JP3246392U - Mri誘導集束超音波システムを操作するためのロボットプラットホーム - Google Patents

Mri誘導集束超音波システムを操作するためのロボットプラットホーム Download PDF

Info

Publication number
JP3246392U
JP3246392U JP2023600167U JP2023600167U JP3246392U JP 3246392 U JP3246392 U JP 3246392U JP 2023600167 U JP2023600167 U JP 2023600167U JP 2023600167 U JP2023600167 U JP 2023600167U JP 3246392 U JP3246392 U JP 3246392U
Authority
JP
Japan
Prior art keywords
platform
transducer
fus
freedom
robot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2023600167U
Other languages
English (en)
Inventor
ワイ クアック、カ
フゥー、ツゥオリアン
ダイ、ジン
ファン、ギ
ワン、シャオメイ
Original Assignee
ザ ユニヴァーシティ オブ ホンコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ザ ユニヴァーシティ オブ ホンコン filed Critical ザ ユニヴァーシティ オブ ホンコン
Application granted granted Critical
Publication of JP3246392U publication Critical patent/JP3246392U/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B34/35Surgical robots for telesurgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • A61N7/02Localised ultrasound hyperthermia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00535Surgical instruments, devices or methods, e.g. tourniquets pneumatically or hydraulically operated
    • A61B2017/00539Surgical instruments, devices or methods, e.g. tourniquets pneumatically or hydraulically operated hydraulically
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00535Surgical instruments, devices or methods, e.g. tourniquets pneumatically or hydraulically operated
    • A61B2017/00544Surgical instruments, devices or methods, e.g. tourniquets pneumatically or hydraulically operated pneumatically
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B2034/304Surgical robots including a freely orientable platform, e.g. so called 'Stewart platforms'
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • A61B2090/374NMR or MRI
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • A61N2007/0086Beam steering
    • A61N2007/0091Beam steering with moving parts, e.g. transducers, lenses, reflectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • A61N2007/0086Beam steering
    • A61N2007/0095Beam steering by modifying an excitation signal

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Radiology & Medical Imaging (AREA)
  • Robotics (AREA)
  • Gynecology & Obstetrics (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Pathology (AREA)
  • Surgical Instruments (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

患者の体内の特定の標的スポットに超音波を集中させて、マイクロメカニカル効果を誘導できる、MRIガイド付き集束超音波(FUS)システムの変換器を移動させるために使用されるロボット。ロボットは、下部フレームワーク(17)と、それに対する直線運動のために下部フレームワーク(17)上に取り付けられた下部並進プラットホーム(11)とを有する。下部並進プラットホーム(11)上に取り付けられたロボットベース(12)、それに対して回転運動するためにその上に取り付けられた回転プラットホーム(15)、ロボットベース(12)に対する直線運動のために回転プラットホーム(15)に取り付けられた上部並進プラットホーム(13)、上部並進プラットホーム(13)に取り付けられ、FUS変換器を担持するエンドエフェクタ(10)を有し、エンドエフェクタの動きは、変換器の焦点を狙う際のプラットホームの動きによる。【選択図】図2Aa

Description

本発明は一般に、静止または移動する切除標的の位置および集束超音波(FUS)の位置決めのための、磁気共鳴画像法(MRI)からのフィードバックによって導かれるFUS技術の分野に関する。特に、本発明は、MRIからのフィードバックに応じてFUS装置を移動させるためのロボット装置またはロボットプラットホームの分野に関する。
集束超音波(FUS)は、超音波を生体内の特定の標的ポイントに集中させ、その点にマイクロメカニカル効果を誘発する技術である。これにより、局所的な切除点が形成され、望ましくない組織を破壊することができる。FUS処置は痛みがなく、非侵襲的で、体外で行うことができ、手術による傷跡が残らない。特定のタイプのFUSは、前立腺、子宮、肝臓などの腫瘍を切除するために使用される高強度焦点超音波(HIFU)として知られている。
図1Alは、肝臓腫瘍を治療するためにFUSがどのように使用されるかを示す。 図1Alは治療ベッドにうつ伏せの姿勢で横たわっている患者を示す。FUSで治療を受ける患者の部位をベッドの穴の上に置き、穴を介して密閉された水タンクに接触させる。 超音波を発信するためのFUS変換器は、超音波を送信するための脱気水で満たされた水槽内に組み込まれている。
FUS治療を受ける患者の部位は関心領域(RoI)と呼ばれ、ベッドの穴を通して水タンク上に置かれる部位である。 場合によっては、RoI の面積が FUS 変換器の焦点領域よりもはるかに大きい場合がある。したがって、腹骨盤領域の肝臓などの臓器領域ほど大きなRoIにFUS技術を適用することは容易ではない。 広いRoIエリアに広がる複数の腫瘍を治療する場合、すべての腫瘍を治療する最も簡単な方法は、個別のセッションでRoI全体にわたって手動でFUS変換器を動かすことである。しかし、これには時間がかかり、変換器と患者の位置を再調整するという面倒な作業が必要になる。
FUS変換器を手動で動かす必要性を減らすために、ソフトウェアを使用してFUS変換器によって放射される超音波の焦点を調整することが提案されている。 この方法では、超音波変換器ホルダ上に配置された超音波変換器のフェーズドアレイによって超音波が生成される。 アパーチャアレイ内の各変換器によって生成される超音波の位相は、独立して調整できる。 超音波の焦点は、ホルダを動かすことなく、各変換器のパラメータ、つまり位相やおそらく振幅を変更することによって移動できる。 このようなフェーズドアレイ変換により、音響ビームの方向と形状を巧みに制御できるようになる。 有利なことに、患者は治療ベッド上で呼吸したりそわそわしたりするときに無意識に動くため、この方法を使用して、標的腫瘍のわずかな変位に合わせてFUSの焦点を移動させることができる。 さらに、ライブイメージング技術と画像認識技術を使用して標的腫瘍をロックインすることが提案されている。 腫瘍の変位を検出してソフトウェアにフィードバックできるため、移動した腫瘍上に超音波の焦点を即座に再配置できる。 これらのイメージング技術の1つは、MRI(磁気共鳴イメージング)技術である。
しかしながら、超音波のパラメータを変更すると、焦点は限られた範囲内でしか移動できず、通常は焦点面内で <3.5cm である。 これは、腹骨盤領域の肝臓などの比較的広い治療領域をカバーするには不十分である。 さらに、腹骨盤領域の臓器はあらゆる方向に規則的に動く傾向があるため、さらに広い作業スペースが必要になる。
移動標的を追跡するFUSの能力を改善するために、術中(術中)画像フィードバックに基づくロボットナビゲーションを使用して、超音波変換器ホルダの位置を遠隔操作することが提案されている。 有望な軟組織画像コントラストと高解像度 HIFU 温度モニタリングを備えたこのような術中画像誘導を提供するために、MRI、すなわち磁気共鳴(MR)誘導FUS(MRg-FUS) が広く採用されている。 特に、長いロボットアームを使用して生検のための治療領域を拡大し(500mmの並進および40°の回転)、前立腺にFUS治療を適用することが提案されている。 しかしながら、このような長いアームは、MRIスキャナのボアの外側に固定する必要がある。
したがって、腹骨盤臓器治療のためのFUSアクセスと術中MRI誘導を調整するために、ロボットを腹臥位の患者の下に配置することが提案されている(図1A1に示すものと同様)。 超音波変換器のアレイ用のホルダを備えたロボットは、その全体が密閉された水槽 (約 275 × 275 × 240 mm) 内に配置される。 したがって、ロボットはコンパクトなサイズである必要があるが、変換器の広範囲の操作を提供できなければならない。 特に腹部FUS治療用に市販されているテーブル埋め込み型ロボットシステムはほとんどない。 Sonalleve MRg-FUSシステム(Philips) および ExAblate 2000(Insightec) は商用MRg-FUS ロボットシステムであり、主に骨盤臓器疾患 (子宮筋腫など) の治療のために開発された。
骨盤FUS治療における静止標的とは異なり、腹部FUS治療では呼吸に誘発される動きが速いため、高速焦点スポット追跡 (> 0.2Hz)が必須の前提条件となるため、それは困難である。MEDSONIC LTD (キプロス)のプラットホームは2つの並進自由度(DoF)を備えており、主に腹部高強度焦点超音波(HIFU)用に製造されている。 ただし、このような2軸設計では前頭面内での動作のみが可能であるため、呼吸によって誘発される3D標的の動作を補償する機能が制限される可能性がある。
十分なステアリング範囲内で正確な位置決めが可能であるが、ほとんどの既存のテーブル組み込みシステムは、通常、低強度のFUS(例: 温熱療法)にのみ適用可能である。 皮膚の火傷を回避することを考慮しながら、加熱された皮膚領域を適切に「冷却」するために、HIFU超音波処理を頻繁に一時停止する必要がある。ロボットプラットホームは、焦点を固定しながら熱の蓄積を減らすために、特定の大きな角度範囲で変換器を柔軟に回転させる必要があるという仮説が立てられている。 したがって、回転のない設計は効果を妨げ、皮膚の火傷を引き起こす可能性がある(図11)。
干渉を最小限に抑えながら、(術中)MR環境下でFUSロボットシステムの安全な作動を確保するために、婦人科腫瘍治療における圧電アクチュエータや超音波アクチュエータなど、さまざまなMR条件付き/MR安全アクチュエータが採用された。 ただし、ステッピングモータの動作を励起する高周波電流は、患者の腹部の下に配置されたロボットがMRIスキャナのアイソセンタに非常に近い(< 150 mm)ため、手術中の画像処理に重大なアーチファクトを引き起こす可能性がある。本質的にMR安全モータは流体によって駆動される。空気圧モータについても議論されている。 InnoMotion(InnoMedic GmbH)は、生検および椎間関節治療用の市販のプラットホームであり、空気圧ステッピングモータによって完全に駆動される。 ただし、空気の圧縮率が高いため、機械的な伝達遅延が発生し、制御が不正確になる可能性がある。油圧システムは伝達媒体として非圧縮性流体を使用して実現されており、迅速な応答、正確な制御、および高出力密度を実現する。従来のピストンシリンダー作動によるMRg-FUSナビゲーションは1990年代から報告されている。 しかし、これらのシステムは最大3自由度操作しか達成できず、パンとチルトの動作がないため、ステアリング範囲が不十分である。
従来技術の限界を克服するために、本発明は、腹骨盤器官におけるMRg-FUS治療のための遠隔操作ロボットプラットホームを提案する。カスタムメイドの油圧ロボット作動により、ASTM F2503-13の条件に基づいて、低い伝送遅延(4.5 Hzで平均100ミリ秒)と高い追跡精度(並進で0.2 mm、回転で0.4 °)、および MR安全性が保証される。ロボットの設定により、患者はうつ伏せの姿勢で横たわることができる。十分な自由度により、患者の体内の大規模な空間で焦点を調整できる。本発明のいくつかの実施形態の重要な特徴には、以下が含まれる:
1)腹部骨盤臓器疾患の治療用のMRg-FUSシステムを操作するための5自由度ロボットプラットホームの油圧作動設計。これにより、主要な腹部または骨盤臓器の広い空間範囲で病巣を操作できるようになる。
2)ロボットはコンパクト設計(240 x 180 x 190 mm)で、MRI手術台内の腹臥位用水槽に収納可能である。
3)位置精度 (最大誤差:平行移動で 0.2 mm、回転で 0.4°)、周波数応答(0.1 ~ 4 Hz)、MR安全性、および MRベースの追跡機能の実験的評価により、呼吸運動補償に対する可能性を実証。
したがって、本発明は、患者の体内の標的ポイントの動きを追跡するために集束超音波(FUS)変換器を使用できるという考えられる利点を提供する。 呼吸、腸の動き、自然な そわそわ によって引き起こされる標的組織の変位は、あらゆる方向に発生する可能性がある。 ロボットベースがFUS変換器を平行移動させ、FUS変換器を傾けることができるため、変位を非常に厳密に追跡することができる。これにより、周囲の組織が誤って切除されるのを防ぐ。
さらに、本発明は、焦点を標的ポイントに固定したまま、人体の表面の周りでFUS変換器を移動させる可能性を提供する。 これにより、皮膚の火傷を防ぐために、貫通点が移動可能となり、より広い表面積にわたって広がるようになる(図11)。
より具体的には、ロボットプラットホームは、病変標的上の焦点を固定しながら皮膚熱の蓄積を減らすために、一定の大きな角度範囲で変換器を柔軟に回転させることができる。 長期的には定期的な冷却の必要がなくなる。 皮膚熱傷を防ぐために、2つの分離された回転自由度、パン/チルトが変換器の並進と調整される。 第1の態様では、本発明は、集束超音波(FUS)変換器からの超音波を患者の体内の特定の標的に集中させてマイクロメカニカル効果を誘発できる、MRIガイド付きFUS測位システムであって:複数の自由度(DoF)の動きを提供するMRI互換ロボットプラットホームを有し、ロボットフラットホームは:下部フレームワークと;下部フレームワークに対して直線運動を行うために下部フレームワークに取り付けられた下部並進プラットホームと; 下部並進プラットホームに取り付けられたロボットベースと; ロボットベースに対する回転運動のためにロボットベースに取り付けられた回転プラットホームと; 回転プラットホームに対する直線運動のために回転プラットホームに取り付けられた上部並進プラットホームと; そして 上部並進プラットホームに取り付けられエンドエフェクタであって、FUS変換器の焦点を狙う際の、エンドエフェクタの動きが下部並進プラットホーム、回転プラットホーム、および上部並進プラットホームの動きによるものである、エンドエフェクタと; を有し、 FUS位置決めシステムはさらに:システムをその自由度の少なくとも1つに従って移動させるためにロボットプラットホームに接続された少なくとも1つのアクチュエータと; 焦点を有する超音波エネルギーを生成するためにエンドエフェクタに設けられたFUS変換器であって、当該変換器の位相を調整することによって電子的に、またはロボットプラットホームを動かすことによって機械的に、操縦することができるFUS変換器と; エンドエフェクタに埋め込まれ、MRI座標系におけるエンドエフェクタの登録および追跡を可能にする信号を提供する少なくとも1つのマーカーと; そして ロボットプラットホームの動きを遠隔制御し、手術中のMRIデータを受信するための制御システムと;を有する、ことを特徴とするMRIガイド付きFUS測位システム、を提供する。
自由度の提供により、ソフトウェアを使用して特定の標的を調整する可能性が提供されるため、患者が呼吸したりそわそわしたりするときなどで特定の標的が動く場合、ロボットプラットホームは、標的の動きに合わせてFUS変換器を動かすことができる。
好ましくは、下部並進プラットホームは、下部フレームワークに対して垂直方向に2自由度の直線運動を提供し、回転プラットホームは、ロボットベースに対して垂直方向に2自由度の回転運動を提供し、上部並進プラットホームは、回転プラットホームに対して1自由度の直線運動を提供する。
好ましくは、本発明は、腹部骨盤臓器疾患を治療するために人体の腹腔および骨盤腔内に集束超音波(FUS)を向けることに適している。
好ましくは、治療は、腫瘍切除、薬物送達、標的遺伝子治療、および血栓溶解のうちの少なくとも1つである。
好ましくは、アクチュエータによって引き起こされるシステムの動きは、前後、左右、上下、パン、およびチルトのうちの少なくとも1つである。
好ましくは、システムの動きは、空気圧および油圧作動のうちの少なくとも1つによって駆動され、電磁干渉をゼロにし、MR画像品質およびマーカーの追跡性能を向上させる。 好ましくは、変換器の運動は、ローリングダイヤフラムシール型油圧アクチュエータを使用して達成される。
好ましくは、ロボットプラットホームは、変換器を患者の身体に結合する、脱気液体のタンク内に浸漬され、そして動作する。
好ましくは、脱気された液体が入った密閉タンクは MRIテーブル内に組み込まれている。
好ましくは、変換器は、ゲルパッドに取り付けられた中間液体容器によって患者の身体に結合される。
好ましくは、ロボットプラットホームの各自由度は、独立してまたは同時に動いて、超音波の焦点の周りの遠隔運動中心(RCM)を達成し、特定の皮膚領域の超音波エネルギーへの曝露時間を短縮する。
好ましくは、油圧作動は、ロボットプラットホームが液体に浸漬されているとき、または変換器の上に液体容器を支持しているときでも、高い積載能力および高い応答性を提供する。
好ましくは、油圧作動の帯域幅が4.5Hzに達し、上部および下部並進プラットホームの各自由度について90mm/秒の移動速度に達し、治療中の生理学的運動補償を可能にし、動作時間を短縮する。
好ましくは、FUSは高密度焦点式超音波(HIFU)または低強度焦点式超音波(LIFU)である。
好ましくは、腹骨盤臓器疾患の治療は、超音波を操作して肝臓などの臓器の大きな腫瘍または複数の腫瘍を切除することによって達成される。
好ましくは、FUS焦点の作業スペースは、複数または大きな標的への標的化を実行するのに十分な大きさである。
好ましくは、超音波焦点機械的ステアリングのための作業スペースが100×100×35mm以上である。
好ましくは、上部および下部並進プラットホームの各自由度のストロークが ±35mm であり、回転プラットホームの各自由度のストロークが ±60° である。
好ましくは、運動誤差は、並進において0.2mm以下、回転において0.4°以下である。
好ましくは、制御システムは、閉ループ制御を提供するために少なくとも1つのマーカーを利用する。
さらなる態様では、本発明は、動作の複数の自由度(DoF)を提供するMRI互換ロボットプラットホームであって: 下部フレームワークと; 下部フレームワークに対して直線運動を行うために下部フレームワークに取り付けられた下部移動プラットホームと;下部移動プラットホームに取り付けられたロボットベースと;ロボットベースに対する回転運動のためにロボットベースに取り付けられた回転プラットホームと; 回転プラットホームに対する直線運動のために回転プラットホームに取り付けられた上部並進プラットホームと; 上部並進プラットホームに取り付けられるエンドエフェクタであって、変換器の焦点を狙う際に、エンドエフェクタの動きが下部プラットホーム、回転プラットホーム、および上部プラットホームの動きによるものであるエンドエフェクタと;焦点を有する超音波エネルギーを生成するためにエンドエフェクタ上に設けられたFUS変換器であって、エンドエフェクタの動きが変換器の焦点を狙う結果になる、FUS変換器と; エンドエフェクタの位置の登録および追跡を可能にする信号を提供する、エンドエフェクタに埋め込まれた少なくとも1つのマーカーと; を有し、 ロボットプラットホームは、当該ロボットプラットホームをその自由度のうちの少なくとも1つに従って移動させる、少なくとも1つのアクチュエータに対する信号を受信するように適合されている、ことを特徴とするMRI互換ロボットプラットホーム、を提供する。
好ましくは、下部並進プラットホームは、下部フレームワークに対して垂直方向に2自由度の直線運動を提供し、 回転プラットホームは、ロボットベースに対して垂直方向に2自由度の回転運動を提供し、 上部並進プラットホームは、回転プラットホームに対して1自由度の直線運動を提供する。
さらなる態様では、本発明は、患者の体内にマイクロメカニカル効果を誘発するために患者の体内の標的を治療する方法であって: 集束超音波(FUS)変換器から体内に超音波を送信するステップと; 送信された超音波を標的に集中させるステップと; 送信された超音波を標的に集中させ続けながら、患者の体の表面全体にFUS変換器を移動させるステップと; を有することを特徴とする方法、を提案する。
したがって、この方法は、標的が継続的に治療されている間に、体の表面のどの部分も火傷したり、不快に加熱されたりすることがない可能性を提供する。これにより、各治療セッションの効率が向上し、各治療セッションの途中で体の表面を冷却しなければならないという従来技術の問題が解消される。
好ましくは、FUS変換器を前記患者の体の表面全体に移動させるステップは、前記FUS変換器を前記患者の体の表面上で円を描くように動かすステップを有する。
通常、FUS変換器は前記標的に向かって傾いており、そして 前記患者の体の表面にわたってFUS変換器を移動させるステップはさらに、前記FUS変換器が前記患者の体の表面を横切って移動する際に、前記FUS変換器が前記標的に向かって傾くように連続的に調整されるように、前記FUS変換器の傾きを変化させるステップを有する。
本発明の前述および他の目的および利点は、以下の詳細な説明および添付の図面と関連して考慮すると、より明らかになるであろう。添付の図面では、様々な図において同様の符号が同様の要素を示す:
本発明の一実施形態で使用できるMRI装置を概略的に示す図である。 図1Aaに示されるようなMRI装置とともに使用される実施形態の可能な動きを示す図である。 図1Abの実施形態の焦点を調整する1つの可能な方法を示す図である。 図1Abの実施形態の焦点を調整する別の可能な方法を示す図である。 図1Abの実施形態の一部がその軸の周りの動きの可能性を提供する1つの軸を示す図である。 図1Abの実施形態の一部がその軸に沿った動きの可能性を提供する1つの軸を示す図である。 図1Abの実施形態の一部がその軸の周りの動きの可能性を提供する別の1つの軸を示す図である。 図1Abの実施形態の一部がその軸に沿った動きの可能性を提供する別の1つの軸を示す図である。 図1Abの実施形態の一部が可能性を提供する、実行可能な垂直方向の動きを示す図である。 実施形態を軸A-Aの周りに傾けた後の、図1Aiに示される斜め方向の動きを示す図である。 図1Aeおよび図1Afに示される単純な動作の組み合わせによって生成され得るスイング動作を示す図である。 肝腫瘍に対する臨床MRIガイド下FUS療法の概略図であり、患者がうつ伏せの姿勢で横たわり、その下の密閉水タンクに組み込まれたFUS変換器を用いて、FUS焦点上の組織を切除することができる。 3つの並進自由度および2つの回転自由度を備えた、超音波変換器アレイの位置決めのためのMRI誘導ロボットマニピュレータを示す図である。 図2Aaのロボットベースの分解図である。 リニアアクチュエータの機構を示す図である。 回転アクチュエータを示す図である。 構成変数を備えるロボットの運動を示す図である。 x軸に沿った並進を伴う、一方向のロボット位置決め精度テストの結果を示すグラフである。 x軸に沿った回転を示すグラフである。 周波数応答の実験結果を示す図であり、 0.1~4Hzまでの周波数範囲でx-y(MRI冠状)平面内の円を追跡するように命令されたロボットの結果を示す。 周波数応答の実験結果を示す図であり、x 軸およびy 軸に沿ったロボットエンドエフェクタの正弦波応答を示す図である。 周波数応答の実験結果を示す図であり、円軌道追跡中にサンプリングされたx およびy 並進のボード線図である。 超音波焦点の機械的ステアリング作業スペースの三次元図である。 各焦点に関して、ロボットは遠隔運動中心(RCM)を有効にして、特定の皮膚領域の蓄積された露出を削減する。RCMの操作可能な角度範囲が大きいほど、ワークスペース内の焦点の色が暖色になる。 1.5T MRIスキャナのアイソセンタの近くに配置されたロボットとファントムの写真である。 ロボットの横に置かれたMRIファントムのMR画像から無視できるEM干渉が見つかったことを示す画像、および3つの動作条件下でのT1およびT2の正規化された信号対雑音比(SNR)の結果をまとめた表である。 ロボットをMRI座標にアライメントするための、3つのMRマーカー位置を有する、MR画像から取得された三次元画像である。 x 軸に沿った3つのマーカーの一次元投影信号を示すグラフである。 83.3Hzで取得されたx 軸上の連続投影位置を示すグラフである。 SNRは非常に高いため、0 ~ 256 ピクセル内の単一ポイント信号を各タイムステップで対比して観察できる。 下部フレームワークに接続された下部並進プラットホームを示すロボットの部分図である。 ロボットベースに接続された回転プラットホームを示すロボットの部分図である。 下部並進プラットホームのスライダを示す図である。 スライダをロボットプラットホームに接続するためのスライダ内の車輪を示す図である。 固定変換器を用いて固定標的に切除を行う際の「皮膚火傷」のリスクを示す図である。 図2Aaに示される実施形態の、別の実施形態を概略的に示す図である。 図12の実施形態の動作を示す図である。
図1Aaは、MRI装置105内の治療ベッド103にうつ伏せに横たわる患者101を概略的に示す。治療ベッドは、患者101の腹骨盤領域が露出され、患者101の下の水タンク107と接触する開口部を有する。
水タンク107の内部には、可動ロボットベース(図1Aaには示されていない、図2Aaを参照)である超音波変換器ホルダ109および実施形態が脱気水中に浸漬されている。 超音波変換器ホルダ109は、ロボットベース上に支持されたエンドエフェクタ10(図2Aa)上に配置される。 超音波変換器のアレイ(図示せず)は、超音波変換器ホルダ109上に配置される。これらの超音波変換器のそれぞれは、超音波変換器によって発せられる全体の超音波111が患者の内部の焦点113に収束するように、ソフトウェアによって個別に調整することができる。 タンク107内の水は、超音波を患者101に伝達するための媒体を提供する。ロボットベースは、超音波変換器ホルダ109を水平面内で移動させ(パンニング)、超音波変換器ホルダ109を互いに垂直な2つの軸の周りを約2度傾け、また、超音波変換器ホルダ109を垂直に持ち上げることができる。
患者101の治療中、MRI装置は連続的に動作して、患者101の体内の器官のリアルタイム画像を生成する。腫瘍である可能性のある標的ポイント113の動的画像は、MRI装置によって作成される。 適切なコンピュータ上で動作するソフトウェアを使用して腫瘍を認識し、腫瘍の動きまたは変位に関するフィードバック117を提供して、1)ロボットベースの位置を調整し、および/または2)超音波変換器(電子ステアリングとも呼ばれる)から放射される超音波の焦点を移動する。 このようにして、ソフトウェアはオプション 1)と 2) のいずれか、または 1)と 2) の両方の組み合わせを使用して腫瘍を追跡できる。
通常、腫瘍がFUS変換器上で垂直に上昇または下降するだけの場合 (これは呼吸の一部としての腹部の動きによって引き起こされる可能性がある)、変換器からの超音波の位相を変更して、焦点を腫瘍と一緒に上または下に移動させることができる。 したがって、ロボットベースは腫瘍のみが治療される可能性を提供する。 周囲の問題が偶然に解消されることはない。 これは、ロボットベースが腫瘍の変位に追従する際に優れた柔軟性と精度を提供するためである。
超音波変換器ホルダ109とロボットベースのすべての要素は、MRI の動作を妨げない材料で作られている。 特に、どの要素も金属を含まない。 ロボットベースのすべての動きは、油圧または空気圧ピストンによって提供されることが好ましい。 対照的に、モータ駆動の動きは、モータには金属部品が含まれる傾向があり、MRI 装置の動作を妨げるため、不適切である。 ただし、圧縮空気は圧力下で圧縮されるため、ぎくしゃくした動作が発生する可能性があるため、ロボットの動作をよりスムーズかつ微細にするには、ロボットベースの油圧ベースの操作が空気圧よりも好適である。
図1Abは、密閉水タンク107の拡大図を示し、内部の超音波変換器ホルダ109の円運動を示す。 超音波振動子ホルダ109を移動させるロボットベースはここでは図示されていない。 この図は、標的ポイント113の切除中に超音波振動子ホルダ109がどのように連続的に移動するかを示している。超音波の焦点は標的ポイント113上に固定されたままであり、超音波振動子ホルダ109の回転運動にもかかわらず変化しない。 超音波が患者101に浸透する患者101の身体の領域は、継続的に変化する。 これにより、超音波の浸透によって発生した熱が体の拡大された領域全体に分散されるため、皮膚のどの部分でも過熱する可能性が低くなる。 超音波が浸透して加熱された皮膚の領域は、超音波変換器ホルダ109が腹部の別の部分に移動したとき、回転する超音波変換器ホルダ109が戻る前に冷却され得る。
図1Abに示すように、超音波変換器ホルダ109は、回転軌道上のあらゆる位置で標的に向かって傾斜する。 換言すれば、腹部内の標的ポイント113は、超音波変換器ホルダ109がその周りを移動する焦点のままである。
図1Acは、垂直に移動する超音波変換器ホルダ109の回転と、傾いて回転する様子を示している。 左側の図は、中図の超音波振動子ホルダ109よりも高い位置に超音波振動子ホルダ109が配置されており、中図の超音波振動子ホルダ109は右図の超音波振動子ホルダ109よりも高い位置にある。 これらの垂直方向の動きは、制御ソフトウェアが超音波変換器ホルダ109を、患者101が呼吸するにつれて上下に移動する可能性のある標的ポイント113と並行して、垂直方向に移動させるためである。
図1Adは、超音波ビームの焦点を変更する別の方法を示す。この方法では、超音波変換器ホルダ109は、標的ポイント113の周りを回転しながら垂直には移動されない。代わりに、標的ポイント113の位置の変化に応じて焦点が移動するように、超音波の位相が変化させられる。
超音波変換器ホルダ109は、図2Aaに示されるようなロボットベースによって支持される。 これは、2つの水平方向のパン動作、直交する2つの軸の周りの2つのチルト動作、および軸に沿った上昇を提供する。 これらの単純な動きを図1Ae~図1Aiに示す。 単純な動きから、図1Ab,1Acおよび1Adに示すような複雑な複合的な動きを生成することができる。
・ 図1Aeは、超音波変換器ホルダ109が水平軸AAの周りに傾斜できることを示している。 白い実線の矢印は超音波変換器ホルダ109上の点を示しており、読者は概略図上の方向を知ることができる。 好ましくは、超音波変換器ホルダ109がひっくり返らないように、超音波変換器ホルダ109の動きを制限する物理的な止め具(図示せず)などによって傾きが制限される。
・ 図1Afは、超音波変換器ホルダ109が地面に対して水平な方向BBにパンできることを示している。
・ 図1Agは、図1Aeに示されるピボットAAと直交するピボットCCの周りで傾斜可能な超音波変換器ホルダ109を示す。
・ 図1Ahは、超音波変換器ホルダ109が、図1Afに示される方向B-Bとは異なる方向、好ましくは直交する方向にパンすることができることを示す。
・ 図1Aiは、超音波変換器ホルダ109の下のロボットベース(ここでは図示せず)が超音波変換器ホルダ109を上げたり下げたりできるので、超音波変換器ホルダ109が垂直に上下に移動できることを示している。
これらの方法で移動できるため、超音波変換器ホルダ109 は、複雑な動作を構築できる5次の基本動作を備えている。
図1Ajは、図1Aiの垂直方向の動きが、超音波変換器ホルダ109が軸AAを中心に回転することにより傾斜することにより、生成される可能性のある複雑な動きを示す。当業者であれば、図1Abに示す動きは、超音波変換器ホルダ109が、軸BB及びDDによって確定される平面内でパンしながら、軸AAおよびCCの周りに傾けられる必要があることを理解できるであろう。さらに、超音波変換器ホルダ109は、超音波変換器ホルダ109の中心の垂直軸の周りを回転する必要がない。
図1Akは、超音波変換器ホルダ109が仮想のピボットの周りで揺れているように見えるようにする方法を示しており、超音波変換器ホルダ109は、横方向に平行移動しながら、一方の側に傾斜し、そして反対側に向かって傾斜している。
図2Aaの好ましい実施形態では、ロボットベースは、図1Ac~1Akに示される方法で超音波変換器ホルダ109に移動できるようにするために、ロボットベースは、積み重ねられた相互に移動可能ないくつかの層で構成される。 ロボットベースの頂部はエンドエフェクタ10であり、その中に超音波変換器ホルダ109を配置することができる。
図2Abは図2Aaのロボットベースの分解図であり、ロボットベースの各層が提供する異なる動きを示している。 また、超音波変換器ホルダ109は、ロボットベースの上部並進プラットホーム13内に配置されるのに適したものとして示されている。 具体的には、ロボットベースは、挿入された図面(c)および(d)に示される、2つの分離された回転自由度(図1Aeおよび図1Agに示される概略軸AAおよびCCにある程度対応する軸の周り)および、挿入された図面(a)および(b)に示される平行移動(図1Afおよび図1Ahに示される概略軸BBおよびDDに対応する軸によって画定される平面内)を備える。
したがって、本実施形態は、ロボットエンドエフェクタとして超音波変換器ホルダを有する5自由度ロボットマニピュレータを対象とする。 このような伸縮操作は、腹部または骨盤器官の病変を正確かつ安定して標的としながら、皮膚の火傷を引き起こすことなく、超音波処理の電子制御と同時に調整することができる(図11)。 当業者であれば、異なる実施形態では可動層のそれぞれを省略することができ、その結果、これらの実施形態は、おそらく製品コストの目的で異なる自由度となる可能性があることを理解するであろう。
(ロボット設計基準)
本実施形態のロボットの設計および製造プロセスにおいて考慮しなければならない主な設計基準は次の4つである:
C1)作業スペースと熟練:平均寸法 140×140×140 mm の成人肝臓の右葉をカバーするには、高密度焦点式超音波(HIFU)ビームの広い操作範囲に対応する必要がある。水平方向の移動には、垂直2方向に 15 mm を超える直線ストロークが必要である。変換器ホルダのパンチルト角度移動は 25° 以上である必要がある。さらに、より大きな腫瘍 (> 5 cm)の HIFUスポットを「埋める」か、スポットを複数の腫瘍に「切り替える」ために、不規則なステアリング軌道を実現するには、これらの自由度を独立して操作する必要がある。
C2)寸法と防水性:ロボットはコンパクトなので、長さ×幅×高さ 275× 275×240 mm の標準的な MRI-HIFU テーブルの密閉水タンク内に収納できる。水の中では、ロボットは水の張力と抵抗に対して熟練した操作を維持する必要がある。
C3)標的化の精度と応答性:最小サイズの肝臓腫瘍もHIFUによって標的にされ、切除されなければならない。したがって、ロボットは、標的ポイントでHIFU 焦点を 0.5 mm 未満の誤差で安定させるために、変換器ホルダを操縦する必要がある。一方、皮膚火傷のリスクを軽減し、効果的な切除を維持するために、ロボットは、超音波への腹部皮膚の曝露を変更するために迅速に応答する必要があるだけでなく、呼吸によって誘発される、振幅と周波数がそれぞれ約 18mm と 0.2Hzである動きを補償する必要もある。
C4)磁気共鳴(MR)安全性:本実施形態は、ASTM F2503-13のMR安全性規格を満たすように設計されている。すなわち、ロボット本体は、磁性、金属性、導電性のいずれでもない材料で作られるか、またはその材料で製造されなければならない。 ロボットは、手術中のMRスキャン中、MRIアイソセンタ近くで HIFU手術と同時に調整する必要があるため、たとえば、体内の温度測定または音響放射力を観察するために、本実施形態のMRメーカーの画像化またはさらには追跡に悪影響を与えるようなEM干渉またはアーチファクトが誘発されるべきではない。
(ロボットの構成とセットアップ)
皮膚熱傷を防ぐために、パンとチルトの2つの分離された回転自由度が変換器の移動と調整される。 基準C1)に基づいて、従動ロボットは、間に回転プラットホーム15と一体化された2つの並進プラットホーム(すなわち、下部11および上部13)を備えて構築され、5自由度の操作を提供する。 図1に示すように、 図2Aaでは、ロボットベース12および世界座標は、それぞれ{x,y,z}および{x,y,z}として表され、一方、ロボットエンドエフェクタ10の姿勢は、[x,y,z,θ,θ]として表される。リニアアクチュエータ14およびロータリーアクチュエータ16の機構を図2Bと2Cに示す。リニアガイド18を介してロボットの下部フレームワーク17に接続された下部並進プラットホーム11(図8)は、水平面内で2つの相互に直交する並進運動(35×35mm)を可能にする。 下部並進プラットホームの各自由度に対して、4つの3Dプリントされたスライダ20(図10A)があり、2つのホイール(図10B)でリニアガイド21を上下(22、24)で保持し、したがってプラットホームのスムーズな動きを可能にするため滑り摩擦を排除する。
ロボットベース(図2Aa)は、ベアリングを備えた回転プラットホームを収容する下部並進プラットホームの上に構築される。 これにより、下部プラットホームの移動に平行な2つの軸に沿った ± 25°の範囲での回転が保証される。回転プラットホーム15(図9)の上に構築される上部並進プラットホーム13は、ロボットベース12のy軸に沿った回転に従う。目的は、回転プラットホームに対する法線力/並進を35mmの範囲内でガイドすることである。エンドエフェクタ10としての変換器ホルダは、上部並進プラットホームの動きに従ってその上に構築される。 図2Dは、本実施形態のロボットの運動を構成変数とともに概略図で示す。
基準C4)に基づいて、MRイメージングプロセス中の干渉を最小限に抑えるために、変換器ホルダ、ベース、追従ロボットのアクチュエータなどの主要部品は3Dプリントされたポリマー複合材料 (VeroWhitePlus および MED610、Stratasys、米国)から作られた。パイプラインのクイックフィットコネクタなどの残りの部品も非金属および非強磁性材料で作られている。ロボットのエンドエフェクタをMRI領域に登録して追跡するには、変換器 ホルダに埋め込むことができる無線RFマーカー(Φ3x8 mm)が使用され、MR画像座標(図2Aa)に対する6次元の連続追跡が可能になる。画質を向上させるには、治療中ずっとMRボディコイルを患者の背中に装着する必要がある。
(ダイヤフラムベースの油圧作動)
ダイヤフラムベースの油圧作動システムは、基準C3)に基づいたMRセーフ標準部品を使用して、迅速な応答と短い伝達遅延、大きな出力力、および正確な制御を提供するために提案されている。 各ロボットの自由度の作動は、一対の油圧パイプラインを通じて駆動および伝達される。 ±90°の範囲で回転運動を生成できる2シリンダアクチュエータの使用(図2C)。ただし、双方向運動のために導入された中央ギアにより、各ユニットのサイズは 120 × 58 × 28 mm に増加した。 基準 C2)に基づいて、ロボットは水槽の限られたスペース内でコンパクトであると同時に、MRI手術台内での完全な遠隔操作を可能にする必要がある。その結果、リニアアクチュエータは再設計され(150 × 28 × 28 mm)、中央ギアはなくなったが、それでも 35mm のストロークで双方向の直線運動を提供する機能を備えていた。2つのシリンダユニットの鏡面配置は、長さが増加するにもかかわらず(図2B)、ロータリーアクチュエータ(図2C)と比較して重量を軽減することができる。 ロボットの下部移動プラットホームなど、直線運動のみを伴うアプリケーションの場合、このリニアアクチュエータを採用してロボット全体の設置面積を削減できる。この目的を達成するために、2つのリニアシリンダーが下部の並進プラットホームに組み込まれ、残りの3つの自由度で3つのロータリーアクチュエータが使用される。1つは変換器ホルダの直線運動のガイド用で、他の2つはパンとチルト用である。
油圧パイプラインの両端をシールするローリングダイヤフラム(MCS2018M、FEFA Inc.)は、主に布強化ゴムでできている。各ダイヤフラムは、0.1 Mpa の流体予圧下でピストンローブのヘッド上を転動しながら、ダイヤフラムの裏返し動作によりストローク長約 35mm のシリンダ内にカプセル化されている。 このような圧力は、ギアのバックラッシュのほとんどを軽減するためにテストされている。シリンダユニットは蒸留水が満たされた長さ10mのパイプラインを介して金属ピストンで接続されている。したがって、パイプラインの束は、MRIと制御室の間の導波管を介して配線する必要がある。接続されたピストン(CDRQ2BS20-180、SMC pneumatics、香港)は、制御室の電気モータによって作動する必要があることに注意されたい。 提案された油圧トランスミッションの作動待ち時間は、選択されたパイプライン材料(半硬質ナイロン)とその適切な内径(Φ2 mm)によって最適化できた。バネ状のかなり弾力性のあるパイプラインの一部がロボットのシリンダーポートの近くに接続されているため、ロボットの動きを妨げることなく、ある程度の柔軟性が得られる。ただし、これらの部品の長さは短く(<100mm)する必要があり、これは常にロボットの作動遅延とのトレードオフになる。
この油圧作動設計により、プラットホームを脱気水タンク内に浸漬して操作することが可能になる(基準C2)。場合によっては、代わりに、ゲルパッドを取り付けた水袋(例えばシリコン製)に脱気水を満たし、変換器と患者を分離することもできる。
(モデルベースロボット制御)
必要な機械構造を約束することとは別に、モデルベースの制御にはロボットの解析的な順運動が必要である。静止しているロボットを初期状態とし、ロボットベースの中心を座標原点 O とする。作業スペースは、図2aに示す座標に関してエンドエフェクタの5次元姿勢(変換器ホルダの重心)として定義される。
エンドエフェクタの姿勢
Figure 0003246392000002
は次のように計算できる:
Figure 0003246392000003
ここで
Figure 0003246392000004
はロボットの構成を表し、x ,y ,z 軸に沿った3つの平行移動と、x 軸および y 軸に沿った回転に対応する。 パラメータ l は、エンドエフェクタを基準とした焦点の深さである。
構成空間から作業スペースへの遷移マッピングは次のように表現できる:
Figure 0003246392000005
ここで、ヤコビアン行列 J は、位置 p を入力
Figure 0003246392000006
に対して微分することによって計算できる。
行列 J を使用すると、逆遷移マッピングは次のように確立される:
Figure 0003246392000007
ここで
Figure 0003246392000008
は J の一般化された逆関数である。構成空間パラメータ
Figure 0003246392000009
は、水槽内のロボット部分に定義され、コンダクタ入力と線形相関があると仮定されていることに注意されたい。
並進運動と回転運動の相関係数は異なり、それぞれK、Kとする。 即ち:
Figure 0003246392000010
ここで
Figure 0003246392000011
はコンダクタ側モータへの作動指令を意味する。
解析モデルを作動指令の計算に利用するには、ロボットベースを水槽内に固定した後、位置追跡座標からモデル座標(図2Aa)への登録が必要となる。
(MRI下での変換器の姿勢追跡)
MRIの下で変換器の姿勢を正確に位置特定することは、HIFU 計画が行われる MRI領域でロボットタスクを登録するための前提条件であり、したがって治療関心領域(RoI)に対する超音波焦点の正確な標的設定が可能になる。MRI座標での継続的なリアルタイム位置追跡を可能にする無線MRマーカーを使用することが提案されている。 MR信号を増幅するように特別に設計された回路により、マーカーは低いフリップ角(<1°)励起下でもバックグラウンドと比較して高いSNRを提供できる。 現在の設計では、エンドエフェクタの中心位置と法線方向の両方を含む6次元姿勢を検出するために、3つのマーカーが変換器ホルダに組み込まれている。 位置信号 (>30Hz)の高速取得を可能にするために、1D投影パルスシーケンスを適用できる。 ただし、各マーカーの信号プロファイルは、マーカーの方向とMRイメージング コイルまでの距離によって影響を受ける可能性がある。 これにより、マーカー重心の検出に信号ノイズが導入され、エンドエフェクタの姿勢が誤って計算される。 位置特定の精度を確保し、スムーズな追跡を維持するために、ロボットの運動モデルを使用してエンドエフェクタの姿勢を予測し、その値がカルマンフィルターを介してマーカーからの測定値と組み合わされる。
予測モデルは次のように与えられる:
Figure 0003246392000012
ここで、Pt+dt および P はエンドエフェクタの姿勢であり、
Figure 0003246392000013
はロボットの構成であり、下付き文字「t+dt」および「t」はタイムステップ t+dt と t を示し、wおよび v はプロセスノイズと観測ノイズを表す。
K=diag([K,K,K,K,K]) は、制御室からMRI室のロボット出力への作動入力を相関付けるマッピング行列である。
組み合わせたロボット構成は次のように計算できる。
Figure 0003246392000014
ここで、G はカルマンゲインである。
したがって、組み合わされたエンドエフェクタの姿勢は、式(1)を使用して計算できる:
Figure 0003246392000015
(ロボットの位置決め精度)
各自由度に沿った位置決め精度を検証するために実験が行われた。すべての平行移動自由度は、図2Bと同じ線形作動機構を使用して構成され、2つの回転自由度は図2Cに示されている。 並進および回転の位置精度は両方とも図3に示されている。6D EMトラッカー(Aurora、NDI Medical) を、変換器を搭載する上部移動プラットホームの端に垂直に取り付けた。この EMで追跡された姿勢は、位置的なグラウンドトゥルースとして機能する。 平行移動精度の評価では、x軸に沿って1mm間隔で10個の位置を画定した(図3A)。 モータの出力角度とフォロア側の平行移動の関係 (式 4)に基づいて、作動コマンドを計算できる。 ロボットはすべての目標を連続して達成するように操縦された。 x並進自由度の平均位置決め誤差(10回の繰り返しを含む)は0.098mmであり、最大誤差は0.2mmであった(図3A)。 同様の試験方法により、平均回転誤差は0.140°であり、最大値は0.4°であることが判明した(図3B)。 この位置決め精度は、MRg-FUS システム用に設計された既存のロボットプラットホームを上回っており、代表的なロボットプラットホームでは ±0.5 mm の移動精度と ±1° の精度を満たすことができる。
(位置周波数応答)
ロボットの動的性能を評価するために、周波数応答テストが実施された。主な懸念はロボットベースの並進自由度に関するものだったが、他の自由度に比べてペイロードが大きいため、応答性が最も困難であった。 実験では、x およびy 自由度のアクチュエータは、位相差 c の正弦波入力に従うように設定され(図4B)、したがって、0.1Hz ~ 4Hzの周波数範囲でMRI冠状面内の円形軌道(図4A)を協調的に追跡する。ステッピングモータの入力からロボットの出力までの油圧伝達は、制御室とスキャナルーム間の伝達長の要件を満たす10 mのパイプラインを使用して実現された。
基準円の半径は 4mm に設定され、トラッキング周波数は 0.1Hz から 8Hz まで 0.1Hz 間隔で増加させた。 ロボットのエンドエフェクタの出力動作は、6D EMトラッキングコイルによって測定された。 図4Cに示すように、 x および y 自由度 の帯域幅は約 4.5 Hz に達し、そこで振幅は -3 dB 減少する。 位相遅れは帯域幅内で 75° 未満に保たれる。 コンピュータ信号からロボット出力までの伝送遅延を測定すると、周波数が 4.5 Hz 未満で平均 100 ミリ秒である。 結果は、周波数 < 0.2Hz で肝臓の呼吸運動を補償する能力を示している。
(固定焦点に向けたエンドエフェクタの姿勢調整)
組織内の固定焦点で切除を行う際の皮膚の熱傷を防ぐために、ロボットのエンドエフェクタは、焦点の周りに変換器の遠隔運動中心(RCM)を提供できなければならない。 切除中のこのようなRCM動作により、特定の皮膚領域の超音波エネルギーへの平均曝露時間を短縮することができ、これにより熱の蓄積が軽減される(図11)。 図11の左側にある変換器は固定されており、皮膚の火傷領域は広いである。 図11の右側の図では、変換器が図示の円弧に沿って移動するため、皮膚のいずれか1つの領域での露出が減少する。これにより、皮膚の冷却のために切除手順を定期的に中断する必要がなくなるため、治療時間を短縮できる。
変換器ホルダが回転している間、超音波ビームが腹部組織と干渉することにより皮膚の火傷が誘発されることに注意されたい。 図5に示すように、焦点の到達可能な作業スペースは、ロボットの順運動学に基づいて計算された。 作業スペースの大きさはL×W×H 約100×100×35mmで、電動ステアリングと組み合わせるとさらに40mm拡大できる。 焦点はロボットを使用した機械的な焦点の操作にある。 各焦点の周囲で、皮膚火傷防止能力を定量化するために、RCMの最大操縦可能角度が計算された。これは焦点の位置によって異なる。つまり、ロボットは、遠隔運動中心(RCM)を有効にして、特定の皮膚領域の累積曝露を低減する。 したがって、パン-チルト回転自由度を備えた本実施形態のロボットは、皮膚上の熱蓄積を減少させることができると判断された。 2つの直交するスライスの焦点の周りの操縦可能な角度は、暖色のグラデーションによって視覚化される。つまり、RCMの操縦可能な角度範囲が大きいほど、ワークスペース内の焦点の色は暖色になる。 ワークスペースの中心の焦点には、最大 20°の操縦可能角度を提供できる。 従来技術では、超音波変換器ホルダ内の超音波変換器の周波数または他の波形パラメータを変更することによって、超音波の焦点の位置を移動させることができ、すなわち、電子ステアリングを鳴らして、合成された波面が腹部の標的に焦点を合わせるようにすることができる。 ただし、このアプローチは超音波ビーム軸に沿って制限される。したがって、この実施形態によって提供されるパンおよびチルトの自由は、焦点(RCM)の周囲に優れた3D作業スペースを提供する。 実施形態のいくつかの変形例では、超音波変換器ホルダのパンおよびチルトを単独で使用して焦点を移動させることができる。 実施形態の他の変形例では、超音波変換器ホルダのパンおよびチルトを、周波数または他の波形パラメータの変更とともに使用して、焦点を移動させることができる。 これにより、患者に対する治療設計の制御レベルが向上する。 たとえば、皮膚熱傷が重篤になることが予想されない場合は、超音波変換器ホルダを移動する必要がない場合があり、周波数やその他の波形パラメータを変更するだけで腫瘍の体積全体にわたって焦点を移動することにより、より早く治療を完了できる場合がある。
(MR適合性試験)
1.5T MRIスキャナ(SIGNA、General Electric Company、USA)を使用して、MR画像に対する本実施形態のロボットシステムのEM干渉を評価するために、MR適合性試験(図6A)を実施した。 MRI 水ファントム (J8931、J.M. Specialty Parts、USA) を信号源として使用し、イメージング用にボディコイルを取り付けた。 ロボットとファントムは 1.5T MRI スキャナのアイソセンタの近くに配置された。 T1強調画像とT2強調画像は両方とも、それぞれ高速フィールドエコー (FFE)シーケンスとターボスピンエコー(TSE)シーケンスを使用して取得された。 ロボットをスキャナ室に導入する前に、信号対雑音(SNR)比較のベースラインとしてファントムの3D MR画像が取得された。 また、ロボットをファントムの横に置き、ファントムの3D撮影を行った。 図6Bに示すように、無視できる電磁干渉が、ロボットの横に置かれたMRIファントムのMR画像から見つかった。 3つの動作条件下でのT1およびT2の正規化されたSNRの結果が図6Bの表にまとめられている。 ロボットが動作しているときでも、SNR損失が 2%未満のMR画像では、観察可能な画像アーチファクトは見つからない。 これにより、切除中の呼吸運動の補償と皮膚熱傷の防止に必要な、MRイメージングとロボットの作動を同時に実行する機能が提供される。
(MRベースのトラッキングテスト)
無線MRマーカーは、MR画像座標内でロボットのエンドエフェクタの位置を特定するために利用される。 マーカーは円筒形のガラス管(Φ3×8mm)の中に信号源となるガドリニウム添加水(濃度10mM)を封入したものである。 小型RFコイル(1.5 × 6.7 mm、)がチューブに取り付けられ、MR信号を局所的に増幅し、背景に対して高い画像コントラストを提供する。 水のT1緩和時間を短縮するソリューションが油圧作動に導入され、作動液体からのバックグラウンド信号が除去された。 図7Aに示されるように、3つのマーカーの位置が得られると、ロボットの初期姿勢をMR画像座標に登録することができる。 1D投影パルスシーケンスを採用して、マーカー位置のリアルタイム追跡を可能にする。 図7Bは、x軸に沿った3つのマーカーの1D 投影信号の強度プロファイルを示しており、投影軸に沿ってマーカーのピークを抽出することができる。 次に、マーカーの3D位置は、ジオメトリ制約、例えばマーカーの相対位置、を1Dマーカー座標の可能な組み合わせに課すことによって、それに応じて解決できる。 リアルタイム追跡テストは、ロボットによって移動されるマーカーを使用して1D投影スキャンを継続的に実行することによって実行された。 図7Cは、12ミリ秒の時間分解能を有する、40秒の期間における x軸に沿った時系列投影画像を与える。 図7Cには、83.3Hzで取得されたx軸上に連続的に投影された位置が示されている。 SNRは非常に高いため、0 ~ 256 ピクセル内の単一点信号を各タイムステップで対比して観察できる。 マーカー画像は背景に対して高いコントラストを示し、MRIでリアルタイムの位置フィードバックを提供するために自動的に検出できる。 本実施形態は、腹骨盤臓器におけるMRg-FUS治療のための5自由度遠隔操作位置決めシステムである。 これは、FUS変換器 アレイの 3-自由度並進と 2-自由度回転を組み込むことができるコンパクトなロボットであり、この種のロボットとしては初めてであり、患者の体内のHIFUスポットを追跡するための最大の音響ウィンドウを容易にするだけでなく、超音波処理による皮膚の残留を避けるための柔軟性の程度が最大である。 ただし、特に大きな臓器の場合、皮膚の火傷を防止する機能が不可欠である。
各焦点のRCMの操縦可能な角度は、油圧アクチュエータをより大きな動作ストロークを持つものにアップグレードすることで、例えば無制限の回転範囲を提供する3つのシリンダを備えた連続モータでさらに拡大できる。 このロボットは、高速応答 (帯域幅 4.5Hz、遅延 100ミリ秒)の油圧作動を実装しており、生理学的運動を補償して、移動する病変標的上に焦点を安定して固定できる。 位置周波数応答は、MRI冠状面に沿ってロボットベースを移動する2つの自由度で検証されており、呼吸運動(<0.2 Hz)補償を実行できることが実証されている。
ステッピングモータを置き換えることにより、トラッキング応答性と全体的なダイナミクスをさらに向上させる目的でハイエンドの速度サーボモータを組み込むことができる。 高い位置決め精度の並進(最大誤差:0.2 mm)と回転(最大誤差:0.4°)により、HIFUスポットの電子制御に加えて、精密な機械的ステアリングを実現できる。 焦点の位置は、MR画像上の病変の重心から測定されることに注意されたい。 本実施形態におけるロボットの位置決め精度テストは、臨床シナリオにおけるいくつかの要因(例えば、水中の変換器の動きから誘発される牽引力およびせん断力、固有のMRI画像の歪み及び解像度の制限)を考慮せず、変換器ホルダ自体の位置決めを示すだけである。
このシステムには無線RFマーカーが装備されており、MRI座標でロボットの作業スペースを継続的に登録できる。ロボットの各自由度に MR安全エンコーダ(米国カマリロの Micronor Inc. の ZapFREE MR431 など) を組み込むことで、位置決め精度をさらに向上させることができる。 さらに、エンコーダからの感覚情報とMRIフィードバックを融合することで、堅牢なフィードバック制御を実現できる。 大容量の作業スペース(100 × 100 × 35 mm3) がシミュレーションによって評価され、大きな腹骨盤臓器(例: 成人肝臓、右葉の長さ約 16 mm)における大きな腫瘍または複数の腫瘍の治療に対応できる可能性が示されている。 MRIおよびリアルタイムMRベースの追跡との互換性も、それぞれSNRテストおよび1D投影技術によって検証されている。 ロボットがMRI スキャナのアイソセンタの近くに配置され作動した場合でも、高感度の1D投影パルス シーケンスを使用すると、ロボットの作動により観察可能なアーチファクトが誘発されないことが示されている。
本実施形態は、腹骨盤臓器腫瘍の治療に有用である。 HIFUに加えて、FUS技術の最近の進歩により、温熱療法による遺伝子治療、薬物送達、血液脳関門(BBB) の開口など、他の非熱的治療も促進される。 この実施形態のロボットはまた、自動変換器位相変調(すなわち、狭い範囲の電子ステアリング)の使用、および術中MRI下で形成される特定の音響パターンなど、焦点のみではなく、関連するFUS用途のためのロボットステアリングとの組み合わせによって改良することもできる。
図12は、別の実施形態を示しており、これは、ターンテーブルの中心ピボットYYの周りを回転することができるターンテーブル1201を備えるロボットベースである。 超音波変換器ホルダ109がターンテーブルの片側に接続されている。 必須ではないが、選択肢として、超音波変換器ホルダ109は、超音波変換器ホルダ109の中心の軸XXを中心に回転することもできる。さらに、超音波変換器ホルダ109は、水平軸ZZを中心に傾斜することができる。 この実施形態は、超音波の送信のために密閉水タンク107内に配置することができる。 実施形態のすべての部品は、MRI装置のイメージングに影響がないように、MRI装置の一部である治療ベッドの内部または下に配置するために、非磁性および非金属材料(例えば、プラスチック)を使用して作製することができ、これにより、MRI装置の撮像動作が容易になる。 。 ターンテーブルの回転は、好ましくは油圧によって駆動される一組の非金属ギア(図示せず)を使用して提供することができる。
図13aは、図12の実施形態の回転運動を示す。 図示のように、超音波変換器ホルダ109は、組織標的の方向を向くように軸Z-Z の周りに傾けられる。 図13bは、ターンテーブルが少し回転した後の図12の実施形態を示す。 超音波変換器ホルダ109は、同じ軸Z-Zの周りに傾けることによって依然として組織標的に向けられる。 これは、ZZ 軸がターンテーブルとともに回転するためである。 図13cは、ターンテーブルがもう少し回転した後の図12の実施形態を示す。 超音波変換器ホルダ109は、同じ軸Z-Zの周りに傾けることによって依然として組織標的に向けられる。 したがって、前述の実施形態は、平面内での並進運動を提供するロボットベースと、超音波変換器ホルダ109が傾斜する少なくとも1つの水平軸とを含む。 超音波変換器ホルダ109の並進運動と傾斜運動の組み合わせを提供する他の設計も可能であり、それは本説明の意図の範囲内に含まれる。 場合によっては、超音波変換器ホルダ109を傾けることにより、標的ポイントが治療ベッド上で横方向に移動するときに、超音波変換器の位相を変えるよりも簡単に超音波の焦点を合わせることができる。
本発明は、その好ましい実施形態を参照して特に示され説明されてきたが、本発明の精神および範囲から逸脱することなく、形態および詳細に様々な変更を加えることができること、およびこれらの実施形態は単に本発明を例示するものであり、添付の実施形態によってのみ限定されることが当業者には理解されるであろう。 特に、前述の詳細な説明は、本発明を例として説明するものであり、限定するものではない。 この説明により、当業者は本発明を作成および使用することができ、本発明のいくつかの実施形態、適応、変形、および使用方法が説明される。

Claims (20)

  1. 集束超音波(FUS)変換器からの超音波を患者の体内の特定の標的に集中させてマイクロメカニカル効果を誘発できる、MRIガイド付きFUS測位システムであって:
    複数の自由度(DoF)の動きを提供するMRI互換ロボットプラットホームを有し、
    前記ロボットフラットホームは:
    下部フレームワークと;
    前記下部フレームワークに対して直線運動を行うために前記下部フレームワークに取り付けられた下部並進プラットホームと;
    前記下部並進プラットホームに取り付けられたロボットベースと;
    前記ロボットベースに対する回転運動のために前記ロボットベースに取り付けられた回転プラットホームと;
    前記回転プラットホームに対する直線運動のために前記回転プラットホームに取り付けられた上部並進プラットホームと; そして
    前記上部並進プラットホームに取り付けられエンドエフェクタであって、前記FUS変換器の焦点を狙う際の、前記エンドエフェクタの動きが前記下部並進プラットホーム、前記回転プラットホーム、および前記上部並進プラットホームの動きによるものである、エンドエフェクタと;
    を有し、
    前記FUS位置決めシステムはさらに:
    前記システムをその自由度の少なくとも1つに従って移動させるために前記ロボットプラットホームに接続された少なくとも1つのアクチュエータと;
    焦点を有する超音波エネルギーを生成するために前記エンドエフェクタに設けられたFUS変換器であって、当該変換器の位相を調整することによって電子的に、または前記ロボットプラットホームを動かすことによって機械的に、操縦することができるFUS変換器と;
    前記エンドエフェクタに埋め込まれ、MRI座標系における前記エンドエフェクタの登録および追跡を可能にする信号を提供する少なくとも1つのマーカーと; そして
    前記ロボットプラットホームの動きを遠隔制御し、手術中のMRIデータを受信するための制御システムと;
    を有する、
    ことを特徴とするMRIガイド付きFUS測位システム。
  2. 前記下部並進プラットホームは、前記下部フレームワークに対して垂直方向に2自由度の直線運動を提供し、
    前記回転プラットホームは、前記ロボットベースに対して垂直方向に2自由度の回転運動を提供し、
    上部並進プラットホームは、前記回転プラットホームに対して1自由度の直線運動を提供する、
    ことを特徴とする、5自由度の動きを提供する、請求項1に記載の測位システム。
  3. 腹部骨盤臓器疾患を治療するために人体の腹腔および骨盤腔内に集束超音波(FUS)を向けるための、請求項1に記載の測位システム。
  4. 前記アクチュエータによって引き起こされる前記システムの動きは、前後、左右、上下、パン、およびチルトのうちの少なくとも1つである、ことを特徴とする請求項1に記載の測位システム。
  5. 前記システムの動きは、空気圧および油圧作動のうちの少なくとも1つによって駆動され、電磁干渉をゼロにし、MR画像品質および前記マーカーの追跡性能を向上させる、ことを特徴とする請求項1に記載の測位システム。
  6. 前記変換器の運動は、ローリングダイヤフラムシール型油圧アクチュエータを使用して達成される、ことを特徴とする請求項1に記載の測位システム。
  7. 前記ロボットプラットホームは、前記変換器を前記患者の身体に結合する、脱気液体のタンク内に浸漬され、そして動作し、そして脱気された液体が入った密閉タンクは MRIテーブル内に組み込まれている、ことを特徴とする請求項1に記載の測位システム。
  8. 前記変換器は、ゲルパッドに取り付けられた中間液体容器によって前記患者の身体に結合される、ことを特徴とする請求項1に記載の測位システム。
  9. 前記ロボットプラットホームの各自由度は、独立してまたは同時に動いて、超音波の前記焦点の周りの遠隔運動中心(RCM)を達成し、特定の皮膚領域の超音波エネルギーへの曝露時間を短縮する、ことを特徴とする請求項1に記載の測位システム。
  10. 前記油圧作動は、前記ロボットプラットホームが液体に浸漬されているとき、または前記変換器の上に液体容器を支持しているときでも、高い積載能力および高い応答性を提供する、ことを特徴とする請求項6に記載の測位システム。
  11. 前記油圧作動の帯域幅が4.5Hzに達し、前記上部および下部並進プラットホームの各自由度について90mm/秒の移動速度に達し、治療中の生理学的運動補償を可能にし、動作時間を短縮する、ことを特徴とする請求項6に記載の測位システム。
  12. 超音波焦点機械的ステアリングのための作業スペースが100×100×35mm以上である、ことを特徴とする請求項1に記載の測位システム。
  13. 前記上部および下部並進プラットホームの各自由度のストロークが ±35mm であり、前記回転プラットホームの各自由度のストロークが ±60° である、ことを特徴とする請求項1に記載の測位システム。
  14. 運動誤差は、並進において0.2mm以下、回転において0.4°以下である、ことを特徴とする請求項1に記載の測位システム。
  15. 前記制御システムは、閉ループ制御を提供するために少なくとも1つのマーカーを利用する、ことを特徴とする請求項1に記載の測位システム。
  16. 動作の複数の自由度(DoF)を提供するMRI互換ロボットプラットホームであって:
    下部フレームワークと;
    前記下部フレームワークに対して直線運動を行うために前記下部フレームワークに取り付けられた下部移動プラットホームと;
    前記下部移動プラットホームに取り付けられたロボットベースと;
    ロボットベースに対する回転運動のために前記ロボットベースに取り付けられた回転プラットホームと;
    前記回転プラットホームに対する直線運動のために前記回転プラットホームに取り付けられた上部並進プラットホームと;
    前記上部並進プラットホームに取り付けられるエンドエフェクタであって、変換器の焦点を狙う際に、前記エンドエフェクタの動きが前記下部プラットホーム、前記回転プラットホーム、および前記上部プラットホームの動きによるものであるエンドエフェクタと;
    焦点を有する超音波エネルギーを生成するために前記エンドエフェクタ上に設けられたFUS変換器であって、前記エンドエフェクタの動きが変換器の焦点を狙う結果になる、FUS変換器と;
    前記エンドエフェクタの位置の登録および追跡を可能にする信号を提供する、前記エンドエフェクタに埋め込まれた少なくとも1つのマーカーと;
    を有し、
    前記ロボットプラットホームは、当該ロボットプラットホームをその自由度のうちの少なくとも1つに従って移動させる、少なくとも1つのアクチュエータに対する信号を受信するように適合されている、
    ことを特徴とするMRI互換ロボットプラットホーム。
  17. 前記下部並進プラットホームは、前記下部フレームワークに対して垂直方向に2自由度の直線運動を提供し、
    前記回転プラットホームは、前記ロボットベースに対して垂直方向に2自由度の回転運動を提供し、
    前記上部並進プラットホームは、前記回転プラットホームに対して1自由度の直線運動を提供する、
    ことを特徴とする、5自由度の動作を提供する、請求項16に記載のロボットプラットホーム。
  18. 患者の体内にマイクロメカニカル効果を誘発するために前記患者の体内の標的を治療する方法であって:。
    集束超音波(FUS)変換器から体内に超音波を送信するステップと;
    送信された前記超音波を標的に集中させるステップと;
    前記送信された超音波を前記標的に集中させ続けながら、前記患者の体の表面全体に前記FUS変換器を移動させるステップと;
    を有することを特徴とする方法。
  19. 前記FUS変換器を前記患者の体の表面全体に移動させるステップは、前記FUS変換器を前記患者の体の表面上で円を描くように動かすステップを有する、
    ことを特徴とする、請求項18に記載の患者の体内にマイクロメカニカル効果を誘発するために前記患者の体内の標的を治療する方法。
  20. 前記FUS変換器は前記標的に向かって傾いており、そして
    前記患者の体の表面にわたってFUS変換器を移動させるステップはさらに、前記FUS変換器が前記患者の体の表面を横切って移動する際に、前記FUS変換器が前記標的に向かって傾くように連続的に調整されるように、前記FUS変換器の傾きを変化させるステップを有する、
    ことを特徴とする、請求項18に記載の患者の体内にマイクロメカニカル効果を誘発するために前記患者の体内の標的を治療する方法。
JP2023600167U 2021-03-10 2022-03-09 Mri誘導集束超音波システムを操作するためのロボットプラットホーム Active JP3246392U (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US202163159392P 2021-03-10 2021-03-10
US63/159,392 2021-03-10
US202163168876P 2021-03-31 2021-03-31
US63/168,876 2021-03-31
PCT/CN2022/079908 WO2022188800A1 (en) 2021-03-10 2022-03-09 A robotic platform to navigate mri-guided focused ultrasound system

Publications (1)

Publication Number Publication Date
JP3246392U true JP3246392U (ja) 2024-04-16

Family

ID=83227426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023600167U Active JP3246392U (ja) 2021-03-10 2022-03-09 Mri誘導集束超音波システムを操作するためのロボットプラットホーム

Country Status (5)

Country Link
US (1) US20240180648A1 (ja)
EP (1) EP4277531A1 (ja)
JP (1) JP3246392U (ja)
DE (1) DE212022000155U1 (ja)
WO (1) WO2022188800A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117883064B (zh) * 2024-02-23 2024-08-02 复旦大学 一种用于磁共振引导聚焦超声治疗系统的双模成像装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112716521B (zh) * 2014-11-18 2024-03-01 C·R·巴德公司 具有自动图像呈现的超声成像系统
CN104815399B (zh) * 2015-04-03 2018-04-17 西安交通大学 基于六轴机械臂的高强度聚焦超声治疗引导和控制系统及方法
US11013528B2 (en) * 2017-08-29 2021-05-25 Ethicon Llc Electrically-powered surgical systems providing fine clamping control during energy delivery
CN113194835A (zh) * 2018-08-24 2021-07-30 医用射束实验室有限责任公司 束传递平台和定位系统
CN109259822B (zh) * 2018-11-07 2019-12-24 西安交通大学 基于被动空化检测成像的聚焦超声治疗三维引导与动态实时监控系统及方法
CN111603303A (zh) * 2019-02-25 2020-09-01 中国科学院声学研究所 一种用于聚焦超声微创治疗白内障的系统

Also Published As

Publication number Publication date
EP4277531A1 (en) 2023-11-22
WO2022188800A1 (en) 2022-09-15
US20240180648A1 (en) 2024-06-06
DE212022000155U1 (de) 2024-04-16

Similar Documents

Publication Publication Date Title
Priester et al. Robotic ultrasound systems in medicine
Monfaredi et al. MRI robots for needle-based interventions: systems and technology
AU2005326351B2 (en) Focused ultrasound therapy system
US8727987B2 (en) Mechanical manipulator for HIFU transducers
Taillant et al. CT and MR compatible light puncture robot: Architectural design and first experiments
Nycz et al. Mechanical validation of an MRI compatible stereotactic neurosurgery robot in preparation for pre-clinical trials
CN101969809A (zh) 影像导引热治疗器定位系统及方法
Yang et al. Design and implementation of a pneumatically-actuated robot for breast biopsy under continuous MRI
WO2003059434A2 (en) Ultrasonic treatment of breast cancer
Dai et al. A robotic platform to navigate MRI-guided focused ultrasound system
EP2309942A1 (en) Mri compatible robot with calibration phantom and phantom
Kettenbach et al. Robot-assisted biopsy using ultrasound guidance: initial results from in vitro tests
Wu et al. An MRI coil-mounted multi-probe robotic positioner for cryoablation
Li et al. A fully actuated robotic assistant for MRI-guided precision conformal ablation of brain tumors
Fichtinger et al. Surgical and interventional robotics: Part II
JP3246392U (ja) Mri誘導集束超音波システムを操作するためのロボットプラットホーム
Chanel et al. Robotized High Intensity Focused Ultrasound (HIFU) system for treatment of mobile organs using motion tracking by ultrasound imaging: An in vitro study
KR101772200B1 (ko) Hifu 치료 헤드 및 이를 포함하는 hifu 장치
Fischer et al. Pneumatically operated MRI-compatible needle placement robot for prostate interventions
EP3254731B1 (en) Multi-purpose robotic system for mri guided focused ultrasound treatment
CN111603691A (zh) 一种多核素mri引导的hifu聚焦探头定位装置及其使用方法
WO2022017384A1 (en) Fluid-driven robotic needle positioner for image-guided percutaneous interventions
Li et al. Tilting high-intensity focused ultrasound phased array to augment the focal steering range for treatment of uterine fibroids
WO2007082495A1 (en) Mri positioning system for ultrasound brain surgery
US20190000572A1 (en) Robotic assisted prostate surgery device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240208

R150 Certificate of patent or registration of utility model

Ref document number: 3246392

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150