JP3231342B2 - Electromagnetic coil - Google Patents
Electromagnetic coilInfo
- Publication number
- JP3231342B2 JP3231342B2 JP00960091A JP960091A JP3231342B2 JP 3231342 B2 JP3231342 B2 JP 3231342B2 JP 00960091 A JP00960091 A JP 00960091A JP 960091 A JP960091 A JP 960091A JP 3231342 B2 JP3231342 B2 JP 3231342B2
- Authority
- JP
- Japan
- Prior art keywords
- coil
- bobbin
- cooling
- copper
- thin film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000001816 cooling Methods 0.000 claims description 20
- 239000010409 thin film Substances 0.000 claims description 14
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 30
- 229910052802 copper Inorganic materials 0.000 description 23
- 239000010949 copper Substances 0.000 description 23
- 230000000694 effects Effects 0.000 description 8
- 239000003822 epoxy resin Substances 0.000 description 6
- 229920000647 polyepoxide Polymers 0.000 description 6
- 238000009413 insulation Methods 0.000 description 3
- 229920002799 BoPET Polymers 0.000 description 2
- 239000005041 Mylar™ Substances 0.000 description 2
- 239000000498 cooling water Substances 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 241000220317 Rosa Species 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000001493 electron microscopy Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000004626 scanning electron microscopy Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Description
【0001】[0001]
【産業上の利用分野】本発明は、荷電粒子線を用いる装
置例えば電子顕微鏡等の電子レンズ励磁用電磁コイルに
用いられる。電子顕微鏡以外には、イオン加速器、電子
線を用いた描画装置等の電磁コイルにも適用可能であ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used for an apparatus using a charged particle beam, for example, an electromagnetic coil for exciting an electron lens of an electron microscope or the like. In addition to the electron microscope, the present invention can be applied to an electromagnetic coil such as an ion accelerator and a drawing device using an electron beam.
【0002】[0002]
【従来の技術】電磁コイルの冷却効率を向上する試み
は、例えばSCANNING ELECTRONMICROSCOPY/1986/
III(Page 887〜896)で、High CurrentDensity
Magnetic Electron Lenses In Electron Microscopys
と題する文献の中で報告されている。この報告では、
銅線をコイルとして使用し、水冷の銅ボビンと銅線コイ
ルを20μm Mylar foil で絶縁して冷却効率を向上
し、電流密度を上げ、小型化を計ろうとする内容であ
る。2. Description of the Related Art Attempts to improve the cooling efficiency of electromagnetic coils have been made, for example, by Scanning Electron Microscopy / 1986 /.
III (Pages 887-896), High Current Density
Magnetic Electron Lenses In Electron Microscopys
In the article entitled, In this report,
Using copper wire as a coil, water-cooled copper bobbin and copper wire coil are insulated with a 20 μm Mylar foil to improve cooling efficiency, increase current density, and reduce the size.
【0003】銅線を使用して冷却効率を向上する試みは
なされているが、銅線自身に絶縁被膜が施されているこ
とや、銅線の表面と水冷銅ボビンの絶縁層を介して密着
性の問題があると思われ、温度上昇はかなり高い値を示
している。電子顕微鏡に使用するコイルの許される温度
上昇を本文献では最大110℃としているが、電子顕微
鏡の熱ドリフト、熱平衡に達する時間等を考慮すると温
度上昇を例えば20℃以下とすることが望ましい。 [0003] Attempts to improve the cooling efficiency by using the copper wire has been made, to the copper wire itself insulating the film is applied and, through an insulating layer on the surface and the water-cooled copper bobbin Copper It seems that there is a problem of adhesion, and the temperature rise shows a considerably high value. Although the maximum 110 ° C. at a temperature increase of this literature allowed the coil for use in an electron microscope, thermal drift of the electron microscope, be the consideration of the temperature rise time and the like to reach thermal equilibrium for example 20 ° C. or less has to desired .
【0004】[0004]
【発明が解決しようとする課題】従来電子顕微鏡等に用
いられている電磁コイルにおいては、銅線を巻回したコ
イルと冷却用ボビンの間は数mmの間隔があり、その間を
エポキン樹脂等で固定一体化した構造になっていた。In an electromagnetic coil conventionally used for an electron microscope or the like, there is a gap of several mm between a coil wound with a copper wire and a cooling bobbin, and the space between the coil and the cooling bobbin is made of an epoxy resin. The structure was fixed and integrated.
【0005】この場合の問題として発生した熱の冷却
は、コイルと冷却ボビンの間のエポキシ樹脂の厚みにほ
とんどが依存するためこれをより薄くする工夫が重要と
なる。本発明では、冷却効率をより高める高電流密度の
コイルを提供することを目的とするものであり、理想的
には、電流密度900AT/cm 2 の時にコイルの温度上
昇を最大20℃以下に押さえることを目標とする。[0005] In this case, since the cooling of the generated heat mostly depends on the thickness of the epoxy resin between the coil and the cooling bobbin, it is important to make the device thinner. An object of the present invention is to provide a coil having a high current density that further enhances the cooling efficiency ,
The goal is to suppress the temperature rise of the coil to a maximum of 20 ° C. or less when the current density is 900 AT / cm 2 .
【0006】上記目的を達成するため、コイルと、当該
コイルを挟むように形成される複数の鍔部と前記コイル
が発生する熱を冷却する冷却機能を有するボビンを備え
た電磁コイルにおいて、前記鍔部と前記コイル間に絶縁
薄膜を介在させると共に、当該絶縁薄膜を介して、前記
鍔部で前記コイルを押圧するように、前記複数の鍔部間
に締め付けボルトが連絡されていることを特徴とする電
磁コイルを提供する。In order to achieve the above object , a coil and the coil
A plurality of flanges formed to sandwich the coil and the coil
Equipped with a bobbin having a cooling function to cool the heat generated
Insulated between the collar and the coil in the electromagnetic coil
With a thin film interposed, and via the insulating thin film,
Between the plurality of flanges so that the flange presses the coil.
The tightening bolt is connected to the
Provide a magnetic coil .
【0007】[0007]
【作用】コイルの温度上昇は巻回したコイルとボビン壁
面間の接触熱抵抗により決定される。上記熱抵抗を少な
くするには、絶縁部材の厚さを薄くすることが重要であ
り、本発明によれば、絶縁薄膜層をボビン表面に施すと
共に、熱源たるコイルと、ボビンとの密着度をより高め
るために、締め付けボルトをボビンの鍔と鍔の間に連絡
させているので、絶縁薄膜の採用により冷却効率が向上
したボビンの冷却効果をより良く享受することができ
る。The temperature rise of the coil is determined by the contact thermal resistance between the wound coil and the bobbin wall surface. To reduce the thermal resistance, it is important to reduce the thickness of the insulating member
Ri, according to the present invention, when subjected to an insulating thin film layer on the bobbin surface
In both cases, the degree of adhesion between the coil as the heat source and the bobbin is further increased
Bolts between bobbin flanges
The cooling efficiency is improved by using an insulating thin film.
Bobbin cooling effect.
You .
【0008】[0008]
【実施例】以下、本発明の一実施例を図により詳細に説
明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below in detail with reference to the drawings.
【0009】図1に本発明による高冷却コイルの構成を
示す断面図を示す。FIG. 1 is a sectional view showing a configuration of a high cooling coil according to the present invention.
【0010】1は銅条コイル、2は絶縁薄膜、3は2と
同材質の絶縁薄膜層、4は水冷銅ボビン、5は水冷パイ
プ、6はエポキシ樹脂を示す。1 is a copper strip coil, 2 is an insulating thin film, 3 is an insulating thin film layer of the same material as 2, 4 is a water-cooled copper bobbin, 5 is a water-cooled pipe, and 6 is an epoxy resin.
【0011】銅条1は例えば厚さ0.2mm 、巾20mmの
形状の物を使用し、所定の巻数を巻回す。銅条の表面は
絶縁薄膜処理を施し銅条層間の絶縁を保つ構造とする。
銅条の層間の絶縁を保つ方法としては上記の他、厚さ数
10μmのMylar 等の絶縁シートを重ねて巻回しても可
能である。銅コイルは単体でエポキシ樹脂6等で一体化
モールドをし固型化する。このコイルの両端面の平行度
および表面を平滑(粗さ<0.1μm)に研磨加工し、端
面に銅素材露出する状態にすることが重要である。水冷
銅ボビン4の銅条コイルの端面が接触する面は、数μm
厚みの絶縁薄膜処理を施す。銅条コイル1を水冷銅ボビ
ン4で両端面を押え締付ボルト7で固定する。銅条コイ
ル1と水冷銅ボビン4との熱抵抗を可能な限り少なくす
ることが重要で、このため本発明では銅条コイル1の端
面と水冷銅ボビン4の絶縁薄膜層3の厚みを数μm以下
とした事である。The copper strip 1 is, for example, a piece having a thickness of 0.2 mm and a width of 20 mm, and is wound in a predetermined number of turns. The surface of the copper strip has a structure in which insulation thin film processing is performed to maintain insulation between copper strip layers.
In addition to the method described above, the insulation between the copper strip layers can be maintained by stacking and winding an insulating sheet such as Mylar having a thickness of several tens of μm. The copper coil is solidified by integral molding with epoxy resin 6 or the like. It is important to grind the parallelism and the surface of both ends of this coil to smoothness (roughness <0.1 μm) so that the copper material is exposed at the end surface. The surface where the end face of the copper strip coil of the water-cooled copper bobbin 4 contacts is several μm
A thin insulating film is applied. The copper strip coil 1 is held at both ends by water-cooled copper bobbins 4 and fixed by tightening bolts 7. It is important to reduce the thermal resistance between the copper strip coil 1 and the water-cooled copper bobbin 4 as much as possible. For this reason, in the present invention, the thickness of the end face of the copper strip coil 1 and the insulating thin film layer 3 of the water-cooled copper bobbin 4 are set to several μm. It is as follows.
【0012】図2は電子顕微鏡等に使用する実際の電磁
コイルの断面図を示す。FIG. 2 is a sectional view of an actual electromagnetic coil used for an electron microscope or the like.
【0013】図1に示した高冷却コイルと基本的に同一
であるが、銅条コイル1を2段に重ねた構成としたもの
である。本コイルを用いてコイルの温度上昇測定を行っ
た。比較として従来一般に使用されている銅線を使った
電磁コイルも同一条件で測定した。図3にそれぞれのコ
イルの温度上昇を測定した結果を示す。条件は360A
T/cm2(コイル電流A×コイル巻数T/コイル窓面積cm
2)、冷却水量2l/min,冷却水温度21℃の同一条
件で測定したものである。This is basically the same as the high cooling coil shown in FIG. 1, but has a configuration in which copper strip coils 1 are stacked in two stages. Using this coil, the temperature rise of the coil was measured. As a comparison, an electromagnetic coil using a copper wire which has been generally used conventionally was also measured under the same conditions. FIG. 3 shows the results of measuring the temperature rise of each coil. Condition is 360A
T / cm 2 (coil current A × number of coil turns T / coil window area cm
2 ) Measured under the same conditions of 2 l / min of cooling water and 21 ° C. of cooling water temperature.
【0014】銅線を使用した従来コイルでは通電後約5
0分で温度上昇は平衡を保ち、45℃の上昇となった。
本発明による電磁コイルでは通電後約15分で温度上昇
は8℃となりその後は平衡を保つ結果が得られた。この
実験結果から本発明の電磁コイルの冷却効果は良好であ
ると共に、温度上昇が平衡に達するまでの時間が短く、
従来コイルの約1/5に短縮されている事が判った。電
子顕微鏡等に使用した場合、装置通電後の安定に動作す
るまでの時間短縮、温度上昇が8℃と非常に低くなるた
め電子顕微鏡での像観察をする場合の試料の熱ドリフト
を低く押える事が可能になる、最近の1Å近い高分解能
観察をする場合、非常に効果的であり、本発明による電
磁コイルの効果は顕著である。又電磁コイルの単位面積
当りの電流が増加したことにより電磁コイルの小型化に
対しても効果が大きい。このように、コイルと冷却銅ボ
ビン間の熱抵抗を少なくすることにより、冷却効果が良
好となり従来の装置と比較して温度上昇は約1/6とな
り、通電後の熱平衡に達する時間は同様に1/5に短縮
された。温度上昇が低く、熱平衡に達するまでの時間が
早いことにより例えば電子顕微鏡に用いたとき、試料の
熱ドリフトが少なく、しかも装置が短時間に安定するこ
とにより、稼働率の向上はもとより、高性能になるなど
多大の効果がある。又、従来コイルと同程度の温度上昇
で使用した場合にはコイルの電流密度を2000AT/
cm 2 近くまで上げることが可能で、装置の小型化に対し
ても大きな効果がある。 In a conventional coil using a copper wire, about 5
At 0 minutes, the temperature rise remained equilibrium and rose 45 ° C.
In the case of the electromagnetic coil according to the present invention, the temperature rose to 8 ° C. in about 15 minutes after energization, and thereafter, a result of maintaining equilibrium was obtained. From this experimental result, the cooling effect of the electromagnetic coil of the present invention is good, and the time until the temperature rise reaches equilibrium is short,
It turned out that it was shortened to about 1/5 of the conventional coil. When used in an electron microscope, etc., the time required for the device to operate stably after the device is energized is reduced, and the temperature rise is extremely low at 8 ° C. This is very effective for the recent high-resolution observation close to 1 °, and the effect of the electromagnetic coil according to the present invention is remarkable. In addition, since the current per unit area of the electromagnetic coil is increased, the effect of reducing the size of the electromagnetic coil is great. Thus, the coil and the cooling copper
Good cooling effect by reducing thermal resistance between bottles
The temperature rise is about 1/6 compared to the conventional equipment.
Time to reach thermal equilibrium after energization is also reduced to 1/5
Was done. Low temperature rise, time to reach thermal equilibrium
The fact that the sample
Low thermal drift and stable equipment in a short time
As a result, not only is the operation rate improved, but also the performance is improved
It has a great effect. Also, the temperature rise is about the same as the conventional coil
When the coil is used at a current density of 2000AT /
cm 2 can be increased to near 2
It has a great effect.
【0015】[0015]
【発明の効果】本発明によれば、従来用いられてきたエ
ポキシ樹脂のような固着・絶縁部材に替えて、絶縁薄膜
と、当該絶縁薄膜を介して冷却ボビンにコイルを押圧す
るための締め付けボルトを設けたため、冷却効果をより
向上することが可能になる。 According to the present invention , the conventionally used energy
Instead of fixing / insulating members such as epoxy resin, insulating thin films
And press the coil to the cooling bobbin via the insulating thin film.
Tightening bolts for better cooling effect
Can be improved .
【図1】本発明の高冷却コイルの構成断面図を示す。FIG. 1 is a sectional view showing the configuration of a high cooling coil according to the present invention.
【図2】実際の電磁コイルの断面図を示す。FIG. 2 shows a sectional view of an actual electromagnetic coil.
【図3】コイルの温度上昇測定結果を示す。FIG. 3 shows a measurement result of a temperature rise of a coil.
1…銅条コイル、2…絶縁薄膜、3…絶縁薄膜層、4…
水冷銅ボビン、5…水冷パイプ、6…エポキシ樹脂、7
…締付ボルト。DESCRIPTION OF SYMBOLS 1 ... Copper strip coil 2 ... Insulating thin film 3 ... Insulating thin film layer 4 ...
Water-cooled copper bobbin, 5: water-cooled pipe, 6: epoxy resin, 7
... Tightening bolt.
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭57−19947(JP,A) 実開 昭57−186151(JP,U) (58)調査した分野(Int.Cl.7,DB名) H01J 37/141 H01F 5/00 - 5/06 H01F 41/12 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-57-19947 (JP, A) JP-A-57-186151 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) H01J 37/141 H01F 5/00-5/06 H01F 41/12
Claims (1)
れる複数の鍔部と前記コイルが発生する熱を冷却する冷
却機能を有するボビンを備えた電磁コイルにおいて、前
記鍔部と前記コイル間に絶縁薄膜を介在させると共に、
当該絶縁薄膜を介して、前記鍔部で前記コイルを押圧す
るように、前記複数の鍔部間に締め付けボルトが連絡さ
れていることを特徴とする電磁コイル。A coil is formed so as to sandwich the coil.
Cooling that cools the heat generated by the plurality of flanges and the coil
An electromagnetic coil having a bobbin having a retirement function, before
While interposing an insulating thin film between the collar and the coil,
Pressing the coil with the flange portion via the insulating thin film
So that a tightening bolt is connected between the plurality of flanges.
An electromagnetic coil, characterized in that it is made .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP00960091A JP3231342B2 (en) | 1991-01-30 | 1991-01-30 | Electromagnetic coil |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP00960091A JP3231342B2 (en) | 1991-01-30 | 1991-01-30 | Electromagnetic coil |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04255656A JPH04255656A (en) | 1992-09-10 |
JP3231342B2 true JP3231342B2 (en) | 2001-11-19 |
Family
ID=11724810
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP00960091A Expired - Lifetime JP3231342B2 (en) | 1991-01-30 | 1991-01-30 | Electromagnetic coil |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3231342B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009123542A (en) * | 2007-11-15 | 2009-06-04 | Institute Of Physical & Chemical Research | Electromagnetic coil |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19938657A1 (en) * | 1999-08-14 | 2001-02-15 | Fev Motorentech Gmbh | Electromagnetic actuator with heat conducting agents |
US7345287B2 (en) * | 2005-09-30 | 2008-03-18 | Applied Materials, Inc. | Cooling module for charged particle beam column elements |
US9177708B2 (en) * | 2013-06-14 | 2015-11-03 | Varian Semiconductor Equipment Associates, Inc. | Annular cooling fluid passage for magnets |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3630529A (en) * | 1969-05-05 | 1971-12-28 | Borg Warner | Sodium vapor trap |
JPS53104803U (en) * | 1977-01-31 | 1978-08-23 | ||
JPH02110764U (en) * | 1989-02-23 | 1990-09-05 |
-
1991
- 1991-01-30 JP JP00960091A patent/JP3231342B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009123542A (en) * | 2007-11-15 | 2009-06-04 | Institute Of Physical & Chemical Research | Electromagnetic coil |
Also Published As
Publication number | Publication date |
---|---|
JPH04255656A (en) | 1992-09-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2980097B2 (en) | Superconducting coil | |
JPH07163546A (en) | Magnetic resonance image forming device (mri) magnet | |
JP3231342B2 (en) | Electromagnetic coil | |
Mizuno et al. | Fabrication of 5 T magnet using 2G wires directed at maglev application | |
JP4559176B2 (en) | Method and apparatus for magnetizing a permanent magnet | |
JP2861692B2 (en) | Superconducting magnet device | |
JPS6213010A (en) | Superconductive electromagnet | |
Yong et al. | Analysis of factors influencing peak torques and peak losses of rotary voice coil actuators used in aerospace | |
WO2018150819A1 (en) | Superconducting magnet device and magnetic resonance imaging apparatus in which same is used | |
JPH0137841B2 (en) | ||
US20120248898A1 (en) | Moving Magnet Actuator Magnet Carrier | |
JP2839792B2 (en) | Thermal permanent current switch | |
JP2561064Y2 (en) | Superconducting wiggler | |
JPS61271804A (en) | Superconductive electromagnet | |
JPS586106A (en) | Spool for superconductive magnet | |
JP7464852B2 (en) | Wound device and method for manufacturing the same | |
JPS6215803A (en) | Superconductive coil | |
JPH06325932A (en) | Superconducting coil | |
JP3097993B2 (en) | Magnet structure for superconducting wiggler | |
Ahern | Simple Laboratory Electromagnets using Aluminum Foil Magnetizing Coils | |
JPH05275755A (en) | Cryostat | |
US2099997A (en) | Coil body for field coils of electrodynamic loudspeakers | |
JPH02236935A (en) | Electro-magnetic coil | |
JP3954489B2 (en) | Electric wire and electric wire manufacturing method | |
JP3125167B2 (en) | Superconducting wiggler device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070914 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080914 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080914 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090914 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090914 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100914 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100914 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110914 Year of fee payment: 10 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110914 Year of fee payment: 10 |