JP4216037B2 - Electromagnetic wave heating device, heating sheath used in electromagnetic wave heating device, and method for producing ceramics using them - Google Patents

Electromagnetic wave heating device, heating sheath used in electromagnetic wave heating device, and method for producing ceramics using them Download PDF

Info

Publication number
JP4216037B2
JP4216037B2 JP2002303771A JP2002303771A JP4216037B2 JP 4216037 B2 JP4216037 B2 JP 4216037B2 JP 2002303771 A JP2002303771 A JP 2002303771A JP 2002303771 A JP2002303771 A JP 2002303771A JP 4216037 B2 JP4216037 B2 JP 4216037B2
Authority
JP
Japan
Prior art keywords
electromagnetic wave
heating
sic
dielectric loss
heat insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002303771A
Other languages
Japanese (ja)
Other versions
JP2004138327A (en
Inventor
茂 半澤
次朗 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2002303771A priority Critical patent/JP4216037B2/en
Publication of JP2004138327A publication Critical patent/JP2004138327A/en
Application granted granted Critical
Publication of JP4216037B2 publication Critical patent/JP4216037B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、セラミックス成形体あるいはセラミックス仮焼体を電磁波により加熱するための電磁波加熱装置、電磁波加熱装置に用いる加熱用サヤ及びそれらを用いたセラミックスの製造方法に係るものである。
【0002】
【従来の技術】
各種セラミックスの加熱装置としては、ガス炉、電気炉等が用いられており、これらの加熱装置はバーナーやヒーター等により被処理体の外部から加熱が行われる方式である。そのため、被処理体の表面が先に加熱される事となり、被処理体の内部と表面に温度差が生じ、その内外温度差に起因する熱応力によって被処理体に割れやクラック等の不具合をもたらしている。
【0003】
これらの不具合を防止するために、緩やかな昇温速度で長時間加熱することで、内外温度差を小さくする方法が採られている。しかしながら、加熱処理工程の長時間化は使用電力量及びガス量が増加することとなり、結果としてコストの増大、環境悪化等の問題をもたらしている。
【0004】
また電磁波により、被処理体に自己発熱させる加熱法が提案されている。(特許文献1参照)。この加熱法では、外部加熱方式のような被処理体の内外温度差が生じない。従って、急速加熱を行っても被処理体に割れやクラック等が発生しないため短時間処理が期待されている。
【0005】
しかし現実には、単純に被処理体を電磁波加熱した場合(電子レンジで食品を温めるような場合)、被処理体は加熱されるものの加熱炉の炉壁は低温のままで維持される。従って、被処理体の表面では、大気との熱伝達、炉壁との接触部からの熱伝導等に起因する放熱により温度が低下するので、結局は被処理体に内外温度差が生じることになる。この温度差はガス炉、電気炉による外部加熱時の温度差とは逆の傾向ではあるが、やはり被処理体に割れやクラック等の不具合をもたらしている。
【0006】
これを防ぐために電磁波吸収率の良い材料、即ちSiC等の誘電損失の高い材料で炉内壁を構成し、内壁が電磁波により加熱されることで、被処理体の放熱を抑えながら焼結する方法が提案されている。(特許文献2参照)。しかし、一般にSiC材料を電磁波加熱装置の炉内壁として用いた場合、被処理体が最高焼結温度に到達するまでの時間、即ち昇温速度が処理を行う毎に安定せず工程管理への影響、被処理体の各種特性への影響が懸念される。
【0007】
【特許文献1】
特開平6−279127号公報
【特許文献2】
特開昭59−137785号公報
【0008】
【発明が解決しようとする課題】
本発明は、上記の問題を解決するためになされたものであり、被処理体の内外温度差を小さくでき、且つ安定した短時間処理が可能となる電磁波加熱装置を提供する。
【0009】
【課題を解決するための手段】
第1の発明は、金属製容器の内側に断熱材を配してなる加熱炉と、該加熱炉の内部に配置した被処理体に電磁波を照射する電磁波発生手段とを備えた電磁波加熱装置において、前記断熱材に耐酸化性が高く且つ誘電損失の高い材料が含有されていることを特徴とする。
【00010】
また第2の発明は、金属製容器の内側に断熱材を配してなる加熱炉と、該加熱炉の内部に配置した被処理体に電磁波を照射する電磁波発生手段とを備えた電磁波加熱装置において、前記断熱材の炉内部側表面に耐酸化性が高く且つ誘電損失の高い材料が含有されている層が付設されていることを特徴とする。
【0011】
また第3の発明は、金属製容器の内側に断熱材を配してなる加熱炉と、該加熱炉の内部に配置した被処理体に電磁波を照射する電磁波発生手段とを備えた電磁波加熱装置において、前記断熱材と被処理体との間に耐酸化性が高く且つ誘電損失の高い材料が含有されているセラミックス焼結体を配置したことを特徴とする。
【0012】
また第4の発明は、前記装置を用いてセラミックス成形体あるいはセラミックス仮焼体を加熱・焼結することを特徴とする、セラミックスの製造方法に係わるものである。
【0013】
また第5の発明は、セラミックス成形体あるいはセラミックス仮焼体を、前記電磁波加熱装置で加熱・焼結する際にセラミックス成形体あるいは該セラミックス仮焼体を収める加熱用サヤであって、該加熱用サヤ材中に耐酸化性が高く且つ誘電損失の高い材料を含有させたことを特徴とする。
【0014】
また第6の発明は、前記サヤを用いてセラミックス成形体あるいはセラミックス仮焼体を加熱・焼結することを特徴とする、セラミックスの製造方法に係わるものである。
【0015】
また第1、第2、第3および第5の発明において、耐酸化性が高く且つ誘電損失の高い材料が平均粒径500μm以上のα-SiCであることが好ましい。また、耐酸化性が高く且つ誘電損失の高い材料がSi−SiCであることが好ましい。更に、耐酸化性が高く且つ誘電損失の高い材料がK、Ca、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、As、Seの少なくとも一種を含む化合物であって、且つ有元素量が合計で0.1wt%以上であることが好ましい。
【0016】
ここで本発明を完成するに至った経緯を説明する。本発明者は、SiC等の誘電損失の高い材料で炉内壁を構成し被処理体の放熱を抑えながら焼結する方法(特開昭59−137785号公報)において、被処理体を所定温度まで昇温する時間、即ち昇温速度が毎回変動する要因について各種の検討・実験を行った。その結果、耐酸化性が高くしかも安定して誘電損失が高い材料を見出し、それを被処理体のまわりに配置することによって被処理体の昇温速度が安定し、且つ被処理体の内外温度差が小さくできる事を見出し、本発明を完成するに至った。
【0017】
炉内壁の材料として、まずSiCについて検討した。SiC粒にはα型とβ型が存在し、α型はβ型に比べて耐酸化性、誘電損失が高いことが一般的に知られている。しかし各種実験の中でα−SiCを含む焼結体を内壁とした電磁波加熱装置においても、加熱を行う毎に被処理体が最高温度に到達するまでの時間、すなわち昇温速度が変動することが分かった。更なる実験を重ね昇温速度が変動する原因が、実験に用いたα−SiCの粒径に関係するのではと考えられるデータが得られた。このα−SiCの粒径と昇温速度の変動要因との関係が、SiCの酸化の進行によるものではないかと推定した。
【0018】
そこで、α−SiCの平均粒径サイズと耐酸化性の関係を確認してみた。評価試料は、アルミナ粉末とα−SiC粉末をそれぞれ50wt%づつ配合したものに、所定量のバインダー、有機溶媒を加えて混錬し、100×100×10mmのサイズで成形・焼結したものであり、α−SiC原料の平均粒径を変更して、それぞれ製作した。評価方法は、実際の加熱処理を模擬して1400℃、100時間の条件で大気中にて熱処理し、その後、耐酸化性の指標となるSiC結晶残存率を測定した。
【0019】
図1にSiC原料の平均粒径と熱処理後のSiC結晶残存率との関係を評価した結果を示す。SiC結晶残存率は、X線回折装置によりSiCとSiO2の比率を測定することで算出した。この実験結果から、SiC粒径が小さいものではSiC結晶残存率が低く、平均粒径500μm以上でSiC結晶残存率が80%以上と高い値を示すことがわかる。なお、図1は、SiC原料の平均粒径とSiC結晶残存率との関係を示すデータではあるが、焼結後のSiC粒を観察してみても、部分的に互いに結合してはいるものの、粒径自体の成長は無く、この評価結果は焼結後のSiC平均粒径とSiC結晶残存率の関係を示すデータとして置き換えることができる。
【0020】
このように、β−SiCに比べ耐酸化性及び誘電損失が高いと言われているα−SiCであっても、粒径が小さいとSiC結晶残存率が著しく低下してしまう結果となった。このことは、SiCの酸化が進み酸化層が形成されいることを意味するものであり、またSiC結晶残存率が低下すれば必然的に誘電損失が低下することは言うまでもない。従って、α−SiCの場合は、その平均粒径が500μm以上である事が好ましいことがわかる。
【0021】
次にSiCがSi−SiC化している場合について検討した。Si−SiCを検討した理由は、Si−SiCが誘電損失の高い材料であること及びSiC内の気孔中にSiを含浸させているため気孔率が極めて小さくなることから、耐酸化性も高くなると推定されるからである。
【0022】
そこで、α−SiCの評価と同様に平均粒径サイズと耐酸化性の関係を確認してみた。評価試料は、α−SiC粉末に所定量のカーボン粉末、バインダー、有機溶媒を加えて混錬し、100×100×10mmのサイズで成形し、その後Siを含浸させて焼結体としたものであり、α−SiC原料の平均粒径を変更して、それぞれ製作した。図2に結果を示す通り、Si−SiCについては、SiCの平均粒径によらずSiC結晶残存率が高いことがわかる。
【0023】
このように、SiCをSi−SiC化した場合、もともと誘電損失が高い材料であるうえに気孔率が極めて小さいため、平均粒径が小さくてもSiC結晶残存率の低下はほとんどみられず、耐酸化性にも優れた材料であることがわかる。またSi−SiC焼結体は強度が高く、種々の化学物質・薬品等に対する耐蝕性も良好であり、破損したり劣化・変質することが極めて少ない材料であることから、電磁波加熱装置の炉壁材として好ましいものと言える。
【0024】
上記の実験結果を基に、実際の電磁波加熱装置においてその効果を確認するため、更に次の実験を重ねた。アルミナ粉末と平均粒径500μmのα−SiC粉末をそれぞれ50%づつ配合したものに、所定量のバインダー、有機溶媒を加えて混錬し、成形・焼結してセラミックスサヤを作成した。このセラミックスサヤを断熱材と被処理体との間に配置し、2.45GHz帯での電磁波加熱を出力一定で加熱したときの、セラミックスサヤ内表面の昇温カーブを調べた。図3に結果を示す通り、3回の加熱例において、いずれも1600℃までの昇温時間は1時間と安定している事がわかる。
【0025】
次に、平均粒径が50μmのα−SiC粉末を50%含有するセラミックスサヤを、断熱材と被処理体との間に配置した時の昇温カーブを同様に調べた。図4に結果を示す通り、3回の加熱例において1600℃までの昇温時間が、1〜3回目の順で順次遅くなっており、昇温速度が不安定である事が分かる。
【0026】
以上の結果から、平均粒径が500μm以上のα−SiC原料を50%含む焼結体であれば昇温速度が安定し、電磁波加熱装置の炉壁として有効であることがわかった。またα−SiCに比べ耐酸化性の高いSi−SiCであれば、α−SiC原料の平均粒径を500μm以上にしなくても昇温速度が安定することは先の評価から容易に推定される。
【0027】
続いて、電磁波加熱装置の炉内壁としてアルミナ純度の高いセラミックスが採用できないものかどうかを考えてみた。アルミナ原料を用いた耐火物は、SiC原料を含む耐火物と比較して安価で耐酸化性も高いため、電磁波加熱装置の炉内壁に用いることが期待されるが、誘電損失が低く電磁波加熱され難いという問題がある。しかし特定の元素の化合物を、一定量以上含有させることにより誘電損失を高くすれば、急速昇温が可能になるのではないかと考えた。
【0028】
含有させる元素としては、K、Ca、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、As、Seを選定し評価を行った。これらの元素を含む化合物を、高純度アルミナ耐火物原料に含有させ、成形、焼結を行い焼結体とし、電磁波による加熱具合を調査した。添加した化合物の種類は、それぞれKOH、CaO、Sc23、TiO2、V25、CrO3、MnO2、Fe34、Co2O3、NiO、CuO、ZnO、Ga23、GeO2、As23、SeO2であり、添加後の焼結体中の各元素の重量比率が表1に示す値となるように添加量を決定した。これらの焼結体を市販の1kW電子レンジ(シャープ社製、RE−VC1)にて電磁波加熱し、100℃までの到達時間を計測した。その結果を図5に示す。
【0029】
図5の結果からK、Ca、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、As、Se元素を、一種以上、0.1wt%以上を含有した、試料No.1〜7の材料が5分以内に100℃に達しており、アルミナ耐火物の電磁波吸収率が向上していることがわかる。すなわち、アルミナ耐火物の誘電損失が高くなったことが分る。また高純度アルミナ耐火物原料には0.05wt%程度前記化合物が、微量不純物として含まれることがあるが、試料No.8の結果より、微量不純物程度では電磁波吸収率が向上しないことが分る。
【0030】
この結果から、耐酸化性は高いが誘電損失が低く電磁波加熱装置の炉内壁にふさわしくないと考えられているアルミナ材料であっても、誘電損失が高い耐酸化性材料を添加する事で、誘電損失を高くすることが出来、急速昇温が可能になることがわかった。
【0031】
【表1】

Figure 0004216037
試料No.1,2,3,4,5,6,7: 本願発明による実施例
試料No.8,9: 比較例
【0032】
以上の検討及び実験に示す通り、耐酸化性が高くしかも誘電損失が高い材料を、被処理体のまわりに配置することによって、従来技術(特開昭59−137785号公報)による電磁波加熱法の欠点が解消されることを見出した。これにより、被処理体の内外温度差を小さくでき、安定した昇温時間が得られるため、被処理体の割れやクラックを防止し短時間処理も可能となる。
【0033】
【発明の実施の形態】
本発明の実施の形態を説明するに当たり、まず従来の電磁波加熱装置の構成を図6に基づき説明する。図6に示す従来の加熱炉7は、金属製容器4の内側に誘電損失の低い通常の断熱材5を配置しただけの構造である。金属製容器4は、内面が電磁波の反射が可能な材料で形成されており、例えば、ステンレス鋼が挙げられる。金属製容器4の内側に配置される断熱材5は、全温度域において誘電損失tanδが0.01以下の低損失のものが好ましく、内側に配置される被処理体6の温度が、金属製容器4に影響を与えない断熱性能が必要であり、例えばニチアス社製1700MD等のアルミナファイバーボード、イソライト工業社製LBK−3000等のアルミナ耐火物レンガなどが用いられる。
【0034】
続いて本発明の電磁波加熱装置を、図7〜11に基づき説明する。まず断熱材の内部に誘電損失の高い耐酸化性材料を含有させた三つの例を、第1〜第3の実施形態として示す。
【0035】
図7は第1の実施形態を示すもので、金属製容器4の内側に、従来の電磁波加熱装置である図6とは異なり内部に誘電損失の高い耐酸化性材料を分散して含有させた断熱材9を配置している。
【0036】
前記第1の実施形態のように、誘電損失の高い耐酸化性材料を分散して含有させた断熱材9を用いた場合は、断熱材自身の発熱が金属製容器へ影響することも考えられる。このため第2の実施形態である図8においては、これを防止するために、金属製容器4の内側に誘電損失の低い通常の断熱材5を配し、更にその内側に、内部に誘電損失の高い耐酸化性材料を分散して含有させた断熱材9を配した二重構造となっている。
【0037】
上記第1及び第2の実施形態における誘電損失の高い耐酸化性材料を分散して含有させた断熱材9は次の通り製造する。例えばアルミナファイバーボードとする場合は、解繊したセラミックスファイバーをアルミナゾル等の無機結合剤と共に水に分散させ、有機凝集剤などを添加し凝集させる際に、耐酸化性が高く且つ誘電損失の高い材料を添加し凝集させて成形し、その後焼結すれば良い。また、アルミナ耐火物レンガとする場合は、所定量のアルミナ粉末、バインダー、水又は有機溶媒に耐酸化性が高く且つ誘電損失の高い材料を添加したものを混錬し、所望形状に成形し、この成形体を脱脂、焼結する方法が挙げられる。
【0038】
第1及び第2の実施形態において、断熱材に含有させる耐酸化性が高く且つ誘電損失の高い材料としては次の5種類が考えられる。まず、第1の材料はα−SiC原料である。含有させるα−SiC原料は市販のα−SiC粒で良く平均粒径は500μm以上、2mm以下とするのが好ましい。また、断熱材中への含有量は断熱効果を確保するために1〜50wt%が好ましい。
【0039】
また第2の材料はα−SiCの焼結体の粉砕物である。粉砕物の原料となるα−SiC焼結体を次の通り製造する。所定量のカーボン粉末、SiC粉末、バインダー、水又は有機溶媒を混錬したものを成形し、次いで、この成形体を減圧の不活性ガス又は真空中に配置し焼結することで得られる。このとき焼結体内のα−SiC平均粒径が500μm以上にする必要があり、使用するSiC粉末も平均粒径が500μm以上のものを使用する必要がある。このようにして得られた焼結体を平均粒径500μm以上2mm以下に粉砕する。断熱材中の粉砕物の含有量は断熱効果を確保するために1〜50wt%が好ましい。
【0040】
第3の材料はSi−SiC焼結体の粉砕物である。まず、粉砕物の原料となるSi−SiC焼結体を次の通り製造する。所定量のカーボン粉末、SiC粉末、バインダー、水又は有機溶媒を混錬し、成形して所望形状の成形体を得る。この場合のSiC粉末の平均粒径は、前記の通り500μm以下でもかまわない。この成形体と金属Siを減圧の不活性ガス又は真空中に配置し、成形体中に金属Siを含浸させ焼結体とする方法を挙げる事が出来る。Si含浸量は全体の5〜30wt%が好ましい。
【0041】
このようにして得られたSi−SiC焼結体を粉砕して、その粉砕物の平均粒径を500μm以上、2mm以下にする。粉砕物の添加量は、断熱効果を確保するためにも1〜50wt%が好ましい。
【0042】
第4の材料は、K、Ca、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、As、Seを含む化合物である。添加する化合物種としては、KOH、CaO、Sc23、TiO2、V25、CrO3、MnO2、Fe34、Co23、NiO、CuO、ZnO、Ga23、GeO2、As23、SeO2がある。断熱材中には、上記元素の少なくとも一種を含んいる必要があり、上記元素の合計含有量は微量で良いものの、高純度アルミナ耐火物原料に微量不純物として含まれている0.05wt%程度では効果がなく、0.1wt%以上を含有させるのが好ましい。なお、元素の含有量を変更する事で誘電損失を調整することが可能である。
【0043】
第5の材料は、K、Ca、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、As、Seを含む化合物を含有させた焼結体の粉砕物である。焼結体の粉砕物を断熱材中に含有させる場合においても、上記元素の少なくとも一種を含んでいる必要があり、元素の合計含有量は0.1wt%以上とするのが好ましい。
【0044】
次に、断熱材の内部に誘電損失の高い耐酸化性材料を含有させた別の例を第3の実施形態として図9に示す。この実施形態においては、断熱材としては誘電損失の低い通常の耐火物レンガ10を用いている。このレンガを、誘電損失の高い耐酸化性材料を含有する接着剤11を用いて接着した例である。接着剤に含有させる場合においても、前記第1〜第5の材料を使用することが可能であり、材料の粒径及び含有量は第1及び第2の実施態様の場合と同じで良い。
【0045】
以上、3つの実施の形態は、断熱材中に誘電損失の高い耐酸化性材料を含有させた例を示すものであるが、続いて第4の実施形態として通常の断熱材の内表面に誘電損失の高い耐酸化性材料を付設した例を図10に示す。図10は、通常の断熱材5の内表面に、誘電損失の高い耐酸化性材料を含有するペースト状のものを塗布し、塗膜として誘電損失の高い耐酸化性材料を含有する層を付設した構成である。付設方法としては、水ガラス、アルミナ等を有機バインダーとともにペースト状にしたものに、誘電損失の高い耐酸化性材料の粉末、または焼結体の粉砕物を混合し、断熱材内表面に塗布、その後断熱材と共に乾燥、仮焼結を実施する。
【0046】
第4の実施形態に用いられる耐酸化性が高く且つ誘電損失の高い材料に関しては、基本的には前記第1から第3の実施形態の場合と同様であるが、異なる点としては、断熱性が確保された通常の断熱材に塗布して用いられることから、断熱性に配慮する必要が無く、含有量を多くできる点である。従って、前記第1の材料(α−SiC原料)、第2の材料(α−SiCの焼結体の粉砕物)及び第3の材料(Si−SiC焼結体の粉砕物)の含有量は、混合物がペースト状になり、断熱材の内表面に塗布することが出来る程度の量迄は許容され、1〜80wt%とすることができる。前記第4の材料(K、Ca等を含む化合物)及び第5の材料(K、Ca等の元素を含有した耐酸化性焼結体の粉砕物)の含有量は、少なくとも0.1wt%以上が必要で、通常は数wt%添加するのが好ましい。塗膜12の厚さは、いずれの材料を用いる場合においても、被処理体にも電磁波を低出力で照射させたいため、薄いものが好ましく0.1〜5mm程度が良い。
【0047】
最後に、誘電損失の高い耐酸化性材料を含有するセラミックス焼結体を加熱用サヤとして配置した例を、第5の実施形態として図11に示す。図11は、通常の断熱材5の内側に、誘電損失の高い耐酸化性材料を含有する加熱用サヤ13を配置した構成となっている。耐酸化性が高く且つ誘電損失の高い材料を含有した加熱用サヤの製造方法は次の通りである。所定量のアルミナ粉末、バインダー、水又は有機溶媒に耐酸化性が高く且つ誘電損失の高い材料を添加したものを混錬し、成形して所望形状の成形体を得る。次いで、この成形体を脱脂、焼結する方法が挙げられる。耐酸化性が高く且つ誘電損失の高い材料の含有量については、断熱性が確保された通常の断熱材が用いられたうえで更にサヤを追加配置していることから、第4の実施形態と同様、含有量を多くすることができる。
【0048】
前記第1の材料(α−SiC原料)を用いる場合、最小は1wt%以上含有させれば効果があるものの、断熱性が確保された通常の断熱材が用いられたうえで更にサヤを追加配置していることと、更にα−SiC原料の成形性が良いこともあって、アルミナ等を主成分とした耐火物材料を用いず、α−SiC100wt%のサヤにすることもできる。
【0049】
前記第2の材料(α−SiCの焼結体の粉砕物)を用いる場合の含有量も、最小は1wt%以上で効果があることにかわりないが、α−SiC原料に比べ成形性が悪いことから、アルミナ等を主成分とした耐火物材料も必要になるため、最大含有量は80wt%に留めるのが好ましい。
【0050】
また前記第3の材料(Si−SiC焼結体の粉砕物)を用いる場合の含有量も、成形性の観点から1〜80wt%が好ましい。なお、この加熱用サヤを用いる第5の実施形態においては、サヤをSi−SiC焼結体にすることも可能である。
【0051】
前記第4の材料(K、Ca等を含む化合物)及び第5材料(K、Ca等の元素を含有した耐酸化性焼結体の粉砕物)の含有量は、少なくとも0.1wt%以上が必要で、通常は数wt%添加するのが好ましい。また第1〜第5いずれの材料を用いた場合においても、サヤ厚さは被処理体に低出力で電磁波を照射させるために、出来るだけ薄くすることが好ましく、0.1〜10mm程度が良い。但し、強度を維持する必要もあるので2〜10mm程度が更に好ましい。
【0052】
【実施例】
(実施例1)
本発明の第1の実施例を図8を参照して説明する。図8において、金属製容器4と断熱材5と誘電損失の高い耐酸化性材料を含有した断熱材9とから構成される加熱炉7に、マイクロ波発振器1が4台設置され、マイクロ波発振器1から、それぞれ導波管2を通して金属製容器4内に電磁波が入射される。炉内8からの反射波がマイクロ波発振器1に戻らないように、導波管2にはアイソレーター3が取りつけてある。本実施例では周波数2.45GHz、発振器出力1.5kW/1台の電磁波発振装置1を4台設置して、合計6kWの出力とした。
【0053】
加熱炉7を構成する金属製容器4は、ステンレス製で幅1.5m、奥行1.0m、高さ1.0mとなっており、被処理体を設置するための扉が設けてある。
【0054】
金属製容器の内側に配置された断熱材5は、アルミナファイバーボード(ニチアス社製1700MD)で厚みは100mm、断熱材5の内側寸法は幅300mm、奥行300mm、高さ300mmとした。断熱材5の内側に配置した誘電損失の高い耐酸化性材料を含有した断熱材9としては、粒径500μmのα−SiC原料を含んだアルミナファイバーボードを用いた。
【0055】
α−SiC原料を含んだアルミナファイバーボード製の断熱材の製作は、解繊したセラミックスファイバーをアルミナゾルと共に水に分散させ、有機凝集剤と粒径500μmのα−SiC原料を添加し凝集させ成形した。その後1100℃の焼結を行い、焼結体とした。
【0056】
焼結後の断熱材内のα−SiC粒は、部分的に互いに結合してはいるものの、粒径自体の成長は無く粒径は原料粒径と変わらず500μmであった。含有量は20wt%で焼結後のアルミナファイバーボードの厚みは50mm、内側寸法は幅250mm、奥行250mm、高さ250mmとした。
【0057】
被処理体6としては、98%純度のアルミナ粉を造粒した原料を、加圧力500kg/cm2で金型成形したアルミナ成形体を用いた。サンプル寸法は幅60mm、奥行60mm、高さ30mmとした。
【0058】
この被処理体6を、上記の電磁波加熱装置を用いて発信器出力6kWのフルパワーで加熱・焼結を行い、被処理体6の表面温度と加熱時間の関係を測定した。温度の測定は、金属容器4、断熱材5、誘電損失の高い耐酸化性材料を含有する断熱材9に測温用穴(Φ15mm)を設け、サンプル表面の温度を放射温度計で測定した。結果は図11に示す通り1時間で1400℃まで昇温できた。
【0059】
また、断熱材5の内側に設けた誘電損失の高い耐酸化性材料を含有する断熱材9の内側表面温度も同時に測定した。結果は図12に示す通りで、図11のアルミナ成形体の昇温速度とほとんど差が無い事がわかる。
【0060】
また、比較例として、前記と同じアルミナ成形体からなる被処理体6を、誘電損失の高い耐酸化性材料を含んだ断熱材9で囲まない構成で、同一パワーで加熱・焼結した。結果は図13に示す通り、1400℃まで昇温するのに約5時間かかった。
【0061】
この結果から、誘電損失の高い耐酸化性材料を含有する断熱材9を用いた本発明は、低温域(室温〜1100℃)での昇温速度が著しく速くなることがわかる。また、焼結後の被処理体や誘電損失の高い耐酸化性材料を含んだ断熱材9には割れやクラックの発生は認められなかった。
【0062】
(実施例2)
次に、本発明の第2の実施例を、図10を参照して説明する。図10において、基本構成は先に記述した実施例1と同じであるが、誘電損失の高い耐酸化性材料を含有する断熱材9の替わりに、誘電損失の高い耐酸化性材料を含有する層12を塗布している。
【0063】
誘電損失の高い耐酸化性材料を含有する層12は、水ガラス、アルミナ粉末原料、有機バインダーであるPVA、誘電損失の高いFe3O4を混合し、断熱材内表面に塗布、その後乾燥、1500℃の仮焼結を実施した。焼結後の塗布層の厚みは2mm、Fe元素の含有量は0.2wt%であった。
【0064】
被処理体および処理条件を実施例1と同じ条件で評価した結果、1400℃までの到達時間は約1時間であり、また、焼結後の被処理体や断熱材内側の塗布層には割れやクラックの発生は認められなかった。
【0065】
(実施例3)
本発明の第3の実施例を図11を参照して説明する。図11において、基本構成は先に記述した実施例1と同じであるが、誘電損失の高い耐酸化性材料を含有する断熱材9の替わりに、誘電損失の高い耐酸化性材料を含有する加熱用サヤ13を配してある。
【0066】
断熱材5の内側に配置する誘電損失の高い耐酸化性材料を含有する加熱用サヤ13としては、Si−SiC焼結体サヤを用いた。Si−SiCサヤの製造は、まず、カーボン粉末5%、SiC粉末85%、バインダーとしてPVA2%を水で混錬し、その後板状に成形して成形体を得る。次いで、この板状成形体を箱状に組み、1600℃の真空中で金属Siと接触させるように配置し、耐酸化性材料としてのSi−SiCサヤを焼結した。この箱状焼結体の厚みは5mm、内壁の外寸法は幅250mm、奥行250mm、高さ250mmとし、Si含浸量は20wt%とした。
【0067】
被処理体および処理条件を実施例1及び2と同じ条件で評価した結果、1400℃までの到達時間は約1時間であり、また、焼結後の被処理体や断熱材内側の塗布層には割れやクラックの発生は認められなかった。
【0068】
【発明の効果】
以上述べたように、本願発明の電磁波加熱装置は、耐酸化性が高く、且つ誘電損失が高い材料を被処理体のまわりに配置することによって、被処理体の内外温度差を小さくでき、且つ被処理体の昇温速度を安定させることが可能となる。この結果、被処理体の割れやクラックを防止し、短時間処理も可能となる。また、繰り返し加熱による炉内壁の劣化もなく、安定した加熱が可能となる。
【図面の簡単な説明】
【図1】SiCを含む焼結体におけるSiC原料平均粒径と熱処理後のSiC結晶残存率の関係図。
【図2】Si−SiC焼結体におけるSiC原料平均粒径と熱処理後のSiC結晶残存率の関係図。
【図3】平均粒径500μmのSiC原料を含む耐火物をサヤとした場合の繰り返し加熱時の昇温カーブ推移。
【図4】平均粒径50μmのSiC原料を含む耐火物をサヤとした場合の繰り返し加熱時の昇温カーブ推移。
【図5】特定の元素を含むアルミナ耐火物の電子レンジ加熱実験結果。100℃までの到達時間。
【図6】従来電磁波加熱装置を示す概略平断面図。
【図7】誘電損失の高い耐酸化性材料を含有する断熱材を使用した場合の概略平断面図1。
【図8】通常の断熱材の内側に誘電損失の高い耐酸化性材料を含有する断熱材を配置した場合の概略平断面図2。
【図9】誘電損失の高い耐酸化性材料を含有する接着剤で耐火物レンガを積み上げ断熱材とした場合の断熱材部分拡大図。
【図10】断熱材の内表面に誘電損失の高い耐酸化性材料を含有する層を付設した場合の概略平断面図。
【図11】断熱材の内側に誘電損失の高い耐酸化性材料を含有する加熱用サヤを配置した場合の概略平断面図。
【図12】α−SiCを含んだ断熱材を用いて電磁波加熱を行なった時の被処理体表面温度昇温カーブ。
【図13】α−SiCを含んだ断熱材を用いて電磁波加熱を行なった時の断熱材内壁表面温度昇温カーブ。
【図14】α−SiCを含んだ断熱材を用いず、電磁波加熱を行なった時の被処理体表面温度昇温カーブ結果。
【符号の説明】
1…マイクロ波発振器、2…導波管、3…アイソレーター、4…金属製容器、5…断熱材、6…被処理体、7…加熱炉、8…炉内、9…誘電損失の高い耐酸化性材料を含有する断熱材、10…耐火物レンガ、11…誘電損失の高い耐酸化性材料を含有する接着剤、12…誘電損失の高い耐酸化性材料を含有する層、13…誘電損失の高い耐酸化性材料を含有する加熱用サヤ。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electromagnetic wave heating apparatus for heating a ceramic molded body or a ceramic calcined body by electromagnetic waves, a heating sheath used in the electromagnetic wave heating apparatus, and a method for producing ceramics using them.
[0002]
[Prior art]
As a heating device for various ceramics, a gas furnace, an electric furnace, or the like is used. These heating devices are systems in which heating is performed from the outside of an object to be processed by a burner, a heater, or the like. For this reason, the surface of the object to be processed is heated first, and a temperature difference is generated between the inside and the surface of the object to be processed. Has brought.
[0003]
In order to prevent these problems, a method of reducing the internal / external temperature difference by heating for a long time at a moderate temperature increase rate is employed. However, the prolonged heat treatment step increases the amount of power used and the amount of gas, resulting in problems such as increased costs and environmental degradation.
[0004]
In addition, a heating method for causing the object to be self-heated by electromagnetic waves has been proposed. (See Patent Document 1). In this heating method, the temperature difference between the inside and outside of the object to be processed does not occur as in the external heating method. Therefore, even if rapid heating is performed, cracks and cracks do not occur in the object to be processed, so that short time processing is expected.
[0005]
However, in reality, when the object to be treated is simply heated by electromagnetic waves (when food is heated in a microwave oven), the object to be treated is heated, but the furnace wall of the heating furnace is maintained at a low temperature. Therefore, on the surface of the object to be processed, the temperature decreases due to heat dissipation due to heat transfer to the atmosphere, heat conduction from the contact part with the furnace wall, etc. Become. Although this temperature difference tends to be opposite to the temperature difference during external heating by a gas furnace or an electric furnace, it also causes defects such as cracks and cracks in the workpiece.
[0006]
In order to prevent this, there is a method in which the furnace inner wall is composed of a material having a high electromagnetic wave absorption rate, that is, a material having a high dielectric loss such as SiC, and the inner wall is heated by electromagnetic waves, thereby sintering while suppressing heat dissipation of the object to be processed. Proposed. (See Patent Document 2). However, in general, when SiC material is used as the furnace inner wall of the electromagnetic wave heating device, the time until the workpiece reaches the maximum sintering temperature, that is, the rate of temperature rise is not stable every time the treatment is performed, and the influence on the process control. There is a concern about the influence on various properties of the object to be processed.
[0007]
[Patent Document 1]
JP-A-6-279127
[Patent Document 2]
JP 59-137785 A
[0008]
[Problems to be solved by the invention]
The present invention has been made to solve the above problems, and provides an electromagnetic wave heating device that can reduce the temperature difference between the inside and outside of the object to be processed and can perform stable short-time processing.
[0009]
[Means for Solving the Problems]
1st invention is an electromagnetic wave heating apparatus provided with the heating furnace which has arrange | positioned the heat insulating material inside the metal container, and the electromagnetic wave generation means to irradiate the to-be-processed object arrange | positioned inside this heating furnace with electromagnetic waves The heat insulating material contains a material having high oxidation resistance and high dielectric loss.
[00010]
According to a second aspect of the present invention, there is provided an electromagnetic wave heating apparatus comprising: a heating furnace in which a heat insulating material is disposed inside a metal container; and an electromagnetic wave generating means for irradiating an object to be processed disposed inside the heating furnace with an electromagnetic wave. In the above, a layer containing a material having high oxidation resistance and high dielectric loss is attached to the surface inside the furnace of the heat insulating material.
[0011]
A third invention is an electromagnetic wave heating apparatus comprising a heating furnace in which a heat insulating material is arranged inside a metal container, and an electromagnetic wave generating means for irradiating an electromagnetic wave to a target object disposed inside the heating furnace. The ceramic sintered body containing a material having high oxidation resistance and high dielectric loss is disposed between the heat insulating material and the object to be processed.
[0012]
According to a fourth aspect of the present invention, there is provided a method for producing a ceramic, characterized in that a ceramic molded body or a ceramic calcined body is heated and sintered using the apparatus.
[0013]
According to a fifth aspect of the present invention, there is provided a heating sheath for accommodating a ceramic molded body or the ceramic calcined body when the ceramic molded body or the ceramic calcined body is heated and sintered by the electromagnetic wave heating device. It is characterized in that the sheath material contains a material having high oxidation resistance and high dielectric loss.
[0014]
According to a sixth aspect of the present invention, there is provided a method for producing a ceramic, comprising heating and sintering a ceramic molded body or a ceramic calcined body using the sheath.
[0015]
In the first, second, third and fifth inventions, it is preferable that the material having high oxidation resistance and high dielectric loss is α-SiC having an average particle size of 500 μm or more. Further, it is preferable that the material having high oxidation resistance and high dielectric loss is Si—SiC. Further, the material having high oxidation resistance and high dielectric loss includes at least one of K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, As, and Se. It is preferable that the total amount of elements is 0.1 wt% or more.
[0016]
Here, the background to the completion of the present invention will be described. The present inventor uses a material having a high dielectric loss such as SiC to form a furnace inner wall and sinter while suppressing heat dissipation of the object to be processed (Japanese Patent Laid-Open No. 59-137785). Various examinations and experiments were conducted on the factors that cause the temperature rising time, that is, the temperature rising speed to change every time. As a result, a material having high oxidation resistance and stable and high dielectric loss is found, and by placing it around the object to be processed, the temperature increase rate of the object to be processed is stabilized, and the inside / outside temperature of the object to be processed The present inventors have found that the difference can be reduced and have completed the present invention.
[0017]
First, SiC was examined as a material for the furnace inner wall. It is generally known that SiC grains have α-type and β-type, and α-type has higher oxidation resistance and dielectric loss than β-type. However, even in an electromagnetic wave heating apparatus using a sintered body containing α-SiC as an inner wall in various experiments, the time until the workpiece reaches the maximum temperature, that is, the rate of temperature rise fluctuates every time heating is performed. I understood. Further experiments were conducted, and data that the reason why the temperature rising rate fluctuated was related to the particle diameter of α-SiC used in the experiment was obtained. It was estimated that the relationship between the α-SiC particle size and the heating rate fluctuation factor was due to the progress of oxidation of SiC.
[0018]
Therefore, the relationship between the average particle size of α-SiC and the oxidation resistance was examined. The evaluation sample is a mixture of alumina powder and α-SiC powder blended by 50 wt%, kneaded with a predetermined amount of binder and organic solvent, and molded and sintered to a size of 100 × 100 × 10 mm. Yes, the average particle diameter of the α-SiC raw material was changed, and each was produced. In the evaluation method, an actual heat treatment was simulated, heat treatment was performed in the atmosphere at 1400 ° C. for 100 hours, and then the SiC crystal residual ratio serving as an index of oxidation resistance was measured.
[0019]
FIG. 1 shows the result of evaluating the relationship between the average grain size of the SiC raw material and the SiC crystal remaining rate after the heat treatment. The SiC crystal residual rate is determined by using an X-ray diffractometer with SiC and SiO. 2 It was calculated by measuring the ratio. From this experimental result, it can be seen that the SiC crystal remaining rate is low when the SiC particle size is small, and the SiC crystal remaining rate is as high as 80% or more when the average particle size is 500 μm or more. FIG. 1 is data showing the relationship between the average grain size of the SiC raw material and the SiC crystal residual ratio, but even though the SiC grains after sintering are observed, they are partially bonded to each other. There is no growth of the grain size itself, and this evaluation result can be replaced with data indicating the relationship between the SiC average grain size after sintering and the SiC crystal residual rate.
[0020]
Thus, even with α-SiC, which is said to have higher oxidation resistance and dielectric loss than β-SiC, the result is that the SiC crystal residual rate is significantly lowered when the particle size is small. This means that the oxidation of SiC proceeds and an oxide layer is formed, and it goes without saying that the dielectric loss inevitably decreases as the SiC crystal residual rate decreases. Therefore, in the case of α-SiC, it is understood that the average particle size is preferably 500 μm or more.
[0021]
Next, the case where SiC was converted to Si-SiC was examined. The reason for considering Si-SiC is that Si-SiC is a material with a high dielectric loss, and since the porosity in SiC is impregnated with Si, the porosity is extremely small, so that the oxidation resistance is also high. This is because it is estimated.
[0022]
Therefore, the relationship between the average particle size and the oxidation resistance was confirmed in the same manner as in the evaluation of α-SiC. The evaluation sample is a α-SiC powder which is kneaded by adding a predetermined amount of carbon powder, a binder and an organic solvent, molded to a size of 100 × 100 × 10 mm, and then impregnated with Si to form a sintered body. Yes, the average particle diameter of the α-SiC raw material was changed, and each was produced. As shown in FIG. 2, it can be seen that Si-SiC has a high SiC crystal residual rate regardless of the average grain size of SiC.
[0023]
Thus, when SiC is changed to Si-SiC, since it is a material with a high dielectric loss and the porosity is extremely small, even if the average particle size is small, there is almost no decrease in the residual rate of SiC crystals, and there is no acid resistance. It can be seen that the material has excellent chemical properties. In addition, the Si-SiC sintered body has high strength, good corrosion resistance against various chemical substances and chemicals, and is a material that is extremely unlikely to be damaged, deteriorated or deteriorated. It can be said that it is preferable as a material.
[0024]
Based on the above experimental results, the following experiment was repeated in order to confirm the effect in an actual electromagnetic wave heating apparatus. A ceramic sheath was prepared by blending 50% each of alumina powder and α-SiC powder having an average particle size of 500 μm, adding a predetermined amount of binder and organic solvent, kneading, molding and sintering. The ceramic sheath was placed between the heat insulating material and the object to be processed, and the temperature rise curve on the inner surface of the ceramic sheath when the electromagnetic wave heating in the 2.45 GHz band was heated at a constant output was examined. As can be seen from FIG. 3, in all three heating examples, the heating time up to 1600 ° C. is stable at 1 hour.
[0025]
Next, the temperature rise curve when a ceramic sheath containing 50% α-SiC powder having an average particle size of 50 μm was placed between the heat insulating material and the object to be processed was similarly examined. As shown in FIG. 4, in the three heating examples, the temperature rising time up to 1600 ° C. is sequentially delayed in the order of the first to third times, and it can be seen that the temperature rising rate is unstable.
[0026]
From the above results, it was found that if the sintered body contains 50% of an α-SiC raw material having an average particle size of 500 μm or more, the heating rate is stabilized and it is effective as a furnace wall of an electromagnetic wave heating device. In addition, if Si-SiC has higher oxidation resistance than α-SiC, it is easily estimated from the previous evaluation that the rate of temperature rise is stable even if the average particle size of the α-SiC raw material is not 500 μm or more. .
[0027]
Next, we considered whether ceramics with high alumina purity could not be used as the furnace inner wall of the electromagnetic wave heating device. Refractories using alumina raw materials are cheaper and have higher oxidation resistance than refractories containing SiC raw materials, so they are expected to be used for the inner wall of the furnace of electromagnetic wave heating devices. There is a problem that it is difficult. However, it was thought that rapid increase in temperature would be possible if the dielectric loss was increased by adding a certain amount of a compound of a specific element.
[0028]
As elements to be contained, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, As, and Se were selected and evaluated. A compound containing these elements was contained in a high-purity alumina refractory raw material, molded and sintered to obtain a sintered body, and the heating condition by electromagnetic waves was investigated. The types of added compounds are KOH, CaO, and Sc, respectively. 2 O Three TiO 2 , V 2 O Five , CrO Three , MnO 2 , Fe Three O Four , Co 2 O3, NiO, CuO, ZnO, Ga 2 O Three , GeO 2 , As 2 O Three , SeO 2 The addition amount was determined so that the weight ratio of each element in the sintered body after the addition was the value shown in Table 1. These sintered bodies were heated with an electromagnetic wave in a commercially available 1 kW microwave oven (manufactured by Sharp Corporation, RE-VC1), and the arrival time up to 100 ° C. was measured. The result is shown in FIG.
[0029]
From the results of FIG. 5, one or more elements such as K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, As, and Se were contained in an amount of 0.1 wt% or more. Sample No. It can be seen that the materials 1 to 7 reach 100 ° C. within 5 minutes, and the electromagnetic wave absorption rate of the alumina refractory is improved. That is, it can be seen that the dielectric loss of the alumina refractory is increased. Further, the high purity alumina refractory raw material may contain about 0.05 wt% of the compound as a trace impurity. From the result of 8, it can be seen that the electromagnetic wave absorptivity is not improved with a small amount of impurities.
[0030]
From this result, even if it is an alumina material that has high oxidation resistance but low dielectric loss and is not considered suitable for the inner wall of the furnace of the electromagnetic wave heating device, by adding an oxidation resistant material with high dielectric loss, It was found that loss can be increased and rapid temperature rise is possible.
[0031]
[Table 1]
Figure 0004216037
Sample No. 1, 2, 3, 4, 5, 6, 7: Examples according to the present invention
Sample No. 8, 9: Comparative example
[0032]
As shown in the above examination and experiment, an electromagnetic heating method according to the prior art (Japanese Patent Laid-Open No. 59-137785) is arranged by arranging a material having high oxidation resistance and high dielectric loss around a workpiece. It was found that the drawbacks were eliminated. As a result, the temperature difference between the inside and outside of the object to be processed can be reduced, and a stable temperature raising time can be obtained.
[0033]
DETAILED DESCRIPTION OF THE INVENTION
In describing the embodiment of the present invention, the configuration of a conventional electromagnetic wave heating apparatus will be described with reference to FIG. The conventional heating furnace 7 shown in FIG. 6 has a structure in which a normal heat insulating material 5 having a low dielectric loss is disposed inside the metal container 4. The metal container 4 has an inner surface formed of a material capable of reflecting electromagnetic waves, and examples thereof include stainless steel. The heat insulating material 5 disposed inside the metal container 4 is preferably a low-loss material having a dielectric loss tan δ of 0.01 or less over the entire temperature range, and the temperature of the object 6 disposed inside is made of metal. Heat insulation performance that does not affect the container 4 is necessary, and for example, alumina fiber board such as 1700MD manufactured by NICHIAS Corporation, alumina refractory brick such as LBK-3000 manufactured by Isolite Industrial Co., etc. are used.
[0034]
Then, the electromagnetic wave heating apparatus of this invention is demonstrated based on FIGS. First, three examples in which an oxidation-resistant material having a high dielectric loss is contained in the heat insulating material will be described as first to third embodiments.
[0035]
FIG. 7 shows the first embodiment. Unlike FIG. 6, which is a conventional electromagnetic wave heating device, an oxidation-resistant material having a high dielectric loss is dispersed and contained inside the metal container 4. A heat insulating material 9 is arranged.
[0036]
As in the first embodiment, when the heat insulating material 9 in which an oxidation resistant material having a high dielectric loss is dispersed is used, the heat generated by the heat insulating material itself may affect the metal container. . For this reason, in FIG. 8 which is the second embodiment, in order to prevent this, a normal heat insulating material 5 having a low dielectric loss is arranged inside the metal container 4, and further inside, a dielectric loss inside. It has a double structure in which a heat insulating material 9 in which a high oxidation resistant material is dispersed and contained.
[0037]
The heat insulating material 9 in which the oxidation-resistant material having a high dielectric loss in the first and second embodiments is dispersed and manufactured is manufactured as follows. For example, when alumina fiber board is used, a material with high oxidation resistance and high dielectric loss when disaggregated ceramic fibers are dispersed in water together with an inorganic binder such as alumina sol, and an organic flocculant is added to agglomerate. May be added, agglomerated and molded, and then sintered. In addition, when making an alumina refractory brick, kneading a predetermined amount of alumina powder, a binder, water or an organic solvent with a material having high oxidation resistance and high dielectric loss, and molding it into a desired shape, The method of degreasing and sintering this molded body is mentioned.
[0038]
In the first and second embodiments, the following five types of materials having high oxidation resistance and high dielectric loss may be included in the heat insulating material. First, the first material is an α-SiC raw material. The α-SiC raw material to be contained may be commercially available α-SiC particles, and the average particle size is preferably 500 μm or more and 2 mm or less. Further, the content in the heat insulating material is preferably 1 to 50 wt% in order to ensure the heat insulating effect.
[0039]
The second material is a pulverized product of an α-SiC sintered body. An α-SiC sintered body that is a raw material of the pulverized product is manufactured as follows. A mixture obtained by kneading a predetermined amount of carbon powder, SiC powder, binder, water or an organic solvent is molded, and then the molded body is placed in a vacuum inert gas or vacuum and sintered. At this time, the α-SiC average particle size in the sintered body needs to be 500 μm or more, and the SiC powder to be used needs to have an average particle size of 500 μm or more. The sintered body thus obtained is pulverized to an average particle size of 500 μm to 2 mm. The content of the pulverized material in the heat insulating material is preferably 1 to 50 wt% in order to ensure the heat insulating effect.
[0040]
The third material is a pulverized product of a Si—SiC sintered body. First, a Si—SiC sintered body that is a raw material of the pulverized product is manufactured as follows. A predetermined amount of carbon powder, SiC powder, binder, water or organic solvent is kneaded and molded to obtain a molded body having a desired shape. In this case, the average particle diameter of the SiC powder may be 500 μm or less as described above. An example is a method in which the compact and metal Si are placed in an inert gas or vacuum under reduced pressure, and the compact is impregnated with metal Si to form a sintered body. The Si impregnation amount is preferably 5 to 30 wt% of the whole.
[0041]
The Si—SiC sintered body thus obtained is pulverized so that the average particle size of the pulverized product is 500 μm or more and 2 mm or less. The added amount of the pulverized product is preferably 1 to 50 wt% in order to ensure the heat insulation effect.
[0042]
The fourth material is a compound containing K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, As, and Se. Compound types to be added include KOH, CaO, and Sc. 2 O Three TiO 2 , V 2 O Five , CrO Three , MnO 2 , Fe Three O Four , Co 2 O Three , NiO, CuO, ZnO, Ga 2 O Three , GeO 2 , As 2 O Three , SeO 2 There is. In the heat insulating material, it is necessary to contain at least one of the above elements, and although the total content of the above elements may be a very small amount, in the case of about 0.05 wt% contained as a trace impurity in the high-purity alumina refractory raw material There is no effect and it is preferable to contain 0.1 wt% or more. Note that the dielectric loss can be adjusted by changing the element content.
[0043]
The fifth material is a pulverized product of a sintered body containing a compound containing K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, As, and Se. It is. Even when the pulverized product of the sintered body is contained in the heat insulating material, it is necessary to contain at least one of the above elements, and the total content of the elements is preferably 0.1 wt% or more.
[0044]
Next, another example in which an oxidation-resistant material having a high dielectric loss is included in the heat insulating material is shown as a third embodiment in FIG. In this embodiment, a normal refractory brick 10 having a low dielectric loss is used as the heat insulating material. This is an example in which this brick is bonded using an adhesive 11 containing an oxidation-resistant material having a high dielectric loss. Even when it is contained in the adhesive, the first to fifth materials can be used, and the particle size and content of the material may be the same as those in the first and second embodiments.
[0045]
As described above, the three embodiments show examples in which an oxidation-resistant material having a high dielectric loss is included in a heat insulating material. Subsequently, as a fourth embodiment, a dielectric is formed on the inner surface of a normal heat insulating material. An example in which an oxidation-resistant material with high loss is attached is shown in FIG. In FIG. 10, a paste-like material containing an oxidation-resistant material having a high dielectric loss is applied to the inner surface of a normal heat insulating material 5, and a layer containing an oxidation-resistant material having a high dielectric loss is provided as a coating film. This is the configuration. As an attachment method, water glass, alumina or the like made into a paste with an organic binder are mixed with a powder of an oxidation-resistant material having a high dielectric loss or a pulverized sintered body, and applied to the inner surface of the heat insulating material. Thereafter, drying and pre-sintering are performed together with the heat insulating material.
[0046]
The material having high oxidation resistance and high dielectric loss used in the fourth embodiment is basically the same as that in the first to third embodiments, except that the heat insulating property is different. Since it is used by applying to a normal heat insulating material in which is secured, there is no need to consider heat insulation, and the content can be increased. Accordingly, the contents of the first material (α-SiC raw material), the second material (crushed product of α-SiC sintered body) and the third material (crushed product of Si-SiC sintered body) are: The mixture becomes a paste and is allowed up to an amount that can be applied to the inner surface of the heat insulating material, and can be 1 to 80 wt%. The content of the fourth material (compound containing K, Ca, etc.) and the fifth material (pulverized product of oxidation-resistant sintered body containing elements such as K, Ca) is at least 0.1 wt% or more Usually, it is preferable to add several wt%. The thickness of the coating film 12 is preferably about 0.1 to 5 mm in order to irradiate the object to be processed with a low output power, regardless of which material is used.
[0047]
Finally, an example in which a ceramic sintered body containing an oxidation-resistant material having a high dielectric loss is arranged as a heating sheath is shown in FIG. 11 as a fifth embodiment. FIG. 11 shows a configuration in which a heating sheath 13 containing an oxidation-resistant material having a high dielectric loss is arranged inside a normal heat insulating material 5. A method of manufacturing a heating sheath containing a material having high oxidation resistance and high dielectric loss is as follows. A predetermined amount of alumina powder, binder, water or organic solvent to which a material having high oxidation resistance and high dielectric loss is added is kneaded and molded to obtain a molded body having a desired shape. Then, the method of degreasing and sintering this molded object is mentioned. With respect to the content of the material having high oxidation resistance and high dielectric loss, since a normal heat insulating material having heat insulating properties is used and further a sheath is additionally arranged, the fourth embodiment and Similarly, the content can be increased.
[0048]
When the first material (α-SiC raw material) is used, it is effective if the minimum content is 1 wt% or more. However, a normal heat insulating material that ensures heat insulation is used, and additional sheath is additionally disposed. In addition, since the moldability of the α-SiC raw material is good, a refractory material mainly composed of alumina or the like is not used, and a α-SiC 100 wt% sheath can be obtained.
[0049]
The content in the case of using the second material (a pulverized product of α-SiC sintered body) is not limited to 1 wt% or more at the minimum, but the moldability is worse than that of the α-SiC raw material. Therefore, since a refractory material mainly composed of alumina or the like is required, the maximum content is preferably limited to 80 wt%.
[0050]
Further, the content in the case of using the third material (crushed product of Si—SiC sintered body) is preferably 1 to 80 wt% from the viewpoint of moldability. In the fifth embodiment using the heating sheath, the sheath can be a Si—SiC sintered body.
[0051]
The content of the fourth material (compound containing K, Ca, etc.) and the fifth material (pulverized product of oxidation-resistant sintered body containing elements such as K, Ca) is at least 0.1 wt% or more. Usually, it is preferable to add several wt%. Even when any of the first to fifth materials is used, the thickness of the sheath is preferably as thin as possible in order to irradiate the object to be processed with an electromagnetic wave with low output, and is preferably about 0.1 to 10 mm. . However, since it is necessary to maintain the strength, about 2 to 10 mm is more preferable.
[0052]
【Example】
(Example 1)
A first embodiment of the present invention will be described with reference to FIG. In FIG. 8, four microwave oscillators 1 are installed in a heating furnace 7 composed of a metal container 4, a heat insulating material 5, and a heat insulating material 9 containing an oxidation-resistant material having a high dielectric loss. 1, electromagnetic waves are incident on the metal container 4 through the waveguide 2. An isolator 3 is attached to the waveguide 2 so that the reflected wave from the furnace 8 does not return to the microwave oscillator 1. In this example, four electromagnetic wave oscillation devices 1 having a frequency of 2.45 GHz and an oscillator output of 1.5 kW / 1 were installed to obtain a total output of 6 kW.
[0053]
The metal container 4 constituting the heating furnace 7 is made of stainless steel, has a width of 1.5 m, a depth of 1.0 m, and a height of 1.0 m, and is provided with a door for installing an object to be processed.
[0054]
The heat insulating material 5 arranged inside the metal container was an alumina fiber board (1700MD manufactured by Nichias), the thickness was 100 mm, and the inner dimensions of the heat insulating material 5 were a width of 300 mm, a depth of 300 mm, and a height of 300 mm. As the heat insulating material 9 containing an oxidation-resistant material having a high dielectric loss disposed inside the heat insulating material 5, an alumina fiber board containing an α-SiC raw material having a particle diameter of 500 μm was used.
[0055]
The production of the heat insulating material made of alumina fiber board containing the α-SiC raw material was performed by dispersing the defibrated ceramic fiber together with alumina sol in water, adding an organic flocculant and an α-SiC raw material having a particle size of 500 μm, and aggregating and molding . Thereafter, sintering was performed at 1100 ° C. to obtain a sintered body.
[0056]
Although the α-SiC grains in the heat insulating material after sintering were partially bonded to each other, there was no growth of the particle size itself, and the particle size was 500 μm unchanged from the raw material particle size. The content was 20 wt%, the thickness of the sintered alumina fiber board was 50 mm, the inner dimensions were width 250 mm, depth 250 mm, and height 250 mm.
[0057]
As the object 6 to be processed, an alumina molded body obtained by die-molding a raw material obtained by granulating 98% purity alumina powder at a pressure of 500 kg / cm 2 was used. The sample dimensions were 60 mm width, 60 mm depth, and 30 mm height.
[0058]
This object 6 was heated and sintered using the electromagnetic wave heating device described above with full power of a transmitter output of 6 kW, and the relationship between the surface temperature of the object 6 and the heating time was measured. The temperature was measured by providing a temperature measuring hole (Φ15 mm) in the metal container 4, the heat insulating material 5, and the heat insulating material 9 containing an oxidation-resistant material having a high dielectric loss, and the temperature of the sample surface was measured with a radiation thermometer. As a result, the temperature could be raised to 1400 ° C. in 1 hour as shown in FIG.
[0059]
Moreover, the inner surface temperature of the heat insulating material 9 containing the oxidation-resistant material with high dielectric loss provided inside the heat insulating material 5 was also measured. The result is as shown in FIG. 12, and it can be seen that there is almost no difference from the temperature rising rate of the alumina molded body of FIG.
[0060]
Further, as a comparative example, the object 6 made of the same alumina molded body as described above was heated and sintered with the same power in a configuration not surrounded by a heat insulating material 9 containing an oxidation-resistant material having a high dielectric loss. As a result, as shown in FIG. 13, it took about 5 hours to raise the temperature to 1400 ° C.
[0061]
From this result, it can be seen that the heating rate in the low temperature range (room temperature to 1100 ° C.) of the present invention using the heat insulating material 9 containing the oxidation resistant material having a high dielectric loss is remarkably increased. In addition, no cracks or cracks were observed in the heat-treated material 9 including the processed object after sintering and the oxidation-resistant material having a high dielectric loss.
[0062]
(Example 2)
Next, a second embodiment of the present invention will be described with reference to FIG. In FIG. 10, the basic configuration is the same as that of the first embodiment described above, but a layer containing an oxidation-resistant material having a high dielectric loss instead of the heat insulating material 9 containing an oxidation-resistant material having a high dielectric loss. 12 is applied.
[0063]
The layer 12 containing an oxidation-resistant material having a high dielectric loss is prepared by mixing water glass, alumina powder raw material, PVA as an organic binder, and Fe3O4 having a high dielectric loss, and coating the inner surface of the heat insulating material, followed by drying at 1500 ° C. Pre-sintering was performed. The thickness of the coating layer after sintering was 2 mm, and the content of Fe element was 0.2 wt%.
[0064]
As a result of evaluating the object to be processed and the processing conditions under the same conditions as in Example 1, the arrival time up to 1400 ° C. was about 1 hour, and the processed object after sintering and the coating layer inside the heat insulating material were cracked. No cracks were observed.
[0065]
Example 3
A third embodiment of the present invention will be described with reference to FIG. In FIG. 11, the basic configuration is the same as that of the first embodiment described above, but instead of the heat insulating material 9 containing an oxidation-resistant material having a high dielectric loss, heating containing an oxidation-resistant material having a high dielectric loss. Saya 13 is provided.
[0066]
A Si—SiC sintered body sheath was used as the heating sheath 13 containing an oxidation resistant material having a high dielectric loss disposed inside the heat insulating material 5. In the production of the Si-SiC sheath, first, 5% carbon powder, 85% SiC powder, and 2% PVA as a binder are kneaded with water, and then molded into a plate shape to obtain a molded body. Next, this plate-like molded body was assembled in a box shape and placed so as to contact with metal Si in a vacuum at 1600 ° C., and a Si—SiC sheath as an oxidation resistant material was sintered. The thickness of this box-shaped sintered body was 5 mm, the outer dimensions of the inner wall were 250 mm wide, 250 mm deep, 250 mm high, and the Si impregnation amount was 20 wt%.
[0067]
As a result of evaluating the object to be processed and the processing conditions under the same conditions as in Examples 1 and 2, the arrival time up to 1400 ° C. is about 1 hour, and the processed object after sintering and the coating layer inside the heat insulating material No cracks or cracks were observed.
[0068]
【The invention's effect】
As described above, the electromagnetic wave heating device of the present invention can reduce the temperature difference between the inside and outside of the object to be processed by disposing a material having high oxidation resistance and high dielectric loss around the object to be processed, and It becomes possible to stabilize the temperature increase rate of the workpiece. As a result, it is possible to prevent the object to be processed from cracking and cracking and to perform processing for a short time. In addition, stable heating is possible without deterioration of the furnace inner wall due to repeated heating.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the SiC raw material average grain size and the SiC crystal remaining rate after heat treatment in a sintered body containing SiC.
FIG. 2 is a graph showing the relationship between the SiC raw material average grain size and the SiC crystal remaining rate after heat treatment in a Si—SiC sintered body.
FIG. 3 shows a temperature rise curve transition during repeated heating when a refractory containing an SiC raw material having an average particle diameter of 500 μm is used as a sheath.
FIG. 4 shows a temperature rise curve transition during repeated heating when a refractory containing an SiC raw material having an average particle size of 50 μm is used as a sheath.
FIG. 5 is a result of a microwave heating experiment of an alumina refractory containing a specific element. Time to reach 100 ° C.
FIG. 6 is a schematic plan sectional view showing a conventional electromagnetic wave heating device.
FIG. 7 is a schematic plan sectional view 1 in the case of using a heat insulating material containing an oxidation resistant material having a high dielectric loss.
FIG. 8 is a schematic plan sectional view 2 in the case where a heat insulating material containing an oxidation resistant material having a high dielectric loss is arranged inside a normal heat insulating material.
FIG. 9 is a partial enlarged view of a heat insulating material when refractory bricks are stacked and used as an insulating material with an adhesive containing an oxidation resistant material having a high dielectric loss.
FIG. 10 is a schematic cross-sectional view in the case where a layer containing an oxidation-resistant material having a high dielectric loss is attached to the inner surface of the heat insulating material.
FIG. 11 is a schematic plan sectional view when a heating sheath containing an oxidation-resistant material having a high dielectric loss is arranged inside the heat insulating material.
FIG. 12 is a temperature rise curve of the surface temperature of an object to be treated when electromagnetic heating is performed using a heat insulating material containing α-SiC.
FIG. 13 is a temperature rise curve of an inner wall surface temperature of an insulating material when electromagnetic wave heating is performed using an insulating material containing α-SiC.
FIG. 14 is a graph showing a temperature rise curve of a surface of an object to be treated when electromagnetic heating is performed without using a heat insulating material containing α-SiC.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Microwave oscillator, 2 ... Waveguide, 3 ... Isolator, 4 ... Metal container, 5 ... Heat insulating material, 6 ... To-be-processed object, 7 ... Heating furnace, 8 ... In-furnace, 9 ... Acid resistance with high dielectric loss Thermal insulation material containing oxidizable material, 10 ... refractory brick, 11 ... Adhesive containing oxidation-resistant material with high dielectric loss, 12 ... Layer containing oxidation-resistant material with high dielectric loss, 13 ... Dielectric loss Saya for heating containing high oxidation resistance material.

Claims (6)

金属製容器の内側に断熱材を配してなる加熱炉と、該加熱炉の内部に配置した被処理体に電磁波を照射する電磁波発生手段とを備えた電磁波加熱装置において、前記断熱材に耐酸化性が高く且つ誘電損失の高い、平均粒径500μm以上のα−SiC材料が含有されていることを特徴とする電磁波加熱装置。An electromagnetic wave heating apparatus comprising: a heating furnace in which a heat insulating material is disposed inside a metal container; and an electromagnetic wave generating means for irradiating an electromagnetic wave to an object to be processed disposed inside the heating furnace. An electromagnetic wave heating device comprising an α-SiC material having an average particle size of 500 μm or more, having high chemical properties and high dielectric loss. 金属製容器の内側に断熱材を配してなる加熱炉と、該加熱炉の内部に配置した被処理体に電磁波を照射する電磁波発生手段とを備えた電磁波加熱装置において、前記断熱材の炉内部側表面に耐酸化性が高く且つ誘電損失の高い、平均粒径500μm以上のα−SiC材料が含有されている層が付設されていることを特徴とする電磁波加熱装置。An electromagnetic wave heating apparatus comprising: a heating furnace in which a heat insulating material is disposed inside a metal container; and an electromagnetic wave generating means for irradiating an electromagnetic wave to an object to be processed disposed inside the heating furnace. An electromagnetic wave heating device, wherein a layer containing an α-SiC material having an average particle size of 500 μm or more and having high oxidation resistance and high dielectric loss is attached to the inner surface. 金属製容器の内側に断熱材を配してなる加熱炉と、該加熱炉の内部に配置した被処理体に電磁波を照射する電磁波発生手段とを備えた電磁波加熱装置において、前記断熱材と被処理体との間に耐酸化性が高く且つ誘電損失の高い、平均粒径500μm以上のα−SiC材料が含有されているセラミックス焼結体を配置したことを特徴とする電磁波加熱装置。An electromagnetic wave heating apparatus comprising: a heating furnace in which a heat insulating material is disposed inside a metal container; and an electromagnetic wave generating means for irradiating an electromagnetic wave to an object to be processed disposed inside the heating furnace. An electromagnetic wave heating apparatus comprising: a ceramic sintered body containing an α-SiC material having an average particle size of 500 μm or more and having a high oxidation resistance and a high dielectric loss between the processing body. 請求項1〜3のいずれか一つの請求項に記載の電磁波加熱装置を用い、セラミックス成形体あるいはセラミックス仮焼体を加熱・焼結することを特徴とするセラミックスの製造方法。A method for producing ceramics, comprising heating and sintering a ceramic formed body or a ceramic calcined body using the electromagnetic wave heating device according to any one of claims 1 to 3. セラミックス成形体あるいはセラミックス仮焼体を前記電磁波加熱装置で加熱・焼結する際に該セラミックス成形体あるいは該セラミックス仮焼体を収める加熱用サヤであって、該加熱用サヤに耐酸化性が高く且つ誘電損失の高い、平均粒径500μm以上のα−SiC材料が含有されていることを特徴とする電磁波加熱装置に用いる加熱用サヤ。A heating sheath for storing the ceramic molded body or the ceramic calcined body when the ceramic molded body or the ceramic calcined body is heated and sintered by the electromagnetic wave heating device, and the heating sheath has high oxidation resistance. A heating sheath for use in an electromagnetic wave heating device comprising an α-SiC material having a high dielectric loss and an average particle size of 500 μm or more. 請求項5に記載の電磁波加熱装置に用いる加熱用サヤを用い、セラミックス成形体あるいは仮焼体を加熱、焼結することを特徴とするセラミックスの製造方法。A method for producing ceramics comprising heating and sintering a ceramic molded body or calcined body using the heating sheath used in the electromagnetic wave heating device according to claim 5.
JP2002303771A 2002-10-18 2002-10-18 Electromagnetic wave heating device, heating sheath used in electromagnetic wave heating device, and method for producing ceramics using them Expired - Lifetime JP4216037B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002303771A JP4216037B2 (en) 2002-10-18 2002-10-18 Electromagnetic wave heating device, heating sheath used in electromagnetic wave heating device, and method for producing ceramics using them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002303771A JP4216037B2 (en) 2002-10-18 2002-10-18 Electromagnetic wave heating device, heating sheath used in electromagnetic wave heating device, and method for producing ceramics using them

Publications (2)

Publication Number Publication Date
JP2004138327A JP2004138327A (en) 2004-05-13
JP4216037B2 true JP4216037B2 (en) 2009-01-28

Family

ID=32451408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002303771A Expired - Lifetime JP4216037B2 (en) 2002-10-18 2002-10-18 Electromagnetic wave heating device, heating sheath used in electromagnetic wave heating device, and method for producing ceramics using them

Country Status (1)

Country Link
JP (1) JP4216037B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103822464A (en) * 2012-11-19 2014-05-28 黄旭鹏 Industrial continuous high-temperature microwave calcining furnace for mineral granules and powder
US20220064070A1 (en) * 2020-08-28 2022-03-03 Korea Institute Of Science And Technology Method for forming high heat-resistant coating film using liquid ceramic composition and high heat-resistant coating film prepared thereby

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4740715B2 (en) * 2004-10-21 2011-08-03 新日鐵化学株式会社 Carbon material firing furnace and carbon material firing method
CN103826343A (en) * 2012-11-19 2014-05-28 黄旭鹏 Method for microwave-heating granular materials and powders
JP6387128B2 (en) * 2016-03-25 2018-09-05 東京窯業株式会社 Method for producing conductive silicon carbide sintered body and conductive silicon carbide sintered body
RU2698786C2 (en) * 2017-09-28 2019-08-29 Ооо "Тисмат" Device for microwave swelling of clay billets

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103822464A (en) * 2012-11-19 2014-05-28 黄旭鹏 Industrial continuous high-temperature microwave calcining furnace for mineral granules and powder
US20220064070A1 (en) * 2020-08-28 2022-03-03 Korea Institute Of Science And Technology Method for forming high heat-resistant coating film using liquid ceramic composition and high heat-resistant coating film prepared thereby

Also Published As

Publication number Publication date
JP2004138327A (en) 2004-05-13

Similar Documents

Publication Publication Date Title
Zhou et al. Effect of ZnO and B2O3 on the sintering temperature and microwave dielectric properties of LiNb0. 6Ti0. 5O3 ceramics
Bhattacharya et al. Susceptor-assisted enhanced microwave processing of ceramics-a review
Wu et al. Synthesis and microwave dielectric properties of Zn 3 B 2 O 6 ceramics for substrate application
Huang et al. Low‐loss microwave dielectrics in the spinel‐structured (Mg1− xNix) Al2O4 solid solutions
TWI453176B (en) Dielectric ceramic materials and associated methods
JP6131625B2 (en) Method for producing Al4SiC4 powder and method for producing MgO-C brick
Lei et al. Modification of ZnAl2O4‐based low‐permittivity microwave dielectric ceramics by adding 2MO–TiO2 (M= Co, Mg, and Mn)
Anjana et al. Synthesis, characterization, and microwave dielectric properties of ATiO3 (A= Co, Mn, Ni) ceramics
JP4216037B2 (en) Electromagnetic wave heating device, heating sheath used in electromagnetic wave heating device, and method for producing ceramics using them
Santha et al. Microwave Dielectric Properties of A6B5O18‐Type Perovskites
Zhuang et al. Low‐Temperature Sintering and Microwave Dielectric Properties of Ba5Nb4O15–BaWO4 Composite Ceramics for LTCC Applications
Zhou et al. Microwave Dielectric Properties of BaTi5O11 Ceramics Prepared by Reaction‐Sintering Process with the Addition of CuO
KR101545763B1 (en) Process for producing semiconductor porcelain composition and heater employing semiconductor porcelain composition
Barwick et al. Structure and dielectric properties of perovskite ceramics in the system Ba (Ni1/3Nb2/3) O3–Ba (Zn1/3Nb2/3) O3
JP4426384B2 (en) Coating material and fireproof insulation
JP2007277031A (en) Piezoelectric ceramic obtained by sintering nano-sized barium titanate powder having dielectric and piezoelectric property and method for manufacturing the same
Wu et al. Influence of Non‐Stoichiometry on the Structure and Properties of Ba (Zn1/3Nb2/3) O3 Microwave Dielectrics: III. Effect of the Muffling Environment
Li et al. Microwave sintering of Ca0. 6La0. 2667TiO3 microwave dielectric ceramics
Winfield et al. DiP224: Neodymium titanate (Nd2Ti2O7) ceramics
JPS5849665A (en) Ceramic body for dielectric heating
Wang et al. 4PbO· B2O3-A new sintering agent for Pb (Zr, Ti) O3 ceramics
JP4410479B2 (en) Electromagnetic wave absorber
JP4634743B2 (en) Heating element for microwave firing furnace
JPH10279366A (en) Production of high-strength piezoelectric ceramic
JP5566183B2 (en) Dielectric powder and sintered body and capacitor using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080311

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080512

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081028

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081105

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4216037

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131114

Year of fee payment: 5

EXPY Cancellation because of completion of term