JP3237222U - Reduce or eliminate cut-in wind speeds using solar-powered wind blades with embedded solar cells - Google Patents
Reduce or eliminate cut-in wind speeds using solar-powered wind blades with embedded solar cells Download PDFInfo
- Publication number
- JP3237222U JP3237222U JP2021002930U JP2021002930U JP3237222U JP 3237222 U JP3237222 U JP 3237222U JP 2021002930 U JP2021002930 U JP 2021002930U JP 2021002930 U JP2021002930 U JP 2021002930U JP 3237222 U JP3237222 U JP 3237222U
- Authority
- JP
- Japan
- Prior art keywords
- solar
- wind
- rotor assembly
- photovoltaic cell
- electric motor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/72—Wind turbines with rotation axis in wind direction
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E70/00—Other energy conversion or management systems reducing GHG emissions
- Y02E70/30—Systems combining energy storage with energy generation of non-fossil origin
Landscapes
- Wind Motors (AREA)
Abstract
【課題】風速がカットイン風速に満たないとき風力タービンのブレードの回転を開始させるための方法および装置を提供する。【解決手段】ソーラーパワー式風力タービン装置200は、ロータアセンブリ202に動作可能に接続された光起電力セル206を有するソーラードーム203と、電気モータ215とを含む。光起電力セルは、太陽エネルギーを電気エネルギーに変換する。光起電力セルに接続された電気モータは、ロータアセンブリのブレード204を回転させる。光起電力セルによって駆動される電気モータは、風速がカットイン風速に満たないときロータアセンブリのブレードの回転を開始させ、ブレードを回転させるために必要なカットイン風速を減らす。その後、ロータアセンブリのブレードは、ブレードに対する風の力および/または駆動された電気モータに応答して回転し続ける。【選択図】図2BPROBLEM TO BE SOLVED: To provide a method and an apparatus for starting rotation of a blade of a wind turbine when a wind speed is less than a cut-in wind speed. A solar-powered wind turbine apparatus 200 includes a solar dome 203 having a photovoltaic cell 206 operably connected to a rotor assembly 202, and an electric motor 215. Photovoltaic cells convert solar energy into electrical energy. An electric motor connected to the photovoltaic cell rotates the blade 204 of the rotor assembly. An electric motor driven by a photovoltaic cell initiates rotation of the rotor assembly blades when the wind speed is less than the cut-in wind speed, reducing the cut-in wind speed required to rotate the blades. The blades of the rotor assembly then continue to rotate in response to wind forces and / or driven electric motors on the blades. [Selection diagram] FIG. 2B
Description
考案の分野
本考案は概して、ソーラーパワー式風車に関し、より具体的には、ソーラーパワー式風力ブレードを使用するカットイン風速の減少またはゼロ化に関する。
Fields of Invention The invention generally relates to solar-powered wind turbines, and more specifically to reducing or zeroing cut-in wind speeds using solar-powered wind blades.
背景
従来の風力タービンは、風のエネルギーを利用し、そのエネルギーを機械エネルギーの形に変換する。機械エネルギーはさらに、風力タービンが使用される適用先に基づき、電気エネルギーに変換され得る。ほぼすべての従来の風力タービンは、そのブレードを回転させるために最小限の風速を必要とする。この風速がカットイン風速と呼ばれる。公知であるように、風力タービンのパワー出力は風速の3乗に正比例する。したがって、たとえば約10%の風速の増加は約33%のパワー出力の増大を生じさせる。時として、風はカットイン風速を達成せず、その結果、風力タービンのブレードは回転せず、したがって発電は起こらない。しかし、風がカットイン風速を達成または超過すると、風力タービンは、風速に比例する速度で回転する。この、風速によるカットイン風速の達成に左右される状態は、風力タービンによって生成されるパワーを減らし、その結果、発電量の低下を生じさせる。風がカットイン風速に満たないとき風力タービンのブレードの回転を開始させ、それにより、風力タービンのブレードを回転させるために必要なカットイン風速を減らす、またはゼロにするためのパワーを提供する代替動力源の必要性がある。
Background Traditional wind turbines use wind energy and convert that energy into the form of mechanical energy. Mechanical energy can also be converted to electrical energy based on the application in which the wind turbine is used. Almost all conventional wind turbines require a minimum wind speed to rotate their blades. This wind speed is called the cut-in wind speed. As is known, the power output of a wind turbine is directly proportional to the cube of the wind speed. So, for example, an increase in wind speed of about 10% results in an increase in power output of about 33%. At times, the wind does not achieve the cut-in wind speed, so that the blades of the wind turbine do not rotate and therefore no power generation occurs. However, when the wind reaches or exceeds the cut-in wind speed, the wind turbine rotates at a speed proportional to the wind speed. This condition, which depends on the achievement of the cut-in wind speed by the wind speed, reduces the power generated by the wind turbine, resulting in a decrease in power generation. An alternative that initiates the rotation of the wind turbine blades when the wind is below the cut-in wind speed, thereby providing the power to reduce or reduce the cut-in wind speed required to rotate the wind turbine blades. There is a need for a power source.
したがって、風速がカットイン風速に満たないとき風力タービンのブレードを回転させるためのパワーを提供し、それにより、風力タービンのブレードを回転させるために必要なカットイン風速を減らす、またはゼロにする方法および装置の、長らく痛感され、しかし解消されていない必要性が存在する。 Therefore, a method of providing power to rotate the blades of a wind turbine when the wind speed is less than the cut-in wind speed, thereby reducing or reducing the cut-in wind speed required to rotate the blades of the wind turbine. And there is a long-standing, but unresolved need for equipment.
開示の概要
この概要は、詳細な説明においてさらに開示される選ばれた概念を簡略化形態で導入するために提供される。この概要は、請求項に係る主題の主要または不可欠な考案的概念を特定することを意図したものでもないし、請求項に係る主題の範囲を限定することを意図したものでもない。
Summary of Disclosure This summary is provided to introduce in simplified form the selected concepts further disclosed in the detailed description. This summary is not intended to identify the main or essential ingenious concepts of the claimed subject matter, nor is it intended to limit the scope of the claimed subject matter.
本明細書に開示される方法およびソーラーパワー式風力タービン装置は、風速がカットイン風速に満たないとき風力タービンのブレードを回転させるためのパワーを提供し、それにより、風力タービンのブレードを回転させるために必要なカットイン風速を減らす、またはゼロにする上記必要性に応える。本明細書に開示されるソーラーパワー式風力タービン装置は、ソーラーパワー式水平軸風力タービン装置またはソーラーパワー式垂直軸風力タービン装置として構成される。本明細書に開示されるソーラーパワー式風力タービン装置は、光起電力セルを有するソーラードームと、ブレードを有するロータアセンブリと、電気モータとを含む。ソーラードームは、光起電力セルの相互接続アセンブリをソーラードームの表面に収容かつ支持するケーシングである。ソーラードームは、ロータアセンブリに動作可能に接続されている。ソーラードームは、光起電力セルを収容して、光起電力セルが複数の太陽光方向から太陽エネルギーを受け取ることを可能にするように構成されている。ソーラードームは、ソーラーパワー式風力タービン装置上の複数の移動可能かつ設定可能な場所に配置されている。ソーラードームは外向きに突出し、太陽光に面するように回転可能であるように構成されている。 The methods and solar-powered wind turbine devices disclosed herein provide power to rotate the blades of a wind turbine when the wind speed is less than the cut-in wind speed, thereby rotating the blades of the wind turbine. Meet the above need to reduce or reduce the cut-in wind speed required for this. The solar-powered wind turbine device disclosed herein is configured as a solar-powered horizontal-axis wind turbine device or a solar-powered vertical-axis wind turbine device. The solar powered wind turbine apparatus disclosed herein includes a solar dome with photovoltaic cells, a rotor assembly with blades, and an electric motor. A solar dome is a casing that houses and supports the interconnect assembly of photovoltaic cells on the surface of the solar dome. The solar dome is operably connected to the rotor assembly. The solar dome is configured to house a photovoltaic cell, allowing the photovoltaic cell to receive solar energy from multiple solar directions. Solar domes are located in multiple mobile and configurable locations on solar-powered wind turbine equipment. The solar dome is configured to project outward and rotate to face the sun.
ソーラードームに収容された光起電力セルは、太陽光に曝露され、光起電力セルに入射する太陽光からの太陽エネルギーを電気エネルギーに変換する。ソーラーパワー式風力タービン装置の電気モータは、ソーラードームに収容された光起電力セルに電気的に接続されている。光起電力セルは、入射太陽光から生成された電気エネルギーを電気モータに伝達する。 The photovoltaic cell housed in the solar dome is exposed to sunlight and converts solar energy from the sunlight incident on the photovoltaic cell into electrical energy. The electric motor of a solar-powered wind turbine device is electrically connected to a photovoltaic cell housed in a solar dome. The photovoltaic cell transfers the electrical energy generated from the incident sunlight to the electric motor.
電気モータは、光起電力セルから伝達された電気エネルギーを使用して、ブレードを有するロータアセンブリを回転させる。ソーラードーム上の光起電力セルによって駆動される電気モータは、風速がカットイン風速に満たないときロータアセンブリのブレードの回転を開始させ、したがって、ロータアセンブリのブレードを回転させるために必要なカットイン風速を減らす、またはゼロにする。ひとたびブレードが回転運動を始めると、ロータアセンブリのブレードは、風速および/または光起電力セルによって生成される電気エネルギーに比例して回転を続ける。ソーラードームの回転が、ソーラードームに収容された光起電力セルをより多くの空気流によって冷却し、光起電力セルの温度上昇を減らし、それにより、電気エネルギーを生成する光起電力セルの効率を高める。 The electric motor uses the electrical energy transmitted from the photovoltaic cell to rotate the rotor assembly with the blades. An electric motor driven by a photovoltaic cell on the solar dome initiates rotation of the rotor assembly blades when the wind speed is less than the cut-in wind speed, and therefore the cut-in required to rotate the rotor assembly blades. Reduce or reduce the wind speed to zero. Once the blades begin to rotate, the blades of the rotor assembly continue to rotate in proportion to the electrical energy produced by the wind speed and / or the photovoltaic cell. The rotation of the solar dome cools the photovoltaic cell contained in the solar dome with more airflow, reducing the temperature rise of the photovoltaic cell, thereby producing electrical energy efficiency of the photovoltaic cell. To increase.
より具体的には、本考案は以下を提供する:
[1]風速が風力タービンのブレードの回転のためのカットイン風速に満たないとき該ブレードの回転を開始させるための方法であって、以下の工程を含む、方法:
風速をモニタするための少なくとも一つの風センサと、
複数のブレードを含み、該ブレードが電気モータのシャフトに動作可能に接続されている、ロータアセンブリであって、該ブレードに対する風の力に応答して回転する、ロータアセンブリと、
光起電力セルの第一の相互接続アセンブリをソーラードームの表面に収容かつ支持するように構成されたソーラードームであって、第一の光起電力セルが、入射太陽光から太陽エネルギーを受け取り、受け取った該太陽エネルギーを電気エネルギーに変換し、かつ該電気エネルギーを該電気モータに伝達するように構成されている、ソーラードームと
を含み、
該電気モータが該第一の光起電力セルに電気的に接続され、該電気モータが、風速がカットイン風速に満たないとき該第一の光起電力セルによって駆動されて該ロータアセンブリのブレードの回転を開始させる、
ソーラーパワー式風力タービン装置を設ける工程;
該ソーラーパワー式風力タービン装置の光起電力セルによって入射太陽光から太陽エネルギーを受け取る工程;
該第一の光起電力セル上で入射太陽光から受け取った該太陽エネルギーを該第一の光起
電力セルによって電気エネルギーに変換する工程;
該少なくとも一つの風センサによって風速を計測する工程;
計測された風速がカットイン風速に満たないことに応答して、該少なくとも一つの風センサによって開始される、該ソーラーパワー式風力タービン装置の該電気モータへの、該第一の光起電力セルによって生成された該電気エネルギーの伝達を行う工程;および
該第一および第二の光起電力セルによって伝達された該電気エネルギーを使用する該電気モータにより、該ロータアセンブリのブレードを回転させ、それにより、該ブレードの回転に必要なカットイン風速を減らすこと、およびゼロにすることのうちの一つを実施する工程;
[2]ソーラーパワー式風力装置を設ける工程が、ソーラーパワー式風力タービン装置を設ける工程を含み、前記ブレードのうちの少なくとも一つが光起電力セルの第二の相互接続アセンブリを少なくとも一つまたは複数のブレードの表面に含み、前記第一第二の光起電力セルが、入射太陽光から太陽エネルギーを受け取り、受け取った該太陽エネルギーを電気エネルギーに変換し、かつ該電気エネルギーを電気モータに伝達するように構成されており、該電気モータが該第一および第二の光起電力セルに電気的に接続されており、該電気モータが該第一および第二の光起電力セルによって駆動される、[1]に記載の方法;
[3]ソーラーパワー式風力装置を設ける工程が、ソーラーパワー式風力タービン装置を設ける工程を含み、計測された風速がカットイン風速未満ではないことに応答して、前記第一および第二の光起電力セルを再充電のためにバッテリに接続するのか、および、計測された風速がカットイン風速未満であることに応答して、前記第一および第二の光起電力セルを前記電気モータに接続するのか、のいずれかを選択するための、ソーラーパネルエネルギーモード制御装置をさらに含む、[1]に記載の方法;
[4]ソーラーパワー式風力装置を設ける工程が、ソーラーパワー式風力タービン装置を設ける工程を含み、ソーラーパネルエネルギーモード制御装置が、計測された風速がカットイン風速未満ではないことに応答して、前記第一および第二の光起電力セルを再充電のためにバッテリに接続するのか、計測された風速がカットイン風速未満であることに応答して、該第一および第二の光起電力セルを前記電気モータに接続するのか、および、前記第一および第二の光起電力セルが、前記ブレードがカットイン風速に到達するのに十分な電気エネルギーを伝達していないことに応答して、該バッテリを電気モータに接続するのか、のいずれかを選択する、[3]に記載の方法;
[5]ソーラーパワー式風力装置を設ける工程が、ソーラーパワー式風力タービン装置を設ける工程を含み、ソーラーパネルエネルギーモード制御装置が、スイッチを開閉することによって選択を実施する、[3]に記載の方法;
[6]ソーラードームがロータアセンブリに固着されており、より高い発電効率のために、第一の光起電力セルがソーラードームの回転によって冷却される、[1]に記載の方法;
[7]風速が風力タービンのブレードの回転のためのカットイン風速に満たないとき該ブレードの回転を開始させるための方法であって、以下の工程を含む、方法:
風速をモニタするための少なくとも一つの風センサと、
複数のブレードを含み、該ブレードが電気モータのシャフトに動作可能に接続されている、ロータアセンブリであって、該ブレードに対する風の力に応答して回転する、ロータアセンブリと、
光起電力セルの第一の相互接続アセンブリを該ブレードの表面に収容かつ支持するように構成されたソーラードームであって、第一の光起電力セルが、入射太陽光から太陽エネルギーを受け取り、受け取った該太陽エネルギーを電気エネルギーに変換し、かつ該電気エネルギーを該電気モータに伝達するように構成されている、ソーラードームと
を含み、
該電気モータが該第一の光起電力セルに電気的に接続され、該電気モータが、風速がカットイン風速に満たないとき該第一の光起電力セルによって駆動されて該ロータアセンブリのブレードの回転を開始させる、
ソーラーパワー式風力タービン装置を設ける工程;
該ソーラーパワー式風力タービン装置の光起電力セルによって入射太陽光から太陽エネルギーを受け取る工程;
該第一の光起電力セル上で入射太陽光から受け取った該太陽エネルギーを該第一の光起電力セルによって電気エネルギーに変換する工程;
該少なくとも一つの風センサによって風速を計測する工程;
計測された風速がカットイン風速に満たないことに応答して、該少なくとも一つの風センサによって開始される、該ソーラーパワー式風力タービン装置の該電気モータへの、該第一の光起電力セルによって生成された該電気エネルギーの伝達を行う工程;および
該第一および第二の光起電力セルによって伝達された該電気エネルギーを使用する該電気モータにより、該ロータアセンブリのブレードを回転させ、それにより、該ブレードの回転に必要なカットイン風速を減らすこと、およびゼロにすることのうちの一つを実施する工程;
[8]より高い発電効率のために、第一の光起電力セルが前記ブレードの回転によって冷却される、[7]に記載の方法;ならびに
[9]
風速をモニタするための少なくとも一つの風センサと、
複数のブレードを含み、該ブレードが電気モータのシャフトに動作可能に接続され、該ブレードが光起電力セルの第一の相互接続アセンブリを該ブレードの表面に含む、ロータアセンブリであって、該ブレードに対する風の力に応答して回転する、ロータアセンブリと、
第一の光起電力セルの第二の相互接続アセンブリをソーラードームの表面に収容かつ支持するように構成されたソーラードームであって、該第一の光起電力セルが、入射太陽光から太陽エネルギーを受け取り、受け取った該太陽エネルギーを電気エネルギーに変換し、該電気エネルギーを該電気モータに伝達するように構成されている、ソーラードームと
該第一および第二の光起電力セルに電気的に接続され、風速がカットイン風速に満たないとき該第一および第二の光起電力セルによって駆動されて該ロータアセンブリのブレードの回転を開始させる、該電気モータと、
該少なくとも一つの風センサによって風速を計測し、計測された風速がカットイン風速に満たないことに応答して、該少なくとも一つの風センサによって開始される、ソーラーパワー式風力タービン装置の該電気モータへの、該第一および第二の光起電力セルによって生成された該電気エネルギーの伝達を行うための、太陽エネルギーモード制御装置と
を含み、
該電気モータが、該第一および第二の光起電力セルによって伝達された該電気エネルギーを使用して、該ロータアセンブリのブレードを回転させ、それにより、該ブレードの回転に必要なカットイン風速を減らすこと、およびゼロにすることのうちの一つを実施する、
風速がブレードの回転のためのカットイン風速に満たないとき回転を開始するブレードを有する風力タービン。
More specifically, the present invention provides:
[1] A method for initiating rotation of a blade when the wind speed is less than the cut-in wind speed for rotation of the blade of the wind turbine, which comprises the following steps:
At least one wind sensor to monitor the wind speed,
A rotor assembly comprising a plurality of blades, the blades being operably connected to the shaft of an electric motor, which rotates in response to a wind force on the blades.
A solar dome configured to house and support the first interconnect assembly of the photovoltaic cell on the surface of the solar dome, where the first photovoltaic cell receives solar energy from incident sunlight and receives solar energy. Including a solar dome configured to convert the received solar energy into electrical energy and transfer the electrical energy to the electric motor.
The electric motor is electrically connected to the first photovoltaic cell, and the electric motor is driven by the first photovoltaic cell when the wind speed is less than the cut-in wind speed, and the blades of the rotor assembly. Start spinning,
Process of installing solar-powered wind turbine equipment;
The process of receiving solar energy from incident sunlight by the photovoltaic cell of the solar-powered wind turbine device;
The step of converting the solar energy received from incident sunlight on the first photovoltaic cell into electrical energy by the first photovoltaic cell;
The process of measuring the wind speed with the at least one wind sensor;
The first photovoltaic cell to the electric motor of the solar-powered wind turbine apparatus initiated by the at least one wind sensor in response to the measured wind speed being less than the cut-in wind speed. The step of transmitting the electrical energy generated by; and the electric motor using the electrical energy transmitted by the first and second photovoltaic cells rotates the blades of the rotor assembly. The step of reducing the cut-in wind velocity required for the rotation of the blade and implementing one of the zeros;
[2] The step of providing the solar-powered wind turbine device includes the step of providing the solar-powered wind turbine device, and at least one of the blades has at least one or a plurality of second interconnect assemblies of the photovoltaic cell. The first and second photovoltaic cells contained in the surface of the blade receive solar energy from incident sunlight, convert the received solar energy into electric energy, and transfer the electric energy to an electric motor. The electric motor is electrically connected to the first and second photovoltaic cells, and the electric motor is driven by the first and second photovoltaic cells. , The method described in [1];
[3] The step of providing the solar-powered wind turbine device includes the step of providing the solar-powered wind turbine device, and in response to the measured wind velocity not being less than the cut-in wind velocity, the first and second light. In response to whether the electromotive cell is connected to the battery for recharging and the measured wind velocity is less than the cut-in wind velocity, the first and second photovoltaic cells are transferred to the electric motor. The method according to [1], further including a solar panel energy mode controller for selecting either connection;
[4] The step of providing the solar-powered wind turbine device includes the step of providing the solar-powered wind turbine device, and the solar panel energy mode control device responds that the measured wind speed is not less than the cut-in wind speed. The first and second photovoltaic cells are connected to the battery for recharging or in response to the measured wind velocity being less than the cut-in wind velocity. In response to connecting the cell to the electric motor and the first and second photovoltaic cells not transmitting enough electrical energy for the blades to reach the cut-in wind velocity. , Choosing whether to connect the battery to an electric motor, the method according to [3];
[5] The step of providing a solar power type wind turbine device includes a step of providing a solar power type wind turbine device, and the solar panel energy mode control device performs selection by opening and closing a switch, according to [3]. Method;
[6] The method according to [1], wherein the solar dome is fixed to the rotor assembly and the first photovoltaic cell is cooled by the rotation of the solar dome for higher power generation efficiency;
[7] A method for initiating rotation of a blade when the wind speed is less than the cut-in wind speed for rotation of the blade of the wind turbine, comprising the following steps:
At least one wind sensor to monitor the wind speed,
A rotor assembly comprising a plurality of blades, the blades being operably connected to the shaft of an electric motor, which rotates in response to a wind force on the blades.
A solar dome configured to house and support a first interconnect assembly of photovoltaic cells on the surface of the blade, the first photovoltaic cells receiving solar energy from incident sunlight. Including a solar dome configured to convert the received solar energy into electrical energy and transfer the electrical energy to the electric motor.
The electric motor is electrically connected to the first photovoltaic cell, and the electric motor is driven by the first photovoltaic cell when the wind speed is less than the cut-in wind speed, and the blades of the rotor assembly. Start spinning,
Process of installing solar-powered wind turbine equipment;
The process of receiving solar energy from incident sunlight by the photovoltaic cell of the solar-powered wind turbine device;
The step of converting the solar energy received from incident sunlight on the first photovoltaic cell into electrical energy by the first photovoltaic cell;
The process of measuring the wind speed with the at least one wind sensor;
The first photovoltaic cell to the electric motor of the solar-powered wind turbine apparatus initiated by the at least one wind sensor in response to the measured wind speed being less than the cut-in wind speed. The step of transmitting the electrical energy generated by; and the electric motor using the electrical energy transmitted by the first and second photovoltaic cells rotates the blades of the rotor assembly. The step of reducing the cut-in wind velocity required for the rotation of the blade and implementing one of the zeros;
[8] The method according to [7], wherein the first photovoltaic cell is cooled by the rotation of the blade for higher power generation efficiency; as well as [9].
At least one wind sensor to monitor the wind speed,
A rotor assembly comprising a plurality of blades, the blades operably connected to the shaft of an electric motor, wherein the blades include a first interconnect assembly of photovoltaic cells on the surface of the blades. Rotor assembly, which rotates in response to the force of the wind against,
A solar dome configured to accommodate and support a second interconnect assembly of a first photovoltaic cell on the surface of the solar dome, wherein the first photovoltaic cell is from incident sunlight to the sun. Electrical to the solar dome and its first and second photovoltaic cells, which are configured to receive energy, convert the received solar energy into electrical energy, and transfer the electrical energy to the electric motor. Connected to the electric motor, which is driven by the first and second photovoltaic cells to initiate rotation of the blades of the rotor assembly when the wind velocity is less than the cut-in wind velocity.
The electric motor of a solar-powered wind turbine apparatus that measures wind speed with the at least one wind sensor and is initiated by the at least one wind sensor in response to the measured wind speed being less than the cut-in wind speed. Includes a solar energy mode controller for transmitting the electrical energy generated by the first and second photovoltaic cells to.
The electric motor uses the electrical energy transmitted by the first and second photovoltaic cells to rotate the blades of the rotor assembly, thereby the cut-in wind speed required to rotate the blades. And implement one of the zeros,
A wind turbine with blades that starts rotating when the wind speed is less than the cut-in wind speed for blade rotation.
前記概要および以下の詳細な説明は、添付図面と併せて読まれると、より良く理解される。本考案を説明するために、考案の例示的構成が図面に示されている。しかし、本考案は、本明細書に開示される特定の方法および構造に限定されない。図中、参照番号によって参照される方法工程または構造の説明は、本明細書における任意の後続の図面においてその同じ参照番号によって示される方法工程または構造の説明にも引き継がれる。 The outline and the following detailed description will be better understood when read in conjunction with the accompanying drawings. To illustrate the invention, an exemplary configuration of the invention is shown in the drawings. However, the invention is not limited to the particular methods and structures disclosed herein. In the figure, the description of the method step or structure referred to by the reference number is also carried over to the description of the method step or structure indicated by the same reference number in any subsequent drawings herein.
考案の詳細な説明
図1は、風速がカットイン風速に満たないとき、図2A~2Bおよび図3A~3Bに例示される風力タービン200または300のブレード204の回転を開始させ、それにより、風力タービン200または300のカットイン風速の要求を減らす、またはゼロにする方法を示す。本明細書の中で使用される用語「カットイン風速」とは、風または別の供給源からのパワーに応答して風力タービン200または300のブレード204が回転し始める最小風速をいう。実例として、時速5マイルのカットイン風速を有する風力タービン200または300を考えてみる。風力タービン200または300を横切る風の速度がたとえば時速0マイル~時速5マイル未満の任意の速度であるとき、風力タービン200または300のブレード204は回転しない。風力タービン200または300を横切る風速が時速5マイルに達すると、風力タービン200または300のブレード204は回転し始める。この例において、本明細書に開示される方法は、カットイン風速を時速5マイル未満に減らす。本明細書に開示される方法においては、図2A~2Bおよび図3A~3Bに例示されるような、ソーラードーム203と、複数のブレード204を有するロータアセンブリ202または301と、電気モータ215または306とを含むソーラーパワー式風力タービン装置200または300を提供する(101)。
Detailed Description of the Dev Demonstrates how to reduce or eliminate cut-in wind speed requirements for
ソーラーパワー式風力タービン装置は、たとえば、図2A~2Bの詳細な説明に例示され、開示されるようなソーラーパワー式水平軸風力タービン装置200として、または図3A~3Bの詳細な説明に例示され、開示されるようなソーラーパワー式垂直軸風力タービン装置300として構成される。ソーラードーム203は、図2Aおよび図3Aに例示されるように、パッケージングされた光起電力セル206の相互接続アセンブリをソーラードーム203の表面に収容かつ支持するケーシングである。ソーラードーム203は、光起電力セル206が複数の太陽光方向から太陽エネルギーを受け取ること(102)を可能にする。ソーラードーム203は、図2A~2Bおよび図3A~3Bに例示されるように、ロータアセンブリ202または301に動作可能に接続されている。たとえば、ソーラードーム203はロータアセンブリ202または301に固着されている。ある態様において、ソーラードーム203は、光起電力セル206が複数の方向の入射太陽光から太陽エネルギーを受け取ることを可能にするために、図2A~2Bに例示されるような水平軸(X-X)207を中心に、または図3A~3Bに例示されるような垂直軸(Y-Y)302を中心に回転可能である。
The solar-powered wind turbine device is exemplified, for example, as the solar-powered horizontal axis
ソーラードーム203に収容された光起電力セル206およびブレード204に埋め込まれた、または取り付けられた光起電力セルは、太陽光に曝露され、入射太陽光から光起電力セル206に受けられた太陽エネルギーを光起電効果によって電気エネルギーに変換する(103)
。光起電力セル206は半導体材料でできている。光起電力セル206によって光子が吸収されると、半導体材料の原子からの電子がその位置から押し退けられる。これらの電子は、光起電力セル206の前面に向かって移動し、光起電力セル206の前面を流れる。この電子の流れが電気エネルギーを生成し、それが電気モータ215または306に伝達される。
The
.. The
ソーラーパワー式風力タービン装置200または300の電気モータ215または306は、ソーラードーム203に収容された光起電力セル206およびブレード204に埋め込まれた光起電力セルに電気的に接続されている。光起電力セル206は、入射太陽光から生成された電気エネルギーを電気モータ215または306に伝達する(104)。電気モータ215または306は、光起電力セル206から伝達された電気エネルギーを使用して、ロータアセンブリ202または301を、固着されたソーラードーム203とともに回転させ、ひいてはロータアセンブリ202または301に収容されたブレード204を回転させ(105)、それにより、ブレード204の回転に必要なカットイン風速を減らす、またはゼロにする。静止中のソーラーパワー式水平軸風力タービン装置200またはソーラーパワー式垂直軸風力タービン装置300が風の作用を受けると、ロータアセンブリ202または301のブレード204は、風向にしたがって、はじめ右回り方向または左回り方向に回転する傾向を有する。ロータアセンブリ202または301のブレード204が風向にしたがってはじめ右回り方向に回転するのか左回り方向に回転するのかにかかわらず、電気モータ215または306は、ブレード204の回転を所望の方向、たとえば右回り方向または左回り方向に転換させる。ひとたびブレード204が回転すると、運動中の物体は運動状態にとどまる傾向を有するため、慣性がロータアセンブリ202または301のブレード204の回転運動を維持する。
The
風速がカットイン風速に満たないとき、ソーラードーム203上の光起電力セル206によって駆動される電気モータ215または306が、ロータアセンブリ202または301のブレード204の回転を開始させるための初期パワーを提供し、それにより、ロータアセンブリ202または301のブレード204を回転させるために必要なカットイン風速を減らす、またはゼロにする。ひとたびブレード204が回転し始めると、ロータアセンブリ202または301のブレード204は、ブレード204に対する風の力および光起電力セル206によって生成される電気エネルギーのために、風速に比例する速度で回転し続ける。さらに、固着されたソーラードーム203の回転はたとえば毎分約10回転(rpm)~約1000rpmの速度であり、それが、ソーラードーム203に収容された光起電力セル206を冷却し、光起電力セル206の温度を下げ、それにより、光起電力セル206による発電効率を高める。
When the wind speed is less than the cut-in wind speed, the
高温条件下、光起電力セル206の冷却は光起電力セル206のパワー出力を増大させる。ソーラーパワー式風力タービン装置200または300の全効率は、ロータアセンブリ202または301の回転および結果的な光起電力セル206の温度低下に依存する。ロータアセンブリ202または301の高速回転が、ソーラードーム203に収容された光起電力セル206を冷却する。ロータアセンブリ202または301の回転は、ソーラードーム203に収容された光起電力セル206の周囲で周囲空気を循環させ、光起電力セル206の温度を下げ、それが、光起電力セル206中の熱の蓄積を最小限にし、光起電力セル206の過熱を防ぎ、それにより、光起電力セル206がより効率的に作動し、より多くの電気エネルギーまたは電力を生成することを可能にする。光起電力セル206の温度低下のおかげで、入射太陽光の太陽エネルギーから光起電力セル206によって吸収される光子の数が増大し、それにより、半導体材料の原子から増大した数の電子を押し退ける。次いで、これらの電子は光起電力セル206の前面に向かって流れる。光起電力セル206の動作温度の低下が光起電力セル206の前面におけるより良好な電子の流れを促進し、それにより、光起電力セル206の電気エネルギー出力の量を増す。高いrpmでのロータアセンブリ202または301の連続回転が光起電力セル206の表面に高速の気流を発生させ、環境からの粉塵および他の物質が光起電力セル206の表面に付着し、蓄積することを防ぎ、それにより、光起電力セル206の効率を高める。ある態様においては、風力エネルギーと、電気モータ215または306からのソーラーパワー式回転エネルギー
とがいっしょになって、ソーラーパワー式風力タービン装置200または300の出力パワーを増す。
Under high temperature conditions, cooling the
図2Aは、カットイン風速を減らす、またはゼロにするためのソーラーパワー式水平軸風力タービン装置200の部分立面図を例示する。本明細書に開示されるソーラーパワー式水平軸風力タービン装置200は、図2Bに例示されるフレーム218と、ロータアセンブリ202と、光起電力セル206を有するソーラードーム203と、電気モータ215とを含む。ソーラーパワー式水平軸風力タービン装置200の電気モータ215は、図2Bに例示されるように、ボディ216およびシャフト217を有する。電気モータ215はたとえば直流(DC)モータである。電気モータ215は光起電力セル206に電気的に接続されている。電気モータ215のボディ216は、図2Bに例示されるように、ロータアセンブリ202のソーラードーム203の閉じた端部203aに固く接続されている。電気モータ215のシャフト217は電気モータ215のボディ216から延び、フレーム218の固定車軸201に固く接続されている。ある態様において、電気モータ215のシャフト217は固定される。電気モータ215のボディ216は電気モータ215のシャフト217を中心に回転可能である。電気モータ215は、ソーラードーム203および/またはロータアセンブリ202のブレード204に固着された光起電力セル206から電気エネルギーを受け取る。電気モータ215は、光起電力セル206によって生成された電気エネルギーを受け取ると、ロータアセンブリ202を、フレーム218の固定車軸201の水平軸(X-X)207を中心に回転させる。ロータアセンブリ202は、ブレード204に対する風の力および駆動された電気モータ215に応答して、水平軸(X-X)207を中心に回転するように構成されている。
FIG. 2A exemplifies a partial elevation view of a solar-powered horizontal axis
ある態様において、ソーラーパワー式水平軸風力タービン装置200はさらに、図2Aに例示されるように、ロータアセンブリ202のブレード204を取り囲む第一の駆動機構205と、発電機208とを含む。発電機208は、第一の駆動機構205を介してロータアセンブリ202に噛合可能に接続されている。第一の駆動機構205はロータアセンブリ202のブレード204に固着されている。ロータアセンブリ202のブレード204は、図2Bに例示されるソーラードーム203の周縁203bに固く接続され、第一の駆動機構205によって取り囲まれている。ブレード204はソーラードーム203から放射状に延びている。ロータアセンブリ202のブレード204を取り囲む第一の駆動機構205は、発電機208に固く接続された第二の駆動機構209と噛合可能に連絡する。たとえば、ブレード204を取り囲むギアリング205aが、発電機208に固く接続されたギアリング209aと噛合可能に連絡している。ロータアセンブリ202に固く接続されたギアリング205aは、ロータアセンブリ202の回転によって生成された機械エネルギーを発電機208に伝達するために、発電機208に固く接続されたギアリング209aと噛合可能に連絡する。発電機208は、ロータアセンブリ202によって生成された機械エネルギーを電気エネルギーに変換する。
In some embodiments, the solar-powered horizontal axis
ある態様において、ソーラーパワー式水平軸風力タービン装置200は、ロータアセンブリ202のソーラードーム203上の光起電力セル206および発電機208と電気的に連絡した一つまたは複数のエネルギー貯蔵装置212aおよび212bを含む。発電機208はエネルギー貯蔵装置212aおよび212bに電気的に接続されている。エネルギー貯蔵装置212aおよび212bは、光起電力セル206および発電機208によって生成された電気エネルギーを貯蔵する。貯蔵された電気エネルギーは、複数の目的、たとえばソーラーパワー式水平軸風力タービン装置200のブレード204を回転させるためのパワーを電気モータ215に提供する目的に使用される。貯蔵された電気エネルギーは、ソーラーパワー式水平軸風力タービン装置200の付近に風がほとんどまたはまったくないとき、電気モータ215を駆動してロータアセンブリ202のブレード204を回転させることにより、電気モータ215をアクティブ化する。貯蔵された電気エネルギーはまた、風速がカットイン風速とカットアウト風速との間の風速レベルであるとき、電気215モータを駆動することにより、ロータアセンブリ202のブレード204の回転を支援する。本明細書の中で使用される「カットアウト風速」とは、風力タービンが発電を停止する最高風速をいう。貯蔵された電気エネルギーはまた、ソーラーパワー式水平
軸風力タービン装置200の均一かつ連続的なパワー出力を可能にする。
In some embodiments, the solar-powered horizontal axis
ある態様において、本明細書に開示されるソーラーパワー式水平軸風力タービン装置200はさらに、光起電力セル206、電気モータ215およびエネルギー貯蔵装置212aおよび212bと電気的に連絡したスイッチ213を含む。スイッチ213は、電気エネルギー、たとえば電流を遮断するため、または電気エネルギーを光起電力セル206からエネルギー貯蔵装置212aおよび212bに流す、もしくはエネルギー貯蔵装置212aおよび212bから電気モータ215に流すため、光起電力セル206、電気モータ215およびエネルギー貯蔵装置212aおよび212bによって形成される電気回路を断つために使用される。スイッチ213は、光起電力セル206によって生成された電気エネルギーを電気モータ215および/またはエネルギー貯蔵装置212aおよび212bに伝達するように構成されている。一つのエネルギー貯蔵装置、たとえば212aに貯蔵された電気エネルギーは、ロータアセンブリ202を回転させるために電気モータ215を駆動し、一方で、もう一つのエネルギー貯蔵装置、たとえば212bに貯蔵された電気エネルギーは一つまたは複数の外部エネルギーステーションに伝達される。一例において、エネルギー貯蔵装置212aは、たとえば夜間、貯蔵された電気エネルギーを電気モータ215に伝達する。エネルギー貯蔵装置212bは、他のエネルギーステーション、たとえば送電網、変電所などにパワーを提供する。ある態様において、スイッチ213は、光起電力セル206を電気モータ215から電気的に切断し、光起電力セル206によって生成された電気エネルギーをエネルギー貯蔵装置212aおよび212bに伝達する。この態様において、ロータアセンブリ202のブレード204の回転は、光起電力セル206が電気モータ215から電気的に切断された後でも、ロータアセンブリ202のブレード204に対する風の力によって持続される。
In certain embodiments, the solar-powered horizontal axis
太陽光の存在下、スイッチ213は、光起電力セル206によって生成された電気エネルギーを電気モータ215に伝達し、また、エネルギー貯蔵装置212aおよび212bにも伝達し、それにより、エネルギー貯蔵装置212aおよび212bを充電するように構成され得る。太陽光の非存在下、スイッチ213は、充電されたエネルギー貯蔵装置212aおよび212b中に貯蔵された電気エネルギーを電気モータ215に伝達して、ロータアセンブリ202に回転モーメントを提供するように構成され得る。その後、充電されたエネルギー貯蔵装置212aおよび212bは、パラメータ、たとえば卓越風速度、ソーラーパワー式水平軸風力タービン装置200からのエネルギー出力、電気エネルギーが使用される様々な他の用途、たとえば照明、加熱などに依存して、所望により、電気モータ215と接続されたままであってもよいし、またはユーザによって電気モータ215から切り離されてもよい。
In the presence of sunlight, the
ある態様において、本明細書に開示されるソーラーパワー式水平軸風力タービン装置200はさらに、光起電力セル206からエネルギー貯蔵装置212aおよび212bへの電気エネルギーの連続的伝達を可能にするための、光起電力セル206に接続され、光起電力セル206と電気的に連絡したスリップリング210を含む。スリップリング210は、ロータアセンブリ202に接続されたフレーム218の固定車軸201上に配置されている。スリップリング210は、電気エネルギーの貯蔵のために、光起電力セル206によって生成された電気エネルギーをエネルギー貯蔵装置212aおよび212bに伝達する。
In certain embodiments, the solar-powered horizontal axis
ある態様において、本明細書に開示されるソーラーパワー式水平軸風力タービン装置200はさらに、発電機208と一つのエネルギー貯蔵装置、たとえば212aとの間に電気的に接続された、電気エネルギーを一つの方向だけに、すなわち発電機208からエネルギー貯蔵装置212aへの方向に伝導するためのダイオード211を含む。ダイオード211は、電気エネルギーがエネルギー貯蔵装置212aから発電機208に戻されるのを防ぐ。
In some embodiments, the solar-powered horizontal axis
ソーラーパワー式水平軸風力タービン装置200の運転中、光起電力セル206を収容するロータアセンブリ202が回転すると、固定車軸201に取り付けられたスリップリング210が、光起電力セル206から電気モータ215および/またはエネルギー貯蔵装置212aおよび212bへ
の電気エネルギーの伝達を容易にする。ロータアセンブリ202が静止しているとき、エネルギー貯蔵装置212aおよび212bのうちの一つの中で利用可能である電気エネルギーは電気モータ215に伝達される。したがって、本明細書に開示されるソーラーパワー式水平軸風力タービン装置200は、光起電力セル206を収容するロータアセンブリ202が連続的に回転するときには光起電力セル206からスリップリング210を介してエネルギー貯蔵装置212aおよび212bへのパワーの双方向伝達、ならびに、ロータアセンブリ202が静止しているときにはエネルギー貯蔵装置212aおよび212bから電気モータ215へのパワーの双方向伝達を容易にする。本明細書に開示されるソーラーパワー式水平軸風力タービン装置200は、電気エネルギーがユーザの要件を満たす方向に流れるように調整する。たとえば、電気エネルギーは、スイッチ213、ダイオード211などにより、光起電力セル206から電気モータ215へ流れるか、またはエネルギー貯蔵装置212aおよび212bから電気モータ215へ流れるか、または光起電力セル206からエネルギー貯蔵装置212aおよび212bへ流れる。
During the operation of the solar-powered horizontal axis
ある態様においては、風力のデータをモニタするために、一つまたは複数の風センサ214がロータアセンブリ202の一つまたは複数のブレード204に動作可能に配置される。ロータアセンブリ202のブレード204のうちの一つに配置された風センサ214が図2Aに例示されている。風センサ214は風の速度および圧力を計測する。風センサ214は風の速度を測り、風速が遅い、および/または最小限であるときだけロータアセンブリ202のソーラードーム203が電気モータ215によって回されることを保証する。たとえば、風速が、ロータアセンブリ202のブレード204の回転運動を発生させるためのカットイン風速に実質的に満たないならば、風センサ214は風速の低下を検出し、光起電力セル206によって駆動される電気モータ215を始動させて、風速が、ロータアセンブリ202のブレード204の連続回転を持続させることができる大きさにまで増すまで、ブレード204を回転させる。いくつかの態様は、風センサ214の動作を支援するコンピュータハードウェアおよび/またはソフトウェアを含む。コンピュータハードウェアは、たとえば、ソフトウェアを実行するためのプロセッサ、メモリ、バス、入出力制御装置およびネットワーキングハードウェアを含むことができる。コンピュータハードウェアおよび/またはソフトウェアは、局所的であることができるし、または遠隔操作を含むように分散型であることができる。
In some embodiments, one or
図2Bは、電気モータ215およびフレーム218を示す、ソーラーパワー式水平軸風力タービン装置200の部分断面図を例示する。フレーム218はロータアセンブリ202を支持する。ある態様において、フレーム218は垂直タワー部219および固定車軸201を含む。第一端201aおよび第二端201bを有する固定車軸201は垂直タワー部219に垂直に接続されている。固定車軸201の第二端201bは垂直タワー部219に固く接続されている。ソーラーパワー式水平軸風力タービン装置200のロータアセンブリ202は、フレーム218に回転可能に接続され、風の力および電気モータ215に応答して回転する。
FIG. 2B illustrates a partial cross-sectional view of a solar-powered horizontal axis
ロータアセンブリ202は、たとえば一つまたは複数のベアリング220を介してフレーム218の固定車軸201の第一端201aに回転可能に接続されている。ソーラードーム203はフレーム218の固定車軸201の第一端201aに固く接続されている。ある態様においては、風速を計測するために、風速計221がフレーム218に動作可能に接続されている。もう一つの態様においては、ロータアセンブリ202の回転速度を計測するために、回転計222がフレーム218に動作可能に接続されている。ある態様において、本明細書に開示されるソーラーパワー式水平軸風力タービン装置200はさらに、光起電力セル206を水および気象条件から保護するために、ロータアセンブリ202のソーラードーム203上の光起電力セル206を封入する耐候性シール223を含む。
The
光起電力セル206は、隣接する光起電力セル206を耐候性シール223の背後に配置することにより、ソーラードーム203に取り付けられている。ある態様において、耐候性シール223はさらに、光起電力セル206がソーラードーム203から外れることを防ぐために、隣接す
る光起電力セル206をソーラードーム203上の定位置に固着するように構成されている。図2Bに例示されるように、電気モータ215はソーラードーム203内に軸方向に配置される。電気モータ215のシャフト217は電気モータ215のボディ216からフレーム218の固定車軸201を通って延びる。ある態様において、シャフト217は、ロータアセンブリ202のブレード204に対し、ブレード204のハブ部分204aで動作可能に接続される。光起電力セル206はワイヤ225を介して電気モータ215と電気的に連絡している。入射太陽光への曝露によって光起電力セル206中で生成された電気エネルギーはワイヤ225を介して電気モータ215に伝達される。伝達された電気エネルギーが電気モータ215を作動させ、それにより、電気モータ215のボディ216を固定シャフト217を中心に駆動する。したがって、電気モータ215のシャフト217を中心とするボディ216の回転により、ロータアセンブリ202のブレード204が回転し、ロータアセンブリ202のブレード204を回転させるために必要なカットイン風速を減らす、またはゼロにする。
The
任意の態様において、本明細書に開示されるソーラーパワー式水平軸風力タービン装置200はさらに、電気モータ215に動作可能に接続された、互いに噛み合う一つまたは複数のフライホイール224を含む。フライホイール224の一つは、ロータアセンブリ202のブレード204のための連続的な回転運動量を提供するために、電気モータ215のシャフト217に取り外し可能かつ動作可能に接続されるように構成されている。
In any aspect, the solar-powered horizontal axis
図3Aは、カットイン風速を減らす、またはゼロにするためのソーラーパワー式垂直軸風力タービン装置300の正面図を例示する。本明細書に開示されるソーラーパワー式垂直軸風力タービン装置300は、ロータアセンブリ301と、垂直車軸304と、光起電力セル206を有するソーラードーム203と、第一の駆動機構303とを含む。ロータアセンブリ301は、ブレード204に当てられる風の力に応答して、ロータアセンブリ301の垂直軸(Y-Y)302に沿って、たとえば右回り方向または左回り方向に回転するように構成されている。ロータアセンブリ301の回転が機械エネルギーを生成する。図3Aに例示される態様において、ロータアセンブリ301は概して円柱形である。または、ロータアセンブリ301はたとえば円錐形または膨らみのある円柱形である。図3Aに例示されるように、ロータアセンブリ301は、閉じた上端301aと、開いた下端301bと、閉じた上端301aと開いた下端301bとの間に画定された側壁301cとを含む。ロータアセンブリ301の側壁301cは、たとえば、図3Aに例示されるような円柱形のロータアセンブリ301のための円柱形の壁である。本明細書に開示されるソーラーパワー式垂直軸風力タービン装置300の垂直車軸304は、ロータアセンブリ301内に、ロータアセンブリ301の垂直軸(Y-Y)302に沿って同軸に配置されている。
FIG. 3A illustrates a front view of a solar-powered vertical axis
ある態様において、ロータアセンブリ301は、ロータアセンブリ301の側壁301c上に構成されたブレード204を含む。ロータアセンブリ301は、ブレード204に対する風の力および図3Bに例示される駆動された電気モータ306に応答して、垂直軸(Y-Y)302を中心に回転する。図3Aに例示されるような態様において、ブレード204は、ロータアセンブリ301の側壁301cに沿って画定されている。各ブレード204は、所定の形状、たとえばティアドロップ形、スペード形、カーブした形などであり、側壁301c上、垂直車軸304を中心に互いに隣接して配設されている。ロータアセンブリ301の側壁301cに設けられた各ブレード204は、ロータアセンブリ301の回転速度を増すために風の力に対するロータアセンブリ301の曝露の表面積を増すために、たとえば、まっすぐな外形、カーブした外形または曲線の外形を有する。図3Aに例示されるような態様において、光起電力セル206を収容するソーラードーム203は、ロータアセンブリ301の閉じた上端301aに配置されている。
In some embodiments, the
本明細書に開示されるソーラーパワー式垂直軸風力タービン装置300の光起電力セル206を有するソーラードーム203はロータアセンブリ301の閉じた上端301aに固着されている。図3Aに例示されるような態様において、固着された光起電力セル206を収容するソーラードーム203は、ロータアセンブリ301の閉じた上端301aの周縁301dを越えて伸展する。この
態様において、ロータアセンブリ301の第一の駆動機構303の直径はソーラードーム203の直径を越えて伸展する。もう一つの態様において、ソーラードーム203は、ロータアセンブリ301の閉じた上端301aに配置され、ロータアセンブリ301の閉じた上端301aの周縁301d内に収まる。光起電力セル206は、入射太陽光から太陽エネルギーを受け取り、受け取った該太陽エネルギーを電気エネルギーに変換する。
The
本明細書に開示されるソーラーパワー式垂直軸風力タービン装置300の第一の駆動機構303は、ロータアセンブリ301の開いた下端301bでロータアセンブリ301の側壁301cの周囲に固く接続されている。図3Aに例示されるような態様において、ロータアセンブリ301の第一の駆動機構303は、ロータアセンブリ301の側壁301cの周囲に固く接続されたギアリング303aである。
The
ある態様において、本明細書に開示されるソーラーパワー式垂直軸風力タービン装置300はさらに発電機208を含む。発電機208は、第一の駆動機構303を介してロータアセンブリ301に回転可能に接続されている。第二の駆動機構305を含む発電機208は、ロータアセンブリ301上の第一の駆動機構303と噛合可能に連絡している。ロータアセンブリ301上の第一の駆動機構303は、ロータアセンブリ301の回転によって生成された機械エネルギーを発電機208に伝達するために、発電機208の第二の駆動機構305と噛合可能に連絡する。たとえば、ロータアセンブリ301の回転によって生成された機械エネルギーを発電機208に伝達するために、ロータアセンブリ301のギアリング303aが発電機208のギアリング305aと噛合可能に連絡する。発電機208は、ロータアセンブリ301の回転によって生成された機械エネルギーを電気エネルギーに変換する。これにより、本明細書に開示されるソーラーパワー式垂直軸風力タービン装置300は、ブレード204に当てられる風の力ならびに光起電力セル206および発電機208からの電気エネルギーに応答して、エネルギーを生成する。
In some embodiments, the solar-powered vertical axis
図3Aに例示されるような態様において、発電機208は、ロータアセンブリ301の下方に直立状態で配置されている。もう一つの態様において、発電機208は、ロータアセンブリ301の脇に倒立状態で配置される。この態様において、発電機208の第二の駆動機構305は、発電機208とロータアセンブリ301との間に十分な隙間をとって、ロータアセンブリ301の第一の駆動機構303に噛合可能に接続するように構成される。たとえば、発電機208の第二の駆動機構305の直径は発電機208の直径よりも大きく延ばされる。
In an embodiment as illustrated in FIG. 3A, the
図3Bは、電気モータ306を示す、ソーラーパワー式垂直軸風力タービン装置300の態様の部分破断正面断面図を例示する。電気モータ306が、ソーラードーム203に固着された光起電力セル206に接続され、それと電気的に連絡している。ソーラードーム203はロータアセンブリ301の閉じた上端301aに配置されている。電気モータ306は光起電力セル206の下方に同軸に配置されている。この態様において、本明細書に開示されるソーラーパワー式垂直軸風力タービン装置300はさらに、ロータアセンブリ301の円錐台312の内面301eに沿って画定されたらせん溝309を含む。ロータアセンブリ301は、らせん溝309に対する熱上昇気流の力に応答して、垂直軸(Y-Y)302を中心に回転する。熱上昇気流は、大気からの冷気に対する熱気の対流の結果として生じる。ロータアセンブリ301の開いた下端301bの下からの熱気にロータアセンブリ301内の冷気が置き代わる。この熱気による冷気の置換が、熱上昇気流として見える対流を生じさせる。熱上昇気流は、ロータアセンブリ301の開いた下端301bを通ってロータアセンブリ301に入り、らせん溝309に当たってロータアセンブリ301を回転させる。
FIG. 3B illustrates a partially cutaway front sectional view of an embodiment of a solar-powered vertical axis
ロータアセンブリ301の開いた下端301bからロータアセンブリ301に入る空気はカーブした矢印313によって例示されている。ロータアセンブリ301内でらせん溝309に当たる熱上昇気流はカーブした矢印314によって例示されている。らせん溝309に当たる気流が他方でロータアセンブリ301を回転させる。
The air entering the
光起電力セル206は、太陽光からの太陽エネルギーを捕獲し、捕獲された太陽エネルギーを電気エネルギーに変換する。光起電力セル206は、電気エネルギーを電気モータ306に伝達して電気モータ306を駆動する。電気モータ306は、電気エネルギーを受け取ると回転し、ロータアセンブリ301を回転させる。この態様において、ソーラーパワー式垂直軸風力タービン装置300の垂直車軸304は、電気モータ306のシャフト307に固く接続され、ロータアセンブリ301内に、ロータアセンブリ301の垂直軸(Y-Y)302に沿って同軸に配置されている。ロータアセンブリ301は、垂直車軸304に対するロータアセンブリ301の回転を可能にするために、たとえばベアリング308a、スリーブ308bなどによって垂直車軸304に回転可能に接続されている。ソーラードーム203上の光起電力セル206によって駆動される電気モータ306は、風速がカットイン風速に満たないとき、ロータアセンブリ301のブレード204の回転を開始させるための初期パワーを提供し、それにより、ロータアセンブリ301のブレード204を回転させるために必要なカットイン風速を減らす、またはゼロにする。
The
ある態様において、本明細書に開示されるソーラーパワー式垂直軸風力タービン装置300はさらに、光起電力セル206および発電機208に電気的に接続されたエネルギー貯蔵装置212aを含む。エネルギー貯蔵装置212aは、光起電力セル206および発電機208から出力された電気エネルギーを貯蔵する。エネルギー貯蔵装置212aに貯蔵された電気エネルギーは、ソーラーパワー式垂直軸風力タービン装置300の付近に風がほとんどまたはまったくないとき、ロータアセンブリ301のブレード204に弾みをつけて回転させるために使用することができる。
In some embodiments, the solar-powered vertical axis
ある態様において、本明細書に開示されるソーラーパワー式垂直軸風力タービン装置300はさらに、電気モータ306のシャフト307上に配置されたスリップリング310を含む。スリップリング310は、電気モータ306がスイッチ311を介して光起電力セル206から電気的に切断されたとき、光起電力セル206が電気エネルギーをエネルギー貯蔵装置212aに伝達することを可能にする。スリップリング310は、電気エネルギーがスリップリング310を介して光起電力セル206からエネルギー貯蔵装置212aに連続的に伝達されるとき、光起電力セル206がロータアセンブリ301の連続回転を実行することを可能にする。ロータアセンブリ301は、スイッチ311による電気モータ306および光起電力セル206の電気的切断の後でも回転し続ける。その間、光起電力セル206の電気エネルギーはまた、エネルギー貯蔵装置212aに同時並行的に伝達される。
In some embodiments, the solar-powered vertical axis
ソーラーパワー式垂直軸風力タービン装置300を利用する例を考えてみる。ロータアセンブリ301の閉じた上端301aに配置された光起電力セル206が太陽光から太陽エネルギーを受け取り、それを電気エネルギーに変換する。光起電力セル206の電気エネルギーは電気モータ306に伝達され、電気モータ306を、ロータアセンブリ301内で垂直車軸304に固く接続されたそのシャフト307を中心に回転させる。電気モータ306はさらに、ロータアセンブリ301を回転させる。ソーラードーム203上の光起電力セル206によって駆動される電気モータ306は、ロータアセンブリ301のブレード204を回転させるための初期始動速度を提供し、したがって、ロータアセンブリ301のブレード204を回転させるために必要なカットイン風速を減らす、またはゼロにする。さらに、風がロータアセンブリ301のブレード204に衝突する。ブレード204に対する風の力がロータアセンブリ301を回転させ続ける。熱上昇気流が、ロータアセンブリ301の内面301eに沿って画定されたらせん溝309に衝突し、それに沿って移動する上昇気流によって生じるロータアセンブリ301の回転効果を生じさせる。この回転効果はまた、ロータアセンブリ301を、ロータアセンブリ301が回転可能に接続されている垂直車軸304を中心に回転させる。ロータアセンブリ301の回転は、ロータアセンブリ301の第一の駆動機構303に回転可能に接続されている発電機208をその駆動機構305を介して回転させる。発電機208はロータアセンブリ301の機械エネルギーを電気エネルギーに変換する。これにより、本明細書に開示されるソーラーパワー式垂直軸風力タービン
装置300はエネルギーを生成する。
Consider an example of using a solar-powered vertical axis
図2A~2Bに例示されるソーラーパワー式水平軸風力タービン装置200および図3A~3Bに例示されるソーラーパワー式垂直軸風力タービン装置300はそれぞれ、ソーラードーム203を取り付ける異なる方法を必要とする。ソーラードーム203上の光起電力セル206によって駆動される電気モータ215または306は、ソーラーパワー式風力タービン装置200または300のための初期始動力を提供する。この場合、電気モータ215または306のシャフト217または307は固定されている。ひとたびロータアセンブリ202または301が回転し始めると、風速はロータアセンブリ202または301を連続的に回転させる。また、ソーラードーム203中の光起電力セル206によって提供されるさらなるエネルギーは、ソーラードーム203上の光起電力セル206と電気的に連絡しているエネルギー貯蔵装置、たとえば212a中に貯蔵されることもできるし、および/または他の目的に使用されることもできる。
The solar-powered horizontal-axis
図4は、図2A~2Bおよび図3A~3Bに例示される、風力エネルギーおよび太陽エネルギーによって駆動されるソーラーパワー式風力タービン装置200または300のパワー出力のグラフ表示を例示する。図2A~2Bに例示されるソーラーパワー式水平軸風力タービン装置200または図3A~3Bに例示されるソーラーパワー式垂直軸風力タービン装置300はハイブリッド式ソーラー・風力タービンである。任意の所与の時点で、日中の太陽の位置により、入射太陽光から出力される実太陽エネルギーは太陽の放射に基づいて変化する。太陽から受け取った使用されない太陽エネルギーは、図2Aおよび3Bに例示される一つまたは複数のエネルギー貯蔵装置、たとえば212a、212bなどに伝達され、電気エネルギーの形で貯蔵される。貯蔵された電気エネルギーはリサイクルされ、風速がカットイン風速未満に低下したとき、または風速がカットイン風速とカットアウト風速との間にあるとき、ソーラーパワー式風力タービン装置200または300によって使用されることができる。
FIG. 4 illustrates a graphical representation of the power output of a solar-powered
図4に例示されるように、約4メートル/秒(m/s)の風速まで、太陽エネルギーが、ソーラーパワー式風力タービン装置200または300による発電のための主な駆動力として働く。ひとたび風速が約12m/sに達すると、図4に例示されるように、風力エネルギーが寄与する全パワー出力は一般に、風にかかわりなく、フラットなままである。発電における太陽エネルギーの徐々に減少する寄与の差分はエネルギー貯蔵装置、たとえば212a、212bなどに伝達されることができる。
As illustrated in Figure 4, up to a wind speed of about 4 meters per second (m / s), solar energy acts as the main driving force for power generation by a solar-powered
図5は、ある態様の自動適応性再生可能発電システム500を示すブロック図である。システム500は、同じく太陽および風のエネルギーの回収に適応性であるハイブリッドシステムである。風力タービン510が、安定のため、スタンド520に取り付けられている。頂部の二つのユニバーサルジョイント530が、不完全に整列された風力タービンを許容する。その上には、モータ550が風力タービン510を回転させることを許すスプラグクラッチ540があるが、強風コンディションの場合、風力タービン510はモータ入力よりも高速で回転することができる。モータ550はこの一方向ベアリングに取り付けられ、ソーラードーム560がモータ550の上に載る。
FIG. 5 is a block diagram showing an aspect of the auto-adaptive renewable
これは、ソーラーパネルとモータ550との直接接続を示す。太陽が出ているとき、モータ550は回転し、風力タービン510を回転させ、太陽が隠れているとき、モータ550は回転しない。もう一つの態様は、太陽からのパワーを、風力タービン510がそれを必要としないとき、のちの使用に備えて貯蔵するための、バッテリを有する貯蔵装置を有する。 This shows the direct connection between the solar panel and the motor 550. When the sun is out, the motor 550 rotates, rotating the wind turbine 510, and when the sun is hiding, the motor 550 does not rotate. Another embodiment has a storage device with a battery for storing power from the sun for later use when the wind turbine 510 does not need it.
高い温度はソーラーパネルの効率を低下させるが、システム500においては、ソーラーパネルはタービンとともに回転して冷却効果を生じさせ、ソーラーパネルをピーク効率に維持する。
High temperatures reduce the efficiency of the solar panel, but in
図6は、ある態様のソーラーパネルエネルギーモード制御装置610を示すブロック図である。ソーラーパネル、貯蔵されたバッテリパワーおよび風力からのエネルギーの組み合わせを供給するために、ソーラーパネルエネルギーモード制御装置610は、風力エネルギー制御装置620と共同して作動する。
FIG. 6 is a block diagram showing an embodiment of the solar panel
より具体的には、スイッチ(S1)601が閉じて、ソーラーセル626からモータ622までの回路を提供して、ブレードの運動を支援するためのソーラーパワーを提供する。または、スイッチ(S2)602が閉じて、ソーラーセル626からバッテリ624までの回路を提供して再充電に備える。最後に、スイッチ(S3)603が閉じて、バッテリ624からモータ622までの回路を提供して、貯蔵されたバッテリパワーを提供する。風力エネルギー制御装置620は、いくつかの態様において、独立して作動して、風力をモータ622および/または再充電のためにバッテリ624に提供する。
More specifically, the switch (S1) 601 closes to provide a circuit from the solar cell 626 to the
ソーラーパネルエネルギーモード制御装置610は、その動作を支援するための、プロセッサまたは他のハードウェアもしくはソフトウェアコンピュータ部品を含むことができる。コンピュータ部品は、プロセッサ、メモリ、バス、入出力制御装置およびネットワーキング能力を含むことができる。
The solar panel
図7A~Cは、ある態様の自動適応性再生可能発電方法700を示すフローチャートである。
7A-C are flowcharts showing an aspect of the auto-adaptive renewable
工程710で、風速がカットイン風速に満たないならば(710)、工程720で、制御装置が、ソーラーパワー、風力およびバッテリの選択された組み合わせからパワーを引き出して、ブレードのモータを支援する。他方、工程710で、風速がカットイン風速未満ではないならば(710)、工程730で、制御装置は、風力および太陽の組み合わせからの余剰パワーをバッテリに貯蔵する。工程740でプロセスを続けるならば、プロセスが終了するまで風速の変化に基づいて調節することができる。
In
工程720のサブステップに戻ると、工程722で、ソーラーセルおよび風力から十分なパワー出力があるならば、工程724で、ソーラーセルからパワーを引き出してモータを支援する。または、ソーラーパワーおよび風力に加えて、バッテリからもパワーを引き出す。
Returning to the sub-step of
工程730のサブステップにおいて、工程732で、風力およびソーラーパネルから余剰パワー出力があるならば、工程734で、余剰パワーをバッテリに貯蔵することができる。余剰パワーがあるかどうかにかかわらず、工程736で、風力からパワーを引き出してカットイン風速に到達させる。
In the sub-step of step 730, if there is surplus power output from the wind and solar panels in step 732, the surplus power can be stored in the battery in step 734. In
前記例は、説明のために提供されただけであり、決して、本明細書に開示される考案を限定するものと解釈されてはならない。本考案は、様々な態様を参照しながら説明されたが、本明細書の中で使用されたことばは、限定のためのことばではなく、説明のためのことばであることを理解されたい。さらに、本考案は、特定の手段、材料および態様を参照しながら本明細書で説明されたが、本考案は、本明細書に開示された詳細に限定されることを意図したものではなく、むしろ、本考案は、実用新案登録請求の範囲に入るような、すべての機能的に等しい構造、方法および使用を包含する。当業者は、本明細書の教示の恩典を受けて、それに対して数多くの改変を実施し得、変更は、本考案の局面において本考案の範囲および精神を逸脱することなく実施され得る。 The above examples are provided for illustration purposes only and should by no means be construed as limiting the ideas disclosed herein. Although the present invention has been described with reference to various aspects, it should be understood that the term used herein is not a term for limitation but a term for explanation. Moreover, although the present invention has been described herein with reference to specific means, materials and embodiments, the present invention is not intended to be limited to the details disclosed herein. Rather, the invention includes all functionally equal structures, methods and uses that fall within the utility model registration claims. Those skilled in the art may, in the benefit of the teachings herein, make numerous modifications to it, which may be made without departing from the scope and spirit of the present invention in aspects of the present invention.
200 風力タービン
201 固定車軸
201a 第一端
201b 第二端
202 ロータアセンブリ
203 ソーラードーム
203a 閉じた端部
203b 周縁
204 ブレード
204a ハブ部分
205 第一の駆動機構
205a ギアリング
206 光起電力セル
207 水平軸(X-X)
208 発電機
209 第二の駆動機構
209a ギアリング
210 スリップリング
211 ダイオード
212a エネルギー貯蔵装置
212b エネルギー貯蔵装置
213 スイッチ
214 風センサ
215 電気モータ
216 ボディ
217 シャフト
218 フレーム
219 垂直タワー部
220 ベアリング
221 風速計
222 回転計
223 耐候性シール
224 フライホイール
225 ワイヤ
300 風力タービン
301 ロータアセンブリ
301a 閉じた上端
301b 開いた下端
301c 側壁
301e 内面
301d 周縁
302 垂直軸(Y-Y)
303 第一の駆動機構
303a ギアリング
304 垂直車軸
305 第二の駆動機構
305a ギアリング
306 電気モータ
307 シャフト
308a ベアリング
308b スリーブ
309 らせん溝
310 スリップリング
311 スイッチ
312 円錐台
313 カーブした矢印
314 カーブした矢印
500 自動適応性再生可能発電システム
510 風力タービン
520 スタンド
530 ユニバーサルジョイント
540 スプラグクラッチ
550 モータ
560 ソーラードーム
601 スイッチ(S1)
602 スイッチ(S2)
603 スイッチ(S3)
610 ソーラーパネルエネルギーモード制御装置
620 風力エネルギー制御装置
622 モータ
624 バッテリ
626 ソーラーセル
200 wind turbine
201 Fixed axle
201a First end
201b Second end
202 rotor assembly
203 Solar dome
203a Closed end
203b Periphery
204 blade
204a Hub part
205 First drive mechanism
205a gearing
206 Photovoltaic cell
207 Horizontal axis (XX)
208 generator
209 Second drive mechanism
209a gearing
210 slip ring
211 diode
212a Energy storage device
212b Energy storage device
213 switch
214 Wind sensor
215 electric motor
216 body
217 shaft
218 frames
219 Vertical tower section
220 bearing
221 Anemometer
222 Tachometer
223 Weatherproof seal
224 flywheel
225 wire
300 wind turbine
301 rotor assembly
301a Closed top
301b open bottom edge
301c side wall
301e inside
301d perimeter
302 Vertical axis (YY)
303 First drive mechanism
303a gearing
304 Vertical Axle
305 Second drive mechanism
305a gearing
306 electric motor
307 shaft
308a bearing
308b sleeve
309 spiral groove
310 slip ring
311 switch
312 truncated cone
313 Curved arrow
314 Curved arrow
500 Auto-adaptive renewable power generation system
510 wind turbine
520 stand
530 Universal joint
540 sprag clutch
550 motor
560 Solar Dome
601 switch (S1)
602 switch (S2)
603 switch (S3)
610 Solar panel energy mode controller
620 Wind energy controller
622 motor
624 battery
626 solar cell
Claims (1)
前記風力の風力タービンがスタンドに取り付けられ、その頂部のユニバーサルジョイントが風力タービンに設けられ、その上には、モータが風力タービンを回転させることを許すスプラグクラッチを介して設けられ、ソーラードームが前記モータの上に載り、
前記風力タービンは、風速がブレードの回転のためのカットイン風速に満たないとき回転を開始するブレードを有し、
前記モータが、該第一の光起電力セルによって伝達された該電気エネルギーを使用して、前記ブレードを回転させ、それにより、該ブレードの回転に必要なカットイン風速を減らすこと、およびゼロにすることのうちの一つを実施させ、
風速がカットイン風速に満たないならば、ソーラーパワー、風力およびバッテリの選択された組み合わせからパワーを引き出してブレードのモータを支援し、その際に十分なパワーを引き出せないときは、ソーラーパワー、風力およびバッテリからパワーを引き出し、
風速がカットイン風速未満ではないならば、風力および太陽の組み合わせからの余剰パワーをバッテリに貯蔵する、
制御装置を有する
ことを特徴とする風力タービン。
Has solar power, wind and battery,
The wind turbine is mounted on a stand, a universal joint at the top of the stand is provided on the wind turbine, above which a sprag clutch is provided to allow the motor to rotate the wind turbine, and a solar dome is provided. Placed on the motor,
The wind turbine has blades that start rotating when the wind speed is less than the cut-in wind speed for blade rotation.
The motor uses the electrical energy transmitted by the first photovoltaic cell to rotate the blade, thereby reducing the cut-in wind speed required to rotate the blade, and to zero. Have one of the things to do
If the wind speed is less than the cut-in wind speed, draw power from the selected combination of solar power, wind and battery to assist the blade motor, and if not enough power, solar power, wind. And draw power from the battery,
If the wind speed is not less than the cut-in wind speed, store excess power from the combination of wind and sun in the battery,
A wind turbine characterized by having a control device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021002930U JP3237222U (en) | 2021-07-28 | 2021-07-28 | Reduce or eliminate cut-in wind speeds using solar-powered wind blades with embedded solar cells |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021002930U JP3237222U (en) | 2021-07-28 | 2021-07-28 | Reduce or eliminate cut-in wind speeds using solar-powered wind blades with embedded solar cells |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021122052 Continuation | 2017-04-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP3237222U true JP3237222U (en) | 2022-04-22 |
Family
ID=81206484
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021002930U Active JP3237222U (en) | 2021-07-28 | 2021-07-28 | Reduce or eliminate cut-in wind speeds using solar-powered wind blades with embedded solar cells |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3237222U (en) |
-
2021
- 2021-07-28 JP JP2021002930U patent/JP3237222U/en active Active
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9638170B2 (en) | Solar powered wind turbine apparatus for reducing or eliminating wind cut-in speed | |
US6984899B1 (en) | Wind dam electric generator and method | |
US8338977B2 (en) | Hybrid vertical axis energy apparatus | |
CN101280766B (en) | Changeable attack angle resistance force type vertical shaft wind-light complementary type electricity generator | |
CN110056483B (en) | Multiple variable pitch power generation method of wind driven generator | |
CN105811861A (en) | Domestic wind-energy and solar-energy combined power generation apparatus with function of actively tracking wind energy | |
US20080265584A1 (en) | Wind driven generator | |
CN109194248A (en) | A kind of spherical integral type wind and solar hybrid generating system and method | |
JPH11220155A (en) | Power generating device | |
JP2018178740A (en) | Reducing or zeroizing of cut-in wind velocity, using solar-powered wind blades with built-in solar cells | |
US20170204835A1 (en) | Reducing or eliminating wind cut-in speed using solar powered wind blades with embedded solar cells | |
CN207229300U (en) | High-power wind power generation system | |
KR200460675Y1 (en) | Wind power and solar hybrid generator | |
KR20100035289A (en) | That can correct generator starting wind velocity combined power generation system of wind power generation device | |
JP3237222U (en) | Reduce or eliminate cut-in wind speeds using solar-powered wind blades with embedded solar cells | |
KR20100013026U (en) | Hybrid street light | |
AU672701B2 (en) | Solar venturi turbine | |
CN202228266U (en) | Wind collection type wind generating set | |
CN103673190A (en) | Renewable energy ventilator | |
CN207686046U (en) | A kind of wall | |
JP2004068622A (en) | Power generating device and rotor of wind mill | |
KR101116123B1 (en) | Alternative energy system using the building vents | |
CN201907401U (en) | Solar energy utilizing hybrid power vehicle | |
CN206135767U (en) | Power generation facility is united with solar energy to domestic active following wind -force | |
CN214660658U (en) | Heat dissipation equipment of fan generator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220309 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3237222 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |