JP3233300B2 - Microwave sintering method - Google Patents

Microwave sintering method

Info

Publication number
JP3233300B2
JP3233300B2 JP34974892A JP34974892A JP3233300B2 JP 3233300 B2 JP3233300 B2 JP 3233300B2 JP 34974892 A JP34974892 A JP 34974892A JP 34974892 A JP34974892 A JP 34974892A JP 3233300 B2 JP3233300 B2 JP 3233300B2
Authority
JP
Japan
Prior art keywords
microwave
sintered body
sintered
sintering
absorber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34974892A
Other languages
Japanese (ja)
Other versions
JPH06172012A (en
Inventor
英沖 福島
広行 森
正夫 松居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP34974892A priority Critical patent/JP3233300B2/en
Publication of JPH06172012A publication Critical patent/JPH06172012A/en
Application granted granted Critical
Publication of JP3233300B2 publication Critical patent/JP3233300B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】誘電損率(=εr・tanδ:εr
は誘電率、tanδは誘電正接)の温度依存性が大きく
熱伝導率が小さな材料、例えば、チタン散ジルコン酸鉛
(PZT)セラミックス等をマイクロ波によってむら
なく加熱でき、均一に焼結することが可能なマイクロ波
による焼結方法に関する。
[Industrial application field] Dielectric loss factor (= ε r · tan δ: ε r
Small material dielectric constant, tan [delta has temperature dependency is large thermal conductivity of the dielectric loss tangent), e.g., by microwave titanium dispersed lead zirconate titanate (PZT) ceramics, evenly be heated, be uniformly sintered Possible microwave
Sintering method .

【0002】[0002]

【従来の技術】誘電損率の温度依存性が大きく熱伝導が
小さな材料、例えば、PZTセラミックス等をマイクロ
波によって加熱すると、被焼結体内に誘電損率の違いに
よって、温度分布が著しく不均一になる現象、いわゆる
ランナウエイ現象が生じ、被焼結体に加熱むらが生じる
ため、均一な加熱または焼結するのが困難であった。本
発明者等は、上記問題点を解決する方法として、被焼結
体よりも誘電損率の温度依存性が小さく、かつ熱伝導率
が大きな性質を有するSiC等のマイクロ波吸収体を介
してPZT等の被焼結体にマイクロ波を照射すると被焼
結体の誘電損率の急激な変化を防ぐことができ、加熱む
らを防止できることを確かめた(特開平4−92870
号)。この方法によって加熱むらを防止できるのは、マ
イクロ波吸収体でマイクロ波のエネルギーの一部が吸収
されるため、被焼結体の誘電損率の急激な変化が緩和さ
れ、かつマイクロ波吸収体と被焼結体との接触部から被
焼結体への熱伝導およびマイクロ波吸収体から被焼結体
への輻射熱により被焼結体に温度の不均一な部分が無く
なり、被焼結体を均一に加熱できるからである。
2. Description of the Related Art When a material having a large temperature dependence of a dielectric loss factor and a small thermal conductivity, such as PZT ceramics, is heated by a microwave, a temperature distribution is extremely uneven due to a difference in a dielectric loss factor in a sintered body. , A so-called runaway phenomenon occurs, and uneven heating occurs in the sintered body, making it difficult to perform uniform heating or sintering. As a method for solving the above-mentioned problems, the present inventors have proposed a method in which the temperature dependency of the dielectric loss factor is smaller than that of a sintered body, and a microwave absorber such as SiC having a property of having a large thermal conductivity. Irradiation of microwaves on a sintered body such as PZT can prevent a rapid change in the dielectric loss factor of the sintered body, and it has been confirmed that uneven heating can be prevented (Japanese Patent Laid- Open No. 4-92870).
issue). This method can prevent uneven heating because the microwave absorber absorbs a part of the microwave energy, so that the sudden change in the dielectric loss factor of the sintered body is reduced, and the microwave absorber is used. Due to the heat conduction from the contact portion between the sinter and the sinter, and the radiant heat from the microwave absorber to the sinter, the non-uniform temperature of the sinter is eliminated. Can be uniformly heated.

【0003】しかし、1100℃以上の高温になると、
加熱むらが生じることがあった。特に、周波数として
2.45GHzという比較的小さな周波数を用いた場合
に加熱むらが大きくなった。また、1100℃以上の高
温において、マイクロ波吸収体と被焼結体の材質によっ
ては、マイクロ波吸収体と被焼結体が反応して、それら
の境界面に誘電損率の大きな化合物層が形成され、被焼
結体内に急激な温度分布が生じ、被焼結体に加熱むらが
生じたり、あるいはマイクロ波吸収体と被焼結体が反応
して被焼結体内にマイクロ波吸収体の元素の一部が拡散
し、被焼結体が不均一な組織となり、特性が劣化すると
いう問題があった。
However, when the temperature becomes higher than 1100 ° C.,
Uneven heating may occur. In particular, when a relatively small frequency of 2.45 GHz was used, uneven heating became large. At a high temperature of 1100 ° C. or higher, depending on the material of the microwave absorber and the material to be sintered, the microwave absorber and the material to be sintered react with each other, and a compound layer having a large dielectric loss factor is formed on an interface between them. Formed, a sharp temperature distribution occurs in the sintered body, causing uneven heating of the sintered body, or a reaction between the microwave absorber and the sintered body to cause the microwave absorber to be formed in the sintered body. There is a problem that a part of the element diffuses, the sintered body has an uneven structure, and the characteristics are deteriorated.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、誘電
損率の温度依存性が大きく、熱伝導率が小さなセラミッ
クスをマイクロ波によって焼結する方法で、1100℃
以上の高温において確実に加熱むらをなくし、均一に焼
結することを可能にする
SUMMARY OF THE INVENTION An object of the present invention is to provide a method of sintering ceramics having a large temperature dependence of a dielectric loss factor and a small thermal conductivity by microwaves.
At the above-mentioned high temperature, uneven heating is surely eliminated, and sintering can be performed uniformly.

【0005】[0005]

【課題を解決するための手段】(第1発明の構成) 本題1発明のマイクロ波による焼結方法(請求項1記載
の発明)は、マイクロ波を発生させるマイクロ波発生手
段と、被焼結体を加熱・焼結するための空胴共振器と、
前記マイクロ波発生手段から空胴共振器にマイクロ波を
伝送する導波管と、該導波管から前記空胴共振器にマイ
クロ波を導入し該空胴共振器内の共振を維持する結合器
とからなり、該空胴共振器内に配置した被焼結体にマイ
クロ波を照射して被焼結体を焼結するためのマイクロ波
加熱装置を用い、誘電損率が大きくて、マイクロ波を吸
収し易く、かつ前記被焼結体よりも誘電損率の温度依存
性が小さなマイクロ波吸収体と、前記被焼結体とを直接
または間接的に接触した状態で前記空胴共振器内に配置
された被焼結体支持手段に配置すると共に、誘電損率が
小さくマイクロ波を透過しやすい低損失体を前記被焼結
体と前記マイクロ波吸収体の一部を非接触で覆うように
配置して、被焼結体にマイクロ波を照射して被焼結体を
焼結することを特徴とする。
[Means for Solving the Problems] (Structure of the First Invention) A microwave sintering method according to the first aspect of the present invention (the invention according to claim 1) includes a microwave generating means for generating a microwave, and a sintering method. A cavity resonator for heating and sintering the body,
A waveguide for transmitting microwaves from the microwave generation means to the cavity resonator, and a coupler for introducing microwaves from the waveguide to the cavity resonator to maintain resonance in the cavity resonator consists of a, using a microwave heating apparatus for sintering the object sintered body is irradiated with microwaves in the sintered body arranged in the air cylinder resonator, large dielectric loss factor is, the microwave And a microwave absorber having a smaller temperature dependency of a dielectric loss factor than the sintered body and the sintered body directly.
Or placed in the cavity with indirect contact
The low-loss body having a low dielectric loss factor and easy transmission of microwaves is disposed on the sintered body supporting means.
To cover the body and part of the microwave absorber in a non-contact manner
And irradiate the object with microwaves to remove the object.
It is characterized by sintering .

【0006】(第2発明の構成) 本第2発明のマイクロ波による焼結方法(請求項2記載
の発明)は、前記第1発明のマイクロ波による焼結方法
において、前記被焼結体と前記マイクロ波吸収体との間
に、被焼結体およびマイクロ波吸収体と反応し難
く、かつ誘電損率が小さな絶縁体を配置し、該被焼結体
と該マイクロ波吸収体とを間接的に接触させた状態で行
ことを特徴とする。(第3発明の構成) 本第3発明のマイクロ波による焼結方法(請求項3記載
の発明)は、前記第1発明のマイクロ波による焼結方法
において、前記被焼結体と前記マイクロ波吸収体は共に
板状であり、かつ積層された状態で加熱・焼結されるこ
とを特徴とする。
[0006] (Configuration of Second Invention) sintering the method according to the microwave of the present second invention (invention described in claim 2), in the sintering method <br/> microwave of the first invention, the object to be between the sintered body and the microwave absorber, the object to be sintered body and reacting with the microwave absorber difficulty
Ku, and the dielectric loss factor is placed a small insulator,該被sintered body
And the microwave absorber in an indirect contact state.
Cormorant be characterized. (Structure of the third invention) The microwave sintering method of the third invention (Claim 3)
Invention) is the microwave sintering method of the first invention.
In the above, the object to be sintered and the microwave absorber are both
Heated and sintered in the form of a plate and stacked
And features.

【0007】[0007]

【作用】(第1発明の作用) 本第1発明のマイクロ波による焼結方法において、被焼
結体およびマイクロ波吸収体の少なくとも一部を低損失
体で覆うことにより1100℃以上の高温において被焼
結体の加熱むらを防止できる理由は以下の通りであると
推定される。すなわち、被焼結体とマイクロ波吸収体を
低損失体で覆わない場合は、被焼結体の位置で電界強度
が最大となっている。しかし、被焼結体等を低損失体で
覆うことにより、低損失体内中心部である被焼結体の位
置における電界強度が低下し、ほぼ均一になるものと考
えられる。そのため、被焼結体に電界が集中するのを防
止でき、被焼結体内部の電界強度がほぼ均一となり温度
分布の不均一が生じ難くなって加熱むらを防止できるも
のと思われる。また、低損失体で覆うことにより、被焼
結体と空胴共振器内壁とに生じる放電を防止することが
でき、安定した加熱を行うことができる。
(Function of the first invention) In the microwave sintering method of the first invention, at least a part of the object to be sintered and the microwave absorber are covered with a low-loss material so that they can be heated at a high temperature of 1100 ° C or more. It is presumed that the reason why uneven heating of the sintered body can be prevented is as follows. That is, when the sintered body and the microwave absorber are not covered with the low-loss body, the electric field intensity is maximum at the position of the sintered body. However, it is considered that, by covering the sintered body or the like with the low-loss body, the electric field intensity at the position of the sintered body, which is the center of the low-loss body, is reduced and becomes almost uniform. Therefore, it can be considered that the electric field can be prevented from being concentrated on the sintered body, the electric field intensity inside the sintered body is substantially uniform, and the temperature distribution is hardly uneven, and uneven heating can be prevented. Further, by covering with a low-loss body, a discharge generated in the sintered body and the inner wall of the cavity can be prevented, and stable heating can be performed.

【0008】また、低損失体を用いない場合は、周波数
の低い方がマイクロ波の浸透深さが深いため、マイクロ
波吸収体である炭化珪素(SiC)の前記した加熱むら
を防止する効果が小さく、例えば、6GHzよりも2.
45GHzの方がSiCを用いても高温で加熱むらが生
じやすい。しかし、被焼結体等を低損失体で覆う効果は
周波数に無関係であるため、低損失体による低損失体内
中心部の電界強度の均一化効果により、周波数が低い
2.45GHzを用いても高温で加熱むらが生じない。
When a low-loss body is not used, the lower the frequency, the deeper the penetration of microwaves. Therefore, the effect of preventing the above-described uneven heating of silicon carbide (SiC) as a microwave absorber is obtained. 1. smaller than, for example, 6 GHz;
45 GHz tends to cause uneven heating at high temperatures even when SiC is used. However, since the effect of covering the sintered body with the low-loss body is independent of the frequency, the effect of equalizing the electric field intensity at the center of the low-loss body by the low-loss body can be used even at a low frequency of 2.45 GHz. No uneven heating at high temperature.

【0009】(第2発明の作用) 本第2発明のマイクロ波による焼結方法において、被焼
結体とマイクロ波吸収体との間に、被焼結体およびマイ
クロ波吸収体と反応し難い絶縁体を設置すると、被焼結
体の加熱むらを防止しつつ被焼結体とマイクロ波吸収体
との反応を防止できるが、その理由は、以下の通りであ
ると推定される。被焼結体とマイクロ波吸収体との間に
絶縁体を設置したので被焼結体とマイクロ波吸収体とが
非接触の状態になり被焼結体とマイクロ波吸収体との反
応を防止できる。また、絶縁体として被焼結体およびマ
イクロ波吸収体と反応し難い材料を用いるので、被焼結
体およびマイクロ波吸収体と絶縁体との反応も起こらな
い。さらに、絶縁体は、誘電損率が小さいので絶縁体自
体は加熱されず、絶縁体には温度分布がほとんど生じな
い。そのため、絶縁体からの被焼結体への熱影響はほと
んどなく前記マイクロ波吸収体および低損失体によって
加熱むらを防止できる。(第3発明の作用) 本第3発明のマイクロ波による焼結方法において、被焼
結体とマイクロ波吸収体は共に板状であり、かつ積層さ
れた状態で配置されている。被焼結体とマイクロ波吸収
体は、形状が板状でかつ互いに積層されているため、接
触面積が広く一体性が高い。このためより効果的に、被
焼結体の誘電損率の急激な変化を緩和しマイクロ波吸収
体の熱伝導により該被焼結体温度を均一にし、加熱むら
を防止することができる。
(Function of the Second Invention) In the microwave sintering method according to the second invention, it is difficult for the microwave sintering to react between the sintered body and the microwave absorber between the sintered body and the microwave absorber. When an insulator is provided, the reaction between the sintered body and the microwave absorber can be prevented while preventing uneven heating of the sintered body. The reason is presumed to be as follows. Since the insulator is installed between the sintered body and the microwave absorber, the sintered body and the microwave absorber are not in contact with each other, preventing the reaction between the sintered body and the microwave absorber. it can. Further, since a material that does not easily react with the sintered body and the microwave absorber is used as the insulator, no reaction occurs between the sintered body and the microwave absorber and the insulator. Further, since the insulator has a small dielectric loss factor, the insulator itself is not heated, and the insulator hardly has a temperature distribution. Therefore, there is almost no thermal effect on the sintered body from the insulator, and the microwave absorber and the low-loss body can prevent uneven heating. (Operation of the Third Invention) In the microwave sintering method of the third invention,
The binder and the microwave absorber are both plate-shaped and
It is arranged in the state where it was placed. Sintered body and microwave absorption
Since the body is plate-shaped and stacked on top of each other,
Large contact area and high integration. This makes it more effective
Reduces sudden change in dielectric loss factor of sintered body and absorbs microwave
The temperature of the sintered body is made uniform by the heat conduction of the body,
Can be prevented.

【0010】[0010]

【発明の効果】(第1発明の効果) 本第1発明のマイクロ波による焼結方法によれば、PZ
Tのように誘電損率の温度依存性が大きく、熱伝導率が
低い材料でも1100℃以上の高温において、しかも周
波数として2.45GHzといった比較的低い周波数を
用いた場合にも確実に加熱むらをなくすることができ、
均一に焼結することができる。
(Effect of the First Invention) According to the microwave sintering method of the first invention, the PZ
Even if the material has a large temperature dependence of the dielectric loss factor such as T and has a low thermal conductivity, even when a relatively high frequency of 2.45 GHz is used at a high temperature of 1100 ° C. or more, the heating unevenness is surely prevented. Can be eliminated,
It can be uniformly sintered.

【0011】(第2発明の効果) 本第2発明のマイクロ波による焼結方法によれば、被焼
結体の加熱むらを防止しつつ被焼結体とマイクロ波吸収
体との反応を防止できる (第3発明の効果) 本第3発明のマイクロ波による焼結方法によれば、被焼
結体とマイクロ波吸収体の形状、および配置により、よ
り効果的に被焼結体の加熱むらをなくし、均一に焼結す
ることができる。
(Effect of the Second Invention) According to the microwave sintering method of the second invention, the reaction between the sintered body and the microwave absorber is prevented while preventing uneven heating of the sintered body. I can . (Effect of Third Invention) According to the microwave sintering method of the third invention,
Depending on the shape and arrangement of the binder and microwave absorber,
Effectively eliminates uneven heating of the sintered body and sinters it uniformly.
Can be

【0012】[0012]

【実施例】(第1発明の具体例) 本具体例のマイクロ波による焼結方法において用いる
マイクロ波を発生させるマイクロ波発生手段、被焼結体
を加熱・焼結するための空胴共振器、前記マイクロ波発
生手段から空胴共振器にマイクロ波を伝送する導波管お
よび該導波管から前記空胴共振器にマイクロ波を導入し
該空胴共振器内の共振を維持する結合器は、通常マイク
ロ波を発生させ、被焼結体を加熱・焼結するのに用いら
れるマイクロ波加熱装置で使用されている構成であれ
ば、特に限定はない。本具体例のマイクロ波による焼結
方法に用いる代表的なマイクロ波加熱装置の例を図1に
示す。 この装置は、マイクロ波を発生させるマイクロ
波発生手段1、被焼結体を加熱・焼結するための空胴共
振器2、前記マイクロ波発生手段1から空胴共振器2に
マイクロ波を伝送する導波管3および該導波管3から前
記空胴共振器2にマイクロ波を導入し該空胴共振器内の
共振を維持する結合器4と、該空胴共振器内に配置され
た被焼結体6を支持する石英製の支持棒5と、該支持棒
5の下端に設けられ、該支持棒を回転するためのモータ
10からなる。前記被焼結体には、その上下面を覆うよ
うにマイクロ波吸収体7を配置する石英等からなる管
状の低損失体8は、該被焼結体と該マイクロ波焼結体の
一部を覆うように前記空胴共振器内に配置し、前記マイ
クロ波加熱装置を用いて被焼結体を加熱する。なお、
記容器8には酸素等のガスを導入するためのガス導入口
12とガスを排出するためのガス排出口13を有する。
Embodiment (Specific Example of First Invention) The microwave sintering method of this specific example is used in the present invention.
Microwave generating means for generating microwaves, a cavity resonator for heating and sintering the object to be sintered, a waveguide for transmitting microwaves from the microwave generating means to the cavity resonator, and the waveguide A coupler that introduces microwaves from a tube into the cavity resonator and maintains resonance in the cavity resonator is typically a microwave generator that generates microwaves and is used to heat and sinter a body to be sintered. There is no particular limitation as long as the configuration is used in a wave heating device. Microwave sintering of this example
FIG. 1 shows an example of a typical microwave heating apparatus used in the method . This apparatus comprises a microwave generating means 1 for generating microwaves, a cavity resonator 2 for heating and sintering a body to be sintered, and transmitting microwaves from the microwave generating means 1 to the cavity resonator 2. And a coupler 4 for introducing microwaves from the waveguide 3 into the cavity resonator 2 to maintain resonance in the cavity resonator, and a coupler 4 disposed in the cavity resonator.
A support rod 5 made of quartz for supporting the sintered body 6 and a motor 10 provided at the lower end of the support rod 5 for rotating the support rod. The microwave absorber 7 is disposed on the sintered body so as to cover the upper and lower surfaces thereof . Tube made of quartz, etc.
Low-loss body 8 is formed of the sintered body and the microwave sintered body.
Placed in the cavity resonator so as to cover a part thereof,
The object to be sintered is heated using a microwave heating device. The container 8 has a gas inlet 12 for introducing gas such as oxygen and a gas outlet 13 for discharging gas.

【0013】本焼結方法で焼結することができる被焼結
体とは、通常のマイクロ波加熱によって焼結すると加熱
むらを生じ易い、すなわち誘電損率の温度依存性が大き
く、熱伝導率が小さい材料をいい、具体的には誘電損率
の温度依存性が常温から800℃の範囲で1桁以上のセ
ラミックスおよび/または熱伝導率が0.1cal/c
m・sec・℃以上のセラミックスをいう。このような
材料として、例えば、PZT、チタン酸バリウム(Ba
TiO3)、PLZT等の強誘電体材料がある。
The object to be sintered, which can be sintered by the present sintering method , is such that when it is sintered by ordinary microwave heating, uneven heating tends to occur, that is, the temperature dependence of the dielectric loss factor is large, and the thermal conductivity is high. Is a material having a small value, specifically, ceramics having a temperature dependence of a dielectric loss factor of one digit or more in a temperature range from room temperature to 800 ° C. and / or a thermal conductivity of 0.1 cal / c.
It refers to ceramics with m · sec · ° C or higher. As such a material, for example, PZT, barium titanate (Ba)
There are ferroelectric materials such as TiO 3 ) and PLZT.

【0014】次に、マイクロ波吸収体は、誘電損率が
大きくてマイクロ波の吸収が良く、誘電損率の温度依存
性が被焼結体より小さい材料を用いる。まず、マイクロ
波を充分に吸収するためには、被焼結体の種類にもよる
が、マイクロ波帯(0.3〜30GHz)における室温
での誘電損率が、0.1より大きいことが望ましい。誘
電損率を前記範囲にすると、被焼結体にランナウエイ現
象が生じる前の約800℃以下の低温域でマイクロ波吸
収体が主として加熱され、被焼結体の温度分布がより均
一となる。また、誘電損率の温度依存性が被焼結体より
小さいことが望ましく、もし温度依存性が被焼結体より
大きいと、マイクロ波吸収体にランナウエイ現象が生じ
被焼結体の加熱むらを助長するおそれがある。
[0014] Then, the microwave absorber, good microwave absorption greater dielectric loss factor is, the temperature dependence of the dielectric loss factor is small is used material from the sintered body. First, in order to sufficiently absorb microwaves, the dielectric loss factor at room temperature in a microwave band (0.3 to 30 GHz) must be larger than 0.1, depending on the type of the sintered body. desirable. When the dielectric loss factor is in the above range, the microwave absorber is mainly heated in a low temperature range of about 800 ° C. or less before the runaway phenomenon occurs in the sintered body, and the temperature distribution of the sintered body becomes more uniform. Further, it is desirable that the temperature dependency of the dielectric loss factor is smaller than that of the sintered body. If the temperature dependency is larger than that of the sintered body, a runaway phenomenon occurs in the microwave absorber and uneven heating of the sintered body is reduced. There is a risk of contributing.

【0015】また、マイクロ波吸収体は、熱伝導率が、
0.1cal/cm・sec・℃以上であることが望ま
しい。熱伝導率がこれより小さいと、マイクロ波吸収体
に温度分布が生じ、発生した熱が被焼結体に伝導して被
焼結体の温度分布の不均一性を助長するおそれがある。
このような材料として、SiC、ZnO、C(炭素)、
AlN、B4 C等がある。
The microwave absorber has a thermal conductivity of
Desirably, it is 0.1 cal / cm · sec · ° C. or more. If the thermal conductivity is smaller than this, a temperature distribution is generated in the microwave absorber, and the generated heat may be conducted to the sintered body to promote non-uniformity of the temperature distribution of the sintered body.
Such materials include SiC, ZnO, C (carbon),
AlN, B 4 C and the like.

【0016】また、このマイクロ波吸収体は、被焼結体
と直接または間接的に接触した状態で配置するが、結
として、被焼結体の加熱むらが防止されるように配置さ
れていればよい。該マイクロ波吸収体の形状に限定はな
いが、通常は、板状で用い、その厚さは、0.5〜10
mmが望ましい。0.5mm未満だとマイクロ波の吸収
効率が小さくなる。逆に、10mmを越えるとマイクロ
波の大部分が該マイクロ波吸収体に吸収され、エネルギ
ー効率が悪くなるとともに、空胴共振器の電界が乱れて
共振がとれにくくなる。また、該マイクロ波吸収体は、
被焼結体の焼結後の大きさと同等かそれより大きいこと
が望ましい。小さいとマイクロ波吸収体に覆われていな
い部分に温度分布が生じ、被焼結体に加熱むらが生じる
ことがあるため好ましくない。
Further, the microwave absorber is a material to be sintered.
When it is placed directly or indirectly in contact state, as a result, it may be arranged so as to be prevented from uneven heating of the sintered body. Although the shape of the microwave absorber is not limited, it is usually used in the form of a plate, and its thickness is 0.5 to 10
mm is desirable. If it is less than 0.5 mm, the microwave absorption efficiency becomes small. On the other hand, if it exceeds 10 mm, most of the microwaves are absorbed by the microwave absorber, so that the energy efficiency is deteriorated and the electric field of the cavity resonator is disturbed, so that it is difficult to obtain resonance. Further, the microwave absorber,
It is desirable that the size of the object to be sintered be equal to or larger than the size after sintering. If it is small, a temperature distribution occurs in a portion not covered by the microwave absorber, and uneven heating may occur in the sintered body, which is not preferable.

【0017】次に、低損失体は、誘電損率が極めて小
さく、マイクロ波を透過し易い材料を用いる。誘電損率
は室温において、0.01以下が望ましく、これより大
きいと、低損失体自体がマイクロ波を吸収して加熱され
るおそれがあり、また低損失体を空胴共振器内に配置し
たときに空胴共振器内の電界が乱れて共振がとれにくく
なるとともに低損失体内の電界強度が不均一となって、
被焼結体に加熱むらが生じることになる。また低損失体
の誘電損率の温度依存性は極めて小さいことが望まれ
る。誘電損率の温度依存性が大きいと、被焼結体が加熱
されたときに、輻射熱で低損失体の温度が上昇し、この
加熱された状態でマイクロ波が照射されると、低損失体
自体に加熱むらが生じる恐れがあるので好ましくない。
Next, the low loss material has a dielectric loss factor is very small, using a material easily passes through the microwaves. The dielectric loss factor is preferably 0.01 or less at room temperature, and if it is larger than this, the low-loss body itself may be heated by absorbing the microwave, and the low-loss body is disposed in the cavity resonator. Sometimes the electric field in the cavity resonator is disturbed, making it difficult to obtain resonance, and the electric field strength in the low-loss body becomes uneven,
Uneven heating occurs in the sintered body. Further, it is desired that the temperature dependence of the dielectric loss factor of the low-loss body is extremely small. A large temperature dependency of dielectric loss factor, when the sintered body is heated, the temperature of the low-loss material is increased by radiant heat, the microwave is irradiated in this heated state, low loss material It is not preferable because uneven heating may occur.

【0018】このような低損失体の材料としては、Si
2 、サフアイアまたは純度99%以上の高純度アルミ
ナ等がある。低損失体は、マイクロ波吸収体および被焼
結体と非接触で、それらの少なくとも一部を覆うように
配置する。覆いかたには特に限定はなく、低損失体で覆
われた内部の電界強度が均一となるように配置されてい
ればよい。形状については、特に限定はなく、例えば、
管状あるいは断面が四角形や楕円の中空体が望ましく、
通常は管を用い、その中心部に被焼結体を配置する。
As a material of such a low loss body, Si is used.
O 2 , sapphire, or high-purity alumina with a purity of 99% or more is used. The low-loss body is arranged so as to cover at least a part of the microwave absorber and the sintered body in a non-contact manner. There is no particular limitation on how to cover, and it is only necessary to arrange so that the electric field intensity inside the area covered with the low-loss body becomes uniform. There is no particular limitation on the shape, for example,
A tubular body or a hollow body with a square or elliptical cross section is desirable,
Usually, a tube is used, and the object to be sintered is arranged at the center thereof.

【0019】(第2発明の具体例) 本具体例のマイクロ波による焼結方法に用いる絶縁体と
室温での抵抗率が1014Ω・cm以上を有する、い
わゆる絶縁体であること、ならびに被焼結体およびマイ
クロ波吸収体と反応しにくい材料でなければならない。
また、誘電損率が室温で0.05以下であることが望ま
しい。誘電損率がこれより大きいと絶縁体も加熱されて
絶縁体内に温度分布が生じて、熱伝導により被焼結体が
不均一に加熱されることになり被焼結体に加熱むらが生
じるおそれがある。かかる材料として被焼結体が酸化物
系セラミックスの場合は、Al23、MgO、Y2
3を、また、被焼結体が非酸化物系セラミックスの場合
はBN等を用いることが望ましい。また、形状は特に限
定はないが、通常板状で用いるのが望ましい。この絶縁
体の厚さは5mm以下が望ましい。5mmより厚いと、
マイクロ波吸収体と被焼結体との間隔が開きすぎること
になり、マイクロ波吸収体の効果が小さくなるので好ま
しくない。また、該絶縁体は、被焼結体とマイクロ波吸
収体の間に接触して配置する。(第3発明の具体例) 本具体例のマイクロ波による焼結方法では、被焼結体と
マイクロ波吸収体との形状を共に板状としている。さら
に両者は、積層された状態で配置することにしたもので
ある。板状とし、かつ積層することにより、より効果的
な加熱・焼結が可能となる。
[0019] The insulator used in the sintering process by microwaves of this example (example of the second invention), that resistivity at room temperature has a higher 10 14 Ω · cm, a so-called insulator, In addition, the material must not easily react with the sintered body and the microwave absorber.
Further, it is desirable that the dielectric loss factor is 0.05 or less at room temperature. If the dielectric loss factor is larger than this, the insulator is also heated and a temperature distribution is generated in the insulator, and the sintered body is heated unevenly due to heat conduction, which may cause uneven heating of the sintered body. There is. When the material to be sintered is an oxide-based ceramic as such a material, Al 2 O 3 , MgO, Y 2 O
3, also, if the sintered body of non-oxide ceramics is preferably used BN and the like. Although the shape is not particularly limited, it is generally preferable to use a plate. The thickness of this insulator is desirably 5 mm or less. If it is thicker than 5mm,
It is not preferable because the distance between the microwave absorber and the sintered body is too large, and the effect of the microwave absorber is reduced. Further, the insulator is disposed in contact with the object to be sintered and the microwave absorber. (Embodiment of the Third Invention) In the microwave sintering method of this embodiment, the object to be sintered is
Both the microwave absorber and the microwave absorber have a plate shape. Further
The two are arranged in a stacked state.
is there. More effective by forming into a plate shape and laminating
Heating and sintering becomes possible.

【0020】(実施例1) 被焼結体としてPZT圧粉体、マイクロ波吸収体として
SiC板、低損失体としてSiO2管をマイクロ波加熱
装置に配置し、マイクロ波を照射してセラミック焼結体
を製造し、該焼結体の特性評価を行った。本実施例にお
いて用いたマイクロ波加熱装置を模式的に図1に示す。
この装置は、マイクロ波を発生させるマイクロ波発生手
段1、被焼結体を加熱・焼結するための直方体形の空胴
共振器2,前記マイクロ波発生手段1から空胴共振器2
にマイクロ波を伝送する導波管3および該導波管3から
前記空胴共振器2にマイクロ波を導入し該空胴共振器内
の共振を維持する結合窓4と、該空胴共振器内に配置さ
れた被焼結体6を支持する石英製の支持棒5と、該支持
棒5の下端に設けられ、該支持棒を回転するためのモー
タ10からなる。 前記被焼結体とマイクロ波吸収体は共
に板状であり、該被焼結体の上下面はマイクロ波吸収
体であるSiCと積層した状態である。また、石英から
なる管状の低損失体8は、該被焼結体と該マイクロ波焼
結体の一部を覆うように前記空胴共振器内に配置し、前
記マイクロ波加熱装置を用いて被焼結体を焼結する。な
お、前記低損失体8には酸素ガスを導入するためのガス
導入口とガスを排出するためのガス排出口が設置され
(Example 1) PZT green compact as sintered body, microwave absorber
SiC plate, SiO as low loss bodyTwoTubeMicrowave heating
Placed on the deviceIrradiated microwave, ceramic sintered body
Was manufactured, and the characteristics of the sintered body were evaluated. In this embodiment,
FIG. 1 schematically shows a microwave heating apparatus used in the method.
This device is a microwave generator that generates microwaves.
Step 1, rectangular parallelepiped cavity for heating and sintering the object to be sintered
Resonator 2, cavity resonator 2 from microwave generating means 1
Waveguide 3 for transmitting microwaves to and from waveguide 3
Microwaves are introduced into the cavity resonator 2 so that the cavity
Window to maintain resonance4 and, The cavity resonatorWithinArranged
A support rod 5 made of quartz for supporting the sintered body 6
A mode is provided at the lower end of the rod 5 for rotating the support rod.
Data 10. The sintered bodyAnd the microwave absorber
And the object to be sintered isTop and bottomTheMicrowave absorption
SiC as bodyIt is in a state of being laminated with. Also,From quartz
The tubular low loss body 8 is formed by
Placed in the cavity so as to cover a part of the body,
The object to be sintered is sintered using the microwave heating device. What
OhA gas for introducing oxygen gas into the low-loss body 8
An inlet and a gas outlet for discharging gas are installed.
To.

【0021】まず、被焼結体であるPZT粉末をCIP
処理し、径20mm、厚さ3mmのPZT圧粉体試料を
得た。マイクロ波吸収体には径20mm、厚さ3mmの
SiC板を用いた。このSiCの誘電損率は1.3、熱
伝導率は0.3cal/cm・sec・℃である。ま
た、低損失体には内径25mm、厚さ2mmのSiO2
管を用いた。このSiO2 の誘電損率は0.001以下
である。
First, PZT powder, which is a sintered body, is
After the treatment, a PZT green compact sample having a diameter of 20 mm and a thickness of 3 mm was obtained. An SiC plate having a diameter of 20 mm and a thickness of 3 mm was used for the microwave absorber. This SiC has a dielectric loss factor of 1.3 and a thermal conductivity of 0.3 cal / cm · sec · ° C. Further, the low-loss body is made of SiO 2 having an inner diameter of 25 mm and a thickness of 2 mm.
Tubes were used. The dielectric loss factor of this SiO 2 is 0.001 or less.

【0022】次に、前記PZT試料をSiC板で挟み、
これを石英製の支持棒5で空胴共振器内の電界の最大部
位に配置した。さらに、空胴共振器壁面に設置した試料
挿入穴9から低損失体であるSiO2 管を挿入して試料
およびSiCを覆った。空胴共振器には、単一の空胴共
振器を用い、共振周波数を2.45GHz 、空胴共振器
内の電磁界モードをTE103 とし、焼結雰囲気は酸素気
流(2l/min)中とした。なお、被焼結体は、支持
棒を介して、電動機10により回転させ、被焼結体内の
電界が一様になるようにした。
Next, the PZT sample is sandwiched between SiC plates,
This was arranged at the maximum portion of the electric field in the cavity resonator by the support rod 5 made of quartz. Further, a low-loss SiO 2 tube was inserted from the sample insertion hole 9 provided on the cavity wall surface to cover the sample and the SiC. The cavity resonator, with a single cavity resonator, 2.45 GHz resonant frequency, the electromagnetic field mode in the cavity resonator and TE 103, the sintering atmosphere is flowing oxygen (2l / min) in And The object to be sintered was rotated by the electric motor 10 via a support rod so that the electric field in the object to be sintered was uniform.

【0023】次に、被焼結体を加熱し、焼結を行った。
焼結方法により、加熱むらを生じることなく1200
℃以上まで加熱することができ、1150℃、1min
の焼結条件で焼結体密度8.1g/cm3とほぼ真密度
の焼結体が得られた。また、破面観察の結果、均質な焼
結体であることがわかった。
Next, the object to be sintered was heated and sintered.
By the present sintering method , 1200
Can be heated up to 1 ° C. or higher, 1150 ° C., 1 min
Under the sintering conditions, a sintered body having a density of 8.1 g / cm 3 and a true density was obtained. In addition, as a result of observation of the fracture surface, it was found that the sintered body was homogeneous.

【0024】なお、比較のためにSiO2 管からなる低
損失体を用いない他は、本実施例1と同様の被焼結体、
マイクロ波吸収体およびマイクロ波加熱装置を用いて加
熱処理を行った。その結果、1150℃までのマイクロ
波加熱によって、試料中心部が溶融して不均一な組織と
なり真密度近くまで焼結することができなかった。これ
は、低損失体であるSiO2 管を用いていないため試料
に温度分布ができて加熱むらが生じ、PZT試料の中心
が局部的に加熱されたためと推定される。
For comparison, a sintered body similar to that of Example 1 was used except that a low-loss body made of a SiO 2 tube was not used.
Heat treatment was performed using a microwave absorber and a microwave heating device. As a result, the central portion of the sample was melted by microwave heating to 1150 ° C., resulting in a non-uniform structure, and could not be sintered to near the true density. This is presumed to be because the sample had a temperature distribution due to no use of the low-loss SiO 2 tube, resulting in uneven heating, and the center of the PZT sample was locally heated.

【0025】また、低損失体を用いない場合、被焼結体
(PZT試料)やマイクロ波吸収体(SiC板)の一部
で放電が発生することがあり、一度放電が発生すると加
熱が不安定になって、それ以上焼結を続けることが困難
であった。しかし、被焼結体およびマイクロ波吸収体を
低損失体で覆うことにより、放電を確実に防ぐことがで
き、安定した焼結を行うことができた。
If a low-loss body is not used, discharge may occur in a part of the sintered body (PZT sample) or a part of the microwave absorber (SiC plate). It became stable and it was difficult to continue sintering any more. However, by covering the body to be sintered and the microwave absorber with a low-loss body, discharge was reliably prevented, and stable sintering was performed.

【0026】(実施例2) 被焼結体としてPZT圧粉体、マイクロ波吸収体として
SiC板、低損失体としてSiO2管を、それぞれ実施
例1と同じ寸法、材質のものを用い、被焼結体とマイク
ロ波吸収体の間に絶縁体を配置して、実施例1と同じマ
イクロ波加熱装置を用い、実施例1と同じマイクロ波加
熱条件で加熱し、焼結に及ぼす絶縁体の影響を調べた。
(Example 2) A PZT compact as a sintered body, a SiC plate as a microwave absorber, and a SiO 2 tube as a low-loss body were used, each having the same size and material as in Example 1. An insulator is disposed between the sintered body and the microwave absorber, and the same microwave heating apparatus as in Example 1 is used to heat the same under the same microwave heating conditions as in Example 1 to influence the sintering on the insulator. The effects were investigated.

【0027】図2に示すように、CIP処理したPZT
圧粉体試料の上下面に径20mm、厚さ1mmの絶縁体
であるAl2 3 板を配置し、さらに該両Al2 3
上にマイクロ波吸収体であるSiC板を配置した。この
ように構成したPZT試料等からなる積層体全体を支持
棒先端の試料台上に載置し、これらを低損失体であるS
iO2 管で覆い、空胴共振器内の電界の最大部位に挿入
した。なお、絶縁体に用いたAl2 3 の誘電損率は
0.01である。
As shown in FIG. 2, PZT subjected to CIP processing
An Al 2 O 3 plate as an insulator having a diameter of 20 mm and a thickness of 1 mm was arranged on the upper and lower surfaces of the green compact sample, and a SiC plate as a microwave absorber was arranged on both Al 2 O 3 plates. The entire laminated body composed of the PZT sample and the like configured as described above is placed on a sample stage at the tip of a support rod, and these are placed in a low-loss S
It was covered with an iO 2 tube and inserted into the cavity at the site of maximum electric field. The dielectric loss factor of Al 2 O 3 used for the insulator is 0.01.

【0028】次に、被焼結体を加熱し、焼結を行った。
焼結方法により、加熱むらを生じることなく1200
℃以上まで加熱することができ、1150℃、5min
の焼結で密度8.1g/cm3とほぼ真密度の焼結体が
得られた。また、破面観察の結果、均質な焼結体である
ことが明らかとなった。また、EPMA分析により焼結
体の厚さ方向の元素分析を行ったところ、絶縁体からの
元素の拡散はなく、均質な組成の焼結体であることがわ
かった。また、この焼結体を径15mm、厚さ0.5m
mに研磨後、120℃のシリコンオイル中で3kv/m
inの分極処理を行い、圧電特性を調べた。その結果、
電気機械結合係数Kpが0.65という高い値を示し、
該焼結体が優れた圧電特性を有することが明らかとなっ
た。
Next, the object to be sintered was heated and sintered.
By the present sintering method , 1200
Can be heated to more than ℃, 1150 ℃, 5min
A sintered body having a density of 8.1 g / cm 3 and a true density was obtained. Further, as a result of observation of the fracture surface, it was revealed that the sintered body was homogeneous. In addition, element analysis in the thickness direction of the sintered body by EPMA analysis revealed that there was no diffusion of elements from the insulator and the sintered body had a uniform composition. The sintered body was 15 mm in diameter and 0.5 m in thickness.
3kv / m in silicon oil at 120 ° C
In polarization processing was performed, and the piezoelectric characteristics were examined. as a result,
The electromechanical coupling coefficient Kp shows a high value of 0.65,
It became clear that the sintered body had excellent piezoelectric properties.

【0029】なお、比較のためにAl2 3 からなる絶
縁体を用いない他は、本実施例2と同様のPZT圧粉体
試料等およびマイクロ波加熱装置を用いて加熱処理を行
った。その結果、1150℃、5min の焼結で、実施例
1に比べ焼結時間が長いため被焼結体であるPZT試料
とマイクロ波吸収体であるSiCとが反応し、試料表面
の中心部分が変質していた。また、試料表面の厚さ方向
の元素分析を行ったところ、吸収体からSiが拡散して
いることがわかった。この比較例の試料の圧電特性はK
p=0.3と著しく低かった。
For comparison, a heat treatment was performed using the same PZT compact sample and microwave heating apparatus as in Example 2 except that an insulator made of Al 2 O 3 was not used. As a result, at sintering at 1150 ° C. for 5 minutes, the sintering time was longer than in Example 1, so that the PZT sample as the sintered body and the SiC as the microwave absorber reacted, and the center of the sample surface was Had been transformed. In addition, elemental analysis in the thickness direction of the sample surface revealed that Si was diffused from the absorber. The piezoelectric characteristic of the sample of this comparative example is K
It was remarkably low at p = 0.3.

【0030】(実施例3)被焼結体としてPLZT圧粉
体、マイクロ波吸収体にSiC板、低損失体にSiO2
管、絶縁体にMgO板を用い、実施例2と同様の装置を
用いてマイクロ波加熱し、得られた焼結体の性能評価を
行った。以下、実施例2との相違点を中心に説明する。
被焼結体としてPLZT粉末を用い、該PLZT粉末に
対しCIP処理を施して径16mm、厚さ2mmのPL
ZT圧粉体試料を用意した。また、絶縁体には径15m
m、厚さ2mmのMgOの円板を用いた。さらに、マイ
クロ波吸収体としては径15mm、厚さ4mmのSiC
板を用い、全体をSiO2 管で覆った。焼結雰囲気は大
気中とし、被焼結体の加熱処理を行った結果、加熱むら
や放電が発生することなく1150℃以上に加熱するこ
とができ、1150℃、5minの焼結条件で密度7.
8g/cm3 とほぼ真密度の焼結体が得られた。得られ
た焼結体について破面観察および元素分析を行った結
果、絶縁体からの元素の拡散もなく、また、均質な組織
の焼結体であることが明らかになった。
(Example 3) PLZT compact as a sintered body, SiC plate as a microwave absorber, and SiO 2 as a low loss body
Using a MgO plate for the tube and the insulator, microwave heating was performed using the same apparatus as in Example 2, and the performance of the obtained sintered body was evaluated. Hereinafter, a description will be given focusing on differences from the second embodiment.
PLZT powder is used as a sintered body, and the PLZT powder is subjected to a CIP treatment to obtain a PL having a diameter of 16 mm and a thickness of 2 mm.
A ZT green compact sample was prepared. The insulator has a diameter of 15m.
An MgO disk having a thickness of 2 mm and a thickness of 2 mm was used. Further, as a microwave absorber, SiC having a diameter of 15 mm and a thickness of 4 mm is used.
Using a plate, the whole was covered with a SiO 2 tube. The sintering atmosphere was set to the atmosphere, and as a result of performing a heat treatment on the sintered body, the sintered body could be heated to 1150 ° C. or more without generating uneven heating or electric discharge. .
A sintered body having a true density of 8 g / cm 3 was obtained. Observation of the fracture surface and elemental analysis of the obtained sintered body revealed that the sintered body had no element diffusion from the insulator and had a homogeneous structure.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1に係るマイクロ波による焼結方法で用
いるマイクロ波加熱装置の概略図である。
FIG. 1 is used in a microwave sintering method according to a first embodiment.
Is a schematic diagram of a microwave heating apparatus are.

【図2】実施例2に係るマイクロ波による焼結方法で用
いるマイクロ波加熱装置の一部分の概略図である。
FIG. 2 is a diagram showing a microwave sintering method according to a second embodiment.
1 is a schematic view of a portion of a microwave heating device.

【符号の説明】[Explanation of symbols]

1 マイクロ波発生手段 2 空胴共振器 3 導波管 4 結合器 6 被焼結体 7 マイクロ波吸収体 8 低損失体 11 絶縁体 DESCRIPTION OF SYMBOLS 1 Microwave generation means 2 Cavity resonator 3 Waveguide 4 Coupler 6 Sintered body 7 Microwave absorber 8 Low loss body 11 Insulator

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特公 昭59−25937(JP,B2) (58)調査した分野(Int.Cl.7,DB名) C04B 35/64 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-B-59-25937 (JP, B2) (58) Fields investigated (Int. Cl. 7 , DB name) C04B 35/64

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 マイクロ波を発生させるマイクロ波発生
手段と、被焼結体を加熱・焼結するための空胴共振器
と、前記マイクロ波発生手段から空胴共振器にマイク
ロ波を伝送する導波管と、該導波管から前記空胴共振器
にマイクロ波を導入し該空胴共振器内の共振を維持する
結合器と、前記空胴共振器内に配置された被焼結体支持
手段とを有するマイクロ波加熱装置を用い、 誘電損率が大きくてマイクロ波を吸収し易く、かつ前記
被焼結体よりも誘電損率の温度依存性が小さなマイクロ
波吸収体と該被焼結体とを直接または間接的に接触した
状態で前記被焼結体支持手段に配置すると共に、 誘電損率が小さくマイクロ波を透過し易い低損失体を前
記被焼結体と前記マイクロ波吸収体の少なくとも一部を
非接触で覆うように配置して、該被焼結体にマイクロ波
を照射して被焼結体を焼結することを特徴とするマイク
ロ波による焼結方法
Transmission and microwave generating means for generating 1. A microwave, a cavity resonator for sinter heating and the object to be sintered body, the microwave from the microwave generation means to said cavity resonator A waveguide that introduces microwaves from the waveguide into the cavity to maintain resonance in the cavity, and a sintering body disposed in the cavity. using a microwave heating device having a body supporting means, easily absorb microwave large dielectric loss factor, and the <br/> temperature dependence of the dielectric loss factor than the sintered body is small microwave absorbing The body and the body to be sintered were in direct or indirect contact
In this state, the low-loss body is disposed on the sintered body supporting means, and a low-loss body having a small dielectric loss factor and easy to transmit microwaves is placed in front.
The sintered body and at least a part of the microwave absorber are
It is placed over a non-contact microphone, characterized by sintering the irradiated object sintered body microwaves to the object to be sintered body
Method of sintering by wave .
【請求項2】 請求項1に記載のマイクロ波による焼結
方法であって、前記被焼結体と前記マイクロ波吸収体と
の間に、被焼結体およびマイクロ波吸収体と反応し
く、かつ誘電損率が小さな絶縁体を配置し、該被焼結
体と該マイクロ波吸収体とを間接的に接触した状態で行
ことを特徴とするマイクロ波による焼結方法。
2. Sintering by microwave according to claim 1.
The method, wherein between the object to be sintered body the microwave absorber, the object to be sintered body and reacting with the microwave absorber <br/> flame rather, and dielectric loss factor is small insulator Place the said sintered
In a state where the body and the microwave absorber are in indirect contact with each other.
Sintering method by microwaves, characterized in that the Hare.
【請求項3】 請求項1に記載のマイクロ波による焼結3. Sintering by microwave according to claim 1.
方法であって、前記被焼結体と前記マイクロ波吸収体はThe method, wherein the object to be sintered and the microwave absorber are
共に板状であり、かつ積層された状態で加熱・焼結されBoth are plate-shaped and are heated and sintered in a laminated state
ることを特徴とするマイクロ波による焼結方法。A sintering method using microwaves.
JP34974892A 1992-12-01 1992-12-01 Microwave sintering method Expired - Fee Related JP3233300B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34974892A JP3233300B2 (en) 1992-12-01 1992-12-01 Microwave sintering method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34974892A JP3233300B2 (en) 1992-12-01 1992-12-01 Microwave sintering method

Publications (2)

Publication Number Publication Date
JPH06172012A JPH06172012A (en) 1994-06-21
JP3233300B2 true JP3233300B2 (en) 2001-11-26

Family

ID=18405836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34974892A Expired - Fee Related JP3233300B2 (en) 1992-12-01 1992-12-01 Microwave sintering method

Country Status (1)

Country Link
JP (1) JP3233300B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1250477C (en) 2000-10-19 2006-04-12 日本核融合科学研究所 Burning furnace, burnt body pnducing method, and hurnt body
KR100390880B1 (en) * 2000-12-30 2003-07-10 엘지마이크론 주식회사 Cavity of heat treatment apparatus
DE102008035235B4 (en) * 2008-07-29 2014-05-22 Ivoclar Vivadent Ag Device for heating molded parts, in particular dental ceramic molded parts

Also Published As

Publication number Publication date
JPH06172012A (en) 1994-06-21

Similar Documents

Publication Publication Date Title
EP1333012B1 (en) Burning furnace, burnt body producing method, and burnt body
Bhattacharya et al. Susceptor-assisted enhanced microwave processing of ceramics-a review
US5191183A (en) Apparatus for processing ceramics using microwave oven with resistance heating unit
US5266762A (en) Method and apparatus for radio frequency ceramic sintering
JP2928605B2 (en) Ceramic sintering method
JP2628104B2 (en) Method for heat-treating ceramics decomposed and / or oxidized by heat treatment in oxygen-containing gas by microwave heating and susceptor used therefor
JP3233300B2 (en) Microwave sintering method
JP3845777B2 (en) Firing furnace and method for producing fired body
Metaxas et al. Microwave processing of ceramics
CN101492296B (en) Microwave auxiliary thermal treatment method for ceramic fibre and thermal insulation body structure
JP4216037B2 (en) Electromagnetic wave heating device, heating sheath used in electromagnetic wave heating device, and method for producing ceramics using them
JP3102318B2 (en) Manufacturing method of microwave introduction window made of alumina
JP4394345B2 (en) Non-oxide ceramic sintering furnace and non-oxide ceramic sintered body manufacturing method
JPH10279366A (en) Production of high-strength piezoelectric ceramic
Lee et al. Microwave sintering Pb (Zr0. 52Ti0. 48) O3 piezoelectric ceramics
Mathis Microwave synthesis using multicomponent and multiphasic systems
Derling et al. Microwave sintering of BaTiO3-based ceramics
JP2004168575A (en) Method for sintering ceramic
JPH1045472A (en) Dielectric ceramic product for high frequency and its manufacture
JPH06345540A (en) Method for sintering ceramic
JP2001181049A (en) Electromagnetic wave-transmitting article and method for producing the same
JP2005276635A (en) Microwave absorber for heating, and microwave heating device using its microwave absorber
JP2004153209A (en) Member for plasma processing device and its manufacturing method
JPS6138393B2 (en)
JPH07196368A (en) Production of piezoelectric substance of high strength

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees