JP3249389B2 - High-strength non-magnetic steel for fastening linear motor car superconducting coils - Google Patents
High-strength non-magnetic steel for fastening linear motor car superconducting coilsInfo
- Publication number
- JP3249389B2 JP3249389B2 JP11014196A JP11014196A JP3249389B2 JP 3249389 B2 JP3249389 B2 JP 3249389B2 JP 11014196 A JP11014196 A JP 11014196A JP 11014196 A JP11014196 A JP 11014196A JP 3249389 B2 JP3249389 B2 JP 3249389B2
- Authority
- JP
- Japan
- Prior art keywords
- strength
- cold
- less
- steel
- linear motor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Heat Treatment Of Steel (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、リニアモーターカ
ーの浮上用や推進用に用いられる超伝導コイルの締結部
品用に見られる、強磁場中で使用される構造物締結に使
用される非磁性鋼に関するものであり、特に当該部品の
非磁性を確保し、同時に耐食性と強度を向上させる製造
方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-magnetic material used for fastening a structure used in a strong magnetic field, which is used for fastening parts of a superconducting coil used for levitation or propulsion of a linear motor car. The present invention relates to a steel, and more particularly to a manufacturing method for ensuring non-magnetic properties of the component and at the same time improving corrosion resistance and strength.
【0002】[0002]
【従来の技術】リニアモーターカーや核磁気共鳴機器等
のように、強磁場中に晒される構造物の素材は誘導によ
る発熱やそれに伴う特性の劣化を阻止するために非磁性
であることが要求される。特に耐食性が必要とされるも
のについては、SUS304やSUS316などに代表
されるオーステナイト系ステンレス鋼が使用され、成形
した後溶体化処理を行って非磁性鋼部品を製造する方法
が一般的に行われている。また、特に強度が要求される
構造物の素材としては、Nを添加することでオーステナ
イト相を安定化した高Mn非磁性鋼が使用されている。2. Description of the Related Art Materials of structures exposed to a strong magnetic field, such as a linear motor car and a nuclear magnetic resonance apparatus, are required to be non-magnetic in order to prevent heat generation due to induction and the accompanying deterioration of characteristics. Is done. Particularly for those requiring corrosion resistance, austenitic stainless steels represented by SUS304, SUS316, etc. are used, and a method of manufacturing a non-magnetic steel part by performing a solution treatment after molding is generally performed. ing. In addition, as a material of a structure particularly requiring strength, a high Mn nonmagnetic steel in which an austenite phase is stabilized by adding N is used.
【0003】近年、上述のような用途に使用される構造
用部品において、素材への信頼性としてSUS304並
のオーステナイト系ステンレス鋼に匹敵する耐食性と、
調質を施された機械構造用鋼並の強度レベルが要求され
ると同時に、製造コストが重要な要素となっている。こ
のような場合には、特開平7ー243001や特開平7
−102318のような高価なNi量を低減した高Mn
高N非磁性鋼が提案されている。しかし、これらの非磁
性鋼は冷間加工性が悪く、通常は、特開平7−2430
01の場合のように熱間鍛造後、固溶化状態で使用され
たり、特開平7−102318のように最終加工は温間
鍛造で成形されるため、脱スケール等の後処理や冷間加
工に比べ寸法制度が悪く機械加工による最終仕上げが必
要であり、冷間加工による最終成形に比べて工程増、コ
スト高となる問題点がある。[0003] In recent years, structural components used for the above-mentioned applications have corrosion resistance comparable to austenitic stainless steel equivalent to SUS304 in terms of material reliability,
At the same time as the required strength level of tempered mechanical structural steel, manufacturing cost is an important factor. In such a case, Japanese Unexamined Patent Application Publication No.
High Mn with reduced amount of expensive Ni such as -102318
High N non-magnetic steel has been proposed. However, these non-magnetic steels have poor cold workability, and are usually disclosed in Japanese Patent Application Laid-Open No. 7-2430.
After hot forging as in the case of No. 01, it is used in a solid solution state, or as in JP-A-7-102318, the final working is formed by warm forging, so it can be used for post-processing such as descaling or cold working. Compared to final forming by cold working, there is a problem in that the size system is poor and final finishing by machining is required, and the number of steps is increased and the cost is high.
【0004】[0004]
【発明が解決しようとする課題】従来使用されている素
材は、一般のオーステナイト系ステンレス鋼では、固溶
化処理により透磁率は、1.1以下となり比較的良好な
非磁性と耐食性を有するが、高い強度を保証することは
不可能である。また高い強度レベルと耐食性を併せ持つ
素材として、SUS631のような析出硬化型ステンレ
ス鋼がある。しかし、この材料は析出物の組成や量、マ
トリクス相のコントロールが難しく、非磁性を安定して
保証することが困難である。Conventionally used materials are ordinary austenitic stainless steels, which have a magnetic permeability of 1.1 or less due to solution treatment and have relatively good non-magnetism and corrosion resistance. It is impossible to guarantee high strength. As a material having both high strength level and corrosion resistance, there is a precipitation hardening stainless steel such as SUS631. However, with this material, it is difficult to control the composition and amount of the precipitate and the matrix phase, and it is difficult to stably guarantee nonmagnetic properties.
【0005】しかし、本発明が目的とする締結用非磁性
鋼に要求される特性を具体的に表すと以下のようにな
る。 0.2%耐力:650N/mm2 以上 引張強さ :800N/mm2 以上 耐食性 :塩水噴霧試験(JIS Z 2371)
で100時間経過後も発錆しないこと 透磁率 :1.05以下 その他 :低廉であること[0005] However, the characteristics required of the non-magnetic steel for fastening aimed by the present invention are specifically described as follows. 0.2% proof stress: 650 N / mm 2 or more tensile strength: 800 N / mm 2 or more corrosion resistance: salt spray test (JIS Z 2371)
Does not rust even after 100 hours. Permeability: 1.05 or less Other: Low cost
【0006】これらの要求特性のうち、0.2%耐力お
よび引張強さに関しては、締結材としての静的強度およ
び疲労強度を確保する上で重要な特性である。Among these required characteristics, 0.2% proof stress and tensile strength are important characteristics for securing static strength and fatigue strength as a fastening material.
【0007】また、低コストは使用される合金成分のみ
ならず製造工程費用が大きな割合を占めるものである。In addition, low cost means that not only alloy components used but also manufacturing process costs occupy a large proportion.
【0008】しかし、従来の材料ではこれらすべてを満
足することができず、すべての特性を兼ね備えた非磁性
鋼を実現する必要があった。本発明では、成分的に特性
はもとより化学成分に適正なものを選び、なおかつすべ
ての部材成形において冷間加工、冷間成形を用いること
で、熱間や温間の加工に比べて工程費用の低減を目的と
したものである。そこで、本発明では、上述の目的に対
応可能な、冷間加工性が良好で高強度化でき、なおかつ
耐食性、非磁性ともに良好な材料として弊社特開平7−
70701号公報に開示のような成分バランスを持つM
n、Ni、Cu、Nを含有するステンレス鋼を使用する
こととした。よって本発明は、特開平7−70701号
公報に開示の発明を基に、上記の強度特性、耐食性、非
磁性をいずれも満足し得る製造工程を研究・開発し、耐
食高強度非磁性鋼部品を提供することを目的とするもの
である。[0008] However, conventional materials cannot satisfy all of them, and it is necessary to realize a non-magnetic steel having all the properties. In the present invention, by selecting components that are appropriate not only for their properties but also for their chemical components, and using cold working and cold forming in all member forming, the process cost is lower than that of hot or warm working. It is intended for reduction. Therefore, in the present invention, as a material which can meet the above-mentioned objects, has good cold workability and can have high strength, and has good corrosion resistance and non-magnetic properties, it is disclosed in Japanese Patent Application Laid-Open No.
M having component balance as disclosed in Japanese Patent No. 70701
A stainless steel containing n, Ni, Cu, and N was used. Therefore, the present invention is directed to Japanese Patent Application Laid-Open No. 7-70701.
Based on the invention disclosed in the gazette, it is an object of the present invention to research and develop a manufacturing process capable of satisfying all of the above strength characteristics, corrosion resistance, and non-magnetic properties, and to provide a corrosion-resistant high-strength non-magnetic steel part. .
【0009】[0009]
【課題を解決するための手段】前記課題を解決するため
の手段として本発明は、請求項1の発明では、化学成分
が重量%で、C:0.12%以下、Si:0.05〜
1.00%、Mn:5.0〜8.5%、P:.045%
以下、S:0.015%以下、Ni:4.0〜9.0
%、Cr:16.0〜21.0%、Cu:1.0〜4.
0%、N:0.15〜0.30%、O:0.0040%
以下、B:0.0015〜0.0040%を含有し、さ
らにC+N:0.20〜0.35%の関係を有し残部が
Feおよび不可避の不純物からなり、かつ条件式:53
0−410〔C〕−350〔N〕−10〔Mn〕−15
〔Cr〕−30〔Ni+Cu〕−10〔Mo〕≦−80
を満足するステンレス鋼を、10〜20%の加工率で冷
間加工を施した後、60〜150℃の温度範囲で冷間鍛
造またはヘッダー加工を行い、さらに塩浴に300〜5
50℃の範囲で15分以上保持することにより、0.2
%耐力が650N/mm2以上、引張強さが800N/
mm2以上で、かつ透磁率を1.05以下となるリニア
モーターカー超伝導コイル締結用高強度非磁性鋼であ
る。なお条件式の〔〕内は各元素の重量%を意味する。According to the present invention, as a means for solving the above-mentioned problems, according to the first aspect of the present invention, the chemical component is 0.1% by weight or less, C: 0.12% or less, and Si: 0.05 to
1.00%, Mn: 5.0 to 8.5%, P:. 045%
Hereinafter, S: 0.015% or less, Ni: 4.0 to 9.0.
%, Cr: 16.0-21.0%, Cu: 1.0-4.
0%, N: 0.15 to 0.30%, O: 0.0040%
Hereinafter, B: 0.0015 to 0.0040%, C + N: 0.20 to 0.35%, the balance being Fe and unavoidable impurities, and conditional expression: 53
0-410 [C] -350 [N] -10 [Mn] -15
[Cr] -30 [Ni + Cu] -10 [Mo] ≤-80
Is subjected to cold working at a working rate of 10 to 20%, and then cold forging or header working is performed in a temperature range of 60 to 150 ° C., and further , 300 to 5 in a salt bath .
By holding for 15 minutes or more in the range of 50 ° C, 0.2
% Proof stress of 650 N / mm 2 or more and tensile strength of 800 N /
This is a high-strength non-magnetic steel for fastening a linear motor car superconducting coil having a diameter of not less than mm 2 and a permeability of not more than 1.05. In the conditional expression, [] means weight% of each element.
【0010】また請求項2の発明では、請求項1の手段
の化学成分において、さらに、Nb:0.05〜0.2
0%もしくはV:0.05〜0.50%の1種または2
種以上を加えたことを特徴とする請求項1の手段におけ
るリニアモーターカー超伝導コイル締結用高強度非磁性
鋼である。[0010] According to the invention of claim 2, in the chemical component of the means of claim 1, Nb: 0.05 to 0.2.
0% or V: one or more of 0.05 to 0.50%
The high-strength non-magnetic steel for fastening a superconducting coil of a linear motor car according to the means of claim 1, wherein at least one kind is added.
【0011】本発明は、上述の如く適切な化学成分組成
による鋼と適切な製造条件を組み合わせることにより構
成され、これにより目的とする特性の高強度非磁性鋼部
品が得られることを見いだした。The present invention has been found to be constituted by combining steel having an appropriate chemical composition with appropriate manufacturing conditions as described above, whereby a high-strength non-magnetic steel part having desired properties can be obtained.
【0012】[0012]
【発明の実施の形態】本発明の実施の形態を示すに当た
り、以下にまず要件となる鋼の成分限定理由について述
べるが、詳細は弊社特開平7−70701号公報の記載
により、ここでは主要なものについて説明する。なお以
下の各元素はすべて重量%である。BEST MODE FOR CARRYING OUT THE INVENTION In showing the embodiments of the present invention, the reasons for limiting the components of steel, which are requirements, will first be described. The details are described in Japanese Unexamined Patent Publication No. 7-70701. Things will be described. In addition, each of the following elements is% by weight.
【0013】C+N:0.2〜0.35%について、C
とNはC+Nの形で総合的に固溶強化元素として高強度
を得るために必要であるが、その合計量が0.20%未
満では、当該鋼として使用される強度不足になるため、
下限を0.02%とした。しかし、0.35%を超える
と熱間加工性や冷間加工性を損なうので、上限を0.3
5%とした。C + N: For 0.2 to 0.35%, C
And N are necessary to obtain high strength as a solid solution strengthening element in the form of C + N, but if the total amount is less than 0.20%, the strength used as the steel will be insufficient.
The lower limit was set to 0.02%. However, if the content exceeds 0.35%, hot workability and cold workability are impaired.
5%.
【0014】Mn:5.0〜8.5%について、Mnは
脱酸材およびオーステナイト形成元素として非常に有効
であり、冷間加工時のマルテンサイト相の生成を抑制す
る高価なNiの代替となりうる元素である。また、Nの
オーステナイト相への溶解度を増加させるために耐食性
を阻害するクロム窒化物の生成をも妨げる。5.0%未
満ではこれらの効果は小さいため下限を5.0%とし
た。また8.5%を超えると固溶Mnによる耐食性の劣
化と冷間および熱間加工性の劣化を招くので上限を8.
5%とした。For Mn: 5.0 to 8.5%, Mn is very effective as a deoxidizing material and an austenite-forming element, and replaces expensive Ni which suppresses the formation of a martensite phase during cold working. Element. It also hinders the formation of chromium nitride, which impairs corrosion resistance because it increases the solubility of N in the austenitic phase. When the content is less than 5.0%, these effects are small, so the lower limit is set to 5.0%. If the content exceeds 8.5%, deterioration of corrosion resistance due to solid solution Mn and deterioration of cold and hot workability are caused.
5%.
【0015】Ni:4.0〜9.0%について、Ni
は、オーステナイト系ステンレス鋼における基本元素で
あり、強力なオーステナイト形成元素であり、耐食性向
上および冷間加工後のマルテンサイト発生を抑制する元
素である。しかし、Niは高価であるため、これらの性
能が確保できる範囲でMn、Cu、N等で代替し極力低
減させることが望ましい。すなわち、4.0%未満では
性能確保が困難であり、9.0%を超えて添加しても当
該鋼の用途で重要視される耐食性において向上の効果は
ほとんどないことから4.0〜9.0%とした。Ni: 4.0-9.0%, Ni
Is a basic element in austenitic stainless steel, is a strong austenite-forming element, and is an element that improves corrosion resistance and suppresses martensite generation after cold working. However, since Ni is expensive, it is desirable to substitute Mn, Cu, N, etc., as far as these performances can be ensured, and to reduce as much as possible. That is, if it is less than 4.0%, it is difficult to secure the performance, and if it is added more than 9.0%, there is almost no effect of improving the corrosion resistance which is regarded as important in the use of the steel, so that 4.0 to 9 0.0%.
【0016】Cr:16.0〜21.0%について、C
rは、Niと共にオーステナイト系ステンレス鋼におけ
る基本元素であり、耐食性を与える。16.0%以上で
十分な耐候性が得られるが、21.0%を超えるとフェ
ライト相が発生しやすくなるため16.0〜21.0%
とした。Cr: 16.0 to 21.0%, C
r is a basic element in austenitic stainless steel together with Ni, and imparts corrosion resistance. When it is 16.0% or more, sufficient weather resistance can be obtained. However, when it exceeds 21.0%, a ferrite phase is easily generated, so 16.0 to 21.0%
And
【0017】Cu:1.0〜4.0%について、Cu
は、オーステナイト形成元素であり、オーステナイト相
を安定化させる。またNiと同様に加工によるマルテン
サイト相の生成を抑制する。特にCuはマトリックスの
加工硬化指数を下げるため冷間加工時の延性を維持させ
ることができるので割れの発生を抑制する効果がある。
その効果を発揮させるには1.0%以上必要であるの
で、下限を1.0%とした。しかし4.0%を超えて含
有させると熱間加工性を著しく劣化させるため、上限を
4.0%とした。Cu: 1.0-4.0%, Cu
Is an austenite-forming element and stabilizes the austenite phase. Further, similarly to Ni, the formation of a martensite phase due to processing is suppressed. In particular, Cu lowers the work hardening index of the matrix, so that ductility during cold working can be maintained, and thus has an effect of suppressing the occurrence of cracks.
Since 1.0% or more is required to exhibit the effect, the lower limit is set to 1.0%. However, when the content exceeds 4.0%, the hot workability is significantly deteriorated, so the upper limit is set to 4.0%.
【0018】B:0.0015〜0.0040%につい
て、Bは、熱間加工性を向上させる元素であるが、0.
0015%未満ではその効果は小さいので、下限を0.
0015%とした。また0.0040%を超えるとB化
合物が生成し、逆に熱間加工性を悪化させるので、上限
を0.0040%とした。B: For 0.0015 to 0.0040%, B is an element that improves hot workability.
If the content is less than 0015%, the effect is small, so the lower limit is set to 0.1%.
0015%. On the other hand, if the content exceeds 0.0040%, a B compound is generated, which deteriorates hot workability. Therefore, the upper limit is made 0.0040%.
【0019】Nb:0.05〜0.20%について、N
bは、これを含有させて析出硬化熱処理を施すと炭窒化
物が形成され、結晶粒が微細化し、強度上昇とともに冷
間加工後の延性が上昇する。本発明において、特に冷間
加工後の延性が必要な場合はこれを添加する。その場
合、0.05%未満ではその効果が得られないので、下
限を0.05%とした。また0.20%を超えて含有す
ると冷間加工性を損なうので上限を0.20%とした。Nb: For 0.05 to 0.20%, N
When b is contained and subjected to a precipitation hardening heat treatment, carbonitrides are formed, crystal grains are refined, and the ductility after cold working increases with the increase in strength. In the present invention, especially when ductility after cold working is required, it is added. In this case, the effect cannot be obtained if the content is less than 0.05%, so the lower limit is set to 0.05%. If the content exceeds 0.20%, the cold workability is impaired, so the upper limit was made 0.20%.
【0020】V:0.05〜0.50%について、V
は、Nbと同様にこれを含有した場合に析出硬化熱処理
を施すと炭窒化物が形成され、同様の効果を与える。
0.05%未満ではその効果が得られないので、下限を
0.05%とした。また0.50%を超えて含有すると
冷間加工性を劣化させるので上限を0.50%とした。 条件式:530−410[C]−350[N]−10
[Mn]−15[Cr]−30[Ni+Cu]−10
[Mo]≦−80について、本発明に用いる鋼の基本的
な化学成分組成は上述のとおりであり、残部Feおよび
不可避不純物からなるものであるが、さらに上記の条件
式を満足させる必要がある。なお、条件式の[ ]内は
各元素の重量%を意味する。上記の条件式は、冷間加工
時の加工誘起マルテンサイトの生成に関係するものであ
り、条件式の値と50%冷間加工後の透磁率との関係を
示す図1から、本条件式は冷間加工後の透磁率を予測で
きうるものであることが判る。当該鋼は最終形状にもよ
るが通常部分的には40%以上の冷間加工率が付加され
るため、非磁性を確保するには本条件式において適正な
成分バランスを設定する必要がある。条件式の値が−8
0を超えると透磁率が1.05を超え非磁性を保つこと
ができないため、上限を−80とした。また、−80以
下であれば加工に対するオーステナイトの安定性は十分
なため特に下限は設けないこととした。V: 0.05 to 0.50%, V
In the case where Nb is contained as in Nb, a carbonitride is formed when a precipitation hardening heat treatment is performed, and the same effect is obtained.
Since the effect cannot be obtained if the content is less than 0.05%, the lower limit is set to 0.05%. If the content exceeds 0.50%, the cold workability deteriorates, so the upper limit was made 0.50%. Conditional expression: 530-410 [C] -350 [N] -10
[Mn] -15 [Cr] -30 [Ni + Cu] -10
For [Mo] ≦ −80, the basic chemical composition of the steel used in the present invention is as described above, and the balance is composed of Fe and unavoidable impurities, but it is necessary to further satisfy the above conditional expression. . In the conditional expressions, [] means weight% of each element. The above conditional expression relates to the generation of work-induced martensite during cold working. From FIG. 1 showing the relationship between the value of the conditional expression and the magnetic permeability after 50% cold working, this conditional expression Indicates that the magnetic permeability after cold working can be predicted. The steel is usually partially subjected to a cold working rate of 40% or more depending on the final shape. Therefore, it is necessary to set an appropriate component balance in the present conditional expression in order to secure non-magnetic properties. Conditional expression value is -8
If it exceeds 0, the magnetic permeability exceeds 1.05 and non-magnetic properties cannot be maintained, so the upper limit was set to -80. Further, if the value is -80 or less, the stability of austenite to processing is sufficient, so no particular lower limit is set.
【0021】次に本発明の加工過程について説明する。
上記に規定した成分限定範囲の鋼を熱間鍛造あるいは直
接切削加工により、ボルト等の部品に成形しても、耐食
性および非磁性は満足するが、要求強度である0.2%
耐力:650N/mm2 以上、引張強さ:800N/m
m2 以上の強度を得ることは不可能である。また、部品
全体を冷間鍛造やヘッダーなどの冷間成形のみでは、部
位による加工度に差があり、形状によってはすべての部
位において上記の強度を満足することは困難である。Next, the working process of the present invention will be described.
Even if steel of the above-defined range of components is formed into parts such as bolts by hot forging or direct cutting, the corrosion resistance and non-magnetic properties are satisfied, but the required strength of 0.2%
Yield strength: 650 N / mm 2 or more, tensile strength: 800 N / m
it is impossible to obtain m 2 or more strength. Further, if only the entire part is formed by cold forging or cold forming such as a header, there is a difference in workability depending on the portion, and it is difficult to satisfy the above-mentioned strength in all portions depending on the shape.
【0022】そこで本発明では、冷間加工による強度上
昇と次工程での冷間鍛造やヘッダーのような冷間成形加
工性との関係について研究し、冷間成形前に成形加工を
行いその後ある温度範囲で冷間成形加工することによ
り、冷間加工により向上した強度特性を劣化させること
なく冷間成形加工が可能となることを見出した。Therefore, in the present invention, the relationship between the increase in strength due to cold working and the cold workability of the next step such as cold forging or a header is studied, and the forming is performed before cold forming. It has been found that cold forming in a temperature range enables cold forming without deteriorating the strength characteristics improved by the cold working.
【0023】10〜20%の加工率での冷間加工につい
て、冷間加工率は、初期強度を決定する重要な要因であ
るが、本発明で化学成分範囲の鋼では、10%以下の少
ない加工率では強度特性を満足しないため、下限を10
%とした。本来、加工率の上限は強度の面からは特に限
定されるものではないが、ここでの加工率が高すぎると
次工程の冷間鍛造やヘッダーのような冷間成形時の変形
抵抗が高く、潤滑切れ、焼付き、ダイス割れ等の問題が
発生するため、上限を20%とした。図2に適正な冷間
加工度範囲とその限定要因を示す。For cold working at a working ratio of 10 to 20%, the cold working ratio is an important factor for determining the initial strength, but in the present invention, steel having a chemical composition range of less than 10% is used. Since the working ratio does not satisfy the strength characteristics, the lower limit is 10
%. Originally, the upper limit of the working ratio is not particularly limited in terms of strength, but if the working ratio here is too high, the deformation resistance at the time of cold forming such as cold forging or header in the next process is high. Since problems such as lack of lubrication, seizure, and die cracking occur, the upper limit is set to 20%. FIG. 2 shows an appropriate cold working range and its limiting factor.
【0024】60〜150℃の温度範囲での冷間鍛造ま
たはヘッダー加工について、冷間加工した鋼は高強度と
なっており常温での通常の方法では成形が困難である。
そこで成形加工時の温度と変形抵抗との関係について研
究を行い、冷間成形後の強度に影響を及ぼさずかつ冷間
成形が十分に可能となる温度範囲を見いだした。図3
に、冷間成形時の温度と変形抵抗の変化を示す。その結
果より、冷間成形時の温度が60℃以上であれば、変形
抵抗は常温に比べ大幅に減少し成形加工が可能となる。
しかし、温度が150℃以上になると大幅に軟化しはじ
め冷間成形後の強度が低下するため、冷間成形時の温度
範囲を60〜150℃に限定した。For cold forging or header working in the temperature range of 60 to 150 ° C., the cold-worked steel has high strength and is difficult to form by ordinary methods at room temperature.
Therefore, the relationship between the temperature during forming and the deformation resistance was studied, and a temperature range in which the strength after cold forming was not affected and cold forming was sufficiently possible was found. FIG.
Fig. 2 shows the changes in temperature and deformation resistance during cold forming. As a result, if the temperature at the time of cold forming is 60 ° C. or more, the deformation resistance is greatly reduced as compared with the normal temperature, and the forming process becomes possible.
However, when the temperature is 150 ° C. or higher, the temperature begins to soften significantly and the strength after cold forming decreases, so the temperature range during cold forming is limited to 60 to 150 ° C.
【0025】300〜550℃の範囲で15分以上保持
について、通常の冷間成形加工には、金型との潤滑のた
めに二硫化モリブデン等の潤滑材が使用されるが、潤滑
皮膜が残存すると耐食性が劣化するため、製品とするに
はこの潤滑皮膜を除去する必要がある。この種の潤滑皮
膜除去には、一般的にアルカリ系溶液と酸溶液の組み合
わせで常温付近において除去処理が行われているが、除
去条件を研究の結果、塩浴を用いた処理で皮膜除去がで
きることを見いだし、また塩浴による皮膜除去処理時の
温度を適切に制御することにより、耐食性や非磁性は損
なわず高強度化が行えることも見いだした。塩浴処理時
の温度が約300℃以下では高強度化の効果がなく、図
4に示すように、300℃〜550℃の温度範囲で強度
とくに耐力が大きく上昇する。しかしそれ以上の温度で
は軟化が始まる。そこで所定の強度を保証するために、
温度範囲は300〜550℃の範囲とした。処理時間は
10分程度で高強度化の効果があらわれるが、皮膜除去
を達成するために15分以上とした。なお、成形加工後
に外面仕上げ切削・研削や研磨が施されるため、潤滑皮
膜除去処理が省略される場合は、加熱炉や恒温槽などの
装置により上述の温度範囲で処理してもよい。With respect to holding at a temperature in the range of 300 to 550 ° C. for 15 minutes or more, a lubricating material such as molybdenum disulfide is used for lubrication with a mold in ordinary cold forming, but a lubricating film remains. Then, since the corrosion resistance deteriorates, it is necessary to remove this lubricating film in order to obtain a product. In this type of lubricating film removal, removal treatment is generally performed at around room temperature using a combination of an alkaline solution and an acid solution. As a result of research on removal conditions, removal of the film by treatment using a salt bath was performed. It was also found that by appropriately controlling the temperature during the film removal treatment using a salt bath, it was possible to increase the strength without impairing the corrosion resistance and non-magnetism. When the temperature at the time of the salt bath treatment is about 300 ° C. or less, there is no effect of increasing the strength, and as shown in FIG. 4, the strength, particularly the proof strength, greatly increases in the temperature range of 300 ° C. to 550 ° C. However, at higher temperatures, softening begins. So, in order to guarantee the required strength,
The temperature range was 300 to 550 ° C. Although the treatment time is about 10 minutes, the effect of increasing the strength is obtained, but it is 15 minutes or more in order to achieve the removal of the film. In addition, since the outer surface finish cutting / grinding or polishing is performed after the forming process, when the lubricating film removing process is omitted, the process may be performed in the above-mentioned temperature range by using a device such as a heating furnace or a constant temperature bath.
