JP2930893B2 - Activated carbon supply method - Google Patents

Activated carbon supply method

Info

Publication number
JP2930893B2
JP2930893B2 JP7158380A JP15838095A JP2930893B2 JP 2930893 B2 JP2930893 B2 JP 2930893B2 JP 7158380 A JP7158380 A JP 7158380A JP 15838095 A JP15838095 A JP 15838095A JP 2930893 B2 JP2930893 B2 JP 2930893B2
Authority
JP
Japan
Prior art keywords
activated carbon
tower
desorption tower
desulfurization
desorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP7158380A
Other languages
Japanese (ja)
Other versions
JPH08323141A (en
Inventor
一孝 桂原
喜久 渡辺
均 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electric Power Development Co Ltd
Sumitomo Heavy Industries Ltd
Original Assignee
Electric Power Development Co Ltd
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electric Power Development Co Ltd, Sumitomo Heavy Industries Ltd filed Critical Electric Power Development Co Ltd
Priority to JP7158380A priority Critical patent/JP2930893B2/en
Publication of JPH08323141A publication Critical patent/JPH08323141A/en
Application granted granted Critical
Publication of JP2930893B2 publication Critical patent/JP2930893B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Treating Waste Gases (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、活性炭を移動床とした
乾式脱硫、脱硝等のシステムにおける活性炭の補給方法
に関し、特に、SOx 、媒塵等の汚染物質を吸着した活
性炭を再生するための脱離塔へ供給し、再生された活性
炭を循環して使用する乾式脱硫、脱硝等のシステムにお
いて、減少した活性炭を連続的又は半連続的に補給する
方法に関する。
BACKGROUND OF THE INVENTION This invention is a dry desulfurization was activated carbon with moving bed, relates replenishing method of the activated carbon in the system of denitration. In particular, SO x, to play the activated carbon has adsorbed contaminants such as medium dust The present invention relates to a method for continuously or semi-continuously replenishing reduced activated carbon in a system such as dry desulfurization and denitration using recycled activated carbon supplied to a desorption tower.

【0002】[0002]

【従来の技術】排ガス中のSOx 、媒塵等を吸着処理
し、NOx を分解除去するための装置として、活性炭を
使用した乾式脱硫脱硝システムは、活性炭の持つ吸着材
としての機能によりSOx を、触媒としての機能により
NOx を除去できることが知られている。この乾式脱硫
脱硝システムは、脱硫脱硝塔及び脱離塔を含み、活性炭
が投入されている脱硫脱硝塔において、SOx の吸着及
び/又はNOx の分解が行われ、脱離塔において脱硫脱
硝塔から排出されたSOx を吸着している活性炭の再生
が行われる。脱離塔にて再生された活性炭は、脱硫脱硝
塔の頂部へ戻され、再び、SOx の吸着及び/又はNO
x の分解に使用され、このように活性炭は循環されてい
る。
2. Description of the Related Art A dry desulfurization and denitration system using activated carbon as a device for adsorbing SO x and particulate matter in exhaust gas to decompose and remove NO x is based on the function of activated carbon as an adsorbent. the x, are known to be able to remove NO x by the function as a catalyst. This dry desulfurization and denitration system includes a desulfurization and denitration tower and a desorption tower. In the desulfurization and denitration tower into which activated carbon is charged, adsorption of SO x and / or decomposition of NO x are performed, and the desulfurization and denitration tower is Activated carbon adsorbing SO x discharged from the fuel cell is regenerated. Activated carbon which has been reproduced by the regenerator is returned to the top of desulfurization and denitrification column, again, adsorption and / or NO of the SO x
It is used to decompose x and thus activated carbon is circulated.

【0003】ところで、活性炭はSO2 を吸着、脱離を
繰り返すことにより化学消耗が起こったり、脱硫脱硝塔
と脱離塔間を活性炭が移送されるために機械消耗が生
じ、乾式脱硫脱硝システムにおいて次第に活性炭の量が
減少する。例えば、活性炭の減少は、乾式脱硫脱硝シス
テムの約1サイクル当り、活性炭充填量の約1〜2%程
度であると言われている。
Activated carbon is chemically consumed by repeating adsorption and desorption of SO 2 , and mechanical consumption is caused by the activated carbon being transferred between the desulfurization denitration tower and the desorption tower. The amount of activated carbon gradually decreases. For example, the reduction of activated carbon is said to be about 1-2% of the activated carbon loading per one cycle of the dry desulfurization and denitration system.

【0004】従来、このような活性炭の消耗分を乾式脱
硫脱硝システム中に補うために活性炭補給槽から新たな
活性炭を補給していた。その補給シーケンスとしては、
脱硫脱硝塔下部の切り出し部ロールフィーダ排出量が調
整されて、そのロールフィーダから連続的に一定量の吸
着済活性炭が排出されて脱離塔へ導入され、脱離塔下部
ロールフィーダからは脱硫脱硝塔レベルが一定になるよ
うに活性炭の排出量が可変制御されていた。又、脱離塔
の活性炭レベルが低下した場合、そのレベルが許容範囲
となるように活性炭補給槽から新たな活性炭を脱離塔の
頂部へ間欠的に補給されていた。
Conventionally, new activated carbon has been supplied from an activated carbon replenishing tank in order to make up such a consumed amount of activated carbon in a dry desulfurization and denitration system. As the replenishment sequence,
The discharge amount of the cut-out part roll feeder at the bottom of the desulfurization denitration tower is adjusted, a certain amount of adsorbed activated carbon is continuously discharged from the roll feeder and introduced into the desorption tower, and desulfurization denitration is performed from the roll feeder at the bottom of the desorption tower. Activated carbon emissions were variably controlled so that the tower level remained constant. Further, when the activated carbon level of the desorption tower has decreased, new activated carbon has been intermittently replenished from the activated carbon replenishing tank to the top of the desorption tower so that the level becomes within an allowable range.

【0005】その補給のタイミングは、例えば、5〜8
時間毎に480秒(8分間)活性炭を約400kg補給
するものであった。
The replenishment timing is, for example, 5 to 8
About 400 kg of activated carbon was replenished every hour for 480 seconds (8 minutes).

【0006】[0006]

【発明が解決しようとする課題】脱離塔の頂部に導入さ
れた活性炭は降下しながら、その温度が約400℃にな
るまで加熱器で加熱されて吸着成分の脱着が行われ、次
いで活性炭は冷却器で冷却されて脱離塔から排出され
る。脱離塔加熱器上部での活性炭吸着物による加熱管の
閉塞や、脱離ガス配管の腐食・閉塞防止のために、通
常、脱離塔上部には、予熱器が設けられている。
The activated carbon introduced into the top of the desorption tower descends, and is heated by a heater until its temperature reaches about 400 ° C. to desorb the adsorbed components. It is cooled by a cooler and discharged from the desorption tower. In order to prevent the heating pipe from being clogged with activated carbon adsorbed material at the upper part of the desorption tower heater and to prevent corrosion and blockage of the desorption gas pipe, a preheater is usually provided at the upper part of the desorption tower.

【0007】ところで、脱硫脱硝塔の底部から排出され
る約140℃程度の活性炭は、脱離塔への導入直前では
約100℃程度になって、脱離塔頂部へ導入される。こ
れに対して、活性炭補給槽から補給される活性炭は、常
温のまま、脱離塔頂部へ間欠的に導入されるため、冷た
い活性炭が補給されることになり、脱離塔の予熱器にお
いて、温度変動の主たる原因となっていた。
[0007] Activated carbon at about 140 ° C discharged from the bottom of the desulfurization and denitration tower reaches about 100 ° C immediately before being introduced into the desorption tower, and is introduced to the top of the desorption tower. On the other hand, the activated carbon supplied from the activated carbon supply tank is intermittently introduced to the top of the desorption tower at room temperature, so that cold activated carbon is supplied, and in the preheater of the desorption tower, It was the main cause of temperature fluctuation.

【0008】また活性炭補給槽からの活性炭の補給が止
まると、脱硫塔からの加熱されている活性炭のみが供給
されることになる。したがって、温度の高い活性炭が、
脱離塔の予熱器に補給されることになり、今度は脱離塔
の予熱器において温度が上昇し、温度変動を生じてい
た。
When the supply of the activated carbon from the activated carbon supply tank is stopped, only the heated activated carbon from the desulfurization tower is supplied. Therefore, activated carbon with high temperature
The preheater of the desorption tower was to be replenished, and this time the temperature of the preheater of the desorption tower increased, causing temperature fluctuation.

【0009】このように、脱離塔の予熱器において温度
変動が大きいと、SO が硫酸になり活性炭予熱器の配
管を腐食させたり、生成した硫酸がアンモニア等と反応
して硫安になり、これが原因でその配管を閉塞すること
があった。またこのような脱離塔内の温度降下により、
脱離ガスの温度低下が生じ、脱離ガス配管の閉塞等のト
ラブルが発生していた。
[0009] Thus, the temperature variation in the preheater regenerator is large, corrode piping charcoal preheater SO x becomes sulfuric acid, the resulting sulfuric acid reacts with ammonia becomes ammonium sulfate, This sometimes clogged the piping. Also, due to the temperature drop in such a desorption tower,
The temperature of the desorbed gas dropped, and troubles such as clogging of the desorbed gas piping occurred.

【0010】さらに、流入される温度の異なる活性炭の
ため予熱器の温度が乱降下すると、脱離塔を加熱するた
めの予熱器、加熱器等の加熱ガス系に外乱が生ずること
になり、このため加熱ガスを発生する熱風炉の自動制御
が困難となっていた。この熱風炉による温度制御は、予
熱器の温度を検知してから、重油等の燃焼により温度が
高められた熱風ガスを生成し、この熱風ガスを熱風ガス
供給ラインを通して脱離塔の加熱器に供給するために、
その自動制御に時間がかかるという問題があった。
Further, if the temperature of the preheater drops due to activated carbon having different temperatures, the disturbance occurs in the heating gas system such as the preheater and the heater for heating the desorption tower. Therefore, automatic control of the hot blast stove that generates the heating gas has been difficult. The temperature control by this hot blast stove detects the temperature of the preheater, then generates hot blast gas whose temperature is increased by burning heavy oil etc., and sends this hot blast gas to the heater of the desorption tower through the hot blast gas supply line. To supply
There is a problem that the automatic control takes time.

【0011】そこで本発明は、脱離塔の予熱器下の温度
変動が抑制されるように、活性炭補給槽から脱離塔へ活
性炭を補給することを目的とする。
Accordingly, an object of the present invention is to replenish activated carbon from an activated carbon replenishing tank to the desorption tower so that temperature fluctuations below the preheater of the desorption tower are suppressed.

【0012】[0012]

【課題を解決するための手段】前記した問題点を解決す
るための本発明の活性炭補給方法は、活性炭を脱硫脱硝
塔の頂部から受入れ、一方、処理ガスを脱硫脱硝塔に導
入し、該処理ガス中の吸着成分を吸着した活性炭を脱硫
脱硝塔の底部から排出し、次いで該活性炭を脱離塔へ供
給し、該脱離塔で脱離処理した活性炭を前記脱硫脱硝塔
の頂部へ戻す脱硫脱硝システムにおける、減少する活性
炭を活性炭補給槽より脱離塔へ補給する活性炭補給方法
において、(1)前記脱離塔の活性炭レベル及び脱離塔
予熱器下温度を連続的に計測し、(2)得られた脱離塔
におけるレベル偏差と得られた脱離塔予熱器下温度に基
づき、前記脱離塔の活性炭レベルに対し、脱離塔予熱器
下温度の変動を抑制することを目的としたカスケード制
御をかけ、(3)前記活性炭補給槽より前記脱離塔へ、
制御された量の活性炭を連続的又は半連続的に補給する
ことを特徴とする。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the activated carbon replenishing method of the present invention receives activated carbon from the top of a desulfurization denitrification tower, while introducing a processing gas into the desulfurization denitration tower. The activated carbon adsorbing the adsorbed components in the gas is discharged from the bottom of the desulfurization denitrification tower, and then the activated carbon is supplied to the desorption tower, and the activated carbon desorbed in the desorption tower is returned to the top of the desulfurization denitration tower. In the activated carbon replenishing method in the denitration system for replenishing reduced activated carbon from the activated carbon replenishing tank to the desorption tower, (1) the activated carbon level of the desorption tower and the temperature under the desorption tower preheater are continuously measured; Based on the level deviation in the obtained desorption tower and the obtained temperature under the desorption tower preheater, the object is to suppress the fluctuation of the temperature under the desorption tower preheater with respect to the activated carbon level of the desorption tower. (3) It said than serial activated carbon supply tank to the desorption tower,
It is characterized in that a controlled amount of activated carbon is supplied continuously or semi-continuously.

【0013】本発明における脱硫脱硝塔は、脱硫又は脱
硝を各々単独で行うものでも、同時に脱硫又は脱硝を行
うものでも、また、脱塵を行うものでもいずれでもよ
い。さらに、脱硫塔と脱硝塔が複数段に設けられていて
もよい。
The desulfurization and denitration tower according to the present invention may be any of those that perform desulfurization or denitration alone, those that simultaneously perform desulfurization or denitration, and those that perform dust removal. Further, a desulfurization tower and a denitration tower may be provided in a plurality of stages.

【0014】[0014]

【作用】本発明は、脱離塔予熱器下温度の変動を抑制す
ることを目的としたカスケード制御を行い、且つ活性炭
補給槽より前記脱離塔へ、連続的又は半連続的に活性炭
を補給しているので、脱離塔予熱器での温度降下を防止
することができる。
According to the present invention, the cascade control is performed for the purpose of suppressing the fluctuation of the temperature below the desorption tower preheater, and the activated carbon is continuously or semi-continuously supplied from the activated carbon supply tank to the desorption tower. Therefore, a temperature drop in the desorption tower preheater can be prevented.

【0015】[0015]

【実施例】図1は本発明の活性炭補給方法に使用される
脱硫脱硝システムの一例を示すフロー図である。図1に
基づいて本発明を説明する。
FIG. 1 is a flow chart showing an example of a desulfurization and denitration system used in the activated carbon supply method of the present invention. The present invention will be described based on FIG.

【0016】脱硫脱硝塔2中を上方から下方にかけて移
動している活性炭に排ガスを供給することにより、排ガ
ス中のSOx は活性炭に吸着され、NOx は分解され
る。SOx を吸着した活性炭を、切り出し部ロールフィ
ーダ14の排出量の調整により、脱硫脱硝塔2の底部か
ら連続的に一定の排出量となるように、排出する。排出
された活性炭を活性炭輸送ライン12を通して再生のた
めに脱離塔3へ送る。脱離塔3は、その上部が予熱器
6、中間部が加熱器7、下部が冷却器8となって構成さ
れており、加熱炉4からの熱風ガスが熱風ガスライン5
を通じて予熱器6及び加熱器7へ導入されて一定の温度
となるように制御されている。
By supplying the exhaust gas to the activated carbon moving from above to below in the desulfurization and denitration tower 2, SO x in the exhaust gas is adsorbed by the activated carbon and NO x is decomposed. The activated carbon that has adsorbed SO x is discharged from the bottom of the desulfurization and denitration tower 2 continuously at a constant discharge amount by adjusting the discharge amount of the cut-out portion roll feeder 14. The discharged activated carbon is sent to a desorption tower 3 for regeneration through an activated carbon transport line 12. The desorption tower 3 has a preheater 6 at the upper part, a heater 7 at the middle part, and a cooler 8 at the lower part, and the hot air gas from the heating furnace 4 is supplied to the hot air gas line 5.
Through the preheater 6 and the heater 7 to control the temperature to be constant.

【0017】脱離塔3で再生された活性炭は脱離塔3か
ら排出し、篩分機17で活性炭粉を篩分けし、活性炭輸
送ライン13を通して脱硫脱硝塔2へ戻し、再び、脱硫
脱硝処理に使用する。このとき、脱硫脱硝塔2の活性炭
レベルが連続的に計測されてレベル指示調節計(略:L
IC)9に入力され、レベル指示調節計9からの出力に
基づき脱離塔3の底部の切り出し部ロールフィーダ15
の排出量が調整され、脱硫脱硝塔2へ供給される活性炭
の流量が決定される。
The activated carbon regenerated in the desorption tower 3 is discharged from the desorption tower 3, the activated carbon powder is sieved by the sieving machine 17, returned to the desulfurization and denitration tower 2 through the activated carbon transport line 13, and subjected to the desulfurization and denitration treatment again. use. At this time, the activated carbon level of the desulfurization and denitration tower 2 is continuously measured, and the level indicating controller (abbreviation: L)
IC) 9, and based on the output from the level indicating controller 9, a cut-out section roll feeder 15 at the bottom of the desorption tower 3.
Is adjusted, and the flow rate of the activated carbon supplied to the desulfurization and denitration tower 2 is determined.

【0018】他方では、脱離塔3の活性炭レベルがレベ
ル指示調節計10により、また脱離塔予熱器下温度が温
度指示調節計11により連続的に計測され、得られた脱
離塔3におけるレベル偏差ΔLICと得られた脱離塔予
熱器下温度を脱離塔3の活性炭レベルにカスケード制御
をかける。即ち、レベル偏差ΔLICと脱離塔予熱器下
温度をレベル指示調節計10に入力して、脱離塔3への
活性炭補給量が適正な値となるようなレベル指示調節計
10からの出力により、活性炭補給槽1の下部の切り出
し部ロールフィーダ16の排出量が調整される。
On the other hand, the activated carbon level of the desorption tower 3 is continuously measured by the level indicator controller 10 and the temperature under the desorption tower preheater is continuously measured by the temperature indicator controller 11, and the obtained desorption tower 3 is measured. The cascade control is applied to the activated carbon level of the desorption tower 3 based on the level deviation ΔLIC and the obtained temperature under the desorption tower preheater. That is, the level deviation ΔLIC and the temperature under the desorption tower preheater are input to the level instruction controller 10 and the output from the level instruction controller 10 is such that the amount of activated carbon supplied to the desorption tower 3 becomes an appropriate value. The discharge amount of the cut-out portion roll feeder 16 at the lower portion of the activated carbon supply tank 1 is adjusted.

【0019】図1に示される脱硫脱硝システムにおい
て、補給のタイミングを2〜4時間毎に160秒間で、
約110kg/時間の流量で活性炭の補給を行ったとこ
ろ、脱離塔予熱器下部の温度降下の範囲は、8〜11℃
の範囲内に収まっていた。これに対して、従来のカスケ
ード制御が行われていない脱硫脱硝システムにおいて、
補給のタイミングを5〜8時間毎に480秒(8分間)
間で、活性炭を約400kg/時間の流量で補給したと
ころ、脱離塔予熱器下部の温度降下の範囲は、24〜3
0℃と大幅な下降が認められた。
In the desulfurization and denitration system shown in FIG. 1, the replenishment timing is 160 seconds every 2 to 4 hours.
When activated carbon was replenished at a flow rate of about 110 kg / hour, the range of temperature drop at the lower part of the desorption tower preheater was 8 to 11 ° C.
Within the range. On the other hand, in the conventional desulfurization and denitration system without cascade control,
Replenishment timing is 480 seconds (8 minutes) every 5-8 hours
When activated carbon was replenished at a flow rate of about 400 kg / hour, the range of the temperature drop at the lower part of the desorption tower preheater was 24 to 3
A significant drop of 0 ° C was observed.

【0020】以上のような活性炭の補給量の制御と、活
性炭の滑らかで連続的或いは半連続的な補給とにより、
脱離塔の予熱器下部の温度変動を抑制することが可能と
なる。
By controlling the replenishment amount of activated carbon and smooth, continuous or semi-continuous replenishment of activated carbon as described above,
It is possible to suppress temperature fluctuations in the lower part of the preheater of the desorption tower.

【0021】[0021]

【発明の効果】本発明によれば、脱離塔予熱器下温度の
変動を抑制することを目的としたカスケード制御を行な
い、且つ活性炭補給槽より脱離塔へ、滑らかで連続的又
は半連続的に活性炭を補給しているので、脱離塔予熱器
での温度降下を防止することができる。その結果、脱離
塔予熱管の閉塞を防止し、予熱管内部の腐食を防止する
ことができる。
According to the present invention, cascade control is performed for the purpose of suppressing fluctuations in the temperature below the preheater of the desorption tower, and smooth, continuous or semi-continuous operation is performed from the activated carbon replenishment tank to the desorption tower. Since activated carbon is replenished specifically, it is possible to prevent a temperature drop in the desorption tower preheater. As a result, the blockage of the deheating tower preheating tube can be prevented, and the corrosion inside the preheating tube can be prevented.

【0022】また、脱離塔加熱器上部の活性炭温度の低
下が防止できるので、脱離ガスの温度低下を防止でき、
脱離ガス配管の閉塞等のトラブルを防止できる。
Further, since the temperature of the activated carbon at the top of the desorption tower heater can be prevented from lowering, the temperature of the desorbed gas can be prevented from lowering.
Troubles such as clogging of the desorption gas pipe can be prevented.

【0023】また、予熱器温度の乱降下を防ぐことが
きるため、加熱ガス系の外乱を防止でき、熱風炉の自動
制御や燃焼状態を安定的に保つことができる。
Further, since that can <br/> in prevent turbulent drop preheater temperature, can be prevented disturbance of heating gas system, the automatic control and the combustion state of the hot air furnace can be maintained stably.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の活性炭補給方法に使用される脱硫脱硝
システムの一例を示すフロー図である。
FIG. 1 is a flowchart showing an example of a desulfurization and denitration system used in the activated carbon replenishing method of the present invention.

【符号の説明】[Explanation of symbols]

1 活性炭補給槽 2 脱硫脱硝塔 3 脱離塔 4 加熱炉 5 熱風ガスライン 6 予熱器 7 加熱器 8 冷却器 9,10 レベル指示調節計 11 温度指示調節計 12,13 活性炭輸送ライン 14,15,16 切り出し部ロールフィーダ 17 篩分機 DESCRIPTION OF SYMBOLS 1 Activated carbon replenishing tank 2 Desulfurization denitration tower 3 Desorption tower 4 Heating furnace 5 Hot air gas line 6 Preheater 7 Heater 8 Cooler 9,10 Level indicating controller 11 Temperature indicating controller 12,13 Activated carbon transportation line 14,15, 16 Roller feeder at cut-out part 17 Sieving machine

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI B01D 53/94 B01D 53/36 102E 53/96 (72)発明者 村山 均 東京都中央区銀座六丁目15番1号 電源 開発株式会社内 (56)参考文献 特開 昭63−16024(JP,A) (58)調査した分野(Int.Cl.6,DB名) B01D 53/50 B01D 53/34 B01D 53/56 B01D 53/81 B01D 53/86 B01D 53/94 B01D 53/96 B01D 53/08 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI B01D 53/94 B01D 53/36 102E 53/96 (72) Inventor Hitoshi Murayama 6-15-1, Ginza, Chuo-ku, Tokyo Power supply development (56) References JP-A-63-16024 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) B01D 53/50 B01D 53/34 B01D 53/56 B01D 53 / 81 B01D 53/86 B01D 53/94 B01D 53/96 B01D 53/08

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 活性炭を脱硫脱硝塔の頂部から受入れ、
一方、処理ガスを脱硫脱硝塔に導入し、該処理ガス中の
吸着成分を吸着した活性炭を脱硫脱硝塔の底部から排出
し、次いで該活性炭を脱離塔へ供給し、該脱離塔で脱離
処理した活性炭を前記脱硫脱硝塔の頂部へ戻す脱硫脱硝
システムにおける、減少する活性炭を活性炭補給槽より
脱離塔へ補給する活性炭補給方法において、 (1)前記脱離塔の活性炭レベル及び脱離塔予熱器下温
度を連続的に計測し、 (2)得られた脱離塔におけるレベル偏差と得られた脱
離塔予熱器下温度に基づき、前記脱離塔の活性炭レベル
に対し、脱離塔予熱器下温度の変動を抑制することを目
的としたカスケード制御をかけ、 (3)前記活性炭補給槽より前記脱離塔へ、制御された
量の活性炭を連続的又は半連続的に補給することを特徴
とする活性炭補給方法。
1. Activated carbon is received from the top of a desulfurization and denitration tower,
On the other hand, the processing gas is introduced into the desulfurization and denitrification tower, the activated carbon to which the adsorbed components in the processing gas have been adsorbed is discharged from the bottom of the desulfurization and denitration tower, and then the activated carbon is supplied to the desorption tower and desorbed by the desorption tower. In a desulfurization and denitration system for returning the separated activated carbon to the top of the desulfurization and denitration tower, an activated carbon replenishing method for replenishing the reduced activated carbon from the activated carbon replenishment tank to the desorption tower is provided. (1) Activated carbon level and desorption of the desorption tower The temperature under the tower preheater is continuously measured. (2) Based on the obtained level deviation in the desorption tower and the obtained temperature under the desorption tower preheater, desorption is performed with respect to the activated carbon level of the desorption tower. Cascade control for the purpose of suppressing fluctuations in the temperature below the tower preheater is performed. (3) A controlled amount of activated carbon is continuously or semi-continuously supplied from the activated carbon supply tank to the desorption tower. A method for replenishing activated carbon, characterized in that:
JP7158380A 1995-06-01 1995-06-01 Activated carbon supply method Expired - Fee Related JP2930893B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7158380A JP2930893B2 (en) 1995-06-01 1995-06-01 Activated carbon supply method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7158380A JP2930893B2 (en) 1995-06-01 1995-06-01 Activated carbon supply method

Publications (2)

Publication Number Publication Date
JPH08323141A JPH08323141A (en) 1996-12-10
JP2930893B2 true JP2930893B2 (en) 1999-08-09

Family

ID=15670451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7158380A Expired - Fee Related JP2930893B2 (en) 1995-06-01 1995-06-01 Activated carbon supply method

Country Status (1)

Country Link
JP (1) JP2930893B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012201366A (en) * 2011-03-23 2012-10-22 Sumitomo Heavy Ind Ltd Active carbon receiving hopper
CN108722183A (en) * 2018-07-27 2018-11-02 国电环境保护研究院有限公司 A kind of material position automatic control system and autocontrol method

Also Published As

Publication number Publication date
JPH08323141A (en) 1996-12-10

Similar Documents

Publication Publication Date Title
US4469662A (en) Method of removing sulfur oxides and nitrogen oxides by dry process
JP2010512984A (en) Method and apparatus for purifying exhaust gas in the sintering process of ores and / or other metal-containing materials in metal production
JP2930893B2 (en) Activated carbon supply method
US4164555A (en) Pollution control system and method for the removal of sulfur oxides
JP2012030135A (en) Regeneration tower for apparatus for dry discharge-gas treatment
US4142989A (en) Process for continuously regenerating a degraded catalyst used for removing nitrogen oxides from exhaust gas
US20050112042A1 (en) Exhaust gas treatment method, exhaust gas treatment system, and catalytic oxidation apparatus
CN112638504A (en) Selective catalytic reduction process and process for regenerating deactivated catalyst of process
JP2810024B2 (en) Process gas purification method
JP3411483B2 (en) Setting method of ammonia injection amount in waste gas incinerator exhaust gas treatment equipment
JPH0413010B2 (en)
JP2021533989A (en) Selective catalytic reduction process and method for regenerating inactivated SCR catalysts in parallel flue gas treatment systems
JPH05115750A (en) Method for controlling oxidation of carbon monoxide in exhaust gas of sintering furnace
KR102021935B1 (en) NOx AND SOx REMOVAL EQUIPMENT AND REMOVAL METHOD USING LIQUID TIN
JPS59207807A (en) Manufacture of sulfurous acid gas-containing gas by reactingcoal
JP2000102719A (en) Treatment of waste gas and device therefor
JPH0521008B2 (en)
US10633251B2 (en) Method and plant design for reduction of start-up sulfur oxide emissions in sulfuric acid production
JP4429404B2 (en) Dry exhaust gas treatment method and treatment apparatus
JP2003117339A (en) Adsorbent regeneration equipment
JPH07265667A (en) Treatment of exhaust gas
JPH01224032A (en) Treatment of waste air in regeneration of desulfurization liquid of coke oven gas
JPS60220129A (en) Treatment of exhaust gas
JP3257697B2 (en) Nitrogen oxide removal method
JPS6350052B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080521

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080521

Year of fee payment: 9

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 10

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100521

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110521

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120521

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120521

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 14

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees