JP2540749B2 - Air conditioner - Google Patents
Air conditionerInfo
- Publication number
- JP2540749B2 JP2540749B2 JP2221127A JP22112790A JP2540749B2 JP 2540749 B2 JP2540749 B2 JP 2540749B2 JP 2221127 A JP2221127 A JP 2221127A JP 22112790 A JP22112790 A JP 22112790A JP 2540749 B2 JP2540749 B2 JP 2540749B2
- Authority
- JP
- Japan
- Prior art keywords
- air
- blower
- damper
- opening
- branch duct
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Air Conditioning Control Device (AREA)
Description
【発明の詳細な説明】 [産業上の利用分野] この発明は、部屋などからなる被空調室の室温をそれ
ぞれ独立に調整できる可変風量制御システムを採用した
ダクト方式の集中冷暖房用の空気調和装置に関するもの
である。TECHNICAL FIELD The present invention relates to a duct type air conditioner for centralized cooling and heating which employs a variable air volume control system capable of independently adjusting the room temperature of an air-conditioned room such as a room. It is about.
[従来の技術] 第8図は、例えば日本冷凍協会発行の冷凍空調便覧
(新版・第4版応用編)の第2章・空調システムの41ペ
ージ、図2.10(a)に示された従来のダクト方式の集中
冷暖房用の空気調和装置を示すものであり、図におい
て、(1)は空気調和の対象となる被空調室で、この例
では4つの部屋の場合を示している。(2)はこの被空
調室の天井内等に配設され、冷風または温風の送風源と
して機能する室内機で、空気中の塵芥等を除去して空気
を浄化するエアーフィルタ(3)と、空気を冷却または
加熱するための熱交換器(4)と、この熱交換器(4)
にて熱交換された空気を送風するための送風機(5)と
によって構成されているものである。(6)はこの室内
機の空気吹出口に連通された主ダクト、(7)はこの主
ダクトから分岐し、上記各被空調室(1)と連通した枝
ダクトで、上記室内機(2)及び主ダクト(6)とで集
中送風手段を構成しているものである。(8)は上記各
枝ダクト(7)内に配設され、上記主ダクト(6)から
上記各被空調室(1)への送風量を調整するための送風
量調整手段である絞り形式の送風調整ユニットで、内部
に回転可能に取り付けられたダンパ(9)を有している
ものである。(10)は上記各枝ダクト(7)の末端に位
置した上記被空調室(1)への吹出口、(11)は上記各
被空調室(1)に設けられた扉の下方部に配設されてい
る吸込口、(12)は例えば上記被空調室(1)外の廊下
の天井面に設けられた天井吸込口、(13)はこの天井吸
込口と上記室内機(2)のフィルタ(3)が位置する吸
込口との間を連通する吸込ダクト、(14)は上記各被空
調室(1)内に据え付けられた室温設定及び室温検出用
のルームサーモスタット、(15)は上記室内機(2)の
近傍の主ダクト(6)内に設けられ、上記送風機(5)
からの送風温度を検出する温度検出器、(16)は上記室
内機(2)の近傍の主ダクト(6)内に設けられ、上記
送風機(5)からの送風による風圧を検出する圧力検出
器、(17)は上記室内機(2)の熱交換器(4)に接続
され、熱交換器(4)の熱交換動作を支配するヒートポ
ンプ等の熱源機である。[Prior Art] Fig. 8 shows the conventional refrigeration and air conditioning manual published by Japan Refrigeration Association (new edition, 4th edition, application), Chapter 2, page 41 of the air conditioning system, Fig. 2.10 (a). It shows a duct type air conditioner for centralized heating and cooling, and in the figure, (1) shows an air-conditioned room to be air-conditioned, and in this example, there is four rooms. (2) is an indoor unit that is disposed in the ceiling of this air-conditioned room and that functions as a blast source of cold air or warm air. It is an air filter (3) that removes dust in the air and purifies the air. A heat exchanger (4) for cooling or heating air, and this heat exchanger (4)
And a blower (5) for blowing the heat-exchanged air. (6) is a main duct that communicates with the air outlet of this indoor unit, (7) is a branch duct that branches from this main duct and communicates with each of the air-conditioned rooms (1), and the indoor unit (2) The main duct (6) and the main duct (6) form a centralized blower. (8) is arranged in each of the branch ducts (7), and is of a throttle type which is an air flow rate adjusting means for adjusting the air flow rate from the main duct (6) to each of the air-conditioned rooms (1). This is a blower adjusting unit having a damper (9) rotatably mounted inside. (10) is an outlet to the air-conditioned room (1) located at the end of each of the branch ducts (7), and (11) is located below the door provided in each of the air-conditioned rooms (1). A suction port is provided, (12) is, for example, a ceiling suction port provided on the ceiling surface of the corridor outside the air-conditioned room (1), and (13) is this ceiling suction port and the filter of the indoor unit (2). (3) Suction duct that communicates with the suction port in which it is located, (14) is a room thermostat for setting and detecting room temperature installed in each of the air-conditioned rooms (1), and (15) is the room The blower (5) is provided in the main duct (6) near the fan (2).
A temperature detector for detecting the temperature of air blown from the blower (16) is provided in the main duct (6) in the vicinity of the indoor unit (2), and is a pressure detector for detecting the wind pressure due to the air blown from the blower (5). , (17) are heat source devices such as a heat pump that are connected to the heat exchanger (4) of the indoor unit (2) and dominate the heat exchange operation of the heat exchanger (4).
次に、この様に構成された従来の集中冷暖房用の空気
調和装置の動作を説明する。まず、各ルームサーモスタ
ット(14)を使用者等が操作し、その操作によって設定
された温度と検出された現在の室温との温度差に応じて
送風量調整手段(8)はそのダンパ(9)の開度を任意
の位置に各々調整する。このダンパ(9)の開度に応じ
て主ダクト(6)内の圧力も変化する。この圧力の変化
は圧力検出器(16)によって検出され、予め設定された
設定圧力となるように送風機(5)の送風容量が調整さ
れる。一方、送風機(5)からの送風量が変化するに伴
い、熱交換器(4)の出口側の送風温度も変化し、この
温度変化を温度検出器(15)が検出し、予め設定された
送風温度となるように熱源機(17)の能力が制御され
る。Next, the operation of the conventional air conditioner for centralized heating and cooling configured as described above will be described. First, the room thermostat (14) is operated by a user or the like, and the air flow rate adjusting means (8) is controlled by the damper (9) according to the temperature difference between the temperature set by the operation and the detected current room temperature. Adjust the opening of each to any position. The pressure in the main duct (6) also changes according to the degree of opening of the damper (9). This change in pressure is detected by the pressure detector (16), and the blower capacity of the blower (5) is adjusted so as to reach a preset set pressure. On the other hand, as the amount of air blown from the blower (5) changes, the blowing temperature at the outlet side of the heat exchanger (4) also changes, and this temperature change is detected by the temperature detector (15) and set in advance. The capacity of the heat source device (17) is controlled so that the temperature of the air blown becomes the same.
このような一連の制御により、略一定温度に調整され
た適量適温の空気が各吹出口(10)から各被空調室
(1)内に吹き出されることになる。つまり、各被空調
室(1)内の熱負荷の大小に応じた風量が吹き出される
ことになる。また、被空調室(1)内を空調した空気は
吸込口(11)から廊下等の空間を通り、天井吸込口(1
2)に流入し、吸込ダクト(13)を経て室内機(2)に
戻り、再度、上記の動作に従って熱交換された空気が主
ダクト(6)及び枝ダクト(7)を介して被空調室
(1)に循環されて被空調室(1)を空調するものであ
る。By such a series of controls, an appropriate amount and temperature of air adjusted to a substantially constant temperature is blown out from each air outlet (10) into each air-conditioned room (1). That is, the air volume corresponding to the magnitude of the heat load in each air-conditioned room (1) is blown out. In addition, the air conditioned in the air-conditioned room (1) passes through a space such as a corridor from the suction port (11), and the ceiling suction port (1
2) flows into the indoor unit (2) through the suction duct (13), and the air that has undergone heat exchange according to the above operation again passes through the main duct (6) and the branch duct (7) to the air-conditioned room. It is circulated in (1) to air-condition the room to be air-conditioned (1).
要するに、上記のように構成された空気調和装置にあ
っては、各被空調室(1)内の熱負荷の変動に応じて送
風温度と送風圧力との最適値を決定し、これらの値が略
一定とするように熱源機(17)及び送風機(5)の容量
を適宜制御しているものである。In short, in the air conditioner configured as described above, the optimum values of the blast temperature and the blast pressure are determined according to the fluctuation of the heat load in each air-conditioned room (1), and these values are determined. The capacities of the heat source unit (17) and the blower (5) are appropriately controlled so as to be substantially constant.
しかるに、室内機(2)から各被空調室(1)までの
主及び枝ダクト(6)(7)の送風抵抗、主として各枝
ダクト(7)の送風抵抗が各々相違しているとともに、
ダクト取り付け工事の不具合、例えばダクト断面形状の
歪等による変形、ダクト内への異物の介在等による送風
障害が枝ダクト(7)に存在する場合にも、枝ダクト
(7)の送風抵抗が相違しているため、上記従来例のよ
うに主ダクト(6)の根元部分の圧力を検出してこの根
元圧力を一定にするようにしたものであっては、各枝ダ
クト(7)を通過する風量、つまり、各被空調室(1)
への供給風量を適正に維持することが非常に困難である
という問題点を有していた。However, the ventilation resistances of the main and branch ducts (6) and (7) from the indoor unit (2) to each air-conditioned room (1), mainly the ventilation resistances of the branch ducts (7) are different from each other, and
Even if the branch duct (7) is defective in duct installation work, for example, deformation due to distortion of the duct cross-sectional shape, or blast obstruction due to inclusion of foreign matter in the duct, the branch duct (7) has different ventilation resistance. Therefore, in the case where the pressure at the root portion of the main duct (6) is detected and the root pressure is made constant as in the above-mentioned conventional example, it passes through each branch duct (7). Air volume, that is, each air-conditioned room (1)
There was a problem that it was very difficult to maintain the proper amount of air supply to the.
この問題点を解決するために、例えば、特公昭60−47
497号公報に示された空気調和装置が提案されている。
この公報に示された空気調和装置は、各枝ダクト(7)
に風量検出器を設置し、この風量検出器からの検知信号
に基づいて対応した枝ダクト(7)に設置されたダンパ
の開度を制御するようにして各枝ダクト(7)ごとに異
なる微小な風量変動を自動的に制御して設定風量を保つ
ようにするとともに、風量検出器を送風機(5)の制御
センサとして使用するようしているものである。In order to solve this problem, for example, Japanese Patent Publication No.
An air conditioner disclosed in Japanese Patent No. 497 has been proposed.
The air conditioner disclosed in this publication has branch ducts (7).
An air flow detector is installed in each of the branch ducts (7) to control the opening degree of the damper installed in the corresponding branch duct (7) based on the detection signal from the air flow detector. In addition to automatically controlling such fluctuations in air volume to maintain the set air volume, the air volume detector is used as a control sensor for the blower (5).
[発明が解決しようとする課題] しかるに、上記公報に示された従来の空気調和装置に
あっては、各枝ダクト(7)にそれぞれ風量検出器を設
けているため、各枝ダクト(7)における送風量調整手
段が大掛かりなものとなり、しかも、通常、5〜15程度
の被空調室(1)の空調を行なっているため、非常に高
価なものとなってしまうという問題点を有していた。[Problems to be Solved by the Invention] However, in the conventional air conditioner disclosed in the above publication, since each branch duct (7) is provided with an air volume detector, each branch duct (7) There is a problem that the air flow rate adjusting means in (1) becomes large-scaled, and moreover, since the air-conditioned room (1) of about 5 to 15 is usually air-conditioned, it becomes very expensive. It was
この発明は、上記した点を鑑みてなされたものであ
り、簡易にして安価な構成により、送風機の容量制御が
適正に行なえ、各被空調室への供給風量を適正に維持で
きる空気調和装置を得ることを目的とするものである。The present invention has been made in view of the above points, and an air conditioner capable of appropriately controlling the capacity of a blower with a simple and inexpensive configuration and appropriately maintaining the amount of air supplied to each air-conditioned room. The purpose is to obtain.
[課題を解決するための手段] この発明に係わる空気調和装置は、熱交換器及び送風
機を有した室内機とこの室内機から送風された空気が導
通される主ダクトとこの主ダクトと複数の被空調室との
間にそれぞれ設けられた複数の枝ダクトとを有した集中
送風手段と、この集中送風手段の各枝ダクトにそれぞれ
装着され、被空調室への空気の送風量をダンパの開閉に
より調整する複数の送風量調整手段と、これらの複数の
送風量調整手段のダンパの開閉をそれぞれ制御するダン
パ制御手段と、集中送風手段の送風機の回転数を制御す
る送風機制御手段、集中送風手段の送風機からの送風量
を検出する風量検出手段と、集中送風手段の各枝ダクト
に対して、対応したダンパを全開とし、他の枝ダクトに
対応したダンパを全閉としたときの送風機の回転数及び
風量によって求められた通風抵抗値と各送風量調整手段
のダンパの開閉度合に対する通風特性と要求される各枝
ダクトにおける要求風量とを用いて各送風量調整手段の
ダンパの開度を決定する開度情報をダンパ制御手段に与
えるダンパ開度決定手段を備えたものである。[Means for Solving the Problems] An air conditioner according to the present invention includes an indoor unit having a heat exchanger and a blower, a main duct through which air blown from the indoor unit is conducted, and a plurality of main ducts. A centralized air blower having a plurality of branch ducts respectively provided between the air-conditioned room and each branch duct of the centralized air-blowing means, respectively, for opening / closing a damper for blowing air into the air-conditioned room. A plurality of air flow rate adjusting means, a damper control means for controlling the opening and closing of the dampers of the plurality of air flow rate adjusting means, a blower control means for controlling the number of rotations of the blower of the centralized air blower, and a centralized air blower. Of the blower when the corresponding damper is fully opened and the dampers corresponding to other branch ducts are fully closed for each branch duct of the centralized blower Using the ventilation resistance value obtained by the number of revolutions and the air flow rate, the ventilation characteristics with respect to the opening / closing degree of the damper of each air flow rate adjusting means, and the required air volume in each branch duct, the opening degree of the damper of each air flow rate adjusting means is determined. It is provided with a damper opening degree determining means for giving the opening degree information to be determined to the damper control means.
[作 用] この発明にあっては、ダンパ開度決定手段が、1つの
枝ダクトに対応したダンパを全開とし、他の枝ダクトに
対応したダンパを全閉としたときの送風機の回転数及び
風量によって求められた各枝ダクトに対する通風抵抗値
と各送風量調整手段のダンパの開閉度合に対する通風特
性と要求される各枝ダクトにおける要求風量とを用いて
各送風量調整手段のダンパの開度を決定する開度情報を
ダンパ制御手段に与え、ダンパ制御手段がこの開度情報
に基づいてダンパの開度を制御し、要求風量に対して各
枝ダクトにおける通風抵抗を考慮した適正な供給風量を
維持せしめるものである。[Operation] In the present invention, when the damper opening degree determining means fully opens the damper corresponding to one branch duct and fully closes the damper corresponding to another branch duct, Using the ventilation resistance value for each branch duct determined by the air flow rate, the ventilation characteristics for the opening / closing degree of the damper of each air flow rate adjusting means, and the required air volume in each branch duct required, the opening degree of the damper of each air flow rate adjusting means The damper control means is provided with opening degree information that determines the opening degree of the damper control means, and the damper control means controls the opening degree of the damper based on this opening degree information, and an appropriate supply air volume considering the ventilation resistance in each branch duct with respect to the required air volume. To maintain
[実施例] 以下に、この発明の一実施例を第1図に基づいて説明
すると、図において、(19)は主ダクト(6)の根元部
に配設され、集中送風手段の送風機(5)からの送風量
を検出する風量検出手段、(20)は各送風量調整手段
(8)のダンパの開閉、つまり開度を制御するダンパ制
御手段で、各ダンパ(9)の開閉動作を個々に行なう駆
動手段(図示せず)が接続されており、通常運転モード
時は、開度情報を受けて各々の駆動手段に開度信号を与
えて作動させ、対応するダンパ(9)の開度を制御し、
各枝ダクト(7)に対する通風抵抗値を求める試運転モ
ード時は、1つのダンパ(9)を全開とし他のダンパ
(9)を全閉とする開度信号をダンパの数だけ順次繰り
返して駆動手段に与え、ダンパ(9)の開度を制御する
ものである。(21)は上記風量検出手段(19)からの検
出信号を受け、送風機(5)からの実際の送風量を検
出、測定する風量測定手段、(22)は送風機(5)の回
転数を制御する送風機制御手段で、通常運転モード時は
上記風量測定手段(21)によって求められた送風機
(5)からの実際の総送風量が各被空調室(1)に要求
される要求風量の和と等しくなるように送風機(5)の
回転数を制御し、試運転モード時は送風機(5)の回転
数を一定に制御するものである。(23)は、この送風機
制御手段(22)と上記風量測定手段(21)とダンパ制御
手段(20)の各出力及び上記各送風量調整手段(8)の
ダンパ(9)の開閉度合に対する通風抵抗特性の情報に
より、ダンパ(9)の開閉度合と各枝ダクト(7)系統
の通風抵抗値との関係を演算する風量演算手段で、試運
転モード時に、集中送風手段の各枝ダクト(7)に対し
て、対応したダンパ(9)を全開とし、他の枝ダクト
(7)に対応したダンパ(9)を全閉としたときの、送
風機制御手段(22)からの送風機(5)の回転数及び上
記風量測定手段(21)からの風量出力によって通風抵抗
値を演算し、あるいはさらに、各枝ダクト(7)系統に
おける通風抵抗値と送風圧力と風量と送風量調整手段
(8)のダンパ(9)の開閉度合に対する通風抵抗特性
との関係を定式化あるいはテーブル化するものであり、
通常運転モード時に、試運転モード時に求められた各枝
ダクト(7)系統の通風抵抗値と、各送風量調整手段
(8)のダンパ(9)の開閉度合に対する通風特性と、
要求される各枝ダクト(7)における要求風量とを用い
て各送風量調整手段(8)のダンパ(9)の開度を決定
する開度情報をダンパ制御手段(20)に与えるダンパ開
度決定手段の機能を果たすものである。[Embodiment] An embodiment of the present invention will be described below with reference to FIG. 1. In the drawing, (19) is arranged at the root of the main duct (6) and a blower (5 (20) is an air flow rate detecting means for detecting the air flow rate from (4), and (20) is a damper control means for controlling the opening / closing of the damper of each air flow rate adjusting means (8), that is, the opening / closing operation of each damper (9). The driving means (not shown) is connected to each driving means, and in the normal operation mode, the opening information is given to each driving means in response to the opening information to operate the driving means (9). Control the
In the test operation mode in which the ventilation resistance value for each branch duct (7) is obtained, an opening signal for fully opening one damper (9) and fully closing the other damper (9) is sequentially repeated by the number of the dampers. To control the opening of the damper (9). (21) receives the detection signal from the air volume detection means (19) and detects and measures the actual air volume from the blower (5), and (22) controls the rotation speed of the blower (5). In the normal operation mode, the actual total air flow rate from the air blower (5) obtained by the air flow rate measurement means (21) is the sum of the required air flow rates required for each air-conditioned room (1) in the normal operation mode. The rotation speed of the blower (5) is controlled so as to be equal, and the rotation speed of the blower (5) is controlled to be constant in the trial operation mode. (23) is ventilation for each output of the blower control means (22), the air volume measuring means (21) and the damper control means (20), and the opening / closing degree of the damper (9) of each of the air flow rate adjusting means (8). An air volume calculation means for calculating the relationship between the opening / closing degree of the damper (9) and the ventilation resistance value of each branch duct (7) system based on the information on the resistance characteristic, and in the trial operation mode, each branch duct (7) of the centralized ventilation means. On the other hand, when the corresponding damper (9) is fully opened and the damper (9) corresponding to the other branch duct (7) is fully closed, the blower control means (22) rotates the blower (5). The ventilation resistance value is calculated based on the number and the air volume output from the air volume measuring means (21), or further, the ventilation resistance value, the air pressure, the air volume, and the air volume adjustment damper (8) in each branch duct (7) system. With the ventilation resistance characteristic with respect to the opening and closing degree of (9) Is intended to formulate or table of engagement,
In the normal operation mode, the ventilation resistance value of each branch duct (7) system obtained in the test operation mode, and the ventilation characteristic with respect to the opening / closing degree of the damper (9) of each air flow rate adjusting means (8),
The damper opening degree that gives the opening degree information for determining the opening degree of the damper (9) of each air flow rate adjusting means (8) to the damper control means (20) using the required air flow rate in each branch duct (7) It functions as a determining means.
次に、この様に構成された空気調和装置の動作につい
て説明する。まず、試運転モードの動作について説明す
る。ダンパ制御手段(20)が1つの枝ダクト(7)に対
応した送風量調整手段(8)のダンパ(9)を全開と
し、残り全ての枝ダクト(7)に対応した送風量調整手
段(8)のダンパ(9)を全閉とする。次いで、送風機
制御手段(22)が送風機(5)を一定の回転数で回転す
るように制御する。この状態において、風量検出手段
(19)が送風機(5)からの送風量を検出し、この検出
信号を風量測定手段(21)が受けて送風量を検出、測定
する。風量演算手段(23)は、ダンパ制御手段(20)か
らのダンパ(9)の開閉情報、つまりどの枝ダクト
(7)に対応したダンパ(9)が全開状態であるかの情
報と、送風機制御手段(22)からの送風機(5)の回転
数と、風量測定手段(21)からの送風機(5)の送風量
とを受け、全開状態のダンパ(9)が存在する枝ダクト
(7)系統の通風抵抗値を演算して求めて記憶しておく
とともに、この通風抵抗値と全開状態のダンパ(9)の
開閉度合に対するダンパ自身の通風抵抗特性とからその
対応した枝ダクト(7)系統に関する送風機(5)から
の送風量と送風機(5)の送風圧力とダンパ(9)の開
度との関係を定式化あるいはテーブル化して記憶してお
く。そして、他の枝ダクト(7)に対応したダンパ
(9)を全開として他の残りの枝ダクト(7)に対応し
たダンパ(9)を全閉として上記と同様に全開状態のダ
ンパ(9)が存在する枝ダクト(7)系統の通風抵抗値
を演算して求めて記憶しておくとともに、枝ダクト
(7)系統に関する送風機(5)からの送風量と送風機
(5)の送風圧力とダンパ(9)の開度との関係を定式
化あるいはテーブル化して記憶しておく。これを繰り返
して行ない、全ての枝ダクト(7)系統について同様に
演算し、その演算結果を記憶しておくものである。Next, the operation of the air conditioner thus configured will be described. First, the operation in the trial operation mode will be described. The damper control means (20) fully opens the damper (9) of the air flow rate adjusting means (8) corresponding to one branch duct (7), and the air flow rate adjusting means (8) corresponding to all the remaining branch ducts (7). ) Damper (9) is fully closed. Next, the blower control means (22) controls the blower (5) to rotate at a constant rotation speed. In this state, the air volume detecting means (19) detects the air volume from the blower (5), and the air volume measuring means (21) receives this detection signal to detect and measure the air volume. The air volume calculation means (23) controls the opening / closing information of the damper (9) from the damper control means (20), that is, information about which branch duct (7) the damper (9) is in the fully open state, and the blower control. A branch duct (7) system in which the fully open damper (9) is received by receiving the rotation speed of the blower (5) from the means (22) and the blown air volume of the blower (5) from the air volume measuring means (21). And calculates and stores the ventilation resistance value of the damper, and relates to the corresponding branch duct (7) system from the ventilation resistance value and the ventilation resistance characteristic of the damper itself with respect to the opening / closing degree of the damper (9) in the fully open state. The relationship between the amount of air blown from the blower (5), the blowing pressure of the blower (5), and the opening of the damper (9) is formulated or tabulated and stored. Then, the damper (9) corresponding to the other branch duct (7) is fully opened and the damper (9) corresponding to the other remaining branch ducts (7) is fully closed, similarly to the above, the damper (9) in the fully opened state. The ventilation resistance value of the branch duct (7) system in which there is a branch is calculated and stored, and the amount of air blown from the blower (5), the blower pressure of the blower (5), and the damper for the branch duct (7) system are stored. The relationship with the opening degree of (9) is formulated or tabulated and stored. By repeating this, the same operation is performed for all the branch duct (7) systems, and the operation result is stored.
この様にして各枝ダクト(7)系統全てにおける通風
抵抗値が求まるとともに、送風量と送風圧力とダンパ
(9)の開度との関係が定式化あるいはテーブル化され
ているものである。In this way, the ventilation resistance value in all the branch duct (7) systems is obtained, and the relationship between the air flow rate, the air flow pressure, and the opening degree of the damper (9) is formulated or tabulated.
この風量演算手段(23)における通風抵抗値及び定式
化あるいはテーブル化の演算についてさらに詳細に説明
する。集中送風手段における送風機(5)において、そ
の送風量と送風圧力の関係は第2図に示すようになって
おり、この関係は送風機(5)自身の特性を示すもので
あり、送風機(5)によって決まっているものである。
第2図において、縦軸は送風圧力Pを横軸は風量Qを、
実線は回転数Rをパラメータとした特性曲線をそれぞれ
示しているものであり、破線は所定のダンパ(9)に至
る枝ダクト(7)系統の通風抵抗値を示しているもので
ある。この特性曲線を利用することにより、各枝ダクト
(7)系統における通風抵抗値を求めることができるも
のである。つまり、1つのダンパ(9)を全開として残
りの全のダンパ(9)を全閉とした状態で、送風機
(5)を一定の回転数で回転させ、その時の送風量を風
量検出手段(19)及び風量測定手段(21)によって測定
すれば、第2図に示した特性曲線及び次式(1)から全
開とされたダンパ(9)が存在する枝ダクト(7)系統
の通風抵抗値が求まるものである。The ventilation resistance value and the formula or table calculation in the air volume calculation means (23) will be described in more detail. In the blower (5) of the centralized blower, the relationship between the blow rate and the blow pressure is as shown in FIG. 2, and this relationship shows the characteristics of the blower (5) itself, and the blower (5). It is decided by.
In FIG. 2, the vertical axis represents the blowing pressure P and the horizontal axis represents the air volume Q.
The solid lines show the characteristic curves with the rotational speed R as a parameter, respectively, and the broken line shows the ventilation resistance value of the branch duct (7) system leading to the predetermined damper (9). By using this characteristic curve, the ventilation resistance value in each branch duct (7) system can be obtained. That is, the blower (5) is rotated at a constant number of revolutions with one damper (9) fully opened and all the remaining dampers (9) fully closed, and the amount of air blown at that time is detected by the air volume detection means (19). ) And the air flow rate measuring means (21), the ventilation resistance value of the branch duct (7) system in which the fully opened damper (9) exists from the characteristic curve shown in FIG. 2 and the following equation (1) is obtained. It is something you can find.
Pi=Ci×Qi2 …(1) 但し、Pi、Ci、Qiはそれぞれ全開されたダンパ(9)
が存在するi番目の枝ダクト(7)系統の通風抵抗値を
求める際の送風圧力、通風抵抗係数(=通風抵抗値)、
送風量を示しているものであり、風量検出手段(19)及
び風量測定手段(21)によって風量Qiが得られるとこの
風量Qiに基づいて第2図の特性曲線から回転数Riにおけ
る送風圧力Piが求まり、この送風圧力Pi及び風量Qiによ
って通風抵抗値Ciが求まるものである。つまり、風量演
算手段(23)において風量測定手段(21)からの風量Qi
が入力されると、まず、第2図に示した特性曲線から回
転数RiにおけるQ−Pの関係式によって送風圧力Piを演
算し、この演算結果の送風圧力Piと風量Qiとから上式
(1)によって通風抵抗値Ciを演算するものである。な
お、上記したものであっては、第2図の特性曲線によっ
て回転数RiにおけるQ−Pの関係式から送風圧力Piを求
めたものとしているが、第3図に示すように第2図の特
性から前もって風量Qiと回転数Riと送風圧力Piとの関係
をテーブル化しておき、このテーブルから送風圧力Piを
求めるようにしても良いものである。Pi = Ci × Qi 2 (1) However, Pi, Ci and Qi are fully open dampers (9)
Of the i-th branch duct (7) system in which is present, the ventilation pressure, the ventilation resistance coefficient (= ventilation resistance value),
It shows the air flow rate, and when the air flow rate detecting means (19) and the air flow rate measuring means (21) obtain the air flow rate Qi, the air flow rate Pi at the rotational speed Ri from the characteristic curve of FIG. 2 based on this air flow rate Qi. And the ventilation resistance value Ci is determined by the blowing pressure Pi and the air flow rate Qi. That is, in the air volume calculating means (23), the air volume Qi from the air volume measuring means (21)
2 is input, first, the blast pressure Pi is calculated from the characteristic curve shown in FIG. 2 by the relational expression of QP at the rotational speed Ri, and the above formula (from the blast pressure Pi and the air volume Qi as the result of this calculation is calculated. The ventilation resistance value Ci is calculated according to 1). In the above description, the blast pressure Pi is obtained from the relational expression of QP at the rotational speed Ri by the characteristic curve of FIG. 2, but as shown in FIG. It is also possible to make a table of the relationship between the air volume Qi, the number of revolutions Ri, and the blowing pressure Pi in advance from the characteristics, and obtain the blowing pressure Pi from this table.
この様にして各枝ダクト(7)系統における通風抵抗
値が求まると、各枝ダクト(7)におけるダンパ(9)
の開閉度合Diと送風機(5)の風量Qi及び送風圧力Piと
の関係を風量演算手段(23)によって演算する。各枝ダ
クト(7)に設けられた送風量調整手段(8)における
ダンパ(9)の開閉度合Di(=開閉角)に対するその通
風損失係数CDは、送風量調整手段(8)自身によって
決まっており、第4図に示す特性を持ち、次式(2)で
示される関数形になっているものである。When the ventilation resistance value in each branch duct (7) system is obtained in this way, the damper (9) in each branch duct (7)
The air volume calculation means (23) calculates the relationship between the opening and closing degree Di of the air blower and the air volume Qi and the air pressure Pi of the blower (5). The ventilation loss coefficient CD for the opening / closing degree Di (= opening / closing angle) of the damper (9) in the air flow rate adjusting means (8) provided in each branch duct (7) is determined by the air flow rate adjusting means (8) itself. 4 has the characteristics shown in FIG. 4 and has the function form shown by the following equation (2).
CD=F[Di] …(2) このダンパ(9)の開閉度合Diによる可変通風抵抗C
Dと上記で求めた通風抵抗値Ciとは直列抵抗であるの
で、次式(3)の関係が得られる。CD = F [Di] (2) Variable ventilation resistance C depending on the opening / closing degree Di of this damper (9)
Since D and the ventilation resistance value Ci obtained above are series resistances, the relationship of the following equation (3) is obtained.
Pqi=(Ci+CD)×Qqi2=(Ci+F[Di])×Qqi2 …
(3) 但し、Pqi及びQqiはそれぞれi番目の枝ダクト(7)
における送風圧力及び送風量を示すものである。この関
係式(3)を風量演算手段(23)が記憶しておくことに
より、各枝ダクト(7)に要求風量Qqiがあると、この
要求風量Qqiによるダンパ(9)が全開時の送風圧力Pqi
を求め、この求めた送風圧力Pqiが最大値を示したもの
を送風圧力として他の枝ダクト(7)におけるダンパ
(9)の開閉度合Diを風量演算手段(23)によって上式
(3)を用いて求められるものである。なお、上記した
ものにあっては、上式(3)を記憶させたものとした
が、上式(3)に基づいて第5図に示すようにテーブル
化しておき、このテーブルを記憶させておいてダンパ
(9)の開閉度合Diを求めるようにしても良いものであ
る。Pqi = (Ci + CD) × Qqi 2 = (Ci + F [Di]) × Qqi 2 ...
(3) where Pqi and Qqi are i-th branch ducts (7)
FIG. 4 shows the blowing pressure and the blowing amount at the time of FIG. By storing this relational expression (3) in the air volume calculation means (23), when there is a required air volume Qqi in each branch duct (7), the blower pressure when the damper (9) is fully opened by the required air volume Qqi. Pqi
The maximum opening of the blast pressure Pqi thus obtained is taken as the blast pressure, and the opening / closing degree Di of the damper (9) in the other branch duct (7) is calculated by the air volume calculation means (23) as shown in the above equation (3). It is required by using. In the above, the above formula (3) is stored, but a table is created based on the above formula (3) as shown in FIG. 5, and this table is stored. Alternatively, the opening / closing degree Di of the damper (9) may be obtained.
この様に、試運転モード時に、各枝ダクト(7)の通
風抵抗値Ciを求め、かつ、ダンパ(9)の開閉度合Diに
対する枝ダクト(7)の要求風量Qqiと送風圧力Pqiとの
関係を求めておくものである。その結果、各枝ダクト
(7)に風量検出手段を設けずとも、要求風量に対して
制御の高いダンパ(9)の開閉制御を行なえるととも
に、送風機(5)の送風容量の制御ご行なえるものであ
る。Thus, in the test operation mode, the ventilation resistance value Ci of each branch duct (7) is obtained, and the relationship between the required air flow rate Qqi of the branch duct (7) and the blowing pressure Pqi with respect to the opening / closing degree Di of the damper (9) is shown. It's what you want. As a result, it is possible to control the opening and closing of the damper (9), which is highly controlled for the required air volume, and to control the air blowing capacity of the blower (5), without providing the air volume detecting means in each branch duct (7). It is a thing.
なお、上記した風量演算手段(23)、ダンパ制御手段
(20)、風量測定手段(21)及び送風機制御手段(22)
は実際上マイクロコンピュータで構成されるので、第6
図に示したフローチャートにより試運転モードの制御動
作を説明する。まず、ステップS1にて試運転モードか否
かを判別し、試運転モードであると、ステップS2に進
み、熱源機(17)をオフした状態にし、ステップS3にて
送風機(5)の運転を開始させる。ステップS4にて枝ダ
クト(7)の数Nを設定し、ステップS5にて1番目の枝
ダクト(7)に存在するダンパ(9)を全開状態とし、
残りの他の枝ダクト(7)に存在するダンパ(9)を全
閉状態とする。ステップS6にて送風機(5)の回転数を
一定の値になるように制御し、ステップS7に進み、風量
検出手段(19)にて検出された送風機(5)からの送風
量を読み込む。次にステップS8にて全開のダンパ(9)
が存在する枝ダクト(7)の番号と送風機(5)の回転
数及び送風量を読み込み、第2図に示した特性曲線に基
づくQ−P関係式あるいは第3図に示したテーブルと上
記(1)式とによって全開のダンパ(9)が存在する枝
ダクト(7)の通風抵抗値Ciを演算し、その演算結果を
記憶する。ステップS9に進み、全開されたダンパ(9)
が存在する枝ダクト(7)が何番目かを判断し、N番目
に至っていなければ、ステップS10にて1を加えた上
で、ステップS5に戻り、上記と同様にステップS6→S7→
S8→S9の動作を全開のダンパ(9)が存在する枝ダクト
(7)がN番目になるまで繰り返す。これによって、各
枝ダクト(7)の全開時の通風抵抗値Ciが全て演算さ
れ、記憶されることになる。N番目になるとステップS1
1に進み、各枝ダクト(7)系統毎に、上記ステップS8
にて演算された通風抵抗値Ciを用いて上記(3)式に示
すダンパ(9)の開閉度合Diに対する要求風量Qqiと送
風圧力Pqiとの関係式あるは第5図に示したテーブルを
記憶させ、試運転モードの制御動作は終了するものであ
る。The air volume calculation means (23), the damper control means (20), the air volume measurement means (21), and the blower control means (22) described above.
Since it is actually composed of a microcomputer,
The control operation in the trial operation mode will be described with reference to the flowchart shown in the figure. First, in step S1, it is determined whether or not the trial operation mode is set. If the trial operation mode is set, the process proceeds to step S2, the heat source unit (17) is turned off, and the blower (5) starts operating in step S3. . In step S4, the number N of branch ducts (7) is set, and in step S5, the damper (9) existing in the first branch duct (7) is fully opened.
The damper (9) existing in the remaining other branch duct (7) is fully closed. In step S6, the number of revolutions of the blower (5) is controlled to be a constant value, and the flow proceeds to step S7 to read the amount of air blown from the blower (5) detected by the air flow rate detection means (19). Next, in step S8, the fully opened damper (9)
, The number of the branch duct (7) where there is, the number of revolutions of the blower (5), and the air flow rate are read, and the QP relational expression based on the characteristic curve shown in FIG. 2 or the table shown in FIG. The ventilation resistance value Ci of the branch duct (7) in which the fully opened damper (9) is present is calculated by the equation (1) and the calculation result is stored. Proceed to step S9 and fully open damper (9)
Of the branch duct (7) where is present, and if the branch duct (7) is not at the Nth position, 1 is added at step S10 and the process returns to step S5, and steps S6 → S7 →
The operation of S8 → S9 is repeated until the branch duct (7) where the fully opened damper (9) is present is the Nth duct. As a result, all the ventilation resistance values Ci when the branch ducts (7) are fully opened are calculated and stored. When it comes to the Nth step S1
Proceed to step 1 and proceed to step S8 for each branch duct (7) system.
Using the ventilation resistance value Ci calculated in step 3, the relational expression between the required air volume Qqi and the blowing pressure Pqi with respect to the opening / closing degree Di of the damper (9) shown in the above equation (3) is stored in the table shown in FIG. Then, the control operation in the trial operation mode is completed.
次に通常運転モードの動作について説明する。上記し
た試運転モードにて記憶された各枝ダクト(7)におけ
る通風抵抗値Ci及びダンパ(9)の開閉度合に対する要
求風量Qqiと送風圧力Pqiとの関係式あるいは第5図に示
したテーブルを用いて各枝ダクト(7)のダンパ(9)
の開閉度合及び送風機(5)の回転数を制御するもので
ある。つまり、風量演算手段(23)の一部であるダンパ
開度決定手段が、各枝ダクト(7)に対して記憶された
通風抵抗値Ciと、各送風調整手段(8)のダンパ(9)
の開閉度合に対する通風特性と要求される各枝ダクト
(7)における要求風量Qqiとを用いて各送風調整手段
(8)のダンパ(9)の開度を決定する開度情報をダン
パ制御手段(20)に与えて各ダンパ(9)の開度を制御
するとともに、各枝ダクト(7)に対する要求風量Qqi
の総和を求め、この総和の送風量が送風機(5)から送
風されるように、送風機(5)の回転数を送風機制御手
段(22)によって制御させるものである。なお、要求風
量Qqiは、ルームサーモスタット(14)にて設定された
温度と現実の温度との差によって各被空調室(1)毎に
決定されるものであり、例えば温度差が1℃以上であれ
ば定格風量、温度差が0.5℃ならば定格風量の50%とな
るように比例的に設定される。Next, the operation in the normal operation mode will be described. Using the relational expression between the required air volume Qqi and the blowing pressure Pqi with respect to the ventilation resistance value Ci in each branch duct (7) and the opening / closing degree of the damper (9) stored in the trial operation mode described above, or using the table shown in FIG. Damper (9) for each branch duct (7)
The degree of opening and closing of the fan and the rotation speed of the blower (5) are controlled. That is, the damper opening degree determining means, which is a part of the air volume calculating means (23), determines the ventilation resistance value Ci stored for each branch duct (7) and the damper (9) of each air blowing adjusting means (8).
The opening control information for determining the opening of the damper (9) of each air blow adjusting means (8) using the ventilation characteristics with respect to the opening and closing degree and the required air volume Qqi in each branch duct (7). 20) to control the opening of each damper (9), and also to request air volume Qqi for each branch duct (7).
Is calculated, and the number of rotations of the blower (5) is controlled by the blower control means (22) so that the total blown amount is blown from the blower (5). The required air volume Qqi is determined for each air-conditioned room (1) by the difference between the temperature set by the room thermostat (14) and the actual temperature. For example, when the temperature difference is 1 ° C or more. If there is a rated air volume, and if the temperature difference is 0.5 ° C, it is set proportionally to be 50% of the rated air volume.
上記した制御動作を、実際上、風量演算手段(23)、
ダンパ制御手段(20)、風量測定手段(21)及び送風機
制御手段(22)がマイクロコンピュータで構成されるの
で、第7図に示したフローチャートに基づいてさらに具
体的に説明する。通常運転が開始されて、各被空調室
(1)のルームサーモスタット(14)によって設定温度
が設定されると、この設定温度と現状の温度とにより、
各枝ダクト(7)に対する要求風量Qqiが設定される。
ステップS21にてこの設定された各枝ダクト(7)に対
する要求風量Qqi及び試運転モードにて求められた各枝
ダクト(7)の通風抵抗値Ciとによって次式(4)によ
ってダンパ(9)が全開の時の各枝ダクト(7)におけ
る送風圧力Pqiを求める。In practice, the control operation described above is performed by the air volume calculation means (23),
Since the damper control means (20), the air volume measuring means (21) and the blower control means (22) are constituted by a microcomputer, they will be described more specifically based on the flowchart shown in FIG. When normal operation is started and the set temperature is set by the room thermostat (14) of each air-conditioned room (1), the set temperature and the current temperature
The required air volume Qqi for each branch duct (7) is set.
In step S21, the damper (9) is determined by the following equation (4) by the required air flow rate Qqi for each branch duct (7) thus set and the ventilation resistance value Ci of each branch duct (7) obtained in the test operation mode. The blast pressure Pqi in each branch duct (7) when fully opened is obtained.
Pqi=Ci×Qqi2 …(4) ステップS22にて上記ステップS21で求められた各枝ダ
クト(7)における送風圧力Pqiの中から、最大値Pmax
を選出してステップS23に進む。ステップS23では、枝ダ
クト(7)における送風圧力Pqiが最大値であった枝ダ
クト(7)に存在するダンパ(9)の開度を全開とする
開度情報とし、残りの枝ダクト(7)に対する開閉度合
Diは試運転モードにて求められた上式(3)と同じ式で
ある次式(5)によって求める。Pqi = Ci × Qqi 2 (4) In step S22, the maximum value Pmax is obtained from the blowing pressure Pqi in each branch duct (7) obtained in step S21.
Is selected and the process proceeds to step S23. In step S23, the opening information of the damper (9) existing in the branch duct (7) for which the blowing pressure Pqi in the branch duct (7) has the maximum value is set as opening information for the remaining branch ducts (7). Degree of opening and closing
Di is obtained by the following equation (5), which is the same equation as the above equation (3) obtained in the trial operation mode.
Pmax=(Ci×F[Di])×Qqi2 …(5) この様にして各枝ダクト(7)におけるダンパ(9)
に対して全ての開閉度合Diが求められることになる。な
お、この開閉度合Diは第5図に示したテーブルから求め
ても良いものである。次に、ステップS24にて、ステッ
プS23にて求められた各枝ダクト(7)に存在するダン
パ(9)の開度情報により、各ダンパ(9)の開度を設
定、つまり、ダンパ(9)の設定された開度になるよう
に駆動させる。次に、ステップS25にて風量検出手段(1
9)からの送風機(5)による実際の総送風量を示す検
出値と各枝ダクト(7)における要求風量Qqiの和とを
比較し、送風機(5)による実際の総送風量が各枝ダク
ト(7)における要求風量Qqiの和と等しくなるように
送風機(5)の回転数を制御し、一連の動作を終了する
ものである。そして被空調室(1)にて設定が変えられ
たら、上記と同様の動作を繰り返すものである。Pmax = (Ci × F [Di]) × Qqi 2 (5) In this way, the damper (9) in each branch duct (7)
Therefore, all opening and closing degrees Di are required. The opening / closing degree Di may be obtained from the table shown in FIG. Next, in step S24, the opening degree of each damper (9) is set according to the opening degree information of the damper (9) existing in each branch duct (7) obtained in step S23, that is, the damper (9). ) Drive to reach the set opening. Next, in step S25, the air volume detection means (1
The detection value indicating the actual total air flow by the blower (5) from 9) is compared with the sum of the required air flow Qqi in each branch duct (7), and the actual total air flow by the blower (5) is calculated for each branch duct. The rotation speed of the blower (5) is controlled so as to be equal to the sum of the required air flow rate Qqi in (7), and a series of operations is ended. When the setting is changed in the air-conditioned room (1), the same operation as described above is repeated.
上記のように構成された空気調和装置にあっては、試
運転モードによって各枝ダクト(7)系統における通風
抵抗値の差異を事前に求め、各送風量調整手段(8)に
おけるダンパ(9)の開度に基づく風量を間接的に求
め、設定風量(要求風量)に対する適正なダンパ(9)
の開度及び送風機(5)の回転数を制御するようにして
いるため、各被空調室(1)に適量の冷風あるいは温風
を安定して供給できる。In the air conditioner configured as described above, the difference in the ventilation resistance value in each branch duct (7) system is obtained in advance by the trial operation mode, and the damper (9) in each air flow rate adjusting means (8) is controlled. An appropriate damper (9) for the set air volume (request air volume) by indirectly obtaining the air volume based on the opening
Since the opening degree and the rotation speed of the blower (5) are controlled, an appropriate amount of cold air or warm air can be stably supplied to each air-conditioned room (1).
従って、上記した空気調和装置にあっては、各枝ダク
ト(7)系統の通風抵抗値に応じて、極めて容易に適正
風量の配分と搬送動力の低減を図ることができ、各被空
調室(1)への供給風量を適正に維持できるものであ
る。しかも、これらの制御を風速センサ機能を有する特
殊な送風量調整手段等を用いることなく、簡易な構成に
て達成できるものである。この結果、安価な構成によ
り、効率の良い送風動作が実現できるものである。Therefore, in the above-described air conditioner, it is possible to extremely easily distribute the appropriate air volume and reduce the transport power according to the ventilation resistance value of each branch duct (7) system, and each air-conditioned room ( The amount of air supplied to 1) can be properly maintained. Moreover, these controls can be achieved with a simple configuration without using a special air flow rate adjusting means having a wind speed sensor function. As a result, an efficient blowing operation can be realized with an inexpensive structure.
[発明の効果] この発明は、以上に述べたように、集中送風手段の各
枝ダクトに対して、対応したダンパを全開とし、他の枝
ダクトに対応したダンパを全閉としたときの送風機の回
転数及び風量によって求められた通風抵抗値と各送風量
調整手段のダンパの開閉度合に対する通風特性と要求さ
れる各枝ダクトにおける要求風量とを用いて各送風量調
整手段のダンパの開度を検定する開度情報をダンパ制御
手段に与えるダンパ開度決定手段を設けたものとしたの
で、各枝ダクトの通風抵抗値に応じて適正風量の配分と
搬送動力の低減を図れ、各被空調室への供給風量を適正
に維持でき、経済的で効率の良い送風動作が得られると
いう効果があるものである。[Effects of the Invention] As described above, the present invention is a blower in which a damper corresponding to each branch duct of a centralized blower is fully opened and a damper corresponding to another branch duct is fully closed. Using the ventilation resistance value determined by the number of rotations and the air flow rate, the ventilation characteristics with respect to the opening / closing degree of the damper of each air flow rate adjusting means, and the required air volume in each branch duct required, the opening degree of the damper of each air flow rate adjusting means Since the damper opening determining means is provided for giving the opening information for verifying the damper control means to the damper control means, it is possible to distribute an appropriate air volume and reduce the transport power according to the ventilation resistance value of each branch duct, and to control each air conditioner. The effect is that the amount of air supplied to the room can be appropriately maintained, and an economical and efficient air blowing operation can be obtained.
第1図はこの発明の一実施例を示す要部システム構成
図、第2図は送風機(5)の風量Qと圧力Pとの関係を
示す送風特性図、第3図は送風機(5)の回転数をパラ
メータとして送風圧力Piと送風量Qiとのテーブル化を示
した図、第4図はダンパ(9)の開閉角度Diと通風抵抗
係数CDとの関係を示す図、第5図はダンパ(9)の開
閉角度Diを要求送風量Qqiと送風圧力Pqiとによってテー
ブル化した図、第6図は試運転モードにおける制御動作
を示すフローチャート、第7図は通常運転モードにおけ
る制御動作を示すフローチャート、第8図は従来の空気
調和装置を示す構成図である。 図において、(1)は被空調室、(2)は室内機、
(4)は熱交換器、(6)は主ダクト、(7)は枝ダク
ト、(8)は送風量調整手段、(9)はダンパ、(19)
は風量検出手段、(20)はダンパ制御手段、(21)は風
量測定手段、(22)は送風機制御手段、(23)は風量演
算手段(ダンパ開度決定手段)である。 なお、各図中同一符号は同一又は相当部分を示す。FIG. 1 is a system configuration diagram of an essential part showing an embodiment of the present invention, FIG. 2 is a blower characteristic diagram showing a relationship between air volume Q and pressure P of a blower (5), and FIG. 3 is a blower (5). FIG. 4 is a diagram showing a table of the blowing pressure Pi and the blowing amount Qi with the rotation speed as a parameter, FIG. 4 is a diagram showing the relationship between the opening / closing angle Di of the damper (9) and the ventilation resistance coefficient CD, and FIG. 5 is the damper. FIG. 6 is a table in which the opening / closing angle Di of (9) is tabulated by the required air flow rate Qqi and the air pressure Pqi, FIG. 6 is a flowchart showing the control operation in the trial operation mode, and FIG. 7 is a flowchart showing the control operation in the normal operation mode. FIG. 8 is a block diagram showing a conventional air conditioner. In the figure, (1) is an air-conditioned room, (2) is an indoor unit,
(4) is a heat exchanger, (6) is a main duct, (7) is a branch duct, (8) is an air flow rate adjusting means, (9) is a damper, and (19).
Is air volume detection means, (20) is damper control means, (21) is air volume measurement means, (22) is blower control means, and (23) is air volume calculation means (damper opening determination means). In the drawings, the same reference numerals indicate the same or corresponding parts.
Claims (1)
室内機から送風された空気が導通される主ダクト、この
主ダクトと複数の被空調室との間にそれぞれ設けられた
複数の枝ダクトを有した集中送風手段と、この集中送風
手段の各枝ダクトにそれぞれ装着され、上記被空調室へ
の空気の送風量をダンパの開閉により調整する複数の送
風量調整手段と、これらの複数の送風量調整手段のダン
パの開閉をそれぞれ制御するダンパ制御手段と、上記集
中送風手段の送風機の回転数を制御する送風機制御手段
と、上記集中送風手段の送風機からの送風量を検出する
風量検出手段と、この風量検出手段からの検出信号に基
づき送風機からの実際の風量を測定する風量測定手段
と、上記集中送風手段の各枝ダクトに対して、対応した
ダンパを全開とし、他の枝ダクトに対応したダンパを全
閉とした時の上記送風機の回転数及び上記風量検出手段
による送風量及び送風機によって予め決まっている送風
量と送風圧力差の関係によって求められた通風抵抗値、
上記各送風量調整手段のダンパの開閉度合に対する通風
特性、各枝ダクトに要求される要求風量を用いて各送風
量調整手段のダンパの開度を決定する開度情報を上記ダ
ンパ制御手段に与えるダンパ開度決定手段とを備え、上
記集中送風手段の各枝ダクトに対する要求風量の総和を
求め、この総和の送風量が上記送風機から送風されるよ
うに上記送風機の回転数を上記送風機制御手段により制
御することを特徴とする空気調和装置。1. An indoor unit having a heat exchanger and a blower, a main duct through which air blown from the indoor unit is conducted, and a plurality of air ducts provided between the main duct and a plurality of air-conditioned rooms. Centralized air blowing means having a branch duct, a plurality of air blowing amount adjusting means mounted on each branch duct of the centralized air blowing means, for adjusting the air blowing amount to the air-conditioned room by opening and closing a damper, and these Damper control means for controlling the opening and closing of the dampers of the plurality of air flow rate adjusting means, blower control means for controlling the number of revolutions of the blower of the centralized air blower means, and air volume for detecting the air flow rate from the blower of the centralized air blower means Detecting means, air volume measuring means for measuring the actual air volume from the blower based on the detection signal from this air volume detecting means, and for each branch duct of the centralized air blowing means, the corresponding damper is fully opened, Rotating speed of the blower when the damper corresponding to the branch ducts and the fully closed and ventilation resistance value determined by the relationship of the air blowing amount and blowing pressure difference is determined in advance by blowing amount and the blower by the air quantity detecting means,
The damper control means is provided with opening information for determining the opening degree of the damper of each air flow rate adjusting means by using the ventilation characteristics of the air flow rate adjusting means with respect to the opening / closing degree of the damper and the required air volume required for each branch duct. A damper opening degree determining means is provided, and a total of required air volumes for the respective branch ducts of the centralized air blowing means is obtained, and the rotation speed of the blower is controlled by the blower control means so that the total blown air volume is blown from the blower. An air conditioner characterized by being controlled.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2221127A JP2540749B2 (en) | 1990-08-24 | 1990-08-24 | Air conditioner |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2221127A JP2540749B2 (en) | 1990-08-24 | 1990-08-24 | Air conditioner |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04106364A JPH04106364A (en) | 1992-04-08 |
JP2540749B2 true JP2540749B2 (en) | 1996-10-09 |
Family
ID=16761884
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2221127A Expired - Fee Related JP2540749B2 (en) | 1990-08-24 | 1990-08-24 | Air conditioner |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2540749B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6985794B2 (en) * | 2016-12-28 | 2021-12-22 | パナソニック株式会社 | Control device for air conditioning system, air conditioning system |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03102133A (en) * | 1989-09-18 | 1991-04-26 | Toshiba Corp | Duct air conditioning system |
-
1990
- 1990-08-24 JP JP2221127A patent/JP2540749B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH04106364A (en) | 1992-04-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4635445A (en) | Air-conditioner | |
US4821526A (en) | Air conditioning apparatus | |
KR930006880B1 (en) | Air conditioning system | |
WO2010131336A1 (en) | Air conditioning device | |
JP5507231B2 (en) | Air conditioner | |
KR102529427B1 (en) | Air conditioner and control method of air conditioner | |
JPH0763404A (en) | Air conditioner | |
KR20140056851A (en) | Air conditioner and method of controlling the same | |
JP2540749B2 (en) | Air conditioner | |
JP2601054B2 (en) | Air conditioner | |
JP2884705B2 (en) | Air conditioner | |
JPS62225842A (en) | Air conditioner | |
JP2661274B2 (en) | Air conditioner | |
JP2692257B2 (en) | Air conditioner | |
JP2661299B2 (en) | Air conditioner | |
JP2861255B2 (en) | Air conditioner | |
JP2536234B2 (en) | Air conditioner | |
JPH08189692A (en) | Air conditioner | |
JP3016565B2 (en) | Air conditioner | |
JP2912696B2 (en) | Air conditioner | |
JP3103583B2 (en) | Air conditioner | |
JPH0351657A (en) | Air conditioner | |
JPH0517462B2 (en) | ||
JP2578885B2 (en) | Air conditioner | |
JP2643531B2 (en) | Air conditioner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |