JP3239159B2 - Control method of air conditioning equipment - Google Patents

Control method of air conditioning equipment

Info

Publication number
JP3239159B2
JP3239159B2 JP15871592A JP15871592A JP3239159B2 JP 3239159 B2 JP3239159 B2 JP 3239159B2 JP 15871592 A JP15871592 A JP 15871592A JP 15871592 A JP15871592 A JP 15871592A JP 3239159 B2 JP3239159 B2 JP 3239159B2
Authority
JP
Japan
Prior art keywords
temperature
air
outside air
duoar
ted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15871592A
Other languages
Japanese (ja)
Other versions
JPH05322273A (en
Inventor
利美 石黒
和雄 佐竹
隆 藤田
直二 吉田
博幸 山田
Original Assignee
カネボウ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カネボウ株式会社 filed Critical カネボウ株式会社
Priority to JP15871592A priority Critical patent/JP3239159B2/en
Publication of JPH05322273A publication Critical patent/JPH05322273A/en
Application granted granted Critical
Publication of JP3239159B2 publication Critical patent/JP3239159B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、例えば合繊工場におけ
る製造工程の雰囲気を制御するために使用するに適した
空気調和設備の制御方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling an air conditioner suitable for use in controlling the atmosphere of a manufacturing process in a synthetic fiber factory, for example.

【0002】[0002]

【従来の技術】優秀なファッション素材であるポリエス
テルフイラメントの製品品質を決定する重要な要因の一
つに、紡糸・延撚室内の雰囲気がある。この雰囲気を一
定に保つために、合繊工場では大規模な空気調和設備で
温度・湿度・内圧を制御している。従来この雰囲気制御
に用いられた方法は、温度・湿度の制御をPID制御に
よる単独制御で行い、混合気比率の制御をコンピュータ
制御で行っていた。しかしながら、この方法では雰囲気
の一定化は可能であるが、空気の加熱、冷却に消費する
エネルギー量が多いため、省エネルギーの観点からは必
ずしも有効ではなかった。
2. Description of the Related Art One of the important factors that determine the product quality of polyester filament, which is an excellent fashion material, is the atmosphere in a spinning and drawing room. To keep this atmosphere constant, the synthetic fiber factory controls temperature, humidity, and internal pressure with large-scale air conditioning equipment. Conventionally, in the method used for controlling the atmosphere, the control of temperature and humidity is performed solely by PID control, and the control of the mixture ratio is performed by computer control. However, although this method can stabilize the atmosphere, it consumes a large amount of energy for heating and cooling air, and thus is not always effective from the viewpoint of energy saving.

【0003】空調の省エネルギー化には、外気を有効に
利用するのが効果的である。すなわち、夏場においては
冷凍機による冷水製造の負荷を低減し、冬場においては
適量の外気取り入れにより使用蒸気量の削減が可能で、
大幅な省エネルギー効果が期待できる。しかしながら、
従来考えられていたコンピュータ制御では、混合空気の
温度を入力パラメータ、外気と還気の混合比率を出力パ
ラメータとする一入力一出力の制御方式であり、風量等
が考慮されていなかったので、バラツキが大きく、十分
な制御効果が得られていなかった。
[0003] Effective use of outside air is effective for energy saving in air conditioning. In other words, the load of chilled water production by a refrigerator can be reduced in summer, and the amount of steam used can be reduced by taking in an appropriate amount of outside air in winter.
A significant energy saving effect can be expected. However,
Conventionally, computer control is a one-input, one-output control method in which the temperature of mixed air is used as an input parameter, and the mixing ratio of outside air and return air is used as an output parameter. And a sufficient control effect was not obtained.