【0026】[0026]
【実施例】以下、本発明を実施例によって更に詳細に説
明するが、下記実施例は本発明を限定する性質のもので
はなく、前、後述の趣旨に徹して設計変更することはい
ずれも本発明の技術範囲に含まれるものである。EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples. However, the following examples do not limit the present invention. It is included in the technical scope of the invention.
【0027】さて、実施例を述べるが、判断基準とする
目標性能は次のように設定した。すなわち、 0.2%耐力:650N/mm2 以上 引張強さ :800N/mm2 以上 耐食性 :塩水噴霧試験(JIS Z 2371)
で100時間経過後も発錆しないこと 透磁率 :1.05以下 の各特性値である。Now, an embodiment will be described. The target performance as a criterion was set as follows. That is, 0.2% proof stress: 650 N / mm 2 or more tensile strength: 800 N / mm 2 or more corrosion resistance: salt spray test (JIS Z 2371)
No rusting after 100 hours. Permeability: 1.05 or less.
【0028】[0028]
【表1】 [Table 1]
【0029】表1は、本発明の実施に当たり使用した鋼
の化学成分例である。これらの化学成分の鋼を真空誘導
炉にて溶解し、この後熱間圧延にて外径35mmの棒鋼と
した。この棒鋼を1050℃×20分保持後水冷により
固溶化処理を行った後、機械加工により、外径34.5
mm、32.5mmおよび31mmとし、冷間引抜きに
より外径30mmまで冷間加工を行った。この時の加工
度(減面率)はそれぞれ24.4%、14.8%および
6.4%となる。これらの冷間引抜き後の棒鋼を用い
て、加工温度を常温、100℃および200℃で各々1
00個のボルトを冷間成形し冷間成形性の評価を行っ
た。評価は、焼付きやかじりの有無、素材の割れの有
無、ダイス・金型の亀裂、破損の有無等の不具合の発生
状況により行い、これら不具合の発生したものは冷間成
形不可能と判断した。冷間成形が可能であったものにつ
いて、それぞれ100℃、450℃、620℃で熱処理
を行ったのち引張試験による強度評価、低透磁率計によ
る透磁率測定および塩水噴霧試験による耐食性評価を行
った。Table 1 shows examples of chemical components of steel used in the practice of the present invention. Steels having these chemical components were melted in a vacuum induction furnace, and then hot-rolled into bar steel having an outer diameter of 35 mm. After keeping the steel bar at 1050 ° C. × 20 minutes, a solution treatment was performed by water cooling, and the outer diameter was 34.5 by machining.
mm, 32.5 mm and 31 mm, and cold worked to an outer diameter of 30 mm by cold drawing. At this time, the processing degrees (area reduction rates) are 24.4%, 14.8% and 6.4%, respectively. Using these steel bars after cold drawing, the working temperature was set to 1 at room temperature, 100 ° C and 200 ° C, respectively.
00 bolts were cold formed and the cold formability was evaluated. The evaluation was performed based on the occurrence of defects such as seizure or galling, the presence or absence of cracks in the material, cracks in the dies and dies, and the presence or absence of breakage. . Those that could be cold-formed were heat-treated at 100 ° C., 450 ° C., and 620 ° C., respectively, and then evaluated for strength by a tensile test, permeability measurement by a low permeability meter, and corrosion resistance by a salt spray test. .
【0030】[0030]
【表2】 [Table 2]
【0031】表2に本発明の特性評価結果を、また、表
3に比較鋼の特性評価結果を示す。本発明鋼においては
いずれの冷間加工度でも冷間成形温度が常温の場合は変
形抵抗が高く、焼付きや素材での割れが発生し成形不可
能であったのに対し、また200℃の成形は、全ての冷
間加工率において成形可能であったが、軟化しているた
め後の熱処理での強度上昇効果がなく、いずれも強度不
足であった。Table 2 shows the results of evaluating the characteristics of the present invention, and Table 3 shows the results of evaluating the characteristics of the comparative steel. In the steel of the present invention, the deformation resistance was high when the cold forming temperature was normal temperature at any cold working degree, and seizure and cracks in the material occurred, and forming was impossible. Molding was possible at all cold working ratios, but because of softening, there was no strength increasing effect in the subsequent heat treatment, and all were insufficient in strength.
【0032】[0032]
【表3】 [Table 3]
【0033】100℃での成形は、冷間加工度が6.4
%と14.8%の場合に可能であった。ただし、冷間加
工度が6.4%では、あまり硬化しておらず後熱処理を
行っても強度は満足できなかった。すなわち、本発明工
程範囲に当たる冷間加工度:14.8%、冷間成形温
度:100℃、熱処理温度:450℃の場合のみが目標
性能とする強度を満足することができた。なお、発明鋼
で冷間成形が可能であったものは全て透磁率、耐食性と
もに目標性能を満足している。Molding at 100 ° C. has a cold working degree of 6.4.
% And 14.8% were possible. However, when the degree of cold working was 6.4%, it was not hardened sufficiently, and the strength could not be satisfied even after the post heat treatment. That is, only the case where the degree of cold working: 14.8%, the cold forming temperature: 100 ° C., and the heat treatment temperature: 450 ° C., which correspond to the process range of the present invention, could satisfy the strength as the target performance. In addition, all of the inventive steels that could be cold formed satisfy the target performance in both magnetic permeability and corrosion resistance.
【0034】また表3に示すように、一般に広く使用さ
れるSUS304系では、冷間加工率が低い場合は冷間
成形が可能であるが、マルテンサイト変態により非磁性
が満足されないかもしくは非磁性が満足される場合は強
度不足となる。また、冷間加工度が例えば24.4%ま
で大きくなるとマルテンサイト変態により硬化とともに
冷間加工性が悪化し冷間成形が不可能となる。As shown in Table 3, in the case of SUS304, which is generally widely used, cold forming is possible when the cold working ratio is low. Is satisfied, the strength is insufficient. On the other hand, when the degree of cold work is increased to, for example, 24.4%, the cold workability is deteriorated along with the hardening due to martensitic transformation, and cold forming becomes impossible.
【0035】以上のように、当該鋼を製造するに当たっ
ては、本発明に示すように、適切な成分コントロールに
より製造された鋼と、適切に制御された冷間加工度、冷
間成形温度およびその後の熱処理に組合せによってのみ
可能となることがわかる。As described above, in producing the steel, as shown in the present invention, a steel produced by appropriate component control, an appropriately controlled degree of cold working, cold forming temperature and It can be seen that only the combination of the heat treatment is possible.
【0036】[0036]
【発明の効果】以上の説明の通り、本発明により、従来
のオーステナイト系ステンレス鋼や析出硬化型ステンレ
ス鋼では満足できなかった、全ての成形加工に冷間加工
の適用を可能とすると同時に、耐食性に優れると共に十
分な強度を有し、かつ良好な非磁性を有する比較的安価
なリニアモーターカー超伝導コイル締結用高強度非磁性
鋼を得ることが可能となった。As described above, according to the present invention, it is possible to apply cold working to all forming processes, which was not satisfactory with conventional austenitic stainless steels or precipitation-hardening stainless steels, and at the same time, it has corrosion resistance. It has become possible to obtain a relatively inexpensive high-strength non-magnetic steel for fastening a linear motor car superconducting coil having excellent strength, sufficient strength, and good non-magnetism.
【図1】本発明の条件式による計算値と50%冷間加工
後の透磁率との関係を示す図である。FIG. 1 is a diagram showing a relationship between a value calculated by a conditional expression of the present invention and a magnetic permeability after 50% cold working.
【図2】冷間加工度範囲とその限定要因を示す図であ
る。FIG. 2 is a diagram showing a range of a cold working degree and a limiting factor thereof.
【図3】冷間成形時の温度と変形抵抗の変化を示す図で
ある。FIG. 3 is a diagram showing changes in temperature and deformation resistance during cold forming.
【図4】冷間加工後の熱処理による機械的性質の変化を
示す図である。FIG. 4 is a diagram showing changes in mechanical properties due to heat treatment after cold working.
フロントページの続き (56)参考文献 特開 平7−70701(JP,A) 特開 昭64−99740(JP,A) 特開 平6−79389(JP,A) 特開 平4−359662(JP,A) 特開 昭64−89403(JP,A) 特開 平7−11392(JP,A) 特開 平4−141557(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 - 38/60 C21D 8/00 H01F 5/08 B21J 5/00 Continuation of front page (56) References JP-A-7-70701 (JP, A) JP-A-64-99740 (JP, A) JP-A-6-79389 (JP, A) JP-A-4-359662 (JP) JP-A-64-89403 (JP, A) JP-A-7-11392 (JP, A) JP-A-4-141557 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB Name) C22C 38/00-38/60 C21D 8/00 H01F 5/08 B21J 5/00
Claims (2)
下、Si:0.05〜1.00%、Mn:5.0〜8.
5%、P:.045%以下、S:0.015%以下、N
i:4.0〜9.0%、Cr:16.0〜21.0%、
Cu:1.0〜4.0%、N:0.15〜0.30%、
O:0.0040%以下、B:0.0015〜0.00
40%を含有し、さらにC+N:0.20〜0.35%
の関係を有し残部がFeおよび不可避の不純物からな
り、かつ条件式:530−410〔C〕−350〔N〕
−10〔Mn〕−15〔Cr〕−30〔Ni+Cu〕−
10〔Mo〕≦−80を満足するステンレス鋼を、10
〜20%の加工率で冷間加工を施した後、60〜150
℃の温度範囲で冷間鍛造またはヘッダー加工を行い、さ
らに塩浴に300〜550℃の範囲で15分以上保持す
ることにより、0.2%耐力が650N/mm2以上、
引張強さが800N/mm2以上で、かつ透磁率を1.
05以下となるリニアモーターカー超伝導コイル締結用
高強度非磁性鋼。なお条件式の〔 〕内は各元素の重量
%を意味する。1. A chemical component in weight%, C: 0.12% or less, Si: 0.05 to 1.00%, Mn: 5.0 to 8.0.
5%, P:. 045% or less, S: 0.015% or less, N
i: 4.0 to 9.0%, Cr: 16.0 to 21.0%,
Cu: 1.0 to 4.0%, N: 0.15 to 0.30%,
O: 0.0040% or less, B: 0.0015 to 0.00
40%, C + N: 0.20 to 0.35%
With the balance being Fe and unavoidable impurities, and the conditional expression: 530-410 [C] -350 [N]
-10 [Mn] -15 [Cr] -30 [Ni + Cu]-
Stainless steel satisfying 10 [Mo] ≦ −80
After cold working at a working rate of ~ 20%, 60 ~ 150
Cold forging or header processing in the temperature range of 300 ° C., and holding in a salt bath in the range of 300 to 550 ° C. for 15 minutes or more, the 0.2% proof stress is 650 N / mm 2 or more,
The tensile strength is 800 N / mm 2 or more, and the magnetic permeability is 1.
High-strength non-magnetic steel for fastening linear motor car superconducting coils of less than 05. In the conditional expressions, [] means% by weight of each element.
Nb:0.05〜0.20%もしくはV:0.05〜
0.50%の1種または2種以上を加えたことを特徴と
する請求項1に記載のリニアモーターカー超伝導コイル
締結用高強度非磁性鋼。2. The composition of claim 1, further comprising:
Nb: 0.05 to 0.20% or V: 0.05 to
The high-strength non-magnetic steel for fastening a linear motor car superconducting coil according to claim 1, wherein one or more kinds of 0.50% are added.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11014196A JP3249389B2 (en) | 1996-04-05 | 1996-04-05 | High-strength non-magnetic steel for fastening linear motor car superconducting coils |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11014196A JP3249389B2 (en) | 1996-04-05 | 1996-04-05 | High-strength non-magnetic steel for fastening linear motor car superconducting coils |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09272954A JPH09272954A (en) | 1997-10-21 |
JP3249389B2 true JP3249389B2 (en) | 2002-01-21 |
Family
ID=14528082
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11014196A Expired - Fee Related JP3249389B2 (en) | 1996-04-05 | 1996-04-05 | High-strength non-magnetic steel for fastening linear motor car superconducting coils |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3249389B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110117746B (en) * | 2019-02-01 | 2021-07-27 | 上海加宁新材料科技有限公司 | Manufacturing method of high-performance non-magnetic stainless steel |
CN114855053B (en) * | 2022-05-09 | 2023-02-14 | 西安必盛激光科技有限公司 | Alloy powder for repairing inner wall of hydraulic support oil cylinder and laser cladding method |
-
1996
- 1996-04-05 JP JP11014196A patent/JP3249389B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH09272954A (en) | 1997-10-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102250916B1 (en) | Abrasion-resistant steel plate and method of manufacturing same | |
RU2674796C2 (en) | High-hardness hot-rolled steel product and method of manufacturing same | |
JP5385554B2 (en) | Steel for heat treatment | |
JP5171197B2 (en) | Duplex stainless steel wire for high strength and high corrosion resistance bolts excellent in cold forgeability, steel wire and bolt, and method for producing the same | |
KR102088341B1 (en) | Ferrite-based hot-rolled stainless steel sheet, hot-rolled annealed sheet, and method for manufacturing said sheets | |
CN114015951A (en) | Hot-rolled light high-strength steel and preparation method thereof | |
JP3738004B2 (en) | Case-hardening steel with excellent cold workability and prevention of coarse grains during carburizing, and its manufacturing method | |
JPH10121202A (en) | High strength steel used in environment requiring sulfides stress creaking resistance and its production | |
JP4368308B2 (en) | Bearing steel excellent in material manufacturability and corrosion resistance, its manufacturing method, bearing component and its manufacturing method | |
JP4207137B2 (en) | High hardness and high corrosion resistance stainless steel | |
JPH07113144A (en) | Nonmagnetic stainless steel excellent in surface property and production thereof | |
JP3169977B2 (en) | ▲ high ▼ strength non-magnetic stainless steel | |
JP2583694B2 (en) | Method for producing ferritic stainless steel for electrical materials with excellent ductility, wear resistance and rust resistance | |
JP3249389B2 (en) | High-strength non-magnetic steel for fastening linear motor car superconducting coils | |
JP2841468B2 (en) | Bearing steel for cold working | |
US20240052467A1 (en) | High-strength wire rod for cold heading with superior heat treatment characteristics and resistance of hydrogen-delayed fracture characteristics, heat-treated component, and method for manufacturing same | |
JP3887161B2 (en) | High burring hot rolled steel sheet with excellent low cycle fatigue strength and method for producing the same | |
JP2715033B2 (en) | Non-magnetic PC steel wire and method of manufacturing the same | |
JP2665009B2 (en) | High strength martensitic stainless steel and method for producing the same | |
JP2019218584A (en) | bolt | |
JP4207447B2 (en) | Stainless steel rebar and manufacturing method thereof | |
JP6987651B2 (en) | High hardness precipitation hardening stainless steel with excellent hot workability and no sub-zero treatment required | |
JP3285179B2 (en) | Ferritic stainless steel sheet and its manufacturing method | |
JPH11106866A (en) | Case hardening steel excellent in preventability of coarse grain and its production | |
JP7552959B1 (en) | Non-tempered steel for hot forging, hot forging material and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081109 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091109 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101109 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111109 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121109 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121109 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131109 Year of fee payment: 12 |
|
LAPS | Cancellation because of no payment of annual fees |