JP3233258B2 - Nitride semiconductor electrode - Google Patents

Nitride semiconductor electrode

Info

Publication number
JP3233258B2
JP3233258B2 JP10254296A JP10254296A JP3233258B2 JP 3233258 B2 JP3233258 B2 JP 3233258B2 JP 10254296 A JP10254296 A JP 10254296A JP 10254296 A JP10254296 A JP 10254296A JP 3233258 B2 JP3233258 B2 JP 3233258B2
Authority
JP
Japan
Prior art keywords
nitride semiconductor
electrode
type
layer
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10254296A
Other languages
Japanese (ja)
Other versions
JPH09293898A (en
Inventor
雅之 妹尾
修二 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=14330148&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3233258(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP10254296A priority Critical patent/JP3233258B2/en
Publication of JPH09293898A publication Critical patent/JPH09293898A/en
Application granted granted Critical
Publication of JP3233258B2 publication Critical patent/JP3233258B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する分野】本発明は窒化物半導体(InX
YGa1-X-YN、0≦X、0≦Y、X+Y≦1)よりなり、
発光ダイオード(LED)、レーザダイオード(LE
D)等の発光素子、太陽電池、光センサー等の受光素子
に利用される窒化物半導体素子に係り、特に、窒化物半
導体素子のp型窒化物半導体表面に形成される電極に関
する。
[0001] The present invention relates to a nitride semiconductor (In X A).
l Y Ga 1-XY N, 0 ≦ X, 0 ≦ Y, X + Y ≦ 1) consists,
Light emitting diode (LED), laser diode (LE
The present invention relates to a nitride semiconductor element used for a light-emitting element such as D) and a light-receiving element such as a solar cell and an optical sensor, and particularly to an electrode formed on a p-type nitride semiconductor surface of the nitride semiconductor element.

【0002】[0002]

【従来の技術】窒化物半導体よりなる発光素子は、本出
願人により青色LED、緑色LEDとして最近実用化さ
れたばかりである。またLDに関しては1995年末
に、この材料を用いて室温において410nmのパルス
発振が確認された。
2. Description of the Related Art A light emitting device made of a nitride semiconductor has just recently been put to practical use as a blue LED or a green LED by the present applicant. As for LD, pulse oscillation of 410 nm was confirmed at room temperature using this material at the end of 1995.

【0003】これらの発光素子はいずれもp型層とn型
層との間に発光する活性層が挟まれたダブルへテロ構造
を有しており、最上層のp層にはNiを含む正電極が設
けられている。Niを含む正電極はp型窒化物半導体と
良好なオーミック接触が得られ、さらに窒化物半導体と
の接着性にも優れており、現在、有用な電極となってい
る。
Each of these light-emitting elements has a double hetero structure in which an active layer for emitting light is interposed between a p-type layer and an n-type layer, and the uppermost p layer has a positive layer containing Ni. Electrodes are provided. The positive electrode containing Ni has a good ohmic contact with the p-type nitride semiconductor and has excellent adhesiveness with the nitride semiconductor, and is currently a useful electrode.

【0004】Niを含む電極の他にも、p型窒化物半導
体の電極材料が提案されている。例えば特開平8−32
115号公報には金属性窒化物と、金属性水素化物(水
素貯蔵金属)とを含む電極が示されており、具体的には
金属性水素化物にはPd、金属性窒化物にはTi、H
f、Nb等が示されている。この技術は窒化物を作る金
属により窒化物半導体層内部の窒素を吸引して、電極直
下の窒化物半導体層の窒素空孔をなくし、さらに水素貯
蔵合金によりp型窒化物半導体より水素を奪いp型ドー
パントを活性化させて高キャリア濃度のp型層を得る作
用を奏するものである。
In addition to Ni-containing electrodes, p-type nitride semiconductor electrode materials have been proposed. For example, JP-A-8-32
No. 115 discloses an electrode containing a metal nitride and a metal hydride (hydrogen storage metal), specifically, Pd for a metal hydride, Ti for a metal nitride, H
f, Nb, etc. are shown. This technique sucks nitrogen inside the nitride semiconductor layer with a metal that forms nitride, eliminates nitrogen vacancies in the nitride semiconductor layer immediately below the electrode, and further removes hydrogen from the p-type nitride semiconductor using a hydrogen storage alloy. This has the effect of activating the type dopant to obtain a p-type layer with a high carrier concentration.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、前記窒
化物を作る金属は、逆に窒化物半導体より窒素を奪い、
窒素空孔を増加させる。従って、窒素空孔が増えるため
にp型窒化物半導体がi型若しくはn型に近くなってし
まうため、安定して窒化物半導体にオーミックを得るこ
とは難しい。しかも、Tiはn型窒化物半導体層のオー
ミック電極として用いられる材料である。
However, the metal forming the nitride, on the other hand, deprives the nitride semiconductor of nitrogen,
Increase nitrogen vacancies. Therefore, the p-type nitride semiconductor becomes close to i-type or n-type due to an increase in the number of nitrogen vacancies. Therefore, it is difficult to stably obtain ohmic in the nitride semiconductor. Moreover, Ti is a material used as an ohmic electrode of the n-type nitride semiconductor layer.

【0006】一方、Niを含む電極はLEDの電極とし
ては非常に好ましい特性を示しているが、青色LDのよ
うに早急に室温での連続発振が望まれている素子を実現
するには、さらに閾値を低下させる必要がある。そのた
めには窒化物半導体と接触抵抗ができるだけ低い電極を
実現しなければならない。特にp型窒化物半導体はn型
窒化物半導体に比較して抵抗率が大きいため、そのp型
窒化物半導体に形成する電極は閾値を低下させる上で非
常に重要である。
On the other hand, an electrode containing Ni exhibits very favorable characteristics as an electrode of an LED. However, in order to realize an element such as a blue LD, which is required to continually oscillate at room temperature as soon as possible, it is necessary to use an electrode. The threshold needs to be lowered. For this purpose, an electrode having a contact resistance as low as possible with a nitride semiconductor must be realized. In particular, since a p-type nitride semiconductor has a higher resistivity than an n-type nitride semiconductor, an electrode formed on the p-type nitride semiconductor is very important in lowering the threshold.

【0007】従って、本発明はこのような事情を鑑みて
成されたものであって、その目的とするところは、p型
窒化物半導体と安定して好ましいオーミック接触が得ら
れると共に、接触抵抗の低い電極を提供することにあ
る。
Accordingly, the present invention has been made in view of such circumstances, and it is an object of the present invention to provide a stable and favorable ohmic contact with a p-type nitride semiconductor and to reduce contact resistance. It is to provide a low electrode.

【0008】[0008]

【課題を解決するための手段】本発明の窒化物半導体の
電極は、p型窒化物半導体層表面に、少なくともパラジ
ウム(Pd)を含む金属が形成され、その上に白金(P
t)、ルテニウム(Ru)、ロジウム(Rh)、オスミ
ウム(Os)、イジウム(Ir)、銀(Ag)よりなる
群から選択された少なくとも一種の金属(窒素と反応し
ない金属。以下、窒素不活性金属と述べる。)、さらに
その上に金(Au)が形成されたことを特徴とする。
In the nitride semiconductor electrode of the present invention, a metal containing at least palladium (Pd) is formed on the surface of a p-type nitride semiconductor layer, and platinum (Pd) is formed thereon.
t), ruthenium (Ru), rhodium (Rh), osmium (Os), iridium (Ir), silver (Ag), at least one metal selected from the group consisting of metals that do not react with nitrogen. It is characterized by forming gold (Au) thereon.

【0009】[0009]

【0010】[0010]

【0011】[0011]

【発明の実施の形態】p型窒化物半導体を得るには、M
g、Zn、Cd等のII族元素よりなるp型ドーパントを
窒化物半導体成長中にドープすることによって得られ
る。また成長後、特開平5−183189号公報に示さ
れる400℃以上のアニーリング(熱処理)を行うこと
により、さらに低抵抗なp型が得られる。窒化物半導体
はGaNであると、高キャリア濃度のp型層が得られや
すく、電極材料と最も好ましいオーミックが得られ、特
にMgをドープしたGaNを電極が接する層、即ちコン
タクト層とすることが最も好ましい。なお、p型窒化物
半導体のキャリア濃度は1×1016/cm3以上あること
が望ましい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In order to obtain a p-type nitride semiconductor, M
It can be obtained by doping a p-type dopant consisting of a group II element such as g, Zn, Cd or the like during the growth of the nitride semiconductor. After growth, annealing (heat treatment) at 400 ° C. or higher as disclosed in JP-A-5-183189 provides a p-type having a lower resistance. When the nitride semiconductor is GaN, a p-type layer with a high carrier concentration can be easily obtained, and the most preferable ohmic with the electrode material can be obtained. Most preferred. Note that the carrier concentration of the p-type nitride semiconductor is desirably 1 × 10 16 / cm 3 or more.

【0012】本発明の電極において窒素不活性金属と
は、窒素と反応して窒化物半導体、若しくは窒化物の絶
縁体を形成しない金属よりなる電極を指し、例えばP
t、Ru、Rh、Os、Ir等の白金族元素、Au、A
g等の貴金属元素が電極材料として好ましい。
In the electrode of the present invention, the nitrogen inert metal refers to an electrode made of a nitride semiconductor or a metal which does not form a nitride insulator by reacting with nitrogen.
platinum group elements such as t, Ru, Rh, Os, Ir, Au, A
Noble metal elements such as g are preferable as the electrode material.

【0013】本発明の電極において、p型窒化物半導体
層表面に形成するPdおよび窒素不活性金属の順序は特
に問うものではないが、Pdを窒化物半導体と接する側
とするとより好ましいオーミックが得られる。さらに窒
素不活性金属の中でもPtおよびAuを使用するとアニ
ーリングに対しても安定な電極が提供できる。
In the electrode of the present invention, the order of Pd and the nitrogen-inactive metal formed on the surface of the p-type nitride semiconductor layer is not particularly limited. However, when Pd is in contact with the nitride semiconductor, a more preferable ohmic is obtained. Can be Further, use of Pt and Au among the nitrogen inert metals can provide an electrode that is stable against annealing.

【0014】[0014]

【実施例】【Example】

[実施例1]本発明の電極は、窒素不活性金属と、Pd
とを組み合わせることによりp型窒化物半導体に好まし
いオーミック接触が得られると共に、安定したオーミッ
ク特性の電極が得られる。図1は本発明の一実施例に係
る電極の電流電圧特性Aと、従来の電極の電流電圧特性
Bを比較して示す図である。Aは、PdとPtとAuよ
りなる本発明の電極であり、BはPdとTiとを積層し
た従来の電極を示している。これらの電極はp型窒化物
半導体の表面に、同一の電極を1ペアづつ形成した後、
ノンアニールの状態でのそれぞれの電極間の電流電圧特
性を示すものである。この図に示すように、本発明の電
極は、従来のPd/Tiを含む電極よりもオーミック特
性が優れている。これは、p型層に接する金属がTiよ
りもPtの方がオーミック特性が優れていることを示し
ている。さらに、この電極を500℃でアニーリングし
た際の電流電圧特性を図2に示す。アニーリングによ
り、従来の電極Bは電流電圧特性がよくなる傾向にある
が、本発明の電極はほとんど変化しない。これは、本発
明の電極が安定したオーミック特性を保持していること
を示している。なおBは従来の電極のベストモードを示
すものである。
[Example 1] An electrode of the present invention comprises a nitrogen inert metal, Pd
By combining the above, a preferable ohmic contact with the p-type nitride semiconductor can be obtained, and an electrode having stable ohmic characteristics can be obtained. FIG. 1 is a diagram showing a comparison between a current-voltage characteristic A of an electrode according to an embodiment of the present invention and a current-voltage characteristic B of a conventional electrode. A is an electrode of the present invention composed of Pd, Pt, and Au, and B is a conventional electrode in which Pd and Ti are laminated. These electrodes are formed on the surface of a p-type nitride semiconductor by forming the same electrode one pair at a time.
FIG. 9 shows current-voltage characteristics between respective electrodes in a non-annealed state. As shown in this figure, the electrode of the present invention has better ohmic characteristics than the conventional electrode containing Pd / Ti. This indicates that the metal in contact with the p-type layer is better in ohmic characteristics than in Ti when compared to Ti. FIG. 2 shows current-voltage characteristics when the electrode was annealed at 500 ° C. The conventional electrode B tends to have better current-voltage characteristics due to annealing, but the electrode of the present invention hardly changes. This indicates that the electrode of the present invention has stable ohmic characteristics. B indicates the best mode of the conventional electrode.

【0015】また、p型窒化物半導体を成長させた10
0枚のウェーハから10mm×10mm角のチップを2
個づつ取り出し、一方のチップにはPd/Pt/Auよ
りなる本発明の電極を形成し、もう一方のチップにはP
d/Tiよりなる従来の電極を形成した。そして、それ
ぞれ100個のチップを500℃でアニーリングした
後、電極を全数検査して電流電圧特性を測定したとこ
ろ、本発明の電極は100個全てが図2のAに示すよう
なオーミック特性を示したが、従来のPd/Tiよりな
る電極は、電流−電圧特性は必ずしも安定しておらず、
15%近くがショットキーバリアに近い特性を示し、好
ましいオーミックが得られていなかった。
Further, a p-type nitride semiconductor was grown.
2 x 10mm x 10mm square chips from 0 wafers
The electrodes of the present invention composed of Pd / Pt / Au are formed on one chip and Pd is formed on the other chip.
A conventional electrode of d / Ti was formed. After 100 chips were annealed at 500 ° C., 100% of the electrodes of the present invention exhibited ohmic characteristics as shown in FIG. However, the current-voltage characteristics of the conventional electrode made of Pd / Ti are not always stable.
Nearly 15% exhibited characteristics close to a Schottky barrier, and a favorable ohmic was not obtained.

【0016】以上のような違いは、次のような作用によ
ると推察される。従来の電極はアニーリングにより、T
iがp層の窒素を吸引して、電極直下の窒素空孔を補償
してオーミック性が向上するとされているが、実際には
窒素も水素と同様に電極から抜けてしまうため、キャリ
ア濃度はほとんど変わらないか、減少している。従って
電流電圧特性が安定しないのである。一方、本発明の電
極はPd、Pt(白金族元素、およびAg)、Auとも
窒化物半導体とは窒化物を生成しないが、これらの金属
を含む電極は、窒化物半導体と非常に好ましいオーミッ
クが得られる。そのため、アニーリングを行っても電極
が変質しないことにより、オーミック性が維持できる。
The above difference is presumed to be due to the following operation. Conventional electrodes have a T
It is said that i sucks nitrogen in the p-layer and compensates for nitrogen vacancies immediately below the electrode to improve ohmic properties. However, since nitrogen also escapes from the electrode like hydrogen, the carrier concentration is Almost unchanged or decreasing. Therefore, the current-voltage characteristics are not stable. On the other hand, the electrode of the present invention does not produce nitride with Pd, Pt (platinum group element and Ag), and Au with the nitride semiconductor, but the electrode containing these metals has a very preferable ohmic with the nitride semiconductor. can get. Therefore, the ohmic property can be maintained because the electrodes do not deteriorate even after annealing.

【0017】[実施例2]図3は窒化物半導体よりなる
レーザ素子の構造を示す模式的な断面図であり、このレ
ーザ素子は、サファイア基板1の上に、GaNよりなる
バッファ層(図示せず)200オングストローム、Si
ドープGaNよりなるn型コンタクト層2を5μm、S
iドープn型Al0.07Ga0.93Nよりなるn型光閉じこ
め層3を0.1μm、Siドープn型GaNよりなるn
型光ガイド層4を500オングストローム、InGaN
多重量子井戸構造の活性層5を1000オングストロー
ム、Mgドープp型GaNよりなるp型光ガイド層6を
500オングストローム、MgドープAl0.07Ga0.93
Nよりなるp型光閉じ込め層7を0.5μm、Mgドー
プp型GaNよりなるp型コンタクト層8が0.2μm
で積層されており、p型光閉じ込め層7およびp型コン
タクト層8がリッジ形状を有している。
[Embodiment 2] FIG. 3 is a schematic cross-sectional view showing the structure of a laser device made of a nitride semiconductor. This laser device has a buffer layer made of GaN (shown on the sapphire substrate 1). ) 200 Å, Si
5 μm of n-type contact layer 2 made of doped GaN, S
The n-type optical confinement layer 3 made of i-doped n-type Al0.07Ga0.93N has a thickness of 0.1 μm,
500 Å, InGaN
The active layer 5 having a multiple quantum well structure is 1000 Å, the p-type optical guide layer 6 made of Mg-doped p-type GaN is 500 Å, and Mg-doped Al 0.07 Ga 0.93.
The p-type light confinement layer 7 made of N is 0.5 μm, and the p-type contact layer 8 made of Mg-doped p-type GaN is 0.2 μm.
The p-type light confinement layer 7 and the p-type contact layer 8 have a ridge shape.

【0018】このレーザ素子のn型コンタクト層2には
Ti/Alよりなるストライプ状の負電極20を形成
し、p型コンタクト層8のほぼ全面にPdを50オング
ストローム、その上にPtを200オングストローム、
その上にAuを0.2μmの膜厚で形成した後、このレ
ーザ素子をヒートシンクに設置し、パルス発振させたと
ころ、順方向電圧10V、閾値電流100mAで、41
0nmのレーザ発振を示し、連続して100時間発振さ
せても、順方向電圧は変化しなかった。さらに、電極を
500℃でアニーリングしてもその特性は変化しなかっ
た。
A striped negative electrode 20 made of Ti / Al is formed on the n-type contact layer 2 of this laser device. Pd is 50 angstrom over substantially the entire surface of the p-type contact layer 8, and Pt is 200 angstrom thereon. ,
After Au was formed thereon with a thickness of 0.2 μm, this laser element was mounted on a heat sink and pulsed. When a forward voltage was 10 V and a threshold current was 100 mA, 41 μm was obtained.
It showed laser oscillation of 0 nm, and the forward voltage did not change even when the laser was oscillated continuously for 100 hours. Furthermore, even if the electrode was annealed at 500 ° C., its characteristics did not change.

【0019】[実施例3]実施例2において、Ptの代
わりにRuを用いる他は同様にしてレーザ素子を作成し
たところ、順方向電圧は11Vに上昇したが、後は実施
例2と同一の特性を示した。
Example 3 A laser device was fabricated in the same manner as in Example 2 except that Ru was used instead of Pt, and the forward voltage was increased to 11 V. The characteristics were shown.

【0020】[実施例4]実施例2において、Ptの代
わりにRhを用いる他は同様にしてレーザ素子を作成し
たところ、実施例3の素子とほぼ同一の特性を示した。
Example 4 A laser device was fabricated in the same manner as in Example 2 except that Rh was used instead of Pt, and showed almost the same characteristics as the device of Example 3.

【0021】[実施例5]実施例2において、Ptの代
わりにOsを用いる他は同様にしてレーザ素子を作成し
たところ、実施例3の素子とほぼ同一の特性を示した。
Example 5 A laser device was fabricated in the same manner as in Example 2 except that Os was used instead of Pt, and showed almost the same characteristics as the device of Example 3.

【0022】[実施例6]実施例2において、Ptの代
わりにOsを用いる他は同様にしてレーザ素子を作成し
たところ、実施例3の素子とほぼ同一の特性を示した。
Example 6 A laser device was prepared in the same manner as in Example 2 except that Os was used instead of Pt, and showed substantially the same characteristics as the device of Example 3.

【0023】[実施例7]実施例2において、Ptの代
わりにIrを用いる他は同様にしてレーザ素子を作成し
たところ、実施例3の素子とほぼ同一の特性を示した。
Example 7 A laser device was fabricated in the same manner as in Example 2 except that Ir was used instead of Pt, and showed almost the same characteristics as the device of Example 3.

【0024】[実施例8]実施例2において、Ptの代
わりにAgを用いる他は同様にしてレーザ素子を作成し
たところ、実施例3の素子とほぼ同一の特性を示した。
Example 8 A laser device was prepared in the same manner as in Example 2 except that Ag was used instead of Pt, and showed almost the same characteristics as the device of Example 3.

【0025】[0025]

【発明の効果】以上説明したように、本発明の電極はp
型窒化物半導体と安定して好ましいオーミックが得ら
れ、しかも変質しにくいという特徴を有している。従っ
て、レーザ素子のように素子自体が発熱するデバイスの
電極とすると、安定した素子を実現することができる。
As described above, the electrode of the present invention has a p
It has a characteristic that a preferable ohmic is obtained stably with the type nitride semiconductor, and that it is hardly deteriorated. Therefore, a stable element can be realized by using the electrode of a device that generates heat, such as a laser element.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の電極と従来の電極との電流電圧特性
を比較して示す図。
FIG. 1 is a diagram showing a comparison between current-voltage characteristics of an electrode of the present invention and a conventional electrode.

【図2】 本発明の電極と従来の電極との電流電圧特性
を比較して示す図。
FIG. 2 is a diagram showing a comparison between current-voltage characteristics of an electrode of the present invention and a conventional electrode.

【図3】 本発明の電極が形成された一レーザ素子の構
造を示す模式断面図。
FIG. 3 is a schematic cross-sectional view showing a structure of one laser device on which an electrode of the present invention is formed.

【符号の説明】[Explanation of symbols]

1・・・・基板 2・・・・n型コンタクト層 3・・・・n型光閉じこめ層 4・・・・n型光ガイド層 5・・・・活性層 6・・・・p型光ガイド層 7・・・・p型光閉じこめ層 8・・・・p型コンタクト層 20・・・負電極 30・・・正電極 DESCRIPTION OF SYMBOLS 1 ... Substrate 2 ... n-type contact layer 3 ... n-type light confinement layer 4 ... n-type light guide layer 5 ... active layer 6 ... p-type light Guide layer 7 p-type optical confinement layer 8 p-type contact layer 20 negative electrode 30 positive electrode

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平9−129932(JP,A) 特開 平9−64337(JP,A) 特開 平9−232632(JP,A) 特開 平9−251966(JP,A) 特開 平9−129929(JP,A) 特開 平5−315647(JP,A) 特開 平7−249795(JP,A) 特開 平6−152072(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 33/00 H01S 5/00 - 5/50 ──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-9-129932 (JP, A) JP-A-9-64337 (JP, A) JP-A-9-232632 (JP, A) JP-A 9-92 251966 (JP, A) JP-A-9-129929 (JP, A) JP-A-5-315647 (JP, A) JP-A-7-249795 (JP, A) JP-A-6-152072 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) H01L 33/00 H01S 5/00-5/50

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 p型窒化物半導体層表面に、少なくとも
パラジウム(Pd)を含む金属が形成され、その上に白
金(Pt)、ルテニウム(Ru)、ロジウム(Rh)、
オスミウム(Os)、イジウム(Ir)、銀(Ag)よ
りなる群から選択された少なくとも一種の金属、さらに
その上に金(Au)が形成されたことを特徴とする窒化
物半導体の電極。
1. A metal containing at least palladium (Pd) is formed on the surface of a p-type nitride semiconductor layer, and platinum (Pt), ruthenium (Ru), rhodium (Rh),
An electrode of a nitride semiconductor, wherein at least one metal selected from the group consisting of osmium (Os), iridium (Ir), and silver (Ag), and further, gold (Au) is formed thereon.
【請求項2】 前記p型窒化物半導体のキャリア濃度は
1×1016/cm3以上であることを特徴とする請求項1
に記載の窒化物半導体の電極。
2. The p-type nitride semiconductor according to claim 1, wherein the carrier concentration is 1 × 10 16 / cm 3 or more.
4. The electrode of a nitride semiconductor according to claim 1.
【請求項3】 前記窒化物半導体の電極は、窒化物半導
体レーザのp型窒化物半導体層の表面に形成されること
を特徴とする請求項1乃至2に記載の窒化物半導体の電
極。
3. The nitride semiconductor electrode according to claim 1, wherein the nitride semiconductor electrode is formed on a surface of a p-type nitride semiconductor layer of a nitride semiconductor laser.
JP10254296A 1996-04-24 1996-04-24 Nitride semiconductor electrode Expired - Fee Related JP3233258B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10254296A JP3233258B2 (en) 1996-04-24 1996-04-24 Nitride semiconductor electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10254296A JP3233258B2 (en) 1996-04-24 1996-04-24 Nitride semiconductor electrode

Publications (2)

Publication Number Publication Date
JPH09293898A JPH09293898A (en) 1997-11-11
JP3233258B2 true JP3233258B2 (en) 2001-11-26

Family

ID=14330148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10254296A Expired - Fee Related JP3233258B2 (en) 1996-04-24 1996-04-24 Nitride semiconductor electrode

Country Status (1)

Country Link
JP (1) JP3233258B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7592641B2 (en) 2005-06-13 2009-09-22 Kabushiki Kaisha Toshiba Semiconductor device, method for fabricating an electrode, and method for manufacturing a semiconductor device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3587224B2 (en) * 1996-07-24 2004-11-10 ソニー株式会社 Ohmic electrode
DE19921987B4 (en) * 1998-05-13 2007-05-16 Toyoda Gosei Kk Light-emitting semiconductor device with group III element-nitride compounds
US6936859B1 (en) 1998-05-13 2005-08-30 Toyoda Gosei Co., Ltd. Light-emitting semiconductor device using group III nitride compound
JP2001127370A (en) * 1999-10-22 2001-05-11 Kyocera Corp Submount for mounting semiconductor element
US6744075B2 (en) 2001-09-17 2004-06-01 Sanyo Electric Co., Ltd. Nitride-based semiconductor light-emitting device and method of forming the same
JP4952534B2 (en) 2007-11-20 2012-06-13 三菱電機株式会社 Manufacturing method of nitride semiconductor light emitting device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7592641B2 (en) 2005-06-13 2009-09-22 Kabushiki Kaisha Toshiba Semiconductor device, method for fabricating an electrode, and method for manufacturing a semiconductor device
US7993948B2 (en) 2005-06-13 2011-08-09 Kabushiki Kaisha Toshiba Semiconductor device, method for fabricating an electrode, and method for manufacturing a semiconductor device

Also Published As

Publication number Publication date
JPH09293898A (en) 1997-11-11

Similar Documents

Publication Publication Date Title
JP4947035B2 (en) Nitride semiconductor device
JP3009095B2 (en) Nitride semiconductor light emitting device
KR100527349B1 (en) Nitride Semiconductor Device
US7880176B2 (en) Top-emitting light emitting diodes and methods of manufacturing thereof
US20070138487A1 (en) Semiconductor light emitting device and method of manufacturing the same
JP2932468B2 (en) Gallium nitride based compound semiconductor light emitting device
JP2001203385A (en) Nitride semiconductor light emitting diode
JP3269070B2 (en) Nitride semiconductor light emitting device
JP3233258B2 (en) Nitride semiconductor electrode
KR100398514B1 (en) Nitride Semiconductor Device
JP4386185B2 (en) Nitride semiconductor device
JPH11298040A (en) Semiconductor light-emitting element and manufacture thereof
KR101124470B1 (en) Semiconductor light emitting device
KR100635214B1 (en) Vertical type light emitting diode and method of forming the same
JPH10270755A (en) Nitride semiconductor device
JP3941464B2 (en) Manufacturing method of nitride semiconductor light emitting device
US20240097093A1 (en) Electronic devices with impurity gettering
WO2024059799A1 (en) Electronic devices with impurity gettering
KR100574104B1 (en) Flip-chip light emitting device and method of manufacturing thereof
KR100574105B1 (en) Top emitting light emitting device and method of manufacturing thereof
KR100574103B1 (en) Flip-chip light emitting device and method of manufacturing thereof
KR100983831B1 (en) ?-nitride semiconductor light emitting device
JPH10270757A (en) Electrode for gallium nitride compound semiconductor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070921

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080921

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080921

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090921

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090921

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090921

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130921

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees