JP2536234B2 - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JP2536234B2
JP2536234B2 JP2123639A JP12363990A JP2536234B2 JP 2536234 B2 JP2536234 B2 JP 2536234B2 JP 2123639 A JP2123639 A JP 2123639A JP 12363990 A JP12363990 A JP 12363990A JP 2536234 B2 JP2536234 B2 JP 2536234B2
Authority
JP
Japan
Prior art keywords
air
blower
damper
control
adjusting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2123639A
Other languages
Japanese (ja)
Other versions
JPH0420736A (en
Inventor
裕 瀬下
英雄 五十嵐
哲治 岡田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2123639A priority Critical patent/JP2536234B2/en
Publication of JPH0420736A publication Critical patent/JPH0420736A/en
Application granted granted Critical
Publication of JP2536234B2 publication Critical patent/JP2536234B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は各部屋の室温を独立に調節できる可変風量
制御システムを採用した主ダクトおよび枝ダクトを有す
る空気調和装置に関するものである。
Description: TECHNICAL FIELD The present invention relates to an air conditioner having a main duct and a branch duct that employs a variable air volume control system capable of independently adjusting the room temperature of each room.
〔従来の技術〕[Conventional technology]
従来の送風機風量を制御する可変風量制御システムを
採用した空気調和装置として、送風機により冷風若しく
は温風をダクトを介して各部屋に分配して提供するもの
がある。しかし、各部屋に分岐された枝ダクトは、この
分岐点から各部屋までの長さが各々相違しているのが常
であり、これらの各分岐ダクトの送風抵抗には各々差異
がある。また、ダクト取付工事の不具合、例えば、ダク
ト断面形状の歪等による変形、或いはダクト内への異物
の介在等によっても各ダクトの送風抵抗は影響を受け
る。
2. Description of the Related Art As an air conditioner that employs a conventional variable air volume control system that controls the air volume of a blower, there is an air conditioner that distributes cold air or hot air to each room via a duct. However, the branch ducts branched into each room usually have different lengths from the branch point to each room, and the branch ducts have different blow resistances. Further, the blow resistance of each duct is also affected by a defect in the duct installation work, for example, a deformation of the duct cross-sectional shape due to distortion or the like, or the inclusion of foreign matter in the duct.
かかる状態、特に、後者の場合において、共通の送風
用風路部分、即ち、主ダクトの根元部分の圧力を検出し
て送風機の駆動を制御すると、下流側の圧力損失の差異
を無視することになり、各部屋毎に精度のよい送風制
御、ひいては室温の制御ができない。
In such a state, in particular, in the latter case, if the drive of the blower is controlled by detecting the pressure of the common blower air duct portion, that is, the root portion of the main duct, the difference in the pressure loss on the downstream side is ignored. As a result, it is impossible to control the air flow in each room with high accuracy, and thus to control the room temperature.
以下に示す従来例は、各部屋に送風される前の主ダク
トの根元部の圧力を検出して、送風機の駆動を制御する
ものである。
In the conventional example shown below, the pressure at the root of the main duct before being blown into each room is detected to control the drive of the blower.
これらの従来例を代表する具体例として、日本冷凍協
会発行の冷凍空調便覧(新版・第4版応用編)の第2章
・空調システムの41ペーシに記載されている図2・10
(a)の例を選び、その動作について以下説明する。
As a concrete example that represents these conventional examples, refer to Chapter 2 of the Refrigeration and Air Conditioning Handbook published by the Japan Refrigeration Association (new edition, 4th edition, application), page 41 of the air conditioning system.
The example of (a) is selected and its operation will be described below.
第6図は前記冷凍空調便覧に記載の従来の空気調和装
置を示す構成図である。
FIG. 6 is a configuration diagram showing a conventional air conditioner described in the Refrigeration and Air Conditioning Handbook.
図において、1は空気調和の対象となる被空調室で、
この図では、4部屋の場合を示している。2は被空調室
1の天井内等に配設され冷風または温風の送風源として
機能する室内機である集中送風手段、3は空気中の塵芥
等を除去して空気を浄化するエアーフィルタ、4は空気
を冷却または加熱する熱交換器、5は冷風または温風を
送風する送風機である。この室内機2はエアーフィルタ
3、熱交換機4、及び送風機5で構成されている。6は
室内機2の空気吹出口に連通する主ダクト、7はこの主
ダクト6から各被空調室1の数に応じて分岐した枝ダク
ト、8は各枝ダクト7部に装着され各被空調室1への送
風量を調整する絞り形式の送風調整ユニット、9はこの
絞り形式の送風調整ユニット8内に回動可能に取付けら
れているダンパ、10は枝ダクト7の末端に位置する吹出
口、11は被空調室1の扉の下方部に配設されている吸込
口、12は被空調室1外の廊下の天井面に配設されている
天井吸込口、13は天井吸込口12と室内機2の吸込口とを
連通する吸込ダクトである。14は各被空調室1内に据付
けた室温設定及び室温検出用のルームサーモスタット、
15は主ダクト6内で送風機5からの送風温度を検出する
温度検出器、16は同じく主ダクト6内で送風機5からの
送風による風圧を検出する圧力検出器、17は熱交換器4
に接続され熱交換器4での熱変換動作を支配するヒート
ポンプ等の熱源機である。
In the figure, 1 is an air-conditioned room to be air-conditioned,
In this figure, the case of four rooms is shown. 2 is a centralized air-blowing means that is an indoor unit that is disposed in the ceiling of the air-conditioned room 1 or the like and functions as a blast source of cold air or warm air. 3 is an air filter that removes dust in the air and purifies the air. Reference numeral 4 is a heat exchanger for cooling or heating air, and 5 is a blower for blowing cold air or warm air. The indoor unit 2 is composed of an air filter 3, a heat exchanger 4, and a blower 5. 6 is a main duct communicating with the air outlet of the indoor unit 2, 7 is a branch duct branched from the main duct 6 according to the number of each air-conditioned room 1, and 8 is each air-conditioner installed in each branch duct 7 part. A throttle type air blow adjusting unit for adjusting the amount of air blown into the chamber 1, a damper 9 rotatably mounted in the throttle type air blow adjusting unit 8, and a blower outlet 10 located at the end of the branch duct 7. , 11 is a suction port arranged below the door of the air-conditioned room 1, 12 is a ceiling suction port arranged on the ceiling surface of the corridor outside the air-conditioned room 1, and 13 is a ceiling suction port 12. It is a suction duct that communicates with the suction port of the indoor unit 2. 14 is a room thermostat for setting and detecting room temperature installed in each air-conditioned room 1,
Reference numeral 15 is a temperature detector that detects the temperature of air blown from the blower 5 in the main duct 6, 16 is a pressure detector that also detects air pressure from the blower 5 in the main duct 6, and 17 is a heat exchanger 4
Is a heat source device such as a heat pump that is connected to the heat exchanger 4 and controls the heat conversion operation in the heat exchanger 4.
従来のダクト方式の集中冷暖房用の空気調和装置は上
記のように構成されており、熱交換器4で冷却または加
熱した空気を送風機5で冷風または温風として主ダクト
6及び/または枝ダクト7を介して複数の被空調室1の
各室内に分配し送風する集中送風手段2、及び前記各枝
ダクト7部に装着され前記各被空調室1への冷風または
温風の送風量をダンパ9の開閉により調整する送風調整
手段である絞り形式の送風調整ユニット8を有してい
る。
The conventional duct-type air conditioner for centralized heating and cooling is configured as described above, and the air cooled or heated by the heat exchanger 4 is used as cool air or warm air by the blower 5 and the main duct 6 and / or the branch duct 7 are used. A centralized blower 2 for distributing and blowing air into each of the plurality of air-conditioned rooms 1 via the air-conditioner, and a damper 9 mounted on each of the branch ducts 7 for supplying cold air or warm air to the air-conditioned room 1. It has a diaphragm type air blow adjusting unit 8 which is an air blow adjusting means for adjusting by opening and closing.
つぎに、上記のような構成の従来の空気調和装置の動
作について説明する。
Next, the operation of the conventional air conditioner having the above configuration will be described.
まず、各ルームサーモスタット14で使用者等が設定し
た設定温度と検出された現在の実際の室温との温度差に
応じて絞り形式の送風調整ユニット8のダンパ9の開度
を任意の位置に各々調節する。このダンパ9の開度に応
じて主ダクト6内の圧力も変化する。この圧力の変化は
圧力検出器16で検出され、予め設定した設定圧力となる
ように送風機5による送風容量を調整する。また、送風
量の変化に伴い熱交換器4の出口側の送風温度も変化す
るため、この変化を温度検出器15が検出し、予め設定し
た送風温度となるように熱源機17の能力を制御する。
First, according to the temperature difference between the set temperature set by the user or the like in each room thermostat 14 and the detected actual room temperature, the opening degree of the damper 9 of the throttle type air flow adjusting unit 8 is set to an arbitrary position. Adjust. The pressure in the main duct 6 also changes according to the opening degree of the damper 9. This change in pressure is detected by the pressure detector 16, and the blower capacity by the blower 5 is adjusted so that the preset pressure is obtained. Further, since the temperature of the air blown on the outlet side of the heat exchanger 4 also changes with the change in the amount of air blow, the temperature detector 15 detects this change and controls the capacity of the heat source unit 17 so that the air temperature reaches a preset air flow temperature. To do.
このような一連の制御により、略一定温度に調節され
た適量適温の空気が吹出口10から被空調室1内に吹出さ
れる。すなわち、各被空調室1内の熱負荷の大小に応じ
た風量で吹出される。また、被空調室1内を空調した空
気は吸込出口11から廊下等の空間を通り天井吸込口12に
流入し、吸込ダクト13を経て再び室内機2に戻る。そし
て、再度、上記の動作に従って同一の流れを繰返す。
By such a series of control, an appropriate amount and temperature of air, which is adjusted to a substantially constant temperature, is blown into the air-conditioned room 1 from the air outlet 10. That is, the air volume is blown out according to the magnitude of the heat load in each air-conditioned room 1. Further, the air conditioned in the air-conditioned room 1 flows into the ceiling suction port 12 from the suction outlet 11 through a space such as a corridor, and returns to the indoor unit 2 again via the suction duct 13. Then, the same flow is repeated again according to the above operation.
上記のように、従来の一般的な絞り形式の送風調整ユ
ニット8を用いたダクト方式の集中冷暖房用の空気調和
装置では、各被空調室1内の熱負荷の変動に応じて送風
温度と送風圧力との最適値を決定し、これらの値が略一
定となるように熱源機17と送風機5の容量を制御してい
る。
As described above, in the duct type air conditioner for centralized cooling and heating using the conventional general throttle type air blow adjusting unit 8, the air blow temperature and the air blow according to the fluctuation of the heat load in each air-conditioned room 1. The optimum values for the pressure are determined, and the capacities of the heat source unit 17 and the blower 5 are controlled so that these values are substantially constant.
なお、上記のような主ダクト6内の圧力変化を制御指
標としない装置が特公昭60−47497号公報に開示されて
いる。これは、各吹出口の端末風量制御ユニットに風速
センサとしての機能をもたせて送風機5等を制御するも
のである。そして、この装置では、ダンパ9が全開とな
って送風条件が最も劣勢にある送風調整ユニットが設定
風量以下の出力を発した場合に、この出力に基づいて送
風機5の送風量を増大するようにし、送風機5を常に必
要最小能力に制御している。
A device that does not use the pressure change in the main duct 6 as a control index is disclosed in Japanese Patent Publication No. 60-47497. In this, the terminal air volume control unit at each outlet has a function as a wind speed sensor to control the blower 5 and the like. Further, in this device, when the damper 9 is fully opened and the blower adjusting unit having the most inferior blower condition outputs an output of the set airflow or less, the blower 5 increases the airflow of the blower 5 based on this output. , The blower 5 is always controlled to the minimum required capacity.
〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]
上記のような従来の空気調和装置では、主ダクト6の
根元圧力を一定にするように、根元圧力を制御指標とし
た送風機5の送風容量の制御では、各分岐ダクトの送風
抵抗が各々相違するため、各分岐ダクトを通過する風
量、即ち、各被空調室1への供給風量を適正に制御でき
なかった。
In the conventional air conditioner as described above, in order to make the root pressure of the main duct 6 constant, in controlling the air blowing capacity of the blower 5 using the root pressure as a control index, the air blowing resistance of each branch duct is different. Therefore, the amount of air passing through each branch duct, that is, the amount of air supplied to each air-conditioned room 1 cannot be properly controlled.
また、ダクト取付工事の不具合、例えばダクト断面形
状の歪等による変形、或いはダクト内への異物の介在等
により送風障害が分岐ダクトに存在する場合には、上記
の各被空調室1への供給風量を適正に維持することは特
に困難であった。
Further, in the case where there is a blower obstruction in the branch duct due to a defect in the duct installation work, such as deformation due to distortion of the duct cross-sectional shape, or the inclusion of foreign matter in the duct, supply to each of the above-mentioned air-conditioned rooms 1 It was especially difficult to maintain the proper air volume.
なお前記、特公昭60−47497号公報に開示されている
ような装置では、各室内の吹出口での風速を測定して適
正な風量を得ることができるものの、各端末風量制御ユ
ニット等を風速センサを必要とするため、大掛りな設備
となり極めて高価となっていた。通常、この種の空気調
和装置の端末は5〜15程度もあり、この価格の高低は極
めて重要であった。
In addition, in the device as disclosed in Japanese Patent Publication No. 60-47497, although it is possible to obtain the proper air volume by measuring the air velocity at the air outlet in each room, the wind velocity of each terminal Since a sensor is required, it is a large-scale facility and extremely expensive. Usually, there are about 5 to 15 terminals of this type of air conditioner, and the high and low prices are extremely important.
この発明は、上記の問題点を解消して成されたもの
で、簡易な構成及び手段により、送風機の容量制御が適
切に行なえ、かつ各被空調室への通風量が適切に制御で
きる空気調和装置を提供することを目的とするものであ
る。
The present invention has been made to solve the above problems, and an air conditioner capable of appropriately controlling the capacity of a blower and appropriately controlling the amount of ventilation to each air-conditioned room by a simple configuration and means. The purpose is to provide a device.
〔課題を解決するための手段〕[Means for solving the problem]
このため、この発明に係る空気調和装置は、送風機と
熱交換器を有し該熱交換器で熱交換した空気を前記送風
機に接続した主ダクト及び枝ダクトを介して複数の被空
調室に送風する集中送風手段と、前記各枝ダクトに装着
され前記被空調室への冷風または温風の送風量をダンパ
の開閉により調整する送風調整手段と、前記送風調整手
段のダンパの開閉を制御するダンパ制御手段と、前記送
風機に供給する電源を所定の周波数に設定する送風機制
御手段と、前記送風機からの送風量を風量検出器により
検出して実際の送風量を測定する風量測定手段と、前記
送風機制御手段と風量測定手段とダンパ制御手段の各出
力により、前記各送風調整手段の全開時に送風機の設定
周波数における送風量および送風圧力差から各枝ダクト
の通風損失特性を求め、該通風損失特性と既知のダンパ
の開閉度合に対するダンパの通風損失特性とに基づい
て、空気調和運転時に、各送風調整手段に必要な送風圧
力差のうちの最大値を求め、該送風圧力差最大値のとき
各送風調整手段が要求風量となる各ダンパの開閉度にダ
ンパ制御手段を制御し、送風調整手段の要求風量の総和
に対する前記送風圧力差最大値となる周波数に送風機制
御手段を制御する演算処理手段とを備えたことを特徴と
する構成によって、前記の目的を達成しようとするもの
である。
Therefore, the air conditioner according to the present invention has a blower and a heat exchanger, and blows the air that has exchanged heat with the heat exchanger to a plurality of air-conditioned rooms via a main duct and a branch duct connected to the blower. Centralized air blowing means, air blowing adjusting means mounted on each of the branch ducts to adjust the air blowing amount of cold air or warm air to the air-conditioned room by opening and closing a damper, and a damper for controlling the opening and closing of the damper of the air blowing adjusting means. Control means, blower control means for setting the power supplied to the blower to a predetermined frequency, air volume measuring means for measuring the actual air flow rate by detecting the air flow rate from the blower with an air flow rate detector, and the blower By the outputs of the control means, the air volume measuring means, and the damper control means, the ventilation loss characteristics of each branch duct are obtained from the air volume and the air pressure difference at the set frequency of the air blower when the air adjustment means are fully opened. , The maximum value of the blast pressure difference required for each blast adjusting means during the air-conditioning operation based on the ventilation loss characteristic and the ventilation loss characteristic of the damper with respect to the known opening / closing degree of the damper, and the blast pressure difference At the maximum value, each air blow adjusting means controls the damper control means to the degree of opening and closing of each damper to obtain the required air volume, and controls the blower control means to the frequency at which the air blow pressure difference has the maximum value with respect to the sum of the air volume required by the air blow adjusting means. The above-described object is achieved by a configuration characterized by including an arithmetic processing means for performing the above.
〔作 用〕[Work]
この発明に係る空気調和装置は、以上の構成により、
まずダンパ制御手段が送風調整手段のダンパの1台を全
開とするとともに他を全閉とする制御を行う。
The air conditioner according to the present invention has the above configuration.
First, the damper control means performs control to fully open one of the dampers of the air flow adjusting means and fully close the other.
ついで、送風機制御手段によって、あらかじめ設定さ
れた所定の周波数の電力を送風機に入力する。さらに、
このときの送風機の送風量を風量検出器により検出して
風量測定手段で測定する。そして、上記のダンパ制御手
段によるダンパの開閉情報及び送風機制御手段による送
風機の運転周波数情報及び風量測定手段による送風量の
測定値及び既知のダンパの開閉角度に対するその通風損
失特性情報から演算処理手段はこれらの関係を演算して
テーブル化或いは定式化する。
Then, the blower control means inputs electric power of a preset predetermined frequency to the blower. further,
The air flow rate of the blower at this time is detected by the air flow rate detector and measured by the air flow rate measuring means. Then, the calculation processing means from the damper opening / closing information by the damper control means, the operation frequency information of the blower by the blower control means, the measured value of the air flow rate by the air volume measuring means, and the ventilation loss characteristic information for the known opening / closing angle of the damper, These relationships are calculated and tabulated or formulated.
この一連の動作は送風調整手段の数だけ行われ、各枝
ダクトに所定の風量を送風するには、送風機の運転周波
数及び送風調整手段のダンパの開閉度合をいかに制御す
べきかの情報を蓄積する。
This series of operations is performed by the number of blower adjusting means, and in order to blow a predetermined air volume to each branch duct, information on how to control the operating frequency of the blower and the opening / closing degree of the damper of the blower adjusting means is accumulated. .
そして、実際の空気調和運転のときには、演算処理手
段は上記の蓄積情報に基づいて、送風機の運転周波数及
び送風調整手段のダンパの開閉度合を制御して、送風機
の運転を必要充分な容量に制御し、また各被空調室に適
量の冷風または温風を設定風量に応じて適切に供給す
る。
Then, during the actual air conditioning operation, the arithmetic processing means controls the operating frequency of the blower and the opening / closing degree of the damper of the blower adjusting means on the basis of the above-mentioned accumulated information to control the operation of the blower to a necessary and sufficient capacity. In addition, an appropriate amount of cold air or warm air is appropriately supplied to each air-conditioned room according to the set air volume.
〔実施例〕〔Example〕
以下、この発明に係る空気調和装置を実施例により説
明する。
The air conditioner according to the present invention will be described below with reference to embodiments.
第1図はこの発明の一実施例である空気調和装置の風
量制御システムを示す構成図である。なお、図中、符号
2、4から9まで、および14で示す部分は前記従来例の
構成部分と同一または相当する部分であり、重複説明を
省略する。
FIG. 1 is a configuration diagram showing an air volume control system of an air conditioner according to an embodiment of the present invention. In the figure, the parts indicated by reference numerals 2, 4 to 9 and 14 are the same as or correspond to the constituent parts of the above-mentioned conventional example, and the duplicated description will be omitted.
この空気調和装置も従来例と同様に、熱源機(図示せ
ず)に接続された熱交換器4で冷却または加熱した空気
を送風機5で冷風または温風として主ダクト6及び枝ダ
クト7を介して複数の被空調室1の各室内に送風する集
中送風手段2、及び前記各枝ダクト7に装着され前記各
被空調室1への冷風または温風の送風量をダンパ9の開
閉により調整する送風調整手段8を有している。また、
各被空調室1には室温設定および室温検出用のルームサ
ーモスタット14を備え、演算処理手段23に接続されてい
る。また、この空気調和装置の通常の空気調和運転は従
来より周知の運転動作に準じており、熱源機(図示せ
ず)の温度・発熱量制御も従来例に準じているので説明
省略し、この発明の特徴である風量制御について以下説
明する。
In this air conditioner, as in the conventional example, the air cooled or heated by the heat exchanger 4 connected to the heat source unit (not shown) is blown by the blower 5 as cold air or hot air through the main duct 6 and the branch duct 7. Centralized air-blowing means 2 for blowing air into each of the plurality of air-conditioned rooms 1, and the branch ducts 7 installed to adjust the amount of cold air or warm air to the air-conditioned rooms 1 by opening and closing a damper 9. It has a blower adjusting means 8. Also,
Each air-conditioned room 1 is provided with a room thermostat 14 for setting and detecting room temperature, and is connected to the arithmetic processing means 23. In addition, the normal air conditioning operation of this air conditioner conforms to the conventionally known operation, and the temperature / heat generation amount control of the heat source unit (not shown) also conforms to the conventional example, so description thereof is omitted. The air volume control, which is a feature of the invention, will be described below.
先ず、この空気調和装置の試運転モードについて説明
する。
First, the test operation mode of this air conditioner will be described.
第1図おいて、19は主ダクト6の根元部に配設されて
いる風量検出器であり、集中送風手段2からの送風量を
検出する。20は各送風調整手段8のダンパ9の開度を制
御するダンパ制御手段である。このダンパ9には各ダン
パ9の開閉動作を個々に行なう駆動機構(図示せず)が
接続されており、ダンパ制御手段20からの開度信号に応
じて各々の駆動機構を作動させ、対応するダンパ9の開
度を制御する。21は風量検出器19の検出信号に基づき実
際の送風量を測定する風量測定手段である。22は送風機
に供給する電源を所定の周波数に設定する送風機制御手
段である。23は前記送風機制御手段22と風量測定手段21
とダンパ制御手段20の各出力と、ダンパの開度による通
風損失特性の既知情報により送風調整手段8の通過風量
とダンパ9の開閉度合と送風機5の電源周波数との関係
を演算し、ダンパ制御手段20および送風機制御手段22を
制御する演算処理手段である。この演算処理手段23は風
量測定手段21からの測定風量出力と送風機制御手段22か
らの送風機運転周波数の出力とダンパ制御手段20からの
当該ダンパ開閉度情報出力と、既知のダンパ開度とその
通風損失特性情報を入力として、これらの関係を演算評
価し、テーブル化或いは定式化し、各ダクト内の送風抵
抗を算出する。
In FIG. 1, reference numeral 19 denotes an air flow detector arranged at the base of the main duct 6 for detecting the air flow from the concentrated air blowing means 2. Reference numeral 20 is a damper control means for controlling the opening degree of the damper 9 of each air flow adjusting means 8. A drive mechanism (not shown) that individually opens and closes each damper 9 is connected to the damper 9, and each drive mechanism is operated in response to an opening signal from the damper control means 20 to respond to it. The opening degree of the damper 9 is controlled. Reference numeral 21 is an air volume measuring means for measuring the actual air volume based on the detection signal of the air volume detector 19. Reference numeral 22 is a blower control means for setting the power supplied to the blower to a predetermined frequency. 23 is the blower control means 22 and the air volume measuring means 21
The output of the damper control means 20 and the known information of the ventilation loss characteristics depending on the opening degree of the damper are used to calculate the relationship between the air flow rate of the blower adjusting means 8, the opening / closing degree of the damper 9, and the power supply frequency of the blower 5 to control the damper. It is an arithmetic processing means for controlling the means 20 and the blower control means 22. The arithmetic processing means 23 includes a measured air volume output from the air volume measuring means 21, an output of the blower operating frequency from the blower control means 22, an output of the damper opening / closing degree information from the damper control means 20, a known damper opening degree and its ventilation. By inputting the loss characteristic information, these relations are arithmetically evaluated and tabulated or formulated to calculate the ventilation resistance in each duct.
次に、上記のように構成された空気調和装置の演算処
理手段23の機能及び動作の一例について、第2図を参照
して説明する。第2図はこの発明の一実施例の空気調和
装置に用いる送風機5の運転周波数と風量と圧力との関
係を示す送風特性図である。
Next, an example of the function and operation of the arithmetic processing means 23 of the air conditioner configured as described above will be described with reference to FIG. FIG. 2 is a blast characteristic diagram showing the relationship between the operating frequency, the air volume, and the pressure of the blower 5 used in the air conditioner of one embodiment of the present invention.
第2図において、縦軸は送風機5による静圧P、横軸
は風量Q、実線は送風機5の特性曲線、破線は所定のダ
ンパ9に至る枝ダクト7等の送風抵抗を示す抵抗曲線で
ある。実線で示す特性曲線のパラメータは送風機5の運
転周波数Rである。なお、通常パラメータRに対するQ
−Pの関係は既知である。
In FIG. 2, the vertical axis is the static pressure P by the blower 5, the horizontal axis is the air volume Q, the solid line is the characteristic curve of the blower 5, and the broken line is the resistance curve showing the blow resistance of the branch duct 7 or the like reaching the predetermined damper 9. . The parameter of the characteristic curve shown by the solid line is the operating frequency R of the blower 5. Note that Q for the normal parameter R
The -P relationship is known.
すなわち、ひとつのダンパ9を全開とし、他のダンパ
のすべてを全閉とし、このときの送風機5の運転周波数
をR1としたとき、実際の送風量がQ1となったとすると、
上記の既知のQ−P−Rの関係から、圧力損失(すなわ
ち送風圧力差)P1が求める。一般に、送風圧力差Pと風
量Qは下記の関係を有している。
That is, assuming that one damper 9 is fully opened, all the other dampers are fully closed, and the operating frequency of the blower 5 at this time is R1, the actual blow rate is Q1.
The pressure loss (that is, the blast pressure difference) P1 is obtained from the above known Q-P-R relationship. Generally, the blowing pressure difference P and the air volume Q have the following relationship.
P=C×Q2 ここに、C:損失係数 したがって、送風機5の運転周波数をR1としたときの
送風量がQ1となる送風圧力差P1を演算すれば、未知係数
Cが定まるため、前記全開としたダンパ9の系統の枝ダ
クトの送風抵抗曲線(破線)が既知となり、その枝ダク
ト自体の損失係数C(ダンパ全開)を求め得る。
P = C × Q 2 Here, C: loss coefficient Therefore, if the blast pressure difference P1 at which the blast volume becomes Q1 when the operating frequency of the blower 5 is R1, the unknown coefficient C is determined. The blast resistance curve (broken line) of the branch duct of the system of the damper 9 is known, and the loss coefficient C (damper fully open) of the branch duct itself can be obtained.
さらに第3図のダンパ開閉角度と通風損失係数との特
性図に示すように、ダンパ9はその開閉角Diによって、
その通風損失係数CDが変化する。この開閉角Diと通風損
失係数CDの関係は、あらかじめ使用するダンパ9につい
て下記のような関数形で既知とすることができる。
Further, as shown in the characteristic diagram of the damper opening / closing angle and the ventilation loss coefficient in FIG. 3, the damper 9 is
The ventilation loss coefficient C D changes. The relationship between the opening / closing angle Di and the ventilation loss coefficient C D can be known in advance in the following functional form for the damper 9 to be used.
CD=F[Di] そして、ダンパ9の開閉度合による通風抵抗と前記枝
ダクトの送風抵抗は直列抵抗と考えられる。したがっ
て、ダンパ9の開度変化を含めた枝ダクトの全送風抵抗
CTは、両者の和(CT=C+CD)として与えることができ
る。以上のことより、当該枝ダクトの送風系統について
の送風圧力差Pと風量Qiとダンパ開度Diとの関係が以下
のように定まる。
C D = F [Di] The ventilation resistance due to the opening / closing degree of the damper 9 and the ventilation resistance of the branch duct are considered to be series resistance. Therefore, the total ventilation resistance of the branch duct including the change in the opening of the damper 9
C T can be given as the sum of both (C T = C + C D ). From the above, the relationship between the blower pressure difference P, the air flow Qi, and the damper opening Di in the blower system of the branch duct is determined as follows.
P=(C+F[Di])Qi2 そして、前述第2図の説明から、P,Qiに対応する運転
周波数Rが求められる。
P = (C + F [Di]) Qi 2 Then, the operating frequency R corresponding to P and Qi can be obtained from the description of FIG.
上記と同様な操作を他の送風調整手段8のダンパ9に
ついても行うことにより、各々の送風系統についての送
風機運転周波数Rと風量Qiとダンパ開度Diとの関係をテ
ーブル化或いは定式化できることになる。そしてこのテ
ーブル化或いは定式化した結果を用いることによって、
各送風調整手段8の通過風量をあらかじめ設定すれば集
中送風手段2の送風機運転周波数Rが定まった時の各送
風調整手段8のダンパ開度Diを各々算出してテーブル
化、或いは数式化できる。
By performing the same operation as described above on the damper 9 of the other blower adjusting means 8, the relation between the blower operating frequency R, the air volume Qi, and the damper opening Di can be tabulated or formulated for each blower system. Become. And by using the result of this table or formulation,
If the amount of air passing through each blower adjusting means 8 is set in advance, the damper opening Di of each blower adjusting means 8 when the blower operating frequency R of the centralized blower means 2 is determined can be calculated and made into a table or a mathematical expression.
したがって、上記のような演算処理を実施し、ダンパ
制御手段20と送風機制御手段22を制御する演算処理手段
23を用いて空気調和装置を構成することにより、従来よ
り要求されていた各被空調室1毎の精度の良い送風制御
が、集中送風手段2の送風機5に入力する電源周波数と
送風調整手段8のダンパ9の開度を制御することにより
可能である。
Therefore, the arithmetic processing means for executing the arithmetic processing as described above and controlling the damper control means 20 and the blower control means 22.
By configuring the air conditioner using 23, the highly accurate air blowing control for each air-conditioned room 1, which has been conventionally required, is input to the blower 5 of the centralized air blowing means 2 and the air blowing adjusting means 8 is provided. This is possible by controlling the opening of the damper 9.
そして、従来の例えば前記特公昭60−47497号公報で
開示されているような高価な風速センサを用いた風量検
出センサ機能を各被空調室に備える必要がない。
Further, it is not necessary to provide each air-conditioned room with a conventional air volume detection sensor function using an expensive air velocity sensor as disclosed in Japanese Patent Publication No. 60-47497.
次に、この実施例の空気調和装置の動作を説明する。 Next, the operation of the air conditioner of this embodiment will be described.
第4図はこの発明の一実施例の空気調和装置の試運転
時における制御動作例を示すフローチャートである。な
お、この制御動作は演算処理装置23に備えたマイクロコ
ンピュータの機能を利用して実施するものである。
FIG. 4 is a flow chart showing an example of control operation at the time of test operation of the air conditioner of one embodiment of the present invention. It should be noted that this control operation is carried out by utilizing the function of the microcomputer provided in the arithmetic processing unit 23.
なお、この試運転時の制御動作は、空気調和装置の試
運転時、装置または設備の変更時・定期点検時に実施す
るほか、最大通風量を必要とする被空調室の通風負荷の
変動その他、必要な最大送風圧力の変化が生ずるときに
実施することが望ましい。
This control operation during the trial run is performed during the trial run of the air conditioner, when changing the equipment or equipment, and during regular inspections, as well as fluctuations in the ventilation load of the air-conditioned room that require the maximum ventilation, and other necessary operations. It is desirable to carry out when the change of the maximum blowing pressure occurs.
まず、第4図ステップS1で運転モードが試運転モード
であるか否かを判断する。試運転モードでない場合に
は、以下に述べる一連の制御動作は行なわれない。試運
転モードである場合には、ステップS2で熱源機(図示せ
ず)の運転を停止し、ステップS3で送風機5の運転を開
始する。そして、ステップS4で枝ダクト7に接続されて
いる送風調整手段8のダンパ9の個数Nを設定し、ステ
ップS5で最初(I=1)のダンパ9を全開に設定し、残
りのダンパ9を全閉状態にする。このダンパ9の開閉制
御はダンパ制御手段20により行なわれる。ステップS6で
は送風機5の運転周波数が所定の値となるように送風機
制御手段22により制御する。
First, in step S1 in FIG. 4, it is determined whether the operation mode is the trial operation mode. When not in the trial run mode, the series of control operations described below are not performed. In the trial operation mode, the operation of the heat source unit (not shown) is stopped in step S2, and the operation of the blower 5 is started in step S3. Then, in step S4, the number N of the dampers 9 of the blower adjusting means 8 connected to the branch duct 7 is set, and in step S5, the first (I = 1) damper 9 is set to full open, and the remaining dampers 9 are set. Fully closed. The opening / closing control of the damper 9 is performed by the damper control means 20. In step S6, the blower control means 22 controls the operating frequency of the blower 5 to a predetermined value.
ステップS7ではその時の送風量を風量測定手段21によ
り測定する。そして、ステップS8では、ダンパ9の開度
とその通風損失特性情報を演算処理手段23に読み込む。
In step S7, the air flow rate at that time is measured by the air flow rate measuring means 21. Then, in step S8, the opening degree of the damper 9 and its ventilation loss characteristic information are read into the arithmetic processing means 23.
ステップS9では上記手順を行ったダンパ9がN番目の
ダンパ9か否かを判断する。未だN番目でない場合には
ステップS10でI=I+1として再度ステップS5に戻り
上記の動作を繰返す。したがって、上記の動作はI=1
からI=Nまでのダンパ9のすべてについて順次行なわ
れ、合計でN回繰返されることになる。そして、ステッ
プS9でI=N番目のダンパ9となったことを確認した場
合には、ステップS11で上記一連の動作で得た各ダンパ
9の開度、送風機5の駆動周波数及び送風量の各データ
からこれらの関係を演算し、各送風調整手段8について
テーブル化或いは定式化する。この演算動作は演算処理
手段23により行なう。
In step S9, it is determined whether or not the damper 9 that has performed the above procedure is the Nth damper 9. If it is not N-th, I = I + 1 is set in step S10, and the process returns to step S5 to repeat the above operation. Therefore, the above operation is I = 1
All of the dampers 9 to I = N are sequentially performed, and a total of N times are repeated. Then, when it is confirmed in step S9 that the I = Nth damper 9 is obtained, in step S11, the opening of each damper 9, the drive frequency of the blower 5, and the blown air amount obtained in the above series of operations are set. These relationships are calculated from the data, and a table or formulation is created for each blower adjusting means 8. This arithmetic operation is performed by the arithmetic processing means 23.
次に、上記のテーブル化或いは定式化した各ダンパ9
の開度、送風機5の駆動周波数、及び送風量の関係を用
いて行なわれるダンパ9及び送風機5の実際運転時の制
御動作例について説明する。
Next, each of the dampers 9 formed into the above table or formulated
An example of control operation at the time of actual operation of the damper 9 and the blower 5, which is performed by using the relationship among the opening degree, the drive frequency of the blower 5, and the blow rate, will be described.
第5図はこの発明の一実施例の空気調和装置の空気調
和運転時の制御動作例を示すフローチャートである。
FIG. 5 is a flow chart showing an example of control operation during air conditioning operation of the air conditioning apparatus of one embodiment of the present invention.
まず、ステップS21で各送風調整手段8について、上
記の演算処理手段23で各送風調整手段8毎に定式化或い
はテーブル化された風量、ダンパ開度、送風機5の駆動
周波数R及び既知であるRとQ−Pの関係を用いて、各
送風調整手段8における風量を設定風量とするときに、
ダンパ開度を全開とした場合の圧力損失Piを各々算出す
る。つぎに、ステップS22で各送風調整手段8の前記圧
力損失Piの最大値Pimaxを選出する。ステップS23では各
送風調整手段8について圧力損失PiがPimaxのときに各
設定風量を与える各々のダンパ開度を前記の関係から求
める。このとき、ステップS21で圧力損失PiがPimaxであ
った送風調整手段8のダンパ9の開度は当然全開状態と
なる。そして、ステップS24ではステップS23で求めたダ
ンパ開度をダンパ制御手段20を介して各々の送風調整手
段8に指示して、ダンパ9を動作させる。そして、ステ
ップS25で各送風調整手段8の要求風量の総和ΣQに対
して圧力損失の最大値Pimaxを与える電源周波数Rを設
定し、送風機制御手段22を介して、この設定値に基づい
て集中送風手段2の送風機5の駆動を制御する。
First, in step S21, for each air blow adjusting means 8, the air volume, the damper opening, the drive frequency R of the blower 5 and the known R which are formulated or tabulated for each air blow adjusting means 8 by the arithmetic processing means 23 described above. And QP, when the air volume in each air blow adjusting means 8 is set as the set air volume,
Calculate the pressure loss Pi when the damper opening is fully opened. Next, in step S22, the maximum value Pimax of the pressure loss Pi of each air flow adjusting means 8 is selected. In step S23, the damper opening degrees that give the respective set air volumes when the pressure loss Pi is Pimax for each of the air flow adjusting means 8 are obtained from the above relationship. At this time, the opening degree of the damper 9 of the air flow adjusting means 8 whose pressure loss Pi was Pimax in step S21 is naturally in the fully open state. Then, in step S24, the damper opening degree obtained in step S23 is instructed to each blower adjusting means 8 via the damper control means 20, and the damper 9 is operated. Then, in step S25, the power supply frequency R that gives the maximum value Pimax of the pressure loss to the sum ΣQ of the required air volumes of the respective air blow adjusting means 8 is set, and the blower control means 22 sets the centralized air blow based on this set value. The drive of the blower 5 of the means 2 is controlled.
このような制御動作を行なうことにより、例えば、前
記特公昭60−47497号公報で開示されているような、送
風動力を極小にするような運転制御をより簡易に実現で
きる。
By performing such control operation, it is possible to more easily realize the operation control for minimizing the blowing power as disclosed in Japanese Patent Publication No. 60-47497.
上記のように、この実施例では試運転モードのとき
に、ダンパ制御手段20が送風調整手段8のダンパ9の1
台を全開するとともに他を全閉とする制御を行う。
As described above, in this embodiment, when in the test operation mode, the damper control means 20 sets the damper 9 of the blower adjusting means 8 to one.
Control to fully open the platform and close the others.
ついで、送風機制御手段22は、あらかじめ設定された
所定の周波数となるように送風機制御手段22を制御す
る。さらに、このときの集中送風手段2の送風量を風量
検出器19により検出し風量測定手段21で測定する。そし
て、上記のダンパ制御手段20によるダンパ9の開閉情報
及び送風機制御手段22による送風機5の周波数情報及び
風量測定手段21による送風量の測定値及び既知のダンパ
9の開閉角度に対するその通風損失特性情報から演算処
理手段23はこれらの関係を演算してテーブル化或いは定
式化する。この一連の動作は送風調整手段8の数だけ行
われ、各枝ダクト7に所定の風量を送風するには、送風
機5の周波数及び送風調整手段8のダンパ9の開閉度合
をいかに制御すべきかの情報を蓄積する。
Next, the blower control means 22 controls the blower control means 22 so that the predetermined frequency is set in advance. Further, the amount of air blown by the centralized air blower 2 at this time is detected by the air flow detector 19 and measured by the air flow measuring means 21. Then, the opening / closing information of the damper 9 by the damper control means 20, the frequency information of the blower 5 by the blower control means 22, the measured value of the air flow rate by the air volume measuring means 21, and the ventilation loss characteristic information for the known opening / closing angle of the damper 9. From this, the arithmetic processing means 23 calculates these relations to form a table or a formulation. This series of operations is performed by the number of the air blow adjusting means 8, and how to control the frequency of the blower 5 and the opening / closing degree of the damper 9 of the air blow adjusting means 8 in order to blow a predetermined air volume to each branch duct 7. Accumulate information.
上記のようにして、各枝ダクト7の風路抵抗を事前に
検知し、各送風調整手段8の風量を間接的に推定して、
設定風量に対する適切なダンパ9の開閉度合及び送風機
5の運転周波数を求める。
As described above, the air passage resistance of each branch duct 7 is detected in advance, and the air volume of each air blow adjusting means 8 is indirectly estimated,
An appropriate opening / closing degree of the damper 9 and an operating frequency of the blower 5 with respect to the set air volume are obtained.
そして、実際の空気調和運転のときに、上記の各情報
に基づき、送風機5の運転周波数及び送風調整手段8の
ダンパの開閉度合を制御することにより、各被空調室1
に適量の冷風または温風を安定して供給できる。
Then, during the actual air conditioning operation, by controlling the operating frequency of the blower 5 and the opening / closing degree of the damper of the blower adjusting means 8 based on the above information, each air-conditioned room 1
It is possible to stably supply an appropriate amount of cold air or warm air.
したがって、この実施例では各ダクトの送風抵抗等に
応じて、極めて容易に適正風量の配分と送風動力の低減
を図ることができ、各被空調室1への供給風量を適正に
維持できる。しかも、これらの制御を風速センサ機能を
有する特殊な端末風量制御ユニット等を各被空調室ごと
に用いることなく簡易な構成で達成できる。この結果、
安価な構成により、効率のよい空気調和効果を実現でき
る。
Therefore, in this embodiment, it is possible to extremely easily distribute an appropriate air volume and reduce the air blowing power according to the air blowing resistance of each duct, and it is possible to appropriately maintain the air volume supplied to each air-conditioned room 1. Moreover, these controls can be achieved with a simple configuration without using a special terminal air volume control unit having a wind speed sensor function for each air-conditioned room. As a result,
With an inexpensive structure, an efficient air conditioning effect can be realized.
〔発明の効果〕〔The invention's effect〕
以上説明したように、この発明に係る空気調和装置
は、試運転のときに、ダンパ制御手段によるダンパの開
閉情報及び送風機制御手段による送風機の制御情報及び
風量測定手段による風量情報及び、既知のダンパの開度
とその通風損失特性情報とから演算処理手段はこれらの
各関係を演算してテーブル化或いは定式化することによ
り、各ダクトの風路抵抗を事前に検知し、各被空調室へ
の風量を間接的に推定し、設定風量に対する適正なダン
パの開閉度合及び送風機駆動電源の運転周波数を求める
ことができる。そして、実際の空気調和運転のときは、
上記の各情報に基づき、送風機の電源周波数及び送風調
整手段のダンパの開閉度合を演算処理手段によって制御
することにより、送風動力の低減を図ることができ、か
つ各被空調室への供給風量を適切に維持できる。しか
も、これらの制御を風速センサ等を備えた特殊な端末風
量測定ユニット等を各被空調室に備えることなく、簡易
な構成で達成できるので、経済的で効率のよい空気調和
装置を提供することができる。
As described above, the air conditioning apparatus according to the present invention, during the test operation, the opening / closing information of the damper by the damper control means, the control information of the blower by the blower control means, the air volume information by the air volume measuring means, and the known damper. The calculation processing means calculates each of these relations from the opening degree and the ventilation loss characteristic information, and forms a table or a formula to detect the air passage resistance of each duct in advance, and the air volume to each air-conditioned room. Can be indirectly estimated to determine the appropriate opening and closing degree of the damper and the operating frequency of the blower drive power source with respect to the set air volume. And in the actual air conditioning operation,
Based on the above information, by controlling the power supply frequency of the blower and the opening / closing degree of the damper of the blower adjusting means by the arithmetic processing means, it is possible to reduce the blower power and to reduce the supply air volume to each air-conditioned room. Can be maintained properly. Moreover, since these controls can be achieved with a simple structure without providing a special terminal air volume measuring unit equipped with a wind speed sensor or the like in each air-conditioned room, it is possible to provide an economical and efficient air conditioner. You can
【図面の簡単な説明】[Brief description of drawings]
第1図はこの発明に係る空気調和装置の一実施例の風量
制御システムを示す構成図、第2図は同上実施例に用い
る送風機の風量と圧力との関係を示す送風特性図、第3
図はダンパの開度と通風損失係数の関係を示す特性図、
第4図は同上実施例の試運転モードにおける制御動作例
を示すフローチャート、第5図は同上実施例の空気調和
運転時の制御動作例を示すフローチャート、第6図は従
来の空気調和装置を示す構成図である。 1は被空調室、2は集中送風手段、4は熱交換器、5は
送風機、6は主ダクト、7は枝ダクト、8は送風調整手
段、9はダンパ、14はルームサーモスタット、19は風量
検出器、20はダンパ制御手段、21は風量測定手段、22は
送風機制御手段、23は演算処理手段である。 なお、図中、同一符号は同一または相当部分を示す。
FIG. 1 is a configuration diagram showing an air volume control system of an embodiment of an air conditioner according to the present invention, FIG. 2 is an air blowing characteristic diagram showing a relation between air volume and pressure of a fan used in the same embodiment, and FIG.
The figure is a characteristic diagram showing the relationship between the damper opening and the ventilation loss coefficient.
FIG. 4 is a flow chart showing an example of control operation in the trial operation mode of the above embodiment, FIG. 5 is a flow chart showing an example of control operation during the air conditioning operation of the above embodiment, and FIG. 6 is a configuration showing a conventional air conditioner. It is a figure. 1 is an air-conditioned room, 2 is a centralized blower, 4 is a heat exchanger, 5 is a blower, 6 is a main duct, 7 is a branch duct, 8 is a blower adjusting means, 9 is a damper, 14 is a room thermostat, 19 is an air volume A detector, 20 is a damper control means, 21 is an air volume measuring means, 22 is a blower control means, and 23 is an arithmetic processing means. In the drawings, the same reference numerals indicate the same or corresponding parts.

Claims (1)

    (57)【特許請求の範囲】(57) [Claims]
  1. 【請求項1】送風機と熱交換器を有し該熱交換器で熱交
    換した空気を前記送風機に接続した主ダクト及び枝ダク
    トを介して複数の被空調室に送風する集中送風手段と、
    前記各枝ダクトに装着され前記被空調室への冷風または
    温風の送風量をダンパの開閉により調整する送風調整手
    段と、前記送風調整手段のダンパの開閉を制御するダン
    パ制御手段と、前記送風機に供給する電源を所定の周波
    数に設定する送風機制御手段と、前記送風機からの送風
    量を風量検出器により検出して実際の送風量を測定する
    風量測定手段と、前記送風機制御手段と風量測定手段と
    ダンパ制御手段の各出力により、前記各送風調整手段の
    全開時に送風機の設定周波数における送風量および送風
    圧力差から各枝ダクトの通風損失特性を求め、該通風損
    失特性と既知のダンパの開閉度合に対するダンパの通風
    損失特性とに基づいて、空気調和運転時に、各送風調整
    手段に必要な送風圧力差のうちの最大値を求め、該送風
    圧力差最大値のとき各送風調整手段が要求風量となる各
    ダンパの開閉度にダンパ制御手段を制御し、送風調整手
    段の要求風量の総和に対する前記送風圧力差最大値とな
    る周波数に送風機制御手段を制御する演算処理手段とを
    備えたことを特徴とする空気調和装置。
    1. A centralized blower for blowing air to a plurality of air-conditioned rooms through a main duct and a branch duct connected to the blower, the blower having a heat exchanger and the heat exchanged by the heat exchanger.
    Blower adjusting means attached to each of the branch ducts for adjusting the amount of cool air or warm air to the air-conditioned room by opening and closing a damper, damper control means for controlling the opening and closing of the damper of the air blow adjusting means, and the blower. Blower control means for setting the power supply to a predetermined frequency to a predetermined frequency, air volume measuring means for measuring the actual air volume by detecting the air volume from the blower by an air volume detector, the air blower control means and the air volume measuring means And each output of the damper control means, the ventilation loss characteristic of each branch duct is obtained from the amount of blown air and the difference in blowing pressure at the set frequency of the blower when the blower adjusting means is fully opened. Based on the ventilation loss characteristics of the damper, the maximum value of the blast pressure difference necessary for each blast adjusting means is obtained during the air conditioning operation, and the maximum value of the blast pressure difference is calculated. An arithmetic processing unit that controls the damper control unit according to the degree of opening and closing of each damper having the required air flow rate by each air flow adjustment unit, and controls the blower control unit to a frequency that has the maximum value of the air flow pressure difference with respect to the sum of the required air flow amounts of the air flow adjustment unit An air conditioner comprising:
JP2123639A 1990-05-14 1990-05-14 Air conditioner Expired - Lifetime JP2536234B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2123639A JP2536234B2 (en) 1990-05-14 1990-05-14 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2123639A JP2536234B2 (en) 1990-05-14 1990-05-14 Air conditioner

Publications (2)

Publication Number Publication Date
JPH0420736A JPH0420736A (en) 1992-01-24
JP2536234B2 true JP2536234B2 (en) 1996-09-18

Family

ID=14865568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2123639A Expired - Lifetime JP2536234B2 (en) 1990-05-14 1990-05-14 Air conditioner

Country Status (1)

Country Link
JP (1) JP2536234B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5856476B2 (en) * 2011-12-28 2016-02-09 アズビル株式会社 Air volume control system and air volume control method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6246156A (en) * 1985-08-22 1987-02-28 Mitsubishi Electric Corp Air-conditioning machine
JPS6284254A (en) * 1985-10-07 1987-04-17 Mitsubishi Electric Corp Air conditioner
JPH03102133A (en) * 1989-09-18 1991-04-26 Toshiba Corp Duct air conditioning system

Also Published As

Publication number Publication date
JPH0420736A (en) 1992-01-24

Similar Documents

Publication Publication Date Title
US4821526A (en) Air conditioning apparatus
KR930006880B1 (en) Air conditioning system
EP0192140B1 (en) Air conditioning method
EP0880661A2 (en) Air handling unit including control system that prevents outside air from entering the unit through an exhaust air damper
JPH1047738A (en) Vav type air conditioning system and its control method
US6089464A (en) Thermal dynamic balancer
JPH0763404A (en) Air conditioner
JP2536234B2 (en) Air conditioner
JP2661274B2 (en) Air conditioner
JP2884705B2 (en) Air conditioner
JP2661299B2 (en) Air conditioner
JP3016565B2 (en) Air conditioner
JP2861255B2 (en) Air conditioner
JP3194220B2 (en) VAV control system
JP3575118B2 (en) Air conditioning control device
JPH08189692A (en) Air conditioner
JP2692257B2 (en) Air conditioner
JP3087486B2 (en) Air conditioning system
JP2927105B2 (en) Air conditioning system
JP2980221B2 (en) Air conditioning system
JP2714250B2 (en) Air conditioner
JPH0842909A (en) Air conditioning system
JP2601054B2 (en) Air conditioner
JP2643531B2 (en) Air conditioner
JPH08200782A (en) Ventilating air conditioner

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070708

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080708

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090708

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100708

Year of fee payment: 14

EXPY Cancellation because of completion of term