JP3231846B2 - Blood pressure daily fluctuation approximation measuring device - Google Patents

Blood pressure daily fluctuation approximation measuring device

Info

Publication number
JP3231846B2
JP3231846B2 JP19845192A JP19845192A JP3231846B2 JP 3231846 B2 JP3231846 B2 JP 3231846B2 JP 19845192 A JP19845192 A JP 19845192A JP 19845192 A JP19845192 A JP 19845192A JP 3231846 B2 JP3231846 B2 JP 3231846B2
Authority
JP
Japan
Prior art keywords
blood pressure
measurement
time
hours
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19845192A
Other languages
Japanese (ja)
Other versions
JPH0638936A (en
Inventor
博史 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Terumo Corp
Original Assignee
Terumo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Corp filed Critical Terumo Corp
Priority to JP19845192A priority Critical patent/JP3231846B2/en
Publication of JPH0638936A publication Critical patent/JPH0638936A/en
Application granted granted Critical
Publication of JP3231846B2 publication Critical patent/JP3231846B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、例えば24時間以上に
わたり、血圧及び脈拍数等を測定する血圧測定装置に関
し、連続的に測定された血圧を用いて血圧の日内変動リ
ズムを調べることが可能な血圧日内変動近似測定装置
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a blood pressure measuring device for measuring blood pressure, pulse rate, etc. for, for example, 24 hours or more, and it is possible to examine the circadian rhythm of blood pressure using continuously measured blood pressure. The present invention relates to a blood pressure circadian variation approximation measuring device .

【0002】[0002]

【従来の技術】通常、ヒトでは1日に約10万回の心拍
動があり、この数だけ心臓の縮小期及び拡張期血圧が存
在する。動脈内にカテーテルを挿入して動脈内圧を測定
する直接法の場合はこれらの全てが記録可能で、短周期
の変動も長周期の変動も検討することができる。これに
対して、コロトコフ音法やオシロメトリック法による間
接測定の場合は1回の測定に数十秒程度を要するため、
最も短い測定間隔でも1分以上を要し、また鬱血と侵襲
性を考慮して通常の臨床現場では15分より短い間隔で
の測定は困難である。しかも夜間は睡眠の妨げになるな
ど臨床上問題が大きいために、睡眠中は1時間間隔の測
定を余儀なくされることが少なくない。従って、24時
間血圧といっても非観血血圧計測の場合、一般には24
〜48ポイントの測定値に基づいて血圧変動が判断され
る場合が多いが、まだ日常活動の中での計測への負担は
大きい。
2. Description of the Related Art Normally, a human has about 100,000 heart beats per day, and there are systolic and diastolic blood pressures corresponding to this number. In the case of the direct method of measuring the arterial pressure by inserting a catheter into the artery, all of these can be recorded, and both short-period fluctuation and long-period fluctuation can be examined. On the other hand, in the case of indirect measurement by the Korotkoff sound method or the oscillometric method, one measurement takes about several tens of seconds,
The shortest measurement interval requires more than 1 minute, and it is difficult to measure at an interval shorter than 15 minutes in an ordinary clinical setting in consideration of congestion and invasiveness. Moreover, clinical problems such as obstruction of sleep during the night are great, so that it is often necessary to measure at hourly intervals during sleep. Therefore, in the case of non-invasive blood pressure measurement, 24 hour blood pressure is generally 24 hours.
In many cases, the blood pressure fluctuation is determined based on the measured values of .about.48 points, but the burden on the measurement during daily activities is still large.

【0003】また、外的要因による細かな血圧変動では
なく、そのヒトの血圧の基礎となる大きな血圧の変化を
みる場合には、これら全ての測定点を必ずしも必要とせ
ず、従来の測定機器にによる計測は、患者負担,コスト
パフォーマンスの点から無駄のあることが否めない。
[0003] Further, when observing a large change in blood pressure, which is the basis of the human blood pressure, rather than a minute change in blood pressure due to an external factor, all of these measurement points are not necessarily required. It is undeniable that the measurement by the method is wasteful in terms of patient burden and cost performance.

【0004】[0004]

【発明が解決しようとする課題】従来の間接法による血
圧測定で日内変動を検討する場合、1日に24〜48ポ
イントとはいえ、測定頻度を考えると常に血圧測定装置
を身体に装着して携帯しなければならない。従って身体
に対する拘束性が極めて高く、重量も重く、その大きさ
も比較的大きいことなどから、しばしば日常生活におけ
る身体活動に影響を及ぼす。又頻繁なカフ加圧による皮
下出血、安眠の妨げなどの点で侵襲性に問題を残す。
When examining the circadian variation in the blood pressure measurement by the conventional indirect method, the blood pressure measurement device is always worn on the body in consideration of the measurement frequency, even though the frequency is 24 to 48 points per day. I have to carry it. Thus very high restricted to the body, the weight is also heavy, and the like relatively larger in size, often affects the physical activity in everyday life. In addition, frequent cuff pressurization leaves subcutaneous bleeding and impairs sleep, and leaves problems in invasiveness.

【0005】本発明はこのような従来の測定装置の拘束
性・侵襲性という問題に鑑みてなされたものであり、1
日あたり例えば6時点の測定による血圧値を用いてこれ
らの日内変動リズムに関する情報を得るものである。
[0005] The present invention has been made in view of such a problem that the conventional measuring device is restricted and invasive.
For example, information on these circadian rhythms is obtained using blood pressure values measured at six time points per day.

【0006】更に装置の軽量化・小型化を計り、血圧測
定の拘束性・侵襲性を大幅に低減した血圧日内変動近似
測定装置を提供することを目的とする。
It is another object of the present invention to provide a blood pressure circadian variation approximation measuring device in which the weight and size of the device are reduced and the restraint and invasiveness of blood pressure measurement are greatly reduced.

【0007】[0007]

【課題を解決するための手段】本発明の課題は、血圧の
最も低下する時間帯を起点とし、この時間帯からほぼ4
時間ごとに血圧を測定する血圧測定手段と、その測定値
に基づいて異なる周期の曲線から合成された回帰曲線を
作成する回帰曲線作成手段とを備えることを特徴とする
血圧日内変動近似測定装置により達成される。
SUMMARY OF THE INVENTION An object of the present invention is to start from a time zone in which the blood pressure is most lowered, and from this time zone, approximately four times
Blood pressure measuring means for measuring the blood pressure for each time , and a blood pressure circadian variability approximation measuring device characterized by comprising a regression curve creating means for creating a regression curve synthesized from curves of different cycles based on the measured values Achieved.

【0008】具体的には、上記の各測定点において数回
の測定を行い、その平均値を用いることを特徴とする。
[0008] Specifically, it is characterized in that several measurements are made at each of the above measurement points, and the average value is used.

【0009】血圧及び脈拍数を測定したデータを解析し
て24時間の変動パターンを表示するにあたり、午前3
時±15分を起点として4時間±15分間隔でのデータ
を用いて周期解析を行うことを特徴とする。
When analyzing the data obtained by measuring the blood pressure and the pulse rate and displaying a fluctuation pattern of 24 hours, it is required
Periodic analysis is performed using data at intervals of 4 hours ± 15 minutes starting at hours ± 15 minutes.

【0010】連続48時間以上あるいは1日以上の間隔
をおいて数日間にわたって測定した血圧・脈拍数を24
時間単位で比較し解析に利用する際、午前3時±15分
を起点として4時間±15分間隔で血圧と脈拍数を比較
することを特徴とする。
The blood pressure and pulse rate measured over several days at intervals of 48 hours or more or 1 day or more
When the comparison is made in units of time and used for the analysis, the blood pressure and the pulse rate are compared at intervals of 4 hours ± 15 minutes starting at 3: 00 ± 15 minutes in the morning.

【0011】測定を6回にしえたのは、この6回のデー
タを使用して、24時間の周期の曲線と、12時間の周
期の曲線を合成することにより作成された回帰曲線によ
り、実測値への寄与率が高められ、かつ、測定の起点を
ある特定の時間帯にしたことによる。
The reason why the measurement can be performed six times is that a regression curve created by synthesizing a curve having a cycle of 24 hours and a curve having a cycle of 12 hours using the data of the six measurements is used to measure the measured values. Due to the increase in the contribution to the measurement and the fact that the starting point of the measurement is at a specific time zone.

【0012】[0012]

【実施例】高血圧症の診断及び治療効果の判定に必要な
情報を与える血圧日内変動曲線が午前3時±15分を起
点として4時間±15分間隔の6時点のデータによって
得られる根拠を以下に説明する。
EXAMPLE The following describes the basis obtained from the data at 6 time points of 4 hours ± 15 minutes starting at 3: 00 ± 15 minutes, giving the information necessary for the diagnosis of hypertension and the judgment of the therapeutic effect. Will be described.

【0013】発明者らは日本人の健常者約500名と高
血圧患者約1000名について、ヒトの24時間血圧の
実測値(約30分間隔)を解析して余弦曲線のあてはめ
を行った。24時間を周期とした余弦曲線のあてはめに
よる回帰曲線の実測値に対する寄与率が80%以下であ
ったのに対して、24時間と12時間の二つの周期を合
成してあてはめた回帰曲線の場合は寄与率が約95〜9
8%と著しく改善された。又、このあてはめを行う場合
に測定点数に対する寄与率の関係及び測定時刻と寄与率
の関係を調べた。
The present inventors analyzed census curves of approximately 500 Japanese healthy subjects and approximately 1,000 hypertensive patients by analyzing the measured values of human 24-hour blood pressure (at approximately 30-minute intervals). In the case of a regression curve obtained by combining two periods of 24 hours and 12 hours, while the contribution rate of the regression curve obtained by fitting a cosine curve having a period of 24 hours to the actually measured value was 80% or less. Has a contribution rate of about 95-9
This is a marked improvement of 8%. In addition, when this fitting was performed, the relationship between the contribution rate to the number of measurement points and the relationship between the measurement time and the contribution rate were examined.

【0014】ここで、「寄与率」とは相関係数rを平方
したもの(r2 )をいい、0≦r2≦1である。
Here, the "contribution ratio" means the square of the correlation coefficient r (r 2 ), where 0 ≦ r 2 ≦ 1.

【0015】寄与率はふたつのデータ群が共有している
情報量の割合を示すものと解釈される。
The contribution ratio is interpreted as indicating the ratio of the amount of information shared by the two data groups.

【0016】実測された24時間分の血圧データ群を時
間的に等間隔に24点に要約することにより収縮期・拡
張期血圧に関して、各々もとのデータ群に対して0.9
74、0.982の寄与率が得られ、もとのデータを高
い忠実度で説明が可能であった。
By summarizing the measured blood pressure data group for 24 hours into 24 points at regular intervals in time, the systolic and diastolic blood pressures are each 0.9% smaller than the original data group.
The contribution ratios of 74 and 0.982 were obtained, and the original data could be explained with high fidelity.

【0017】これらのデータの24時間当たりの収集回
数即ち血圧測定回数を等間隔で12点,8点,6点,5
点と漸減させた場合の、周期回路曲線の周期関数の一致
係数を位相と振幅について検討したところ<表1>に示
す結果を得た。測定点数を5点に減らすと周期関数の振
幅の一致係数が6点の場合の0.961から0.657
と著しく劣化した。一方位相の一致係数は0.986と
高い値を保った。
The number of collections of these data per 24 hours, that is, the number of blood pressure measurements, was set at 12, 8, 6, and 5 at equal intervals.
When the coincidence coefficient of the periodic function of the periodic circuit curve when the number of points was gradually decreased was examined for the phase and the amplitude, the results shown in Table 1 were obtained. When the number of measurement points is reduced to 5, the coefficient of coincidence of the amplitude of the periodic function is 0.961 to 0.657 when the coefficient is 6 points.
And deteriorated significantly. On the other hand, the phase coincidence coefficient kept a high value of 0.986.

【0018】従って測定点数に関しては24時間当たり
等間隔で6時点以上あれば30分間隔で測定したデータ
と殆ど同等の情報が得られる。また測定時刻に関しては
図2に示す如く3:00AM,7:00AM,11:0
0AM,3:00PM,7:00PM,11:00PM
付近に回帰曲線のnadir(底値)、peak、ある
いは急峻な変化があり、これらの近傍での測定点を用い
ると変動曲線の特徴のほぼ全てを促えることができる。
Therefore, with respect to the number of measurement points, if the time is equal to or more than 6 at 24 hours, almost the same information as the data measured at 30 minutes can be obtained. As for the measurement time, 3:00 AM, 7:00 AM and 11: 0 as shown in FIG.
0AM, 3:00 PM, 7:00 PM, 11:00 PM
There are nadir (base value), peak, or steep changes of the regression curve in the vicinity, and almost all of the characteristics of the variation curve can be prompted by using the measurement points in the vicinity.

【0019】以上の理由により測定は6時点で必要かつ
十分であることが分かった。また、血圧のもっとも低下
する時間帯を起点とし測定することが有効であることが
分かった。この時間帯とは通常午前3時付近であり、こ
の時間帯を起点として測定を開始し、そこから約4時間
間隔で測定点を設定する。
For the above reasons, it was found that the measurement was necessary and sufficient at six time points. In addition, it was found that it is effective to measure the blood pressure at the time when the blood pressure is most reduced. This time zone is usually around 3:00 am, the measurement is started with this time zone as a starting point, and measurement points are set at intervals of about 4 hours from there.

【0020】[0020]

【表1】 具体的には、高血圧症の診断及び治療効果の判定に必要
な情報である血圧日内変動を血圧の最も低下する時間
帯、例えば午前3時±15分を起点として例えば4時間
±15分間隔をもって1日に例えば6時点の血圧・脈拍
数を測定することにより得る。即ち得られた6時点の血
圧値・脈拍数の周期回帰分析により24時間と12時間
の二つの余弦曲線のあてはめを行い、24時間にわたる
血圧変動のレベル(中央値)及びパターン(位相と振幅
により規定される)を求めるものである。
[Table 1] Specifically, the blood pressure circadian variation, which is information necessary for the diagnosis of hypertension and the determination of the therapeutic effect, is changed at a time zone in which the blood pressure is most decreased, for example, at 3: 00 ± 15 minutes, and at intervals of, for example, 4 hours ± 15 minutes. For example, it is obtained by measuring blood pressure and pulse rate at six time points a day. That is, two cosine curves of 24 hours and 12 hours are fitted by cyclic regression analysis of the obtained blood pressure value and pulse rate at the 6 time points, and the level (median value) and pattern (by phase and amplitude) of the blood pressure change over 24 hours Stipulated).

【0021】以下、本発明の実施例を参照して具体的に
説明する。
Hereinafter, a specific description will be given with reference to the embodiments of the present invention.

【0022】図1は本発明の一実施例の日内変動近似測
定装置の機能ブロック図である。1は血圧測定部で、一
般的な非観血血圧計における血圧測定機能を有する。2
は操作部で、覚醒時に血圧測定をする際、患者の測定開
始操作等を操作スイッチ9から受け付ける。このスイッ
チはいわゆるモメンタリ式で力を加えている間だけ接点
が閉じる形式のものとする。3は表示部で、測定した結
果などを表示する。4はスピーカで音によって患者に測
定時刻になったことを知らせる。5は制御部で、装置全
体の動作を制御し、必要に応じ測定結果から回帰曲線を
求める演算を行う。6は入出力インターフェースで、外
部とのデータ交換等に使用する。このインターフェース
は例えばRS−232等の双方向通信が可能なものとす
る。7は時計で、時刻を間欠的に制御部に知らせる。こ
の時計は電子時計である。8はデータ記憶部で、測定条
件や測定結果、患者情報などを蓄えており、電源が切れ
ても内容の失われない不揮発性のメモリである。
FIG. 1 is a functional block diagram of a daily fluctuation approximation measuring apparatus according to an embodiment of the present invention. Reference numeral 1 denotes a blood pressure measurement unit having a blood pressure measurement function in a general non-invasive blood pressure monitor. 2
The operation unit accepts a patient's measurement start operation and the like from the operation switch 9 when measuring blood pressure during awakening. This switch is of a so-called momentary type, in which the contacts are closed only while a force is being applied. Reference numeral 3 denotes a display unit for displaying a measurement result and the like. A speaker 4 informs the patient that the measurement time has come by sound. Reference numeral 5 denotes a control unit which controls the operation of the entire apparatus, and performs an operation for obtaining a regression curve from the measurement results as needed. Reference numeral 6 denotes an input / output interface used for data exchange with the outside. This interface is capable of bidirectional communication such as RS-232. Reference numeral 7 denotes a clock which informs the controller of the time intermittently. This watch is an electronic watch. Reference numeral 8 denotes a data storage unit that stores measurement conditions, measurement results, patient information, and the like, and is a nonvolatile memory that retains its contents even when the power is turned off.

【0023】装置としての動作は図7に示すように大き
くS1,S2,S3の三つの処理に分類され、S1,S
2,S3の順に行われる。S1は初期設定、S2は長時
間の血圧測定、S3は測定結果等のデータの外部への出
力である。S1,S3においては操作は医師や看護婦な
どによって行われ、患者が操作を必要とするのはS2に
おいて覚醒時に測定時点での測定時点認識と測定開始を
装置に指示する場合だけで、操作スイッチ9は例えば1
個の押しボタンスイッチでよい。患者は覚醒時には促進
音によって測定時点を知ると一旦操作スイッチ9を閉じ
て血圧測定の準備を行い、準備ができたら測定開始のた
めにスイッチ9を閉じる。睡眠時には予め測定準備をし
ておけば血圧測定は完全自動で行われる。この場合には
睡眠を妨げぬよう、促進音などは発生させない。
The operation of the apparatus is roughly classified into three processes S1, S2 and S3 as shown in FIG.
This is performed in the order of 2, S3. S1 is an initial setting, S2 is a long-time blood pressure measurement, and S3 is an output of data such as a measurement result to the outside. In S1 and S3, the operation is performed by a doctor, a nurse, or the like, and the patient needs to operate only when instructing the apparatus to recognize the measurement time at the measurement time and start the measurement at the time of awakening in S2. 9 is 1
A single push button switch is sufficient. When the patient is awake, knowing the measurement time point by the promotion sound, he once closes the operation switch 9 to prepare for blood pressure measurement, and when ready, closes the switch 9 to start measurement. During sleep, blood pressure measurement is performed completely automatically if measurement preparations are made in advance. In this case, no promotion sound is generated so as not to hinder sleep.

【0024】S1,S2,S3をそれぞれ以下に詳しく
説明する。
Each of S1, S2, and S3 will be described in detail below.

【0025】まず、初期設定処理S1について図3と図
8を用いて以下に説明する。図3は初期設定の際のデー
タないし信号の経路を示す図である。図8(a)はS1
の流れ図、図8(b)は初期設定の際に外部から受け取
るデータあるいは信号の種類と順を示す図である。初め
に外部より図3の経路A1を経て図8(b)に示す初期
化コマンドが入出力インターフェース6を介し経路A2
を経て制御部5へと転送される。処理S101にてこの
コマンドの受け取り完了を待ち、その後処理S102で
経路A3を経てデータ記憶部8の内容の消去が行われ
る。引き続いて外部より患者情報・測定条件のデータが
同様に送り込まれ、処理S103にて受け取り完了を待
ち、処理S104にて経路A3を経てデータ記憶部8に
患者情報・測定条件が記憶される。続いて時計の時刻合
わせのための初期データが処理S105によって受け取
られ、この初期データを用いて処理S106により経路
A4を経て時計の時刻合わせが実行される。この間、必
要に応じ経路A5を経て動作状態を表示部3に表示して
もよい。
First, the initial setting process S1 will be described below with reference to FIGS. FIG. 3 is a diagram showing paths of data or signals at the time of initial setting. FIG. 8A shows S1.
FIG. 8B is a diagram showing the types and order of data or signals received from the outside at the time of initial setting. First, an initialization command shown in FIG. 8B is externally transmitted via the path A1 in FIG.
Is transferred to the control unit 5 through In step S101, the completion of the reception of this command is waited. Then, in step S102, the contents of the data storage unit 8 are erased via the path A3. Subsequently, the data of the patient information / measurement condition is sent from the outside in the same manner, the completion of reception is waited for in step S103, and the patient information / measurement condition is stored in the data storage unit 8 via the route A3 in step S104. Subsequently, the initial data for the time adjustment of the clock is received in step S105, and the time adjustment of the clock is executed via the path A4 in step S106 using this initial data. During this time, the operation state may be displayed on the display unit 3 via the path A5 as needed.

【0026】次に、長時間測定処理S2の詳細について
図4,図5,図9を用いて以下に説明する。図4は覚醒
時の血圧測定の際のデータないし信号の経路を示し、図
5は睡眠時の血圧測定の際のデータないし信号の経路を
示す。図9はS2の流れ図である。
Next, the details of the long time measurement processing S2 will be described below with reference to FIGS. FIG. 4 shows a data or signal path when measuring blood pressure during awakening, and FIG. 5 shows a data or signal path when measuring blood pressure during sleep. FIG. 9 is a flowchart of S2.

【0027】処理S201において図4の経路B1ない
し図5の経路C1を経て間欠的に時計7から得られる時
刻情報を調べ、測定時点になるまで待つ。測定時点と認
識される手順S202によってデータ記憶部8から経路
B2ないしC2を経て測定条件を読みだし、その測定時
点が覚醒時の設定か睡眠中の設定かを判定して、覚醒の
場合は処理S206、睡眠の場合は処理S203に進
む。
In step S201, the time information obtained from the clock 7 intermittently via the route B1 in FIG. 4 to the route C1 in FIG. The measurement condition is read from the data storage unit 8 via the paths B2 to C2 in step S202 recognized as the measurement time point, and it is determined whether the measurement time point is the setting at the time of awakening or the setting at the time of sleep. In S206, in the case of sleep, the process proceeds to S203.

【0028】覚醒の場合は処理S206により、経路B
を経てスピーカ4を鳴動させ、血圧測定の促進音とす
る。患者はこの促進音を認めた場合、促進音を停止させ
るために操作スイッチ9を閉じ操作部2を介して認識信
号を経路B4を経て制御部5に与える。処理S207に
てこれを検知すると処理S208にてスピーカ4の鳴動
を停止させる。次に処理S209において患者のスイッ
チ9の操作により経路B4を経て測定開始の信号が与え
られるのを待ち、処理S201により10分経過しても
開始操作がなされない場合は再び促進音発生の処理S2
06に戻る。測定開始を認識すると処理S203に進
む。以下は覚醒時も睡眠中もほぼ同じ処理を行う。
In the case of awakening, the route B is determined in step S206.
The sound of the speaker 4 is made to sound as the sound for promoting the blood pressure measurement. When the patient recognizes the prompting sound, the patient closes the operation switch 9 to stop the prompting sound and sends a recognition signal to the control unit 5 via the operation unit 2 via the path B4. When this is detected in step S207, the sound of the speaker 4 is stopped in step S208. Next, in step S209, the process waits until a signal for starting the measurement is given via the path B4 by the operation of the switch 9 of the patient, and if the start operation is not performed even after 10 minutes elapse in the step S201, the processing S2 for generating the promotion sound again.
Return to 06. When the start of measurement is recognized, the process proceeds to step S203. In the following, substantially the same processing is performed during awakening and during sleep.

【0029】処理S203により、経路BないしC3を
経て血圧測定部1に自動血圧測定を行わせ、経路B6な
いしC4を経て血圧測定結果を得る。処理S204,S
205により三分間の間隔をおいて三回自動測定を行
う。覚醒時には経路B7を経て表示部3に測定結果を表
示してもよい。三回の測定が終了すると処理S211に
より経路B8ないしC5を経て結果をデータ記憶部8に
記憶させる。次に処理S212により、定められた測定
点での血圧測定が終了したか否かを判定し、終了した場
合はS2全体の動作を終了し、さもなければ処理S20
1に戻って次の測定時点まで待つ。
In step S203, the blood pressure measurement unit 1 is caused to perform automatic blood pressure measurement via the routes B to C3, and a blood pressure measurement result is obtained via the routes B6 to C4. Processing S204, S
According to 205, automatic measurement is performed three times at three minute intervals. When awake, the measurement result may be displayed on the display unit 3 via the route B7. When the three measurements are completed, the result is stored in the data storage unit 8 via the paths B8 to C5 in step S211. Next, in step S212, it is determined whether or not the blood pressure measurement at the determined measurement point has been completed. If the measurement has been completed, the entire operation of S2 ends, otherwise, the process in step S20
Return to step 1 and wait until the next measurement.

【0030】次に測定データ転送処理S3の詳細につい
て図6と図10を用いて以下に説明する。
Next, details of the measurement data transfer processing S3 will be described below with reference to FIGS.

【0031】図6は血圧測定データ等を外部に転送する
際のデータないし信号の経路を示す。図10はS3の流
れ図である。初めに装置は処理S301により外部から
データ転送し時のコマンドを待ち受けている。この状態
で経路D1を経て外部よりデータ転送コマンドが送ら
れ、経路D2を経て制御部5に受け取られる。コマンド
を認識すると処理S302により経路D4を経てデータ
記憶部8に蓄えられている測定データ、患者情報等を読
み出す。
FIG. 6 shows data or signal paths when blood pressure measurement data and the like are transferred to the outside. FIG. 10 is a flowchart of S3. First, the apparatus waits for a command for data transfer from the outside in step S301. In this state, a data transfer command is sent from the outside via the path D1 and received by the control unit 5 via the path D2. When the command is recognized, the measurement data, the patient information, and the like stored in the data storage unit 8 via the path D4 are read out in step S302.

【0032】これらの情報は処理S303により経路D
5,D6を経て外部に転送される。次に処理S304に
より回帰曲線が求められる。処理S304の内容につい
て以下に具体的な手段の一例を示す。
These pieces of information are stored in the route D
5 and transferred to the outside via D6. Next, a regression curve is obtained in step S304. An example of specific means for the contents of the processing S304 will be described below.

【0033】回帰曲線をフーリエ解析を利用して最小二
乗法により求めることにする。求めるべき回帰曲線y
(t)をフーリエ級数展開して表現すると、一般的に、
A regression curve is determined by the least squares method using Fourier analysis. Regression curve y to be found
When (t) is expressed by Fourier series expansion, generally,

【0034】[0034]

【数1】 と表される。ここでtは時間、T/kは周期を表す。こ
こでは、k=2までとして、k≧3で表される誤差分を
εとすると(1)式は、
(Equation 1) It is expressed as Here, t represents time, and T / k represents a cycle. Here, assuming that up to k = 2 and an error represented by k ≧ 3 is ε, the equation (1) is as follows.

【0035】[0035]

【数2】 と表すことができる。(Equation 2) It can be expressed as.

【0036】ここで、β0 =a0 /2,β1 =a1 ,β
2 =b1 ,β3 =a2 ,β4 =b2,x0 =1, x1 (t)=cos(2πt/T),x2 (t)=si
n(2πt/T) x3 (t)=cos(4πt/T),x4 (t)=si
n(4πt/T) とおくと、(2)式は、
Here, β 0 = a 0/2 , β 1 = a 1 , β
2 = b 1 , β 3 = a 2 , β 4 = b 2 , x 0 = 1, x 1 (t) = cos (2πt / T), x 2 (t) = si
n (2πt / T) x 3 (t) = cos (4πt / T), x 4 (t) = si
n (4πt / T), Equation (2) becomes

【0037】[0037]

【数3】 と表することができて、これはy(t)を目的変数と
し、{x1 (t),x2 (t),x3 (t),x4
(t)}を説明変数とした重回帰モデルに相当し、βは
偏回帰係数に相当する。p個(≧4)の測定点に関して
(3)式を適用すると、ベクトルと行列(以下、小文字
のスカラー値に対応するベクトルと行列を大文字で表わ
す)用いて、
(Equation 3) Where y (t) is the target variable and {x 1 (t), x 2 (t), x 3 (t), x 4
(T) corresponds to a multiple regression model with} as an explanatory variable, and β corresponds to a partial regression coefficient. When equation (3) is applied to p (≧ 4) measurement points, using vectors and matrices (hereinafter, vectors and matrices corresponding to scalar values in lower case are expressed in upper case),

【0038】[0038]

【数4】 ただし、(Equation 4) However,

【0039】[0039]

【数5】 と表現できる。ここでyはp個の測定点における測定
値、εは同じく誤差分を表している。(4)式より一般
的に tE・E→最小とする最小二乗解は、
(Equation 5) Can be expressed as Here, y represents the measured values at p measurement points, and ε also represents the error. From equation (4), generally, the least-squares solution that minimizes t E · E →

【0040】[0040]

【数6】 として与えられることが知られている。本発明において
は、測定点数pを6とし、6行5列の行列Xの各要素
は、T=24時間,t1 =3,t2 =7,t3 =11,
4 =15,t5 =19,t6 =23(時)として、
(Equation 6) It is known to be given as In the present invention, the number of measurement points p is 6, and each element of the matrix X of 6 rows and 5 columns is T = 24 hours, t 1 = 3, t 2 = 7, t 3 = 11,
Assuming that t 4 = 15, t 5 = 19, and t 6 = 23 (hour),

【0041】[0041]

【数7】 より容易に求めることができる。この様にしてXは以下
の様に求められる。
(Equation 7) It can be determined more easily. In this way, X is obtained as follows.

【0042】[0042]

【数8】 従って、t X・Xは、(Equation 8) Therefore, t XX

【0043】[0043]

【数9】 となり、この逆行列は、(Equation 9) And this inverse matrix is

【0044】[0044]

【数10】 と計算できる。(Equation 10) Can be calculated.

【0045】したがって、(6)式にこれらを適用する
と、
Therefore, when these are applied to the equation (6),

【0046】[0046]

【数11】 となり、yに測定値を与えることによって容易にβ、即
ち(2)式におけるa0,a1 ,a2 ,b1 ,b2 を求
めることができる。
[Equation 11] Β can be easily obtained by giving a measured value to y, that is, a 0 , a 1 , a 2 , b 1 , b 2 in the equation (2).

【0047】測定値yとして、次の2組の例について実
際に計算を実行してみる。
Calculation is actually executed for the following two examples as the measured value y.

【0048】[0048]

【数12】 1 については、(Equation 12) For y 1,

【0049】[0049]

【数13】 即ち、a/2=120,a1 =0,a2 =0,b1
0,b2 =0となり、直流成分のみとなる。y2 につい
ては、
(Equation 13) That is, a / 2 = 120, a 1 = 0, a 2 = 0, b 1 =
0, b 2 = 0, resulting in only a DC component. For y 2,

【0050】[0050]

【数14】 即ち、a0 /2=119.2,a1 =−11.47,b
1 =−7.387,a 2 =−2.887,b22=−6.
667となる。
[Equation 14]That is, a0 / 2 = 119.2, a1 = -11.47, b
1 = −7.387, a Two = -2.887, btwenty two= -6.
667.

【0051】(1)式は余弦関数のみでの表現も可能で
ある。即ち、
The expression (1) can be expressed only by a cosine function. That is,

【0052】[0052]

【数15】 ここで、A0 =a0 /2(メサー:mesor),Ak
=√ak 2+bk 2(振幅:amplitude) θk =tan-1(bk /ak )(位相角:acroph
ase) ωk =2πk/T(角周波数)である。
(Equation 15) Here, A 0 = a 0/2 ( Mesa: mesor), A k
= √a k 2 + b k 2 ( amplitude: amplitude) θ k = tan -1 (b k / a k) ( phase angle: Acroph
case) ω k = 2πk / T (angular frequency).

【0053】前述の例で求めたy2 に関するa0 ,a
1 ,a2 ,ab1 ,b2 を(1)′に適用すると、 A0 =a0 /2,A1 =√a1 2+b1 2≒13.6 A2
=√a2 2+b2 2≒7.27 θ1 =tan-1(b1/a1)=tan-1(-7.387/-11.47)≒0.572+n
π(n=0,1,2,…) θ2 =tan-1(b2/a2)=tan-1(-6.667/-2.887)≒1.162+n
π(n=0,1,2,…) w1 =π/12(rad/時),w2 =π/6(rad
/時) θ1 ,θ2 はa1 ,b1 ,a2 ,b2 の符号を考慮する
とn=1となり、θ1≒3.714(rad),θ2
4.304(rad)を得る。従って、y2 による回帰
曲線y2 (t)は、
A 0 , a for y 2 obtained in the above example
1, application of a 2, ab 1, b 2 a (1) ', A 0 = a 0/2, A 1 = √a 1 2 + b 1 2 ≒ 13.6 A 2
= √a 2 2 + b 2 2 277.27 θ 1 = tan -1 (b 1 / a 1 ) = tan -1 (-7.387 / -11.47) ≒ 0.572 + n
π (n = 0,1,2, ...) θ 2 = tan -1 (b 2 / a 2 ) = tan -1 (-6.667 / -2.887) ≒ 1.162 + n
π (n = 0, 1, 2,...) w 1 = π / 12 (rad / hour), w 2 = π / 6 (rad
/ H) θ 1 and θ 2 are n = 1 in consideration of the signs of a 1 , b 1 , a 2 and b 2 , and θ 1 ≒ 3.714 (rad), θ 2
4.304 (rad) are obtained. Therefore, the regression by y 2 curve y 2 (t) is

【0054】[0054]

【数16】 となる。(tの単位は時,角度の単位はradである) A0 (メサー)は24時間にわたる血圧変動の平均を表
しており、本明細書に記載される「レベル」に相当す
る。θ1 ,θ2 は同じく「位相」、A1 ,A2 は「振
幅」に相当する。
(Equation 16) Becomes (The unit of t is hour and the unit of angle is rad.) A 0 (meser) represents the average of the blood pressure fluctuation over 24 hours, and corresponds to “level” described herein. θ 1 and θ 2 similarly correspond to “phase”, and A 1 and A 2 correspond to “amplitude”.

【0055】(10)式により、t=3,7,11,1
5,19,23に対してy2 (t)を求め、もとの測定
値と比較したものが表2である。
From equation (10), t = 3, 7, 11, 1
Table 2 shows y 2 (t) obtained for 5, 19, and 23 and a comparison with the original measured value.

【0056】[0056]

【表2】 いずれも1%未満の誤差であることがわかる。また表1
の内容を考慮すると、より多くの測定点をもつデータと
比して遜色ないことがわかる。
[Table 2] It can be seen that each of them has an error of less than 1%. Table 1
Considering the contents of the above, it can be seen that there is no inferiority to data having more measurement points.

【0057】このように求められた回帰曲線のデータは
処理S305により外部に転送される。
The data of the regression curve thus obtained is transferred to the outside in step S305.

【0058】[0058]

【発明の効果】本発明は上述のように構成されているの
で、血圧の最も低下する時間帯、たとえば、1日で午前
3時±15分を起点として4時間±15分間隔のわずか
6時点の測定値を用いることから、患者が睡眠中を除い
て血圧測定装置を身体に常に装着しておく必要がなく、
また通常睡眠中においても1時点か2時点の測定をする
のみであるため、以下に示すように拘束性、侵襲性を大
幅に低減することができる。
Since the present invention is constructed as described above, the time period when blood pressure is most reduced, for example, only 6 time points of 4 hours ± 15 minutes at 3 ± 15 minutes in a day, starting at 3 ± 15 minutes. By using the measured value, there is no need to always wear the blood pressure measurement device on the body except when the patient is sleeping,
In addition, even during normal sleep, only measurement at one or two time points is performed, so that restraint and invasiveness can be significantly reduced as described below.

【0059】(1)装置を身体に装着したままにしてお
く必要がないので日常生活の動作に影響がない。
(1) Since it is not necessary to keep the device worn on the body, there is no influence on the operation of daily life.

【0060】(2)カフを加圧する頻度が低いため特に
夜間の睡眠障害が極めて少なく、又皮下出血を起こしに
くい。
(2) Since the frequency of pressurizing the cuff is low, sleep disorders especially at night are extremely small, and subcutaneous hemorrhage hardly occurs.

【0061】(3)カフを装着したままの時間が睡眠中
に限られるため、むれ、かぶれを起こしにくい。
(3) Since the time during which the cuff is worn is limited to during sleep, it is unlikely to cause scuffing and rash.

【0062】(4)装置の消費エネルギーを小さくでき
るので、電源の電池を小さくできるため、装置を小型軽
量化でき携帯の負担を著しく軽減できる。これは特に体
力の劣る高齢者,女性及び小児の患者には恩恵が大き
い。
(4) Since the energy consumption of the apparatus can be reduced, the size of the battery of the power supply can be reduced, so that the apparatus can be reduced in size and weight, and the burden on the portable device can be significantly reduced. This is particularly beneficial for elderly, female and pediatric patients with poor physical fitness.

【0063】(5)患者負担が少ないので、連続して何
日も測定を続けたり、あるいは高血圧の各種治療薬の効
果を確認するために数回にわたって日内変動を測定する
ことが可能となる。
(5) Since the burden on the patient is small, the measurement can be continued for many consecutive days, or the daily fluctuation can be measured several times in order to confirm the effects of various therapeutic agents for hypertension.

【0064】(6)簡便に測定ができるため、事業体,
学校,地域住民等の大きな母集団に対して、高血圧のス
クリーニングが可能となり、高血圧症の早期発見に寄与
するところが大である。
(6) Since the measurement can be easily performed,
A large population such as schools and local residents can be screened for hypertension, which greatly contributes to early detection of hypertension.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の日内変動測定方法に従って
測定を実行する測定装置の機能ブロック図である。
FIG. 1 is a functional block diagram of a measurement device that performs measurement according to a daily fluctuation measurement method according to an embodiment of the present invention.

【図2】収縮期、拡張期血圧の各時間の実測値平均と周
期回帰曲線を示す図である。
FIG. 2 is a diagram showing an average of actually measured values at each time of systolic and diastolic blood pressures and a periodic regression curve.

【図3】図1の機能ブロック図における初期設定の際の
データないし信号の経路を示す図である。
FIG. 3 is a diagram showing paths of data or signals at the time of initialization in the functional block diagram of FIG. 1;

【図4】図1の機能ブロック図における覚醒時における
の圧測定時のデータの流れの経路を示す図である。
FIG. 4 is a diagram showing a data flow path at the time of pressure measurement at the time of awakening in the functional block diagram of FIG. 1;

【図5】図1の機能ブロック図における睡眠時の血圧測
定時のデータの流れの経路を示す図である。
FIG. 5 is a diagram showing a data flow path at the time of measuring blood pressure during sleep in the functional block diagram of FIG. 1;

【図6】図1の機能ブロック図における血圧データ転送
時のデータの流れの経路を示す図である。
6 is a diagram showing a data flow path at the time of transferring blood pressure data in the functional block diagram of FIG. 1;

【図7】実施例に従う装置が実行する基本的な処理を示
す図である。
FIG. 7 is a diagram showing basic processing executed by the device according to the embodiment.

【図8】図7の初期設定処理の詳細を示すフローチャー
トである。
FIG. 8 is a flowchart showing details of an initial setting process of FIG. 7;

【図9】図7の長時間測定処理の詳細を示すフローチャ
ートである。
FIG. 9 is a flowchart showing details of a long-time measurement process of FIG. 7;

【図10】図7の測定データ転送処理の詳細を示すフロ
ーチャートである。
FIG. 10 is a flowchart illustrating details of a measurement data transfer process of FIG. 7;

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) A61B 5/00 - 5/0295 JICSTファイル(JOIS)────────────────────────────────────────────────── ─── Continuation of the front page (58) Field surveyed (Int.Cl. 7 , DB name) A61B 5/00-5/0295 JICST file (JOIS)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 血圧の最も低下する時間帯を起点とし、
この時間帯からほぼ4時間ごとに血圧を測定する血圧測
定手段と、 その測定値に基づいて異なる周期の曲線から合成された
回帰曲線を作成する回帰曲線作成手段とを備えることを
特徴とする血圧日内変動近似測定装置。
1. Starting from a time zone in which blood pressure is most reduced,
Blood pressure measuring means for measuring blood pressure approximately every four hours from this time zone; and regression curve creating means for creating a regression curve synthesized from curves of different periods based on the measured values. Daily fluctuation approximation measuring device.
【請求項2】 前記血圧の最も低下する時間帯として、
午前3時付近を用いることを特徴とする請求項1に記載
の血圧日内変動近似測定装置。
2. The time zone in which the blood pressure is most decreased,
2. The blood pressure circadian variability approximate measurement apparatus according to claim 1, wherein the apparatus is used around 3:00 am.
【請求項3】 前記異なる周期が、24時間と12時間
であることを特徴とする請求項1又は2に記載の血圧日
内変動近似測定装置。
Wherein the different periods, blood pressure circadian variation approximation measuring device according to claim 1 or 2, characterized in that it is 24 hours and 12 hours.
JP19845192A 1992-07-24 1992-07-24 Blood pressure daily fluctuation approximation measuring device Expired - Lifetime JP3231846B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19845192A JP3231846B2 (en) 1992-07-24 1992-07-24 Blood pressure daily fluctuation approximation measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19845192A JP3231846B2 (en) 1992-07-24 1992-07-24 Blood pressure daily fluctuation approximation measuring device

Publications (2)

Publication Number Publication Date
JPH0638936A JPH0638936A (en) 1994-02-15
JP3231846B2 true JP3231846B2 (en) 2001-11-26

Family

ID=16391327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19845192A Expired - Lifetime JP3231846B2 (en) 1992-07-24 1992-07-24 Blood pressure daily fluctuation approximation measuring device

Country Status (1)

Country Link
JP (1) JP3231846B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023144065A1 (en) * 2022-01-25 2023-08-03 Biotronik Se & Co. Kg Automatic control of a measurement time of an implantable device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007282668A (en) * 2006-04-12 2007-11-01 Omron Healthcare Co Ltd Sphygmomanometer, blood pressure measuring system, and measured data processing program
US9724135B2 (en) * 2010-12-17 2017-08-08 DePuy Synthes Products, Inc. Methods and systems for minimally invasive posterior arch expansion

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023144065A1 (en) * 2022-01-25 2023-08-03 Biotronik Se & Co. Kg Automatic control of a measurement time of an implantable device

Also Published As

Publication number Publication date
JPH0638936A (en) 1994-02-15

Similar Documents

Publication Publication Date Title
JP7100375B2 (en) Measurement and monitoring of non-invasive blood pressure
JP4209841B2 (en) Method and apparatus for monitoring blood pressure
US5634467A (en) Method and apparatus for assessing cardiovascular performance
EP1341436B1 (en) Device for monitoring blood pressure
Graettinger et al. Validation of portable noninvasive blood pressure monitoring devices: comparisons with intra-arterial and sphygmomanometer measurements
EP1970000B1 (en) Method and apparatus for cufflessly and non-invasively measuring wrist blood pressure in association with communication device
US7460899B2 (en) Apparatus and method for monitoring heart rate variability
JP5169643B2 (en) Electronic blood pressure monitor and blood pressure measurement control method
WO2002085203A1 (en) Central blood pressure waveform estimating device and peripheral blood pressure waveform detecting device
AU2001259012A1 (en) Method and device for monitoring blood pressure
EP1863381A2 (en) System for continuous blood pressure monitoring
WO2014081348A1 (en) Method and device for assessing the risk of cardiovascular complications
WO2021213071A1 (en) Blood pressure measurement method and wearable device
KR20190048878A (en) Method and apparatus for measuring blood pressure using optical sensor
WO2010098195A1 (en) Blood pressure measuring device, blood pressure measure program product, and blood pressure measurement control method
JP2003144400A (en) Automatic oscillometric device and method for measuring blood pressure
US20120220882A1 (en) Device for the Non-Invasive Determination of Arterial Blood Pressure
JP3231846B2 (en) Blood pressure daily fluctuation approximation measuring device
Keavney et al. Measurement of blood pressure using the auscultatory and oscillometric methods in the same cuff deflation: validation and field trial of the A&D TM2421 monitor
Raftery Understanding hypertension. The contribution of direct ambulatory blood pressure monitoring
JP2007503286A (en) System and method for detecting, diagnosing and treating cardiovascular disease
JP2009153843A (en) Blood pressure measuring apparatus
JP2003000555A (en) Central blood pressure waveform estimating device and peripheral blood pressure waveform detecting device
JPH11104089A (en) Heart function diagnostic device
EP4029435B1 (en) Blood pressure monitoring device and method for adaptive blood pressure monitoring

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010820

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080914

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080914

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090914

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090914

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120914

Year of fee payment: 11

EXPY Cancellation because of completion of term