【0004】[0004]

【発明が解決しようとする課題】そこで本発明は、雰囲
気制御を効果的に行うことが可能で、しかも省エネルギ
ー上すぐれた空気調和設備の制御方法を提供することを
課題としている。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a method of controlling an air conditioner which can effectively control the atmosphere and saves energy.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するた
め、本発明は次のような構成とした。すなわち、第1の
発明にかかる空気調和設備の制御方法は、外気ダクトか
外気ダンパを通して取り入れられる外気の温度、室内
から還流する還気の温度、取り入れられる外気の風量及
び還気の風量から外気と還気とが混合された混合空気の
温度を算出し、該算出された混合空気の温度と予め設定
されている目標温度との差TEと混合空気の温度の変化
率TEDとに基づく次のルールにしたがって、ファジイ
推論により混合空気の温度が目標温度に近づくように外
気ダクトに設けられている外気ダンパの開度を制御する
ことを特徴とする空気調和設備の制御方法。 IF TE=N*TED=N THEN DUOAR=N IF TE=N*TED=Z THEN DUOAR=NS IF TE=N*TED=P THEN DUOAR=NS IF TE=Z*TED=N THEN DUOAR=NS IF TE=Z*TED=Z THEN DUOAR=Z IF TE=Z*TED=P THEN DUOAR=PS IF TE=P*TED=N THEN DUOAR=PS IF TE=P*TED=Z THEN DUOAR=PS IF TE=P*TED=P THEN DUOAR=P ここに、DUOARは外気ダンパの操作量を、Nは「ダ
ンパ閉」を、NSは「少し閉」を、Zは「そのまま」
を、PSは「少し開」を、Pは「開」をそれぞれ表す。
Means for Solving the Problems In order to solve the above problems, the present invention has the following configuration. That is, the control method of the air-conditioning equipment according to the first invention is characterized in that the temperature of the outside air taken from the outside air duct through the outside air damper , the temperature of the return air returning from the room, the amount of the outside air taken in and the amount of the outside air are determined from The temperature of the mixed air in which the return air is mixed is calculated, the difference TE between the calculated temperature of the mixed air and a preset target temperature, and the change in the temperature of the mixed air.
Control of an air conditioner characterized by controlling the opening degree of an outside air damper provided in an outside air duct so that the temperature of mixed air approaches a target temperature by fuzzy inference according to the following rule based on the rate TED: Method. IF TE = N * TED = N THEN DUOAR = N IF TE = N * TED = Z THEN DUOAR = NS IF TE = N * TED = P THEN DUOAR = NS IF TE = Z * TED = N THEN DUOAR = NS IF TE = Z * TED = Z THEN DUOAR = Z IF TE = Z * TED = P THEN DUOAR = PS IF TE = P * TED = N THEN DUOAR = PS IF TE = P * TED = Z THEN DUOAR = PS IF TE = P * TED = P THEN DUOAR = P where DUOAR is the operation amount of the outside air damper, and N is
"Close", NS "slightly closed", Z "as is"
, PS represents “slightly open”, and P represents “open”.

【0006】上記外気の風量としては、外気取り入れダ
クト内に設けた位置可変式の風速計によって測定される
複数位置の風速の平均値を採用するのが高精度の制御を
行う上で効果的である。
It is effective for high-precision control to employ an average value of wind speeds at a plurality of positions measured by a position-variable anemometer provided in an outside air intake duct as the outside air flow rate. is there.

【0007】また、第2の発明にかかる空気調和設備の
制御方法は、算出された混合空気の温度と予め設定され
ている目標温度とを比較して、混合空気の温度が目標温
度に近づくように外気取り入れ量を制御する空気調和設
備の制御方法において、前記混合空気の目標温度を、
近の河川を流れる水の温度に基づいて次のルールに従っ
てファジイ推論により決定する。 IF TK=LL THEN TA=H IF TK=L THEN TA=O IF TK=O THEN TA=L IF TK=H THEN TA=LL ここに、TKは河川の水温を、TAは目標温度を、LL
は「極めて低い」を、Lは「低い」を、Oは「中位」
を、Hは「高い」をそれぞれ表す。 付近の河川(工業用
水等) を流れる水の温度は、季節によって変化するが、
1日の温度変化が小さいため、目標温度をこれに関連づ
けて制御することにより、季節に適した制御パタ−ンを
客観的に選択することができるからである。この目標温
度は、実験結果や過去の経験から、その季節、気温等に
応じて最も好ましい雰囲気が得られるものをあらかじめ
設定しておく。この目標温度の選択もファジイ推論で行
うのが効果的である。
Further, in the control method of the air conditioner according to the second invention, the calculated temperature of the mixed air is compared with a preset target temperature so that the temperature of the mixed air approaches the target temperature. Air conditioning system to control the outside air intake
The target temperature of the mixed air ,
Follow these rules based on the temperature of the water flowing through nearby rivers
Fuzzy inference. IF TK = LL THEN TA = HI F TK = L THEN TA = O IF TK = O THEN TA = L IF TK = H THEN TA = LL where TK is the water temperature of the river, TA is the target temperature, and LL
Is "very low", L is "low", O is "medium"
And H represents “high”. Rivers nearby (industrial
Water, etc.) varies depending on the season,
Since the daily temperature change is small, the target temperature is
In this case, the control pattern suitable for the season can be objectively selected. The target temperature is set in advance so that the most preferable atmosphere can be obtained according to the season, the temperature, and the like based on experimental results and past experiences. It is effective to select the target temperature by fuzzy inference.

【0008】[0008]

【実施例】以下、本発明の実施例について具体的に説明
する。図1は本発明を実施した空調システムの構成説明
図で、室1の雰囲気制御のために4基の空気調和機2,
…が設置されている。4基の空気調和機2(A,B,
C,D)のうちBで示す1基は予備用で、常時は3基
(A,C,D)が稼働している。
Embodiments of the present invention will be specifically described below. FIG. 1 is an explanatory diagram of the configuration of an air conditioning system embodying the present invention.
… Is installed. Four air conditioners 2 (A, B,
One of the units indicated by B in C, D) is reserved, and three units (A, C, D) are always operating.

【0009】空気調和機2は、外気取り入れダクト5と
還気取り入れダクト6及び送風ダクト7を備え、これら
外気取り入れダクト5と還気取り入れダクト6にはそれ
ぞれ風量調節用の外気ダンパ5aと還気ダンパ6aが設
けられている。また、送風ダクト7には送風ダンパ7a
と送風ファン9が設けられている。送風ファン9は空気
調和機2の混合空気を室1内へ送風するもので、その風
量は送風ファン9の前後の差圧をマノメータ等で測定す
ることにより求められる。
The air conditioner 2 includes an outside air intake duct 5, a return air intake duct 6, and a ventilation duct 7, and the outside air intake duct 5 and the return air intake duct 6 are each provided with an external air damper 5a for adjusting the air volume and a return air intake duct. A damper 6a is provided. Further, the blower duct 7 has a blower damper 7a.
And a blower fan 9 are provided. The blower fan 9 blows the mixed air of the air conditioner 2 into the room 1, and the amount of air is obtained by measuring a differential pressure across the blower fan 9 with a manometer or the like.

【0010】送風ファン9によって送風される空気は室
1内の機械設備設置位置付近に吐出され、室内の空気は
地下に設けられた還流路10を通って前記還気ダクト6
に還流させられる。12は、還流ファンで、還気の一部
は排気ダクト13から外部へ排出される。13aは、排
気ダクトのダンパである。なお、空気調和機2内部には
エアフイルタ14のほかにラジエータ式のヒータ15と
クーラ16及び加湿器17等が設けられている。
[0010] The air blown by the blower fan 9 is discharged to the vicinity of the installation position of the mechanical equipment in the room 1, and the air in the room passes through a return passage 10 provided in the basement.
To reflux. Reference numeral 12 denotes a recirculation fan, and a part of return air is discharged from the exhaust duct 13 to the outside. 13a is a damper of the exhaust duct. Note that, in addition to the air filter 14, a radiator-type heater 15, a cooler 16, a humidifier 17, and the like are provided inside the air conditioner 2.

【0011】各空気調和機2の外気ダクト入り口付近に
は、ロッドレスシリンダ18によって移動可能に支持さ
れた風速計19が設けられている。そしてこの風速計に
より、外気取り入れ口の風速を複数箇所で測定するよう
になっている。ダクトの入口では、位置によって風速が
異なるのが一般的であるので、このようにして測定され
た複数箇所の風速から平均的風速を算出するのが好まし
い。測定位置可変式の風速計を用いる代わりに、複数個
の風速計を設置しておいてもよいが、気流の抵抗となる
恐れがあるので、位置可変式のものを使用するのが好ま
しい。また、外気ダクトの付近には、外気取り入れ口付
近の外気温度を測定する外気温度センサ20が設けられ
ている。この外気温度センサ20は、4基の空気調和機
に共用されるようになっている。一方、各空気調和機2
の還気ダクト6には還流する空気の温度を検出する還気
温度センサ21が設けられている。更に、この工場の付
近を流れる工業用水路の水温を検出する水温センサ25
が設けられており、その検出信号が図2に示す制御装置
30へ供給されるようになっている。
An anemometer 19 movably supported by a rodless cylinder 18 is provided near the entrance of the outside air duct of each air conditioner 2. The anemometer measures the wind speed at the outside air intake at a plurality of locations. Since the wind speed generally differs depending on the position at the entrance of the duct, it is preferable to calculate the average wind speed from the thus measured wind speeds at a plurality of locations. Instead of using a measurement position variable anemometer, a plurality of anemometers may be installed, but it is preferable to use a variable position anemometer because there is a risk of airflow resistance. An outside air temperature sensor 20 for measuring the outside air temperature near the outside air intake is provided near the outside air duct. The outside air temperature sensor 20 is shared by four air conditioners. On the other hand, each air conditioner 2
The return air duct 6 is provided with a return air temperature sensor 21 for detecting the temperature of the returning air. Further, a water temperature sensor 25 for detecting the water temperature of an industrial waterway flowing near the factory.
Is provided, and the detection signal is supplied to the control device 30 shown in FIG.

【0012】図2は上記各ダンパの制御システムを表す
もので、多数の細長い羽根を有するブラインド式の各ダ
ンパがエアシリンダS,…で開閉されるようになってお
り、この開閉用エアシリンダにソレノイドバルブV,…
を介してエアが供給され、ダンパの開閉が行われるよう
になっている。ソレノイドバルブVの開閉を制御する制
御装置30には、上記風速計19、外気センサ20、還
気センサ21、水温センサ25等の検出データが入力さ
れ、必要な計算とファジイ制御が行われる。
FIG. 2 shows a control system for each of the above-mentioned dampers. Each of blind type dampers having a large number of elongated blades is opened and closed by air cylinders S,. Solenoid valve V, ...
The air is supplied through the opening and closing of the damper. Detection data from the anemometer 19, the outside air sensor 20, the return air sensor 21, the water temperature sensor 25, and the like are input to the control device 30 that controls opening and closing of the solenoid valve V, and necessary calculations and fuzzy control are performed.

【0013】次にこの空気調和設備の制御方法について
説明する。まず、水温センサ25で検出された工業用水
路の水温TKを用いて目標温度TAを設定する。この目
標温度の設定は、図3、図4に示すメンバーシップ関数
と表1に示すファジイルールに基づくファジイ推論によ
って行われる。
Next, a control method of the air conditioner will be described. First, the target temperature TA is set using the water temperature TK of the industrial water channel detected by the water temperature sensor 25. The setting of the target temperature is performed by fuzzy inference based on the membership functions shown in FIGS. 3 and 4 and the fuzzy rules shown in Table 1.

【0014】[0014]

【表1】 [Table 1]

【0015】例えば、水温TKの値が14.7度Cの時
は目標温度は23.6度Cとなる。図及び表中、LLは
「極めて低い」を、Lは「低い」を、Oは「中位」を、
Hは「高い」をそれぞれ表す。なお、この目標温度の設
定をファジイ推論で行わない場合は、従来と同様に、季
節、気温等に基づいて熟練者が最適と思われる目標温度
を定めればよい。
[0015] For example, the target temperature when the value of the water temperature TK is 14.7 ° C is 23.6 degrees C. In the figures and tables, LL is “extremely low”, L is “low”, O is “medium”,
H represents “high” respectively. If the setting of the target temperature is not performed by fuzzy inference, the skilled person may determine the optimum target temperature based on the season, temperature, and the like, as in the related art.

【0016】 次に、外気温度、還気温度、外気風速を各
センサで検出するとともに、外気ダクト5から取り入れ
られる外気風量QGを算出する。この外気風量QGは、
外気風速(風速計を移動させて例えば4箇所の風速を測
定し、平均値を取る)と外気ダクトの開口面積から算出
される。得られた外気風量QGと、送風ファン9の全圧
によって計算される送風量QSから還気風量QKを算出
する。送風量QSから外気風量QGを差し引けば還気風
量QKが求められる。また、外気温度、還気温度、外気
風量QG、還気風量QK、送風量QSから混合空気温度
を算出する。
Next, the outside air temperature, return air temperature, together with the outside air wind velocity detected by the sensors, calculates the outside air air volume QG be incorporated from the outside air duct 5. This outside air volume QG is
It is calculated from the outside air wind speed (measure the wind speed at four locations by moving the anemometer and take an average value) and the opening area of the outside air duct. A return air volume QK is calculated from the obtained outside air volume QG and the air volume QS calculated by the total pressure of the blower fan 9. The return air volume QK is obtained by subtracting the outside air volume QG from the air volume QS. Further, a mixed air temperature is calculated from the outside air temperature, the return air temperature, the outside air volume QG, the return air volume QK, and the air volume QS.

【0017】 算出された混合空気温度と目標空気温度を
比較し、その差TEと、混合空気温度の変化率TED
(所定時間例えば5分前の混合空気温度と現在の温度と
を比較して得られる)を用いて、ファジイ推論により、
混合空気温度が目標空気温度に近づくように外気ダンパ
の開度を制御する。この制御は、表2のファジイルー
ル、および図5、図6、図7のメンバーシップ関数に基
づいて行われる。表および図中、DUOARは外気ダン
パの操作量を、Nは「ダンパ閉」を、NSは「少し閉」
を、Zは「そのまま」を、PSは「少し開」を、Pは
「開」をそれぞれ表す。なお、外気ダンパと還気ダンパ
の開度は、トータルで100%になるように制御する。
The calculated mixed air temperature is compared with the target air temperature, and the difference TE and the change rate TED of the mixed air temperature are compared.
(Obtained by comparing a predetermined time, for example, the mixed air temperature 5 minutes ago with the current temperature), by fuzzy inference,
The opening degree of the outside air damper is controlled so that the mixed air temperature approaches the target air temperature. This control is performed based on the fuzzy rules shown in Table 2 and the membership functions shown in FIGS. 5, 6, and 7. In the tables and figures, DUOAR is the operation amount of the outside air damper, N is "damper closed", and NS is "slightly closed".
, Z represents “as is”, PS represents “slightly open”, and P represents “open”. The opening degree of the outside air damper and the return air damper is controlled so as to be 100% in total.

【0018】[0018]

【表2】 [Table 2]

【0019】いま、水温が14.7度C、外気温度が1
8.1度C、還気温度が28.2度C、外気風速が4.
5m/s、外気風量が2678m、送風量が5467
、還気風量が2789m、混合空気温度が22.
8度Cの時、実際の制御状態では、外気ダンパ開度が5
4%、還気ダンパ開度が45%、排気ダンパ開度が52
%、室内圧が1.55mmAqであった。
When the water temperature is 14.7 ° C. and the outside air temperature is 1
8.1 degree C, return air temperature 28.2 degree C, outside air velocity 4.
5 m / s, outside air volume 2678 m 3 , air volume 5467
m 3, return air air volume 2789m 3, mixed air temperature 22.
At 8 degrees C, in the actual control state, the outside air damper opening is 5 degrees.
4%, return air damper opening 45%, exhaust damper opening 52
%, And the room pressure was 1.55 mmAq.

【0020】 以上は混合空気温度の制御について述べた
が、混合空気温度と室内圧の制御を行う場合は、表3の
ファジイルールと図8のメンバーシップ関数に基づいて
制御を行う。ここに、PEは内圧を、PEDは内圧変化
率を、DUEAは排気ダンパの操作量を、DUOAMは
外気ダンパの操作量を、ELは「非常に低い」をEHは
「非常に高い」をそれぞれ表す。他の記号については前
記と同様である。例えば、上記3基の稼働空気調和機の
うち、1基は混合空気の温度制御を、他の2基は混合空
気の温度制御と内圧制御を行うようにすれば効率的であ
る。
[0020] The above has described the control of the mixed air temperature, when performing control of the mixed air temperature and the chamber pressure controls based on fuzzy rules and membership functions of FIG. 8 in Table 3. Here, PE is the internal pressure, PED is the internal pressure change rate, DUEA is the operation amount of the exhaust damper, DUOAM is the operation amount of the outside air damper, EL is “very low”, and EH is “very high”. Represent. Other symbols are the same as described above. For example, it is efficient if one of the three working air conditioners controls the temperature of the mixed air and the other two controls the temperature and the internal pressure of the mixed air.

【0021】[0021]

【表3】 [Table 3]

【0022】[0022]

【発明の効果】以上に説明したように、本発明によれ
ば、ファジイ推論によって外気の取り入れ量を制御し、
外気の温度を有効に利用して空気調和設備の運転を行う
ので、エネルギー効率を改良することができるととも
に、最適の室内雰囲気を維持できるようになった。制御
用の目標温度を河川の水温に基づいて決定すれば、より
客観的な制御を行うことができるので好ましい。
As described above, according to the present invention, the intake amount of outside air is controlled by fuzzy inference,
Since the air conditioner is operated by effectively using the temperature of the outside air, energy efficiency can be improved and an optimum indoor atmosphere can be maintained. It is preferable to determine the target temperature for control based on the water temperature of the river because more objective control can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】空気調和設備の制御システムを表す構成説明図
である。
FIG. 1 is an explanatory diagram illustrating a configuration of a control system of an air conditioner.

【図2】バルブの操作を表す制御説明図である。FIG. 2 is a control explanatory diagram showing an operation of a valve.

【図3】メンバ−シップ関数を表すグラフである。FIG. 3 is a graph showing a membership function.

【図4】メンバ−シップ関数を表すグラフである。FIG. 4 is a graph showing a membership function.

【図5】メンバ−シップ関数を表すグラフである。FIG. 5 is a graph showing a membership function.

【図6】メンバ−シップ関数を表すグラフである。FIG. 6 is a graph showing a membership function.

【図7】メンバ−シップ関数を表すグラフである。FIG. 7 is a graph showing a membership function.

【図8】メンバ−シップ関数を表すグラフである。FIG. 8 is a graph showing a membership function.

【符号の説明】[Explanation of symbols]

1 室 2 空気調和機 5 外気ダクト 5a 外気ダンパ 6 還気ダクト 6a 還気ダンパ 9 送風ファン 1 room 2 air conditioner 5 outside air duct 5a outside air damper 6 return air duct 6a return air damper 9 ventilation fan

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) F24F 11/02 102 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int. Cl. 7 , DB name) F24F 11/02 102

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 外気ダクトから外気ダンパを通して取り
入れられる外気の温度、室内から還流する還気の温度、
取り入れられる外気の風量及び還気の風量から外気と還
気とが混合された混合空気の温度を算出し、該算出され
た混合空気の温度と予め設定されている目標温度との差
TEと混合空気の温度の変化率TEDとに基づく次のル
ールにしたがって、ファジイ推論により混合空気の温度
が目標温度に近づくように外気ダクトに設けられている
外気ダンパの開度を制御することを特徴とする空気調和
設備の制御方法。 IF TE=N*TED=N THEN DUOAR=N IF TE=N*TED=Z THEN DUOAR=NS IF TE=N*TED=P THEN DUOAR=NS IF TE=Z*TED=N THEN DUOAR=NS IF TE=Z*TED=Z THEN DUOAR=Z IF TE=Z*TED=P THEN DUOAR=PS IF TE=P*TED=N THEN DUOAR=PS IF TE=P*TED=Z THEN DUOAR=PS IF TE=P*TED=P THEN DUOAR=P ここに、DUOARは外気ダンパの操作量を、Nは「ダ
ンパ閉」を、NSは「少し閉」を、Zは「そのまま」
を、PSは「少し開」を、Pは「開」をそれぞれ表す。
A temperature of outside air taken in from an outside air duct through an outside air damper , a temperature of return air returning from a room,
The temperature of the mixed air in which the outside air and the return air are mixed is calculated from the intake air volume and the return air volume, and the difference between the calculated mixed air temperature and a preset target temperature is calculated.
The next rule based on the TE and the rate of change of the temperature of the mixed air TED
Controlling the opening degree of an outside air damper provided in the outside air duct such that the temperature of the mixed air approaches the target temperature by fuzzy inference according to the rules. IF TE = N * TED = N THEN DUOAR = N IF TE = N * TED = Z THEN DUOAR = NS IF TE = N * TED = P THEN DUOAR = NS IF TE = Z * TED = N THEN DUOAR = NS IF TE = Z * TED = Z THEN DUOAR = Z IF TE = Z * TED = P THEN DUOAR = PS IF TE = P * TED = N THEN DUOAR = PS IF TE = P * TED = Z THEN DUOAR = PS IF TE = P * TED = P THEN DUOAR = P where DUOAR is the operation amount of the outside air damper, and N is
"Close", NS "slightly closed", Z "as is"
, PS represents “slightly open”, and P represents “open”.
【請求項2】 外気の風量を外気ダクト内に設けた位置
可変式の風速計によって測定される複数位置の風速から
算出する特許請求の範囲第1項に記載の空気調和設備の
制御方法。
2. The control method for an air conditioner according to claim 1, wherein the flow rate of the outside air is calculated from wind speeds at a plurality of positions measured by a position variable anemometer provided in the outside air duct.
【請求項3】 外気ダクトから取り入れられる外気の温
度、室内から還流する還気の温度、取り入れられる外気
の風量及び還気の風量から外気と還気とが混合された混
合空気の温度を算出し、該算出された混合空気の温度と
予め設定されている目標温度とを比較して、混合空気の
温度が目標温度に近づくように外気取り入れ量を制御す
る空気調和設備の制御方法において、前記混合空気の目
標温度を、付近の河川を流れる水の温度に基づいて次の
ルールに従ってファジイ推論に より決定することを特徴
とする空気調和設備の制御方法。IF TK=LL THEN TA=H IF TK=L THEN TA=O IF TK=O THEN TA=L IF TK=H THEN TA=LL ここに、TKは河川の水温を、TAは目標温度を、LL
は「極めて低い」を、Lは「低い」を、Oは「中位」
を、Hは「高い」をそれぞれ表す。
3. The temperature of the mixed air in which the outside air and the return air are mixed is calculated from the temperature of the outside air taken in from the outside air duct, the temperature of the return air returning from the room, the amount of the outside air taken in, and the amount of the return air. Comparing the calculated temperature of the mixed air with a preset target temperature, and controlling the intake amount of outside air so that the temperature of the mixed air approaches the target temperature. Based on the temperature of the water flowing through the nearby river ,
The method of HVAC, characterized by further determining a fuzzy inference according to the rules. IF TK = LL THEN TA = HI F TK = L THEN TA = O IF TK = O THEN TA = L IF TK = H THEN TA = LL where TK is the water temperature of the river, TA is the target temperature, and LL
Is "very low", L is "low", O is "medium"
And H represents “high”.
JP15871592A 1992-05-25 1992-05-25 Control method of air conditioning equipment Expired - Fee Related JP3239159B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15871592A JP3239159B2 (en) 1992-05-25 1992-05-25 Control method of air conditioning equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15871592A JP3239159B2 (en) 1992-05-25 1992-05-25 Control method of air conditioning equipment

Publications (2)

Publication Number Publication Date
JPH05322273A JPH05322273A (en) 1993-12-07
JP3239159B2 true JP3239159B2 (en) 2001-12-17

Family

ID=15677772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15871592A Expired - Fee Related JP3239159B2 (en) 1992-05-25 1992-05-25 Control method of air conditioning equipment

Country Status (1)

Country Link
JP (1) JP3239159B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07260236A (en) * 1994-03-22 1995-10-13 Toyo Techno Corp:Kk Fuzzy air conditioning controller for hotel guest room
JP3334073B2 (en) * 1998-01-29 2002-10-15 株式会社山武 Outside air cooling air conditioning control system and air conditioning control device
KR20000053853A (en) * 2000-04-27 2000-09-05 조정민 Fuzzy-VAV DDC control method using GA(Genetic Algorithm) to improve indoor environment in IB( Intelligent Building)
KR20010016087A (en) * 2000-10-31 2001-03-05 석진철 Outdoor Air Damper Control Method using Fuzzy Inference and Time scheduler in Office Building
JP3653730B2 (en) * 2002-06-28 2005-06-02 木村工機株式会社 Heat pump air conditioning system
JP4579810B2 (en) * 2005-11-08 2010-11-10 株式会社山武 Air conditioning control system

Also Published As

Publication number Publication date
JPH05322273A (en) 1993-12-07

Similar Documents

Publication Publication Date Title
JP2688374B2 (en) Method and apparatus for controlling air flow and pressure in air conditioning
CA3014479C (en) Integrated heat and energy recovery ventilator system
US4821526A (en) Air conditioning apparatus
KR910012626A (en) Air conditioner
JP3239159B2 (en) Control method of air conditioning equipment
JP3194220B2 (en) VAV control system
JPH08257332A (en) Air-conditioner
JPH0763404A (en) Air conditioner
Seem et al. A damper control system for preventing reverse airflow through the exhaust air damper of variable-air-volume air-handling units
JPS61217641A (en) Ventilating facility for controlling absolute interior pressure
Yuill et al. Development of a fan airflow station for airflow control in VAV systems
JPS59153046A (en) Concentrated suction/exhaust air device
JP2884705B2 (en) Air conditioner
Krarti et al. Analysis of the Impact of CO 2-Based Demand-Controlled Ventilation Strategies on Energy Consumption.
JP2661274B2 (en) Air conditioner
JPH0781725B2 (en) Ventilation air conditioner
Smith et al. Simulations of a novel demand-controlled room-based ventilation system for renovated apartments
JP2536234B2 (en) Air conditioner
JP2004333183A (en) Wind speed sensor device and ventilator
JPH023104B2 (en)
JP2861255B2 (en) Air conditioner
Wheeler et al. Evaluating greenhouse mechanical ventilation system performance, part 3 of 3
Mingsheng Liu PhD et al. Impacts of static pressure reset on VAV system air leakage, fan power, and thermal energy
JPS6266043A (en) Air conditioner
JPH0315106B2 (en)

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081012

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081012

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091012

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091012

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees