
着、及び分解等を行ない吸着塔の再生を行う。表1は吸
着塔4a,4bの各工程と各弁の開閉状態を示し、横軸
は吸着塔の1工程サイクルを示している。なお表中の休
止工程は吸着塔の運転を休止させ、反応器の予熱を行な
う工程を示す。
On the other hand, any of the adsorption towers in which the adsorption step is stopped performs, for example, a heating step, an adsorption tower cooling step, and a reactor preheating step, which will be described later, to perform desorption and decomposition of NOx adsorbed on the adsorbent. Regenerate the adsorption tower. Table 1 shows each step of the adsorption towers 4a and 4b and the open / closed state of each valve, and the horizontal axis shows one cycle of the adsorption tower. The stop step in the table indicates a step of stopping the operation of the adsorption tower and preheating the reactor.

【0010】[0010]

【表1】 [Table 1]

【0011】図2は吸着塔4bの加熱工程を示す説明図
であり、吸着系路Ca(一点鎖線)において吸着塔4a
は被処理ガス中のNOxを吸着する吸着工程を行なって
いる。これに対して循環系路C1 においては吸着塔4b
より弁V8 −弁V11−ブロア12−加熱器7−反応器10−
弁V15−弁V6 を備える循環用配管8に脱着ガスを流通
することにより、該脱着ガスが加熱されてその中に含ま
れるNOxがアンモニアによって還元分解される。すな
わち吸着塔4bより徐々に脱着されてくる脱着ガスは加
熱器7において加熱昇温されると共に、反応器10の上流
側において後述する注入調節方法によりアンモニアが加
えられて反応器10内へ導入され、大部分のNOxが還元
される。この反応器10で反応しきれなかった少量のNO
x及びアンモニアはその下流側へ流されてしまうが、こ
のガス中のNOx濃度は極めて低いものとなっているの
で、このガスを吸着塔4bに戻してNOxを脱着するた
めのパージ用ガスとして使用し、再び上記循環用配管8
に循環させる。この循環を繰返すことによって吸着塔4
b内の吸着材に吸着したNOxを全て脱着させると共
に、このNOxをアンモニアによって完全に還元する。
FIG. 2 is an explanatory view showing a heating step of the adsorption tower 4b.
Performs an adsorption step of adsorbing NOx in the gas to be treated. Adsorption tower 4b in circulation passage C 1 contrast
More valve V 8 - the valve V 11 - blower 12 heater 7 reactor 10-
The valve V 15 - by flowing the desorbed gas in the circulation pipe 8 provided with a valve V 6, NOx to the desorption gas contained therein is heated is reduced and decomposed by ammonia. That is, the desorbed gas gradually desorbed from the adsorption tower 4b is heated and heated in the heater 7, and ammonia is added to the upstream side of the reactor 10 by an injection control method described later and introduced into the reactor 10. , Most of the NOx is reduced. A small amount of NO that could not be reacted in this reactor 10
x and ammonia flow to the downstream side, but since the NOx concentration in this gas is extremely low, this gas is returned to the adsorption tower 4b and used as a purge gas for desorbing NOx. And again the circulation pipe 8
Circulate. By repeating this circulation, the adsorption tower 4
All the NOx adsorbed on the adsorbent in b is desorbed, and this NOx is completely reduced by ammonia.

【0012】従って、未反応の微量NOxやアンモニア
が大気へ放出されることはない。なお弁V5 は循環系路
配管内の圧逃し用として開放しておくが、吸着系路Ca
側へ漏出するNOxやアンモニアは微量であり、また吸
着塔4aを経てこれらが吸着された後大気へ放出される
ことになるので、大気中へはほとんど放出されない。
Therefore, no unreacted trace NOx or ammonia is released to the atmosphere. Incidentally valve V 5 is left open for the by pressure relief of the circulation path pipe but suction pathway Ca
The amount of NOx and ammonia leaking to the side is very small, and since they are adsorbed via the adsorption tower 4a and released to the atmosphere, they are hardly released to the atmosphere.

【0013】一方図3は上記吸着塔の冷却工程を示し、
破線に示す様に大気導入管6−ブロア12−加熱器7
(停止している)−弁V13−弁V14−弁V8 −吸着塔4
b−弁V2 を経る系路C2 を介して新鮮な空気を吸着塔
4bへ導入し、上記加熱工程において昇温された吸着材
を冷却し、次の吸着工程におけるNOxの吸着に適した
温度とする。
FIG. 3 shows a cooling step of the adsorption tower.
As shown by the broken line, the air introduction pipe 6-blower 12-heater 7
(Stopped) - valve V 13 - valve V 14 - valve V 8 - adsorption tower 4
through the system path C 2 undergo b- valve V 2 is introduced into the adsorption tower 4b fresh air, the temperature increase has been adsorbent in the heating step is cooled, suitable for adsorption of NOx in the next adsorption step Temperature.

【0014】また図4は反応器10の予熱工程を示し、バ
イパス管13−弁V14−弁V11−ブロア12−加熱器7−反
応器10−弁V15を含む閉鎖系路C3 を形成して内部ガス
を加熱しながら循環し、反応器10内を次の加熱工程にお
けるNOxとアンモニアの分解反応に適した温度に予熱
し反応を即座に行えることとする。このとき吸着塔4b
は完全休止状態とすると共に、吸着系路Caに通じる弁
5 を開放し、加熱による昇圧の圧逃しとして使用す
る。
[0016] FIG. 4 shows a preheating step in the reactor 10, the bypass pipe 13 a valve V 14 - a closed system path C 3 containing blower 12 heater 7 reactor 10 the valve V 15 - valve V 11 The formed gas is circulated while heating the internal gas, and the inside of the reactor 10 is preheated to a temperature suitable for the decomposition reaction of NOx and ammonia in the next heating step so that the reaction can be performed immediately. At this time, the adsorption tower 4b
Together with a complete rest, opening valve V 5 leading to the suction pathway Ca, used as a pressure relief teeth boosted by heating.

【0015】上記加熱工程におけるアンモニア供給器9
からのアンモニア注入制御は以下の様に行う。図5には
吸着塔脱着時における反応器10入側のNOx流量(実
線)を示し、該NOx量(すなわち、脱着量)は脱着初
期にピークを形成し以後徐々にその流量は低減する。従
って脱着初期におけるNOx濃度の変化は大きく(脱着
工程の0〜tの期間)、その後NOx濃度の変化は小さ
くなる。そこで本発明においては破線に示す様に脱着初
期に一定量のアンモニアを循環系路C1の反応器10入側
から注入することとし、未反応のアンモニアやNOxが
残ってもこれを循環系路C1(図2参照)内で循環し、
これらが系外へ放出されるのを防止して還元反応を進め
る。このため短時間内に多量のアンモニアを供給するこ
とは無くなり、容量の大きなアンモニア供給設備を設け
る必要はなく設備コストは低く済む。
Ammonia supplier 9 in the heating step
The control of the injection of ammonia from is performed as follows. FIG. 5 shows the NOx flow rate (solid line) on the inlet side of the reactor 10 when the adsorption tower is desorbed. The NOx amount (that is, the desorption amount) forms a peak in the early stage of desorption, and thereafter the flow rate gradually decreases. Therefore, the change in NOx concentration in the initial stage of desorption is large (0 to t in the desorption step), and thereafter, the change in NOx concentration is small. Therefore, in the present invention and injecting a certain amount of ammonia desorbed initial as shown by the broken line from the reactor 10 inlet side of the circulation path C 1, circulation path also remain ammonia or NOx unreacted Circulating in C 1 (see FIG. 2),
These are prevented from being released out of the system and the reduction reaction proceeds. Therefore, a large amount of ammonia is not supplied in a short time, and it is not necessary to provide a large-capacity ammonia supply equipment, and the equipment cost can be reduced.

【0016】なお脱着初期におけるアンモニア注入量
は、この脱着工程を行う前の吸着工程におけるNOx吸
着積算値をもとに算定することが好ましく、この期間内
のNOx脱着流量に適したアンモニア注入量を決定す
る。
The ammonia injection amount in the initial stage of the desorption is preferably calculated based on the NOx adsorption integrated value in the adsorption step before the desorption step, and the ammonia injection amount suitable for the NOx desorption flow rate during this period is determined. decide.

【0017】そしてNOx濃度変化が小さくなった後
は、反応器10入側のNOx濃度とガス流量を測定してN
Ox流量を算出し、このNOx流量変化に応じてアンモ
ニア注入量を調節し、過剰なアンモニアを注入しない様
にすると共に脱着工程終了時に未反応のアンモニア及び
NOxが循環系路C1 内に残存しない様にする。これに
よって次の吸着塔冷却工程を行なったときに、NOxや
アンモニアが系外へ放出されるのを防止する。
After the change in the NOx concentration becomes small, the NOx concentration and the gas flow rate on the inlet side of the reactor 10 are measured, and N
Calculating the Ox flow, to adjust the ammonia injection amount according to the NOx flow rate change, unreacted ammonia and NOx during the desorption step is completed does not remain in the circulation path C 1 while so as not to inject the excess ammonia Like This prevents NOx and ammonia from being released out of the system when the next adsorption tower cooling step is performed.

【0018】(実施例)図1に示す装置を用いてNOx
濃度が平均3ppm の排ガスを5000Nm3/h の流量で処
理したときの脱硝率及びアンモニア漏れ濃度を測定し
た。ただし1塔の吸着塔における吸着−再生工程の1サ
イクルは24時間とすると共に、本発明方法による脱着
工程初期(脱着工程開始より0.5 〜1時間)のアンモニ
ア注入量は30Nリットル/hとし、その後はNOx流量1Nリッ
トル/h当たり0.95Nリットル/hのアンモニア注入量に調節制御
することとした。但し、脱着工程開始より0.5 時間まで
はNOx濃度が低いため、アンモニアを注入しなかっ
た。
(Embodiment) Using the apparatus shown in FIG.
When the exhaust gas having an average concentration of 3 ppm was treated at a flow rate of 5000 Nm 3 / h, the denitration rate and ammonia leakage concentration were measured. However, one cycle of the adsorption-regeneration step in one adsorption tower is 24 hours, and the ammonia injection rate at the beginning of the desorption step (0.5 to 1 hour from the start of the desorption step) by the method of the present invention is 30 Nl / h. Was adjusted and controlled to an ammonia injection amount of 0.95 Nl / h per 1 Nl / h of NOx flow rate. However, ammonia was not injected until 0.5 hour from the start of the desorption step because the NOx concentration was low.

【0019】この結果吸着工程における吸着率は85%
以上となり、脱着工程におけるNOx除去率は99%以
上となった。また大気中へ漏出するアンモニアは0.1
ppm以下とできる様になった。本発明方法に使用する装
置は図1に示すものに限定されるものではなく、2塔式
の吸着塔を回転ローター式の吸着材に替えるもの等であ
っても良い。
As a result, the adsorption rate in the adsorption step was 85%.
As described above, the NOx removal rate in the desorption step was 99% or more. Ammonia leaking into the atmosphere is 0.1%
It became possible to be below ppm. The apparatus used in the method of the present invention is not limited to the one shown in FIG. 1, but may be one in which a two-column type adsorption tower is replaced with a rotary rotor type adsorbent.

【0020】[0020]

【発明の効果】本発明は以上の様に構成されているの
で、未反応のアンモニア及びNOxを系外へ放出するの
を防止でき、また大がかりなアンモニア供給設備を必要
とせず設備コストを低くすることができる。
Since the present invention is configured as described above, it is possible to prevent unreacted ammonia and NOx from being released to the outside of the system, and to reduce the equipment cost without requiring a large-scale ammonia supply equipment. be able to.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に使用されるNOx除去装置の実施例を
示す説明図である。
FIG. 1 is an explanatory view showing an embodiment of a NOx removing device used in the present invention.

【図2】図1に示す装置における吸着塔4bの加熱工程
を示す説明図である。
FIG. 2 is an explanatory diagram showing a heating step of an adsorption tower 4b in the apparatus shown in FIG.

【図3】図1に示す装置における吸着塔4bの冷却工程
を示す説明図である。
FIG. 3 is an explanatory view showing a cooling step of the adsorption tower 4b in the apparatus shown in FIG.

【図4】図1に示す装置における反応器10の予熱工程
を示す説明図である。
FIG. 4 is an explanatory view showing a preheating step of a reactor 10 in the apparatus shown in FIG.

【図5】本発明によるアンモニア注入量調節の一例を示
すグラフである。
FIG. 5 is a graph showing an example of adjustment of an ammonia injection amount according to the present invention.

【符号の説明】[Explanation of symbols]

4a,4b 吸着塔 8 循環用配管 9 アンモニア供給器 10 反応器 4a, 4b Adsorption tower 8 Circulation pipe 9 Ammonia feeder 10 Reactor

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐藤 弘 千葉県松戸市新松戸6−70−2−C− 1011 (72)発明者 千葉 潔 東京都世田谷区砧2−16−11−204 (72)発明者 今野 直哉 東京都田無市向台町4−21−50−311 (72)発明者 糟谷 文彦 兵庫県神戸市中央区脇浜町1丁目3番18 号 株式会社神戸製鋼所 神戸本社内 (72)発明者 高橋 円 兵庫県神戸市中央区脇浜町1丁目3番18 号 株式会社神戸製鋼所 神戸本社内 (72)発明者 大坂 邦夫 兵庫県神戸市中央区脇浜町1丁目3番18 号 株式会社神戸製鋼所 神戸本社内 (72)発明者 杉岡 良吉 兵庫県神戸市中央区脇浜町1丁目3番18 号 株式会社神戸製鋼所 神戸本社内 (72)発明者 藤本 晶士 兵庫県神戸市中央区脇浜町1丁目3番18 号 株式会社神戸製鋼所 神戸本社内 (72)発明者 山中 繁樹 兵庫県神戸市中央区脇浜町1丁目3番18 号 株式会社神戸製鋼所 神戸本社内 (56)参考文献 特開 平4−78421(JP,A) 特開 平3−188820(JP,A) 特開 平3−186318(JP,A) 特開 平5−192535(JP,A) 特開 平5−253444(JP,A) 特開 平4−250822(JP,A) 特開 平5−253445(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01D 53/34 - 53/94 B01J 20/00 - 20/34 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hiroshi Sato 6-70-2-C-1011 Shin-Matsudo, Matsudo City, Chiba Prefecture (72) Inventor Kiyoshi Chiba 2-16-11-204, Kinuta, Setagaya-ku, Tokyo (72) Inventor Naoya Konno 4-21-50-311 Mukodaicho, Tanashi-shi, Tokyo (72) Inventor Fumihiko Kasuya 1-3-18 Wakihamacho, Chuo-ku, Kobe-shi, Hyogo Kobe Steel, Ltd.Kobe Head Office (72) Invention Kobe Steel Co., Ltd.Kobe Steel Co., Ltd.Kobe Head Office (72) Inventor Kunio Osaka Kunio Osaka 1-3-1 Wakihamacho, Chuo-ku, Kobe City, Hyogo Prefecture Kobe Steel, Ltd. Kobe Head Office (72) Inventor Ryoyoshi Sugioka 1-3-18, Wakihama-cho, Chuo-ku, Kobe City, Hyogo Prefecture Kobe Steel, Ltd.Kobe Head Office (72) Inventor Akishi Fujimoto 1 Wakihama-cho, Chuo-ku, Kobe City, Hyogo Prefecture Kobe Steel, Ltd.Kobe Head Office (72) Inventor Shigeki Yamanaka 1-3-18, Wakihama-cho, Chuo-ku, Kobe City, Hyogo Prefecture Kobe Steel Co., Ltd.Kobe Head Office (56) References JP-A-4-78421 (JP, A) JP-A-3-188820 (JP, A) JP-A-3-186318 (JP, A) JP-A-5-192535 (JP, A) JP-A-5-253444 (JP, A A) JP-A-4-250822 (JP, A) JP-A-5-253445 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) B01D 53/34-53/94 B01J 20 / 00-20/34

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 窒素酸化物吸着材から脱着された脱着ガ
スにアンモニアを添加し、還元触媒の充填された反応器
内で分解する窒素酸化物の除去方法において、 上記脱着ガスは前記脱着工程中の吸着材と反応器を含む
循環系路内で循環させ、脱着量によって変化する 窒素酸化物濃度の反応器入側で
変化が、脱着の開始から小さくなるまでの期間は
め計算された一定量のアンモニアを上記循環系路内へ供
給することとし、 窒素酸化物濃度の反応器入側での変化が小さくなった後
は上記反応器入側の窒素酸化物流量変化に応じてアンモ
ニア供給量を調節することを特徴とする窒素酸化物の除
去方法。
1. A method for removing nitrogen oxides which decomposes in a reactor filled with a reduction catalyst by adding ammonia to a desorption gas desorbed from a nitrogen oxide adsorbent, wherein the desorption gas is used during the desorption step. Circulates in the circulation system including the adsorbent and the reactor, and the nitrogen oxide concentration that varies with the
Change of, time to decrease from the start of the desorption, and to supply precalculated quantity of ammonia into the circulation path, the change in the reactor inlet side of the nitrogen oxide concentration is reduced After that, the ammonia supply amount is adjusted in accordance with the change in the nitrogen oxide flow rate on the reactor inlet side.
【請求項2】 窒素酸化物濃度の変化が小さくなるまで
の期間内に供給されるアンモニア供給量は、吸着工程に
おける窒素酸化物吸着積算値をもとに算定する請求項1
に記載の窒素酸化物の除去方法。
2. The method according to claim 1, wherein the amount of ammonia supplied during a period until the change in the concentration of nitrogen oxides becomes small is calculated based on the integrated value of nitrogen oxide adsorption in the adsorption step.
The method for removing nitrogen oxides according to the above.
【請求項3】 窒素酸化物吸着材から脱着された脱着ガ
スにアンモニアを添加し、還元触媒の充填された反応器
内で分解する窒素酸化物の除去方法において、 上記脱着ガスは前記脱着工程中の吸着材と反応器を含む
循環系路内で循環させ、 脱着量によって変化する 窒素酸化物濃度の反応器入側で
変化が、脱着の開始から小さい場合は、上記反応器入
側の窒素酸化物流量変化に応じてアンモニア供給量を調
節することを特徴とする窒素酸化物の除去方法。
3. A desorption gas desorbed from a nitrogen oxide adsorbent.
Reactor with ammonia added to it and filled with a reduction catalyst
In the method for removing nitrogen oxides decomposed in a gas , the desorption gas includes an adsorbent and a reactor in the desorption step.
Circulates in the circulation system, at the inlet of the reactor where the nitrogen oxide concentration varies depending on the amount of desorption
The method for removing nitrogen oxides , characterized in that, when the change in the nitrogen oxides is small from the start of desorption, the amount of ammonia supplied is adjusted according to the change in the nitrogen oxide flow rate at the reactor inlet.
JP17194092A 1992-06-05 1992-06-05 Nitrogen oxide removal method Expired - Fee Related JP3257697B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17194092A JP3257697B2 (en) 1992-06-05 1992-06-05 Nitrogen oxide removal method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17194092A JP3257697B2 (en) 1992-06-05 1992-06-05 Nitrogen oxide removal method

Publications (2)

Publication Number Publication Date
JPH05337339A JPH05337339A (en) 1993-12-21
JP3257697B2 true JP3257697B2 (en) 2002-02-18

Family

ID=15932636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17194092A Expired - Fee Related JP3257697B2 (en) 1992-06-05 1992-06-05 Nitrogen oxide removal method

Country Status (1)

Country Link
JP (1) JP3257697B2 (en)

Also Published As

Publication number Publication date
JPH05337339A (en) 1993-12-21

Similar Documents

Publication Publication Date Title
JPS5843222A (en) Method for removing sulfur oxide and nitrogen oxide from waste gas
KR950005360A (en) NOx adsorption removal device and adsorbent regeneration method
JPS5843224A (en) Dry type flue gas desulfurization and denitration method
JPH05272331A (en) Exhaust emission control device and reducing agent supply method and device used therein
JP3257697B2 (en) Nitrogen oxide removal method
US4045539A (en) Process for decontaminating gas containing radioactive iodine
US5589146A (en) Method for treating ammonia
EP0893402B1 (en) Ozone supplying apparatus and process
JPH0952015A (en) Solvent treatment apparatus and method therefor
EP0590744B1 (en) Method for recovering ammonia adsorbent
JP3202419B2 (en) Method for reducing nitrogen oxides in flue gas
KR940007866B1 (en) Chemical vapor growth apparatus
JP3029936B2 (en) Ammonia adsorption equipment
JP2000254453A (en) Process and equipment for waste gas treatment
US6168770B1 (en) Method of removing nitrogen oxides from a gas flow by using a combustion engine
JP2930893B2 (en) Activated carbon supply method
JPH06210139A (en) Waste gas treatment
JP3202469B2 (en) Gas treatment equipment
JP3393825B2 (en) Exhaust gas treatment device and method
JP2024113295A (en) Desulfurization and denitration equipment and desulfurization and denitration methods
JPH06233915A (en) Denitration equipment of combustion exhaust gas
JP3310861B2 (en) Method for treating gas containing NO X and O 3
JPH08323149A (en) Dry desulfurizing and denitrificating device
JP2001187321A (en) Method and device for treating waste gas
EP0609288B1 (en) A method of removing nitrogen oxides from a gas flow by using a combustion exchanger

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20011113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071207

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081207

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091207

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees