JP3229419B2 - Method for forming silicon oxide film - Google Patents

Method for forming silicon oxide film

Info

Publication number
JP3229419B2
JP3229419B2 JP04582493A JP4582493A JP3229419B2 JP 3229419 B2 JP3229419 B2 JP 3229419B2 JP 04582493 A JP04582493 A JP 04582493A JP 4582493 A JP4582493 A JP 4582493A JP 3229419 B2 JP3229419 B2 JP 3229419B2
Authority
JP
Japan
Prior art keywords
silicon oxide
oxide film
film
group
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04582493A
Other languages
Japanese (ja)
Other versions
JPH06240455A (en
Inventor
基 佐々木
隆司 中村
勝利 峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dow Silicones Corp
Original Assignee
Dow Corning Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Corning Corp filed Critical Dow Corning Corp
Priority to JP04582493A priority Critical patent/JP3229419B2/en
Priority to US08/187,239 priority patent/US5380555A/en
Priority to DE69423991T priority patent/DE69423991T2/en
Priority to EP94101924A priority patent/EP0610899B1/en
Priority to KR1019940002644A priority patent/KR100295485B1/en
Publication of JPH06240455A publication Critical patent/JPH06240455A/en
Application granted granted Critical
Publication of JP3229419B2 publication Critical patent/JP3229419B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1212Zeolites, glasses
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1279Process of deposition of the inorganic material performed under reactive atmosphere, e.g. oxidising or reducing atmospheres

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、基材表面に酸化ケイ素
膜を形成する方法に関し、詳しくは基材表面にクラック
およびピンホールを有しない緻密なセラミック状酸化ケ
イ素膜を形成する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a silicon oxide film on a substrate surface, and more particularly to a method for forming a dense ceramic oxide film having no cracks and pinholes on the substrate surface.

【0002】[0002]

【従来の技術】一般に、基材表面を保護するため、基材
表面に保護膜が形成される。特に、電気・電子産業にお
いては、近年の半導体デバイスの高集積化・多層化に伴
い、半導体デバイスの複雑化および半導体デバイス表面
の凹凸が著しくなってきており、半導体デバイスを、機
械的損傷、化学的損傷、静電的損傷、イオン性汚染、非
イオン性汚染および放射線汚染等から保護する目的で、
および半導体デバイス表面の凹凸を平坦化する目的で、
半導体デバイス表面にパッシベーション膜および、回路
の多層化に伴い配線間の絶縁および平坦化を目的とした
層間絶縁膜が形成される。
2. Description of the Related Art Generally, a protective film is formed on a surface of a substrate to protect the surface of the substrate. In particular, in the electric and electronic industries, with the recent increase in the degree of integration and multilayering of semiconductor devices, the complexity of semiconductor devices and the unevenness of the surface of semiconductor devices have become remarkable. To protect against electrical damage, electrostatic damage, ionic contamination, nonionic contamination and radiation contamination,
And for the purpose of flattening irregularities on the semiconductor device surface,
A passivation film and an interlayer insulating film for the purpose of insulating and flattening between wirings are formed on the surface of the semiconductor device as the circuit is multi-layered.

【0003】半導体デバイス表面に形成されるパッシベ
ーション膜および層間絶縁膜としては酸化ケイ素膜が一
般に用いられる。半導体デバイス表面に酸化ケイ素膜を
形成する方法としては、例えば、CVD(化学気相蒸
着)法およびスピンコート法があり、スピンコート法に
より半導体デバイス表面に酸化ケイ素膜を形成する方法
としては、例えば、無機SOG(スピンオングラス)を
用いる方法、有機SOGを用いる方法および水素シルセ
スキオキサン樹脂を用いる方法(特開平3−18367
5号公報参照)がある。
As a passivation film and an interlayer insulating film formed on the surface of a semiconductor device, a silicon oxide film is generally used. Examples of a method for forming a silicon oxide film on a semiconductor device surface include a CVD (chemical vapor deposition) method and a spin coating method. Examples of a method for forming a silicon oxide film on a semiconductor device surface by a spin coating method include: , A method using inorganic SOG (spin-on-glass), a method using organic SOG, and a method using hydrogen silsesquioxane resin (JP-A-3-18367)
No. 5).

【0004】しかし、無機SOGにより形成された酸化
ケイ素膜は、その膜厚が0.3μmをこえるとクラック
が生じるため、1μm以上の凹凸を有するデバイス基板
の段差を埋めるためには重ね塗りが必要であり、また被
膜自体の平坦化能力が乏しいため、被膜形成後エッチバ
ックによる平坦化工程が必要であった。また、有機SO
Gにより形成された酸化ケイ素膜は、1回の塗布でクラ
ックを有しない1μm以上の膜を形成することは可能で
はあるが、無機SOGと同様、被膜自体の平坦化能力が
乏しいため、被膜形成後エッチバックによる平坦化工程
が必要であり、特に、被膜中にシラノール基およびアル
コキシ基等の官能基を有しているため膜質緻密でなく、
特にアルコキシ基等の有機官能基を有しているため、こ
れを酸素プラズマ処理した場合には、有機官能基の揮発
によるカーボンポイズン(炭素汚染)を生じるという問
題があった。また特開平3−183675号に提案され
た方法では、0.8μm(8000オングストローム)
以上の膜厚を有する酸化ケイ素膜を形成することができ
ず、無機SOGと同様1μm以上の凹凸を有するデバイ
ス基板の段差を埋めるためには重ね塗りが必要であっ
た。
However, if the silicon oxide film formed by inorganic SOG has a thickness of more than 0.3 μm, cracks occur. Therefore, it is necessary to repeatedly coat a device substrate having irregularities of 1 μm or more in order to fill the steps. In addition, since the film itself has poor flattening ability, a flattening step by etch back after forming the film was necessary. In addition, organic SO
The silicon oxide film formed by G can form a film having a thickness of 1 μm or more without cracks in a single coating, but like the inorganic SOG, the film itself has poor flattening ability. A flattening step by post-etchback is required, especially because the coating has functional groups such as silanol groups and alkoxy groups, the film quality is not dense,
In particular, since it has an organic functional group such as an alkoxy group, when it is subjected to oxygen plasma treatment, there is a problem that carbon poisoning (carbon contamination) occurs due to volatilization of the organic functional group. In the method proposed in JP-A-3-183675, 0.8 μm (8000 Å) is used.
A silicon oxide film having the above thickness could not be formed, and overcoating was necessary to fill the steps of a device substrate having irregularities of 1 μm or more, like inorganic SOG.

【0005】さらに、従来の方法によりデバイス基板上
に形成されてなる酸化ケイ素膜をコンタクトホール形成
工程におけるハロアルカンガスによるプラズマエッチン
グ処理した場合には、該酸化ケイ素膜のエッチング速度
とプラズマCVD膜のそれとが大きく異なるため、良好
な形状のコンタクトホールを形成することができないと
いう問題があった。本発明者らは、上記問題について検
討したところ、ハロアルカンガスによるプラズマエッチ
ング処理において、酸化ケイ素膜のエッチング速度とプ
ラズマCVD膜のそれとの差は、これら酸化ケイ素膜の
緻密さにより生じることを見いだした。
Further, when a silicon oxide film formed on a device substrate by a conventional method is subjected to plasma etching with a haloalkane gas in a contact hole forming step, the etching rate of the silicon oxide film and that of a plasma CVD film are reduced. Therefore, there is a problem that a contact hole having a good shape cannot be formed. The present inventors have studied the above problem and found that in the plasma etching treatment using a haloalkane gas, the difference between the etching rate of the silicon oxide film and that of the plasma CVD film is caused by the denseness of these silicon oxide films. .

【0006】[0006]

【発明が解決しようとする課題】本発明者らは、上記問
題を解決するため鋭意検討した結果、特定のケイ素樹脂
を主剤としてなる被膜を、酸素ガスを20体積%以上含
有するガス雰囲気下で加熱することにより、クラックお
よびピンホールを有せず、ハロアルカンガスによるプラ
ズマエッチング処理の際に、プラズマCVDなく膜と同
程度のエッチング速度を有する緻密なセラミック状酸化
ケイ素膜を形成する方法を見いだし、本発明に到達し
た。
The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, have found that a film containing a specific silicon resin as a main component can be formed under a gas atmosphere containing 20% by volume or more of oxygen gas. By heating, a method for forming a dense ceramic silicon oxide film having no cracks and pinholes and having a similar etching rate to a film without plasma CVD during a plasma etching process using a haloalkane gas was found, The present invention has been reached.

【0007】すなわち、本発明の目的は、基材表面にク
ラックおよびピンホールを有しない、緻密なセラミック
状酸化ケイ素膜を形成する方法を提供することにある。
That is, an object of the present invention is to provide a method for forming a dense ceramic silicon oxide film having no cracks and pinholes on the surface of a substrate.

【0008】[0008]

【課題を解決するための手段およびその作用】本発明
は、基材表面に、一般式: (HR2SiO1/2X(SiO4/21.0 (式中、Rは水素原子、アルキル基およびアリール基か
らなる群から選択される基であり、Xは0.1≦X≦
2.0である。)で示されるケイ素樹脂を主剤としてな
る被膜を形成し、次いで該被膜の形成された該基材を、
酸素ガスを20体積%以上含有するガス雰囲気下で加熱
して、該被膜をセラミック状酸化ケイ素膜にすることを
特徴とする酸化ケイ素膜の形成方法に関する。
Means for Solving the Problems and Action Thereof The present invention relates to a method for producing a compound of the formula: (HR 2 SiO 1/2 ) X (SiO 4/2 ) 1.0 (where R is a hydrogen atom, alkyl X is a group selected from the group consisting of a group and an aryl group, wherein X is 0.1 ≦ X ≦
2.0. A) forming a film mainly comprising the silicon resin represented by
The present invention relates to a method for forming a silicon oxide film, which comprises heating the film in a gas atmosphere containing 20% by volume or more of oxygen gas to convert the film into a ceramic silicon oxide film.

【0009】以下、本発明の酸化ケイ素膜の形成方法に
ついて詳細に説明する。
Hereinafter, the method for forming a silicon oxide film of the present invention will be described in detail.

【0010】本発明において、基材表面の被膜は、一般
式: (HR2SiO1/2X(SiO4/21.0 で示されるケイ素樹脂を主剤としてなる。上式中、Rは
水素原子、アルキル基およびアリール基からなる群から
選択される基であり、Rのアルキル基として具体的に
は、メチル基,エチル基,プロピル基,ブチル基が例示
され、Rのアリール基としてはフェニル基,トリル基,
キシリル基が例示され、好ましくはRはメチル基または
フェニル基である。また、上式中、Xは0.1≦X≦
2.0であり、好ましくは0.2≦X≦1.0である。
これは、Xが0.1未満であると、これを合成する際に
ケイ素樹脂がゲル化しやすく、また合成時にゲル化しな
くても、溶液状態で保存中に樹脂自体が高分子量化する
傾向がみられるからであり、またXが2.0をこえる
と、酸化ケイ素膜の十分な被膜硬度が得られなかった
り、ケイ素樹脂中の有機基含有量が相対的に大きくなる
ため、被膜形成後の酸素プラズマ処理工程において、十
分なエッチング耐性が得られないからである。
In the present invention, the coating on the surface of the substrate is mainly composed of a silicon resin represented by the general formula: (HR 2 SiO 1/2 ) x (SiO 4/2 ) 1.0 . In the above formula, R is a group selected from the group consisting of a hydrogen atom, an alkyl group and an aryl group, and specific examples of the alkyl group of R include a methyl group, an ethyl group, a propyl group and a butyl group; As the aryl group for R, a phenyl group, a tolyl group,
An xylyl group is exemplified, and preferably, R is a methyl group or a phenyl group. In the above formula, X is 0.1 ≦ X ≦
2.0, preferably 0.2 ≦ X ≦ 1.0.
This is because if X is less than 0.1, the silicon resin tends to gel when synthesizing it, and even if it does not gel during synthesis, the resin itself tends to have a high molecular weight during storage in a solution state. When X exceeds 2.0, sufficient film hardness of the silicon oxide film cannot be obtained or the organic group content in the silicon resin becomes relatively large, so that after the film formation, This is because sufficient etching resistance cannot be obtained in the oxygen plasma treatment step.

【0011】このようなケイ素樹脂の分子量は、特に限
定されないが、該樹脂が加熱時に溶融流動することによ
って、半導体デバイス基板の段差を平坦化するという特
性を示すためには、好ましくは重量平均分子量100,
000以下であり、その粘度および軟化点等の物理特性
は特に限定されないが、好ましくは軟化点が400℃以
下である。
Although the molecular weight of such a silicon resin is not particularly limited, it is preferable that the resin has a weight-average molecular weight in order to exhibit the property of flattening a step of a semiconductor device substrate by melting and flowing at the time of heating. 100,
000 or less, and its physical properties such as viscosity and softening point are not particularly limited, but the softening point is preferably 400 ° C. or less.

【0012】また、このようなケイ素樹脂の製造方法は
特に限定されず、その製造方法として、例えば、純水を
アルコールに溶解させ、その溶液にテトラアルコキシシ
ランとジメチルモノクロロシランの混合液を滴下して該
ケイ素樹脂を合成する方法および1,1,3,3−テト
ラメチルジシロキサンをアルコールと塩酸の共溶媒に溶
解させ、これにテトラアルコキシシランを滴下して該ケ
イ素樹脂を形成する方法が挙げられる。
The method for producing such a silicon resin is not particularly limited. For example, pure water is dissolved in alcohol, and a mixed solution of tetraalkoxysilane and dimethylmonochlorosilane is added dropwise to the solution. And a method in which 1,1,3,3-tetramethyldisiloxane is dissolved in a cosolvent of alcohol and hydrochloric acid, and tetraalkoxysilane is added dropwise to form the silicon resin. Can be

【0013】本発明において、基材表面の被膜は、上記
ケイ素樹脂を主剤としてなるが、その他の成分としては
特に限定されないが、その他の成分として具体的には、
塩化白金酸,白金とアルケンとの錯体,白金とビニルシ
ロキサンとの錯体,塩化白金酸のアルコール溶液等の白
金化合物;塩酸,酢酸等の酸性触媒;メタノール,エタ
ノール等のアルコール;さらには末端シラノールを有す
る低分子シロキサンが例示される。
In the present invention, the coating on the surface of the base material comprises the above-mentioned silicon resin as a main component, and other components are not particularly limited.
Platinum compounds such as chloroplatinic acid, complexes of platinum and alkenes, complexes of platinum and vinylsiloxane, alcohol solutions of chloroplatinic acid; acidic catalysts such as hydrochloric acid and acetic acid; alcohols such as methanol and ethanol; The low molecular siloxane which has is illustrated.

【0014】本発明において、基材表面に上記ケイ素樹
脂を主剤としてなる被膜を形成する方法は特に限定され
ず、この方法として具体的には、液状の該ケイ素樹脂ま
たは該ケイ素樹脂を有機溶剤に溶解してなる溶液をスピ
ンコートし、または噴霧し、あるいは該ケイ素樹脂また
は該溶液に基材をディッピングし、次いで必要により溶
剤を除去して、基材表面にケイ素樹脂を主剤としてなる
被膜を形成する方法または室温で固体状の該ケイ素樹脂
を基材上で加熱軟化させて、基材表面にケイ素樹脂を主
剤としてなる被膜を形成する方法が例示される。前者の
方法において、該ケイ素樹脂を溶解するために使用する
有機溶剤は、該ケイ素樹脂を均一に溶解し得るものであ
れば特に限定されないが、このような有機溶剤として具
体的には、メタノール,エタノール等のアルコール系溶
剤;メチルセロソルブ,エチルセロソルブ等のセロソル
ブ系溶剤;メチルエチルケトン,メチルイソブチルケト
ン等のケトン系用溶剤;酢酸ブチル,酢酸イソアミル,
メチルセロソルブアセテート,エチルセロソルブアセテ
ート等のエステル系溶剤;1,1,1,3,3,3−ヘ
キサメチルジシロキサン,1,1,3,3−テトラメチ
ルジシロキサン等の鎖状シロキサン,1,1,3,3,
5,5,7,7−オクタメチルテトラシクロシロキサ
ン,1,3,5,7−テトラメチルテトラシクロシロキ
サン等の環状シロキサン,テトラメチルシラン,ジメチ
ルジエチルシラン等のシラン化合物等のシリコーン系溶
剤が例示され、さらに上記有機溶剤の2種以上を組み合
わせて使用することができる。
In the present invention, there is no particular limitation on the method of forming a film containing the above-mentioned silicon resin as the main component on the surface of the base material. Specifically, this method includes, for example, adding the liquid silicon resin or the silicon resin to an organic solvent. Spin-coat or spray the solution resulting from the dissolution, or dipping the substrate into the silicon resin or the solution, and then remove the solvent as necessary to form a film containing the silicon resin as the main component on the substrate surface Or a method in which the silicon resin in a solid state at room temperature is heated and softened on a substrate to form a film mainly composed of the silicon resin on the surface of the substrate. In the former method, the organic solvent used for dissolving the silicon resin is not particularly limited as long as it can uniformly dissolve the silicon resin, and specific examples of such an organic solvent include methanol, Alcohol solvents such as ethanol; cellosolve solvents such as methyl cellosolve and ethyl cellosolve; ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone; butyl acetate, isoamyl acetate;
Ester solvents such as methyl cellosolve acetate and ethyl cellosolve acetate; chain siloxanes such as 1,1,1,3,3,3-hexamethyldisiloxane and 1,1,3,3-tetramethyldisiloxane; 1,3,3,3
Examples include silicone solvents such as cyclic siloxanes such as 5,5,7,7-octamethyltetracyclosiloxane and 1,3,5,7-tetramethyltetracyclosiloxane, and silane compounds such as tetramethylsilane and dimethyldiethylsilane. Further, two or more of the above organic solvents can be used in combination.

【0015】また、本発明において、上記ケイ素樹脂を
主剤としてなる被膜を形成するための基材は特に限定さ
れず、このような基材として具体的には、ガラス基材,
セラミック基材,金属基材,半導体デバイスが例示さ
れ、特に好ましくは半導体デバイスである。このような
半導体デバイスは表面に凹凸を有していてもよく、本発
明の酸化ケイ素膜の形成方法によると、このような半導
体デバイスの表面の凹凸を平坦化することができる。
In the present invention, the substrate for forming a film containing the above-mentioned silicon resin as a main component is not particularly limited, and specific examples of such a substrate include a glass substrate,
Examples include a ceramic substrate, a metal substrate, and a semiconductor device, and a semiconductor device is particularly preferable. Such a semiconductor device may have irregularities on the surface. According to the method for forming a silicon oxide film of the present invention, such irregularities on the surface of the semiconductor device can be flattened.

【0016】次いで、上記ケイ素樹脂を主剤としてなる
被膜の形成された基材を、酸素ガスを20体積%以上含
有するガス雰囲気下で加熱することにより、緻密なセラ
ミック状酸化ケイ素膜を形成することができる。これ
は、上記ケイ素樹脂を主剤としてなる被膜の形成された
基材を、加熱雰囲気ガス中の酸素ガスの濃度が20体積
%以上のガス雰囲気下または実質的に酸素ガス雰囲気下
で加熱することにより、緻密なセラミック状酸化ケイ素
膜を得ることができ、得られたセラミック状酸化ケイ素
膜がテトラフロロメタン90体積%と酸素ガス10体積
%との混合ガスを用いたプラズマエッチングに対して、
プラズマCVD膜とほぼ同等のエッチング速度を有する
ことを見いだし、本発明をなし得たのである。本発明に
おいて、加熱雰囲気ガス中の酸素ガス以外のガスとして
特に限定されないが、セラミック状酸化ケイ素膜を形成
する過程で該酸化ケイ素膜もしくは上記ケイ素樹脂膜に
対して不活性なガスであることが好ましく、このような
ガスとして具体的には、窒素ガス,アルゴンガス,ヘリ
ウムガスが例示される。また、本発明において、該ケイ
素樹脂を主剤としてなる被膜の形成された基材を加熱す
る温度および加熱時間は特に限定されないが、好ましく
はケイ素樹脂を主剤としてなる被膜が溶剤に不溶化する
条件、例えば、100℃以上の温度で、30分以上加熱
することが望ましく、さらに好ましくは形成された酸化
ケイ素被膜中にSiH基、シラノール基およびアルコキ
シ基が殆ど残存しない条件、例えば、300℃以上の温
度で、30分以上加熱することが望ましい。
Then, the substrate on which the coating containing the above-mentioned silicon resin as a main component is formed is heated in a gas atmosphere containing 20% by volume or more of oxygen gas to form a dense ceramic silicon oxide film. Can be. This is achieved by heating the substrate on which the coating containing the silicon resin as a main component is formed under a gas atmosphere in which the concentration of oxygen gas in the heating atmosphere gas is 20% by volume or more or substantially under an oxygen gas atmosphere. A dense ceramic silicon oxide film can be obtained, and the obtained ceramic silicon oxide film is subjected to plasma etching using a mixed gas of 90% by volume of tetrafluoromethane and 10% by volume of oxygen gas.
The inventors have found that the etching rate is almost the same as that of the plasma CVD film, and have achieved the present invention. In the present invention, the gas other than the oxygen gas in the heating atmosphere gas is not particularly limited, but may be an inert gas with respect to the silicon oxide film or the silicon resin film in the process of forming the ceramic silicon oxide film. Preferably, specific examples of such a gas include a nitrogen gas, an argon gas, and a helium gas. In the present invention, the temperature and the heating time for heating the substrate on which the coating containing the silicon resin as the main component is formed are not particularly limited, but preferably, the conditions under which the coating containing the silicon resin as the main component is insolubilized in a solvent, for example, It is desirable to heat at a temperature of 100 ° C. or higher for 30 minutes or more, more preferably at a temperature of 300 ° C. or higher, in which SiH groups, silanol groups and alkoxy groups hardly remain in the formed silicon oxide film. It is desirable to heat for 30 minutes or more.

【0017】本発明の酸化ケイ素膜の形成方法におい
て、セラミック状酸化ケイ素膜を形成することができた
かどうか確認する方法としては、赤外線分光分析器によ
り、基材表面に形成されたケイ素樹脂を主剤としてなる
被膜中のSiH基(910cm-1および2150cm-1
にSiH基に由来するシャープな強い吸収ピーク)、ア
ルコキシ基(2870cm-1にアルコキシ基に由来する
シャープな弱い吸収ピーク)およびシラノール基(35
00cm-1付近にシラノール基に由来するブロードな中
程度の吸収ピーク)のそれぞれの含有量を測定し、次い
で、加熱後の酸化ケイ素膜のそれらを測定して比較する
ことにより確認することができる。また、加熱後の酸化
ケイ素膜を各種有機溶剤に浸漬し、該酸化ケイ素膜が有
機溶剤に対して不溶であるかどかにより確認することが
できる。
In the method of forming a silicon oxide film of the present invention, as a method for confirming whether or not a ceramic silicon oxide film can be formed, a silicon resin formed on a substrate surface by an infrared spectrometer is used as a base material. SiH groups (910 cm -1 and 2150 cm -1)
A sharp strong absorption peak derived from an SiH group, an alkoxy group (a sharp weak absorption peak derived from an alkoxy group at 2870 cm -1 ) and a silanol group (35
It can be confirmed by measuring the content of each of the broad medium absorption peaks derived from silanol groups around 00 cm -1 and then measuring and comparing those of the silicon oxide film after heating. . In addition, the silicon oxide film after heating can be immersed in various organic solvents, and it can be confirmed whether the silicon oxide film is insoluble in the organic solvent.

【0018】本発明の酸化ケイ素膜の形成方法による
と、1μm以上の膜厚を有するセラミック状酸化ケイ素
膜を、クラックおよびピンホールを生じることなく形成
することができ、またケイ素樹脂中の有機成分含有量を
調節することにより、生成するセラミック状酸化ケイ素
膜の内部ストレスを緩和することができる。さらに、本
発明の酸化ケイ素膜の形成方法によると、アルミニウム
の融点よりもはるかに低い温度でセラミック状酸化ケイ
素膜を形成することができるため、半導体デバイスの回
路配線に使用されているアルミニウムを溶融劣化するこ
とがないので、本発明の酸化ケイ素膜の形成方法は、半
導体デバイス表面のパッシベーション膜および層間絶縁
膜の形成方法として有用であり、得られたセラミック状
酸化ケイ素膜を有する基材表面に、さらに酸化ケイ素膜
や有機樹脂膜を形成することができるので、多層半導体
デバイスの層間絶縁膜の形成方法として有用である。
According to the method for forming a silicon oxide film of the present invention, a ceramic silicon oxide film having a thickness of 1 μm or more can be formed without generating cracks and pinholes. By adjusting the content, the internal stress of the resulting ceramic silicon oxide film can be reduced. Furthermore, according to the method for forming a silicon oxide film of the present invention, a ceramic silicon oxide film can be formed at a temperature much lower than the melting point of aluminum, so that aluminum used for circuit wiring of a semiconductor device is melted. Since the silicon oxide film is not deteriorated, the method for forming a silicon oxide film of the present invention is useful as a method for forming a passivation film and an interlayer insulating film on the surface of a semiconductor device. Since a silicon oxide film and an organic resin film can be further formed, it is useful as a method for forming an interlayer insulating film of a multilayer semiconductor device.

【0019】[0019]

【実施例】本発明を参考例、実施例および比較例により
詳細に説明する。本発明に用いたケイ素樹脂は以下の参
考例によって合成されたが、該ケイ素樹脂の合成方法は
以下の参考例によって限定されるものではない。なお、
プラズマエッチングの条件は次の通りである。
EXAMPLES The present invention will be described in detail with reference examples, examples and comparative examples. The silicon resin used in the present invention was synthesized according to the following Reference Examples, but the method for synthesizing the silicon resin is not limited to the following Reference Examples. In addition,
The conditions of the plasma etching are as follows.

【0020】プラズマエッチング条件:表面に酸化ケイ
素膜を形成してなる基材を、平行電極型リアクティヴイ
オンエッチング装置に挿入し、テトラフロロメタン45
sccmと酸素5sccmの混合ガスを用い、反応圧力
3.2pa、高周波電源の周波数13.56MHz、単
位面積あたりの電力0.24W/cm2、エッチング時
間3分間でプラズマエッチングした。この条件でプラズ
マCVD膜をプラズマエッチングしたところ、エッチン
グ速度は500オングストローム/min.であった。
Plasma etching conditions: A substrate having a silicon oxide film formed on its surface is inserted into a parallel electrode type reactive ion etching apparatus, and tetrafluoromethane 45 is added.
Plasma etching was performed using a mixed gas of sccm and oxygen 5 sccm at a reaction pressure of 3.2 pa, a frequency of a high-frequency power supply of 13.56 MHz, a power per unit area of 0.24 W / cm 2 , and an etching time of 3 minutes. When the plasma CVD film was subjected to plasma etching under these conditions, the etching rate was 500 Å / min. Met.

【0021】[0021]

【参考例1】直管付滴下管、蛇管コンデンサおよび温度
計を設けた200ミリリットル−四つ口フラスコに,メ
タノール40gおよび水19.0gを秤量し、氷冷して
液温を2℃以下に下げ、系内にごく少量の流速で窒素を
通じた。この状態で溶液を攪拌しながら、直管付滴下管
より、ジメチルクロロシラン13.2g(0.14モ
ル)と正珪酸メチル60.8g(0.4モル)の混合物
を40分かけて滴下した。途中、発熱により液温は13
℃まで上昇したが、滴下終了時には8℃まで低下した。
さらに氷冷の状態で15分攪拌を続けた後、室温で4時
間攪拌した。反応液は無色透明であった。次いで、反応
液にメチルイソブチルケトン(以下、MIBKと略記す
る。)200ミリリットルを加え、さらに水200ミリ
リットルを加えたところ、2層に相分離した。下層を採
取し、これにMIBK100ミリリットルを加えて振と
うした後相分離させ、上層を採取し、先の上層と合わせ
た。水400ミリリットルを添加して振とうしたところ
乳化状態になったのでジエチルエーテル700ミリリッ
トルを加えて静置し、相分離せしめた(相分離には約1
0時間を要した)。上層を採取し、これに硫酸マグネシ
ウムを加えて6時間放置した。この後、硫酸マグネシウ
ムを濾別し、濾液を回収した(以下、この濾液を濾液A
と呼ぶ。)。濾液Aをアルミ皿上に秤量し、固形分重量
%を測定したところ、6.35%であった。次に濾液A
を125ミリリットル、高密度ポリエチレン製広口瓶に
161.07g秤量し、窒素ブローにより固形分重量%
=30.3%まで濃縮した。この時点で濃縮液からはジ
エチルエーテルあるいはメタノールの臭気を感知するこ
とはできなかった。この濃縮液に所定量のMIBKを加
えて固形分重量%=30.0%まで希釈した(以下、こ
の溶液を溶液Aとよぶ。)。溶液Aをそのままテトラヒ
ドロフランに希釈して固形分重量濃度0.2%の溶液を
調整し、この溶液を、テトラヒドロフランをキャリア溶
媒とするゲルパーミエーションクロマトグラフィーに注
入したところ、溶解成分の数平均分子量は6260、重
量平均分子量は9890、分散度は1.58であった。
この溶解成分は、29Si−核磁気共鳴スペクトル分析の
結果、次の構造式を有するケイ素樹脂であることが確認
された。 [H(CH32SiO1/20.35(SiO4/21.0
REFERENCE EXAMPLE 1 40 g of methanol and 19.0 g of water were weighed into a 200 ml-four-necked flask equipped with a dropping tube with a straight tube, a coiled condenser and a thermometer, and cooled with ice to lower the liquid temperature to 2 ° C. or lower. The system was lowered and nitrogen was passed through the system at a very small flow rate. While stirring the solution in this state, a mixture of 13.2 g (0.14 mol) of dimethylchlorosilane and 60.8 g (0.4 mol) of methyl orthosilicate was dropped from the straight dropping tube over 40 minutes. On the way, the liquid temperature was 13 due to heat generation.
° C, but dropped to 8 ° C at the end of the dropping.
After further stirring for 15 minutes in an ice-cooled state, the mixture was stirred at room temperature for 4 hours. The reaction solution was colorless and transparent. Next, 200 ml of methyl isobutyl ketone (hereinafter abbreviated as MIBK) was added to the reaction solution, and 200 ml of water was further added. The lower layer was collected, 100 ml of MIBK was added thereto, and the mixture was shaken, followed by phase separation. The upper layer was collected and combined with the upper layer. When 400 ml of water was added and shaken, the mixture became emulsified. 700 ml of diethyl ether was added and the mixture was allowed to stand, and the phases were separated (approximately 1
0 hours). The upper layer was collected, magnesium sulfate was added thereto, and the mixture was allowed to stand for 6 hours. Thereafter, the magnesium sulfate was separated by filtration, and the filtrate was collected (hereinafter, this filtrate was filtrate A).
Call. ). The filtrate A was weighed on an aluminum dish, and the solid content% by weight was determined to be 6.35%. Next, filtrate A
Was weighed in a high-density polyethylene wide-mouthed bottle in an amount of 125 milliliters, and was blown with nitrogen to obtain a solid content% by weight.
= 30.3%. At this time, the odor of diethyl ether or methanol could not be detected from the concentrate. A predetermined amount of MIBK was added to this concentrate to dilute it to 30.0% by weight of solid content (hereinafter, this solution is referred to as solution A). The solution A was directly diluted in tetrahydrofuran to prepare a solution having a solid concentration of 0.2% by weight, and the solution was injected into a gel permeation chromatography using tetrahydrofuran as a carrier solvent. 6260, the weight average molecular weight was 9890, and the degree of dispersion was 1.58.
As a result of 29 Si-nuclear magnetic resonance spectrum analysis, this dissolved component was confirmed to be a silicon resin having the following structural formula. [H (CH 3 ) 2 SiO 1/2 ] 0.35 (SiO 4/2 ) 1.0

【0022】また、溶液Aをシリコンウエハ上に滴下
し、空気中室温にて放置して溶剤を乾燥させることによ
り固形分の約1μm厚の被膜を形成させた。この膜をフ
ーリエ変換型赤外線分光分析器で透過モードにより構造
解析したところ、1100cm-1付近にシロキサン結合
に由来するブロードな強い吸収ピーク、1260cm-1
にSi−CH3基に由来するシャープな強い吸収ピー
ク、910cm-1および21 50cm-1にSiH基に
由来するシャープな強い吸収ピーク、2870cm- 1
アルコキシ基に由来するシャープな弱い吸収ピーク、2
960cm-1にC−H基に由来するシャープな中程度の
吸収ピーク、3500cm-1付近にシラノール基に由来
するブロードな中程度の吸収ピークが観察された。溶液
Aを125ミリリットルの高密度ポリエチレン製広口瓶
中で室温にて密閉保管したところ、1ヶ月経過した時点
で粘度変化等の視覚的変化は観察されず、数平均分子量
は6260、重量平均分子量は9890、分散度は1.
58であった。
Further, the solution A was dropped on a silicon wafer and allowed to stand at room temperature in the air to dry the solvent, thereby forming a solid film having a thickness of about 1 μm. The structure of this film was analyzed using a Fourier transform infrared spectrometer in transmission mode. A broad strong absorption peak derived from a siloxane bond was observed at about 1100 cm −1 , and 1260 cm −1.
Sharp, strong absorption peak assigned to the Si-CH 3 group, a sharp, strong absorption peak assigned to the SiH groups 910 cm -1 and 21 50cm -1, 2870cm - sharp weak absorption peak derived from the alkoxy group in 1, 2
A sharp moderate absorption peak derived from the CH group was observed at 960 cm -1 and a broad moderate absorption peak derived from the silanol group was observed near 3500 cm -1 . When solution A was sealed and stored at room temperature in a 125 ml high-density polyethylene wide-mouth bottle, no visual change such as a change in viscosity was observed after one month, the number average molecular weight was 6260, and the weight average molecular weight was 9890, the degree of dispersion is 1.
58.

【0023】[0023]

【実施例1】参考例1により調製した溶液Aを半導体デ
バイス基板(段差1.0μm)上にスピンコートし、最
大厚さ1.32μmのケイ素樹脂被膜を形成した。被膜
形成後この半導体デバイス基板を円筒型環状炉に挿入
し、酸素ガス雰囲気下、400℃で1時間加熱し、その
後、酸素ガス雰囲気下で徐冷し室温まで冷却した。半導
体デバイス基板上に形成された酸化ケイ素膜の特性を測
定したところ、最大厚さ1.10μmであり、半導体デ
バイス表面の凸凹は均一に平坦化されていた。顕微鏡観
察の結果、この酸化ケイ素膜にはクラックおよびピンホ
ールがないことが確認された。またフーリエ変換型赤外
線分光分析器で透過モードにより構造解析を行ったとこ
ろ、酸化ケイ素膜中のSiH基のピーク(910cm-1
および2150cm-1)、シラノール基のピーク(35
00cm-1付近)およびアルコキシ基のピーク(287
0cm-1)はいずれも完全に消失していることが確認さ
れた。また、得られた酸化ケイ素膜は、MIBK、アセ
トン等の有機溶剤に対して不溶であることが確認され
た。次に該酸化ケイ素膜を前記条件でプラズマエッチン
グした。該酸化ケイ素膜のエッチング速度は650オン
グストローム/min.であり、これは同一条件下での
プラズマCVD膜のエッチング速度の1.3倍であっ
た。
Example 1 The solution A prepared in Reference Example 1 was spin-coated on a semiconductor device substrate (step difference: 1.0 μm) to form a silicon resin film having a maximum thickness of 1.32 μm. After forming the film, the semiconductor device substrate was inserted into a cylindrical annular furnace, heated at 400 ° C. for 1 hour in an oxygen gas atmosphere, and then gradually cooled to a room temperature in an oxygen gas atmosphere. When the characteristics of the silicon oxide film formed on the semiconductor device substrate were measured, the maximum thickness was 1.10 μm, and the irregularities on the semiconductor device surface were evenly flattened. As a result of microscopic observation, it was confirmed that the silicon oxide film had no crack and no pinhole. When the structure was analyzed by a Fourier transform infrared spectrometer in the transmission mode, the peak of the SiH group in the silicon oxide film (910 cm −1) was obtained.
And 2150 cm -1 ), the peak of the silanol group (35
00cm -1 ) and the peak of the alkoxy group (287
0 cm -1 ) was completely disappeared. Further, it was confirmed that the obtained silicon oxide film was insoluble in organic solvents such as MIBK and acetone. Next, the silicon oxide film was plasma-etched under the above conditions. The etching rate of the silicon oxide film is 650 Å / min. This was 1.3 times the etching rate of the plasma CVD film under the same conditions.

【0024】[0024]

【実施例2】参考例1により調製した溶液Aを半導体デ
バイス基板(段差1.0μm)上にスピンコートし、最
大厚さ1.35μmのケイ素樹脂被膜を形成した。被膜
形成後この半導体デバイス基板を円筒型環状炉に挿入
し、空気中、400℃で1時間加熱し、その後、空気中
で徐冷し室温まで冷却した。半導体デバイス基板上に形
成された酸化ケイ素膜の特性を測定したところ、最大厚
さ1.15μmであり、半導体デバイス表面の凸凹は均
一に平坦化されていた。顕微鏡観察の結果、この酸化ケ
イ素膜にはクラックおよびピンホールがないことが確認
された。またフーリエ変換型赤外分光分析器で透過モー
ドにより構造解析を行ったところ、酸化ケイ素膜中のS
iH基のピーク(910cm-1および2150c
-1)、シラノール基のピーク(3500cm-1付近)
およびアルコキシ基のピーク(2870cm-1)はいず
れも完全に消失していることが確認された。また、得ら
れた酸化ケイ素膜は、MIBK、アセトン等の有機溶剤
に対して不溶であることが確認された。次に該酸化ケイ
素膜を前記条件でプラズマエッチングした。該酸化ケイ
素膜のエッチング速度は730オングストローム/mi
n.であり、これは同一条件下でのプラズマCVD膜の
エッチング速度の1.46倍であった。
Example 2 The solution A prepared in Reference Example 1 was spin-coated on a semiconductor device substrate (step difference: 1.0 μm) to form a silicon resin film having a maximum thickness of 1.35 μm. After forming the film, the semiconductor device substrate was inserted into a cylindrical annular furnace, heated in air at 400 ° C. for 1 hour, and then gradually cooled in air and cooled to room temperature. When the characteristics of the silicon oxide film formed on the semiconductor device substrate were measured, the maximum thickness was 1.15 μm, and the irregularities on the semiconductor device surface were evenly flattened. As a result of microscopic observation, it was confirmed that the silicon oxide film had no crack and no pinhole. When the structure was analyzed by a Fourier transform infrared spectrometer in transmission mode, it was found that S
iH group peaks (910 cm -1 and 2150c
m -1 ), peak of silanol group (around 3500 cm -1 )
Also, it was confirmed that the peak of the alkoxy group (2870 cm -1 ) had completely disappeared. Further, it was confirmed that the obtained silicon oxide film was insoluble in organic solvents such as MIBK and acetone. Next, the silicon oxide film was plasma-etched under the above conditions. The etching rate of the silicon oxide film is 730 angstroms / mi.
n. This was 1.46 times the etching rate of the plasma CVD film under the same conditions.

【0025】[0025]

【実施例3】参考例1と同様の方法で調製した次の構造
式: [H(CH32SiO1/21.0[SiO4/21.0 で示されるケイ素樹脂の30重量%−MIBK溶液を半
導体デバイス基板(段差1.0μm)上にスピンコート
し、最大厚さ1.35μmのケイ素樹脂被膜を形成し
た。被膜形成後この半導体デバイス基板を円筒型環状炉
に挿入し、酸素ガス雰囲気下、400℃で1時間加熱
し、その後、酸素ガス雰囲気下で徐冷し室温まで冷却し
た。半導体デバイス基板上に形成された酸化ケイ素膜の
特性を測定したところ、最大厚さ1.11μmであり、
半導体デバイス表面の凸凹は均一に平坦化されていた。
顕微鏡観察の結果、この酸化ケイ素膜にはクラックおよ
びピンホールがないことが確認された。またフーリエ変
換型赤外分光分析器で透過モードにより構造解析を行っ
たところ、酸化ケイ素膜中のSiH基のピーク(910
cm-1および2150cm-1)、シラノール基のピーク
(3500cm-1付近)およびアルコキシ基のピーク
(2870cm-1)はいずれも完全に消失していること
が確認された。また、得られた酸化ケイ素膜は、MIB
K、アセトン等の有機溶剤に対して不溶であることが確
認された。次に該酸化ケイ素膜を前記条件でプラズマエ
ッチングした。該酸化ケイ素膜のエッチング速度は70
0オングストローム/min.であり、これは同一条件
下でのプラズマCVD膜のエッチング速度の1.4倍で
あった。
EXAMPLE 3 Reference Example 1 the following structure was prepared in the same manner as in formula: [H (CH 3) 2 SiO 1/2] 1.0 30 wt% of the silicone resin represented by [SiO 4/2] 1.0 - The MIBK solution was spin-coated on a semiconductor device substrate (step 1.0 μm) to form a silicon resin film having a maximum thickness of 1.35 μm. After forming the film, the semiconductor device substrate was inserted into a cylindrical annular furnace, heated at 400 ° C. for 1 hour in an oxygen gas atmosphere, and then gradually cooled to a room temperature in an oxygen gas atmosphere. When the characteristics of the silicon oxide film formed on the semiconductor device substrate were measured, the maximum thickness was 1.11 μm,
The irregularities on the surface of the semiconductor device were uniformly flattened.
As a result of microscopic observation, it was confirmed that the silicon oxide film had no crack and no pinhole. When the structure was analyzed by a Fourier transform infrared spectrometer in transmission mode, the peak (910) of the SiH group in the silicon oxide film was found.
cm -1 and 2150 cm -1), the peak of the silanol groups (3500 cm -1 vicinity) and peak alkoxy groups (2870cm -1) was confirmed to be lost completely any. Further, the obtained silicon oxide film was prepared by using MIB
It was confirmed that it was insoluble in organic solvents such as K and acetone. Next, the silicon oxide film was plasma-etched under the above conditions. The etching rate of the silicon oxide film is 70
0 angstroms / min. This was 1.4 times the etching rate of the plasma CVD film under the same conditions.

【0026】[0026]

【比較例1】東京応化工業(株)製有機SOG(商品名
OCD−type7)を半導体デバイス基板(段差1.
0μm)上にスピンコートし、最大厚さ0.72μmの
ケイ素樹脂被膜を形成した。被膜形成後、この半導体デ
バイス基板を円筒型環状炉に挿入し、空気中、400℃
で1時間加熱し、その後、空気中で徐冷し室温まで冷却
した。半導体デバイス基板上に形成された酸化ケイ素膜
の特性を測定したところ、最大厚さ0.56μmで、顕
微鏡観察の結果、この酸化ケイ素膜にはクラックおよび
ピンホールがないことが確認された。またフーリエ変換
型赤外分光分析器で透過モードにより構造解析を行った
ところ、シラノール基のピーク(3500cm-1付近)
およびアルコキシ基のピーク(2870cm-1)がとも
に確認された。また、得られた酸化ケイ素膜は、MIB
K、アセトン等の有機溶剤に対して不溶であることが確
認された。次に該酸化ケイ素膜を前記条件でプラズマエ
ッチングした。該酸化ケイ素膜のエッチング速度は12
40オングストローム/min.であり、これは同一条
件下でのプラズマCVD膜のエッチング速度の2.48
倍であった。
Comparative Example 1 An organic SOG (trade name: OCD-type7) manufactured by Tokyo Ohka Kogyo Co., Ltd. was used for a semiconductor device substrate (step 1.
0 μm) to form a silicon resin film having a maximum thickness of 0.72 μm. After forming the film, the semiconductor device substrate is inserted into a cylindrical annular furnace, and is heated at 400 ° C. in air.
For 1 hour, and then gradually cooled in air to cool to room temperature. When the characteristics of the silicon oxide film formed on the semiconductor device substrate were measured, the silicon oxide film had a maximum thickness of 0.56 μm, and as a result of microscopic observation, it was confirmed that the silicon oxide film had no cracks or pinholes. Structural analysis was performed using a Fourier transform infrared spectrometer in a transmission mode, and a peak of a silanol group (around 3500 cm −1 ) was obtained.
And the peak of the alkoxy group (2870 cm -1 ) were both confirmed. Further, the obtained silicon oxide film was prepared by using MIB
It was confirmed that it was insoluble in organic solvents such as K and acetone. Next, the silicon oxide film was plasma-etched under the above conditions. The etching rate of the silicon oxide film is 12
40 angstroms / min. Which is 2.48 times the etching rate of the plasma CVD film under the same conditions.
It was twice.

【0027】[0027]

【0028】[0028]

【発明の効果】本発明の酸化ケイ素膜の形成方法は、ク
ラックおよびピンホールを有しない、緻密なセラミック
状酸化ケイ素膜を形成することができるという特徴を有
する。
The method for forming a silicon oxide film of the present invention has a feature that a dense ceramic silicon oxide film having no cracks and pinholes can be formed.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中村 隆司 千葉県市原市千種海岸2番2 東レ・ダ ウコーニング・シリコーン株式会社 研 究開発本部内 (72)発明者 峰 勝利 千葉県市原市千種海岸2番2 東レ・ダ ウコーニング・シリコーン株式会社 研 究開発本部内 (56)参考文献 特開 平1−108109(JP,A) 特開 平5−86330(JP,A) 特開 平6−236872(JP,A) 特許3188782(JP,B2) (58)調査した分野(Int.Cl.7,DB名) C01B 33/12 C08G 77/02 C09D 183/05 H01L 21/312 - 21/316 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Takashi Nakamura 2-2 Chikusa Beach, Ichihara City, Chiba Prefecture Toray Dow Corning Silicone Co., Ltd. Research and Development Headquarters (72) Inventor Katsutoshi Mine Chikami Coast, Ichihara City, Chiba Prefecture No.2 Toray Dow Corning Silicone Co., Ltd. Research and Development Division (56) References JP-A-1-108109 (JP, A) JP-A-5-86330 (JP, A) JP-A-6-236872 (JP, A) Patent 3188772 (JP, B2) (58) Fields investigated (Int. Cl. 7 , DB name) C01B 33/12 C08G 77/02 C09D 183/05 H01L 21/312-21/316

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 基材表面に、一般式: (HR2SiO1/2X(SiO4/21.0 (式中、Rは水素原子、アルキル基およびアリール基か
らなる群から選択される基であり、Xは0.1≦X≦
2.0である。)で示されるケイ素樹脂を主剤としてな
る被膜を形成し、次いで該被膜の形成された該基材を、
酸素ガスを20体積%以上含有するガス雰囲気下で加熱
して、該被膜をセラミック状酸化ケイ素膜にすることを
特徴とする酸化ケイ素膜の形成方法。
1. The method according to claim 1, wherein on the surface of the substrate, a general formula: (HR 2 SiO 1/2 ) X (SiO 4/2 ) 1.0 (wherein, R is selected from the group consisting of hydrogen, alkyl and aryl X is 0.1 ≦ X ≦
2.0. A) forming a film mainly comprising the silicon resin represented by
A method for forming a silicon oxide film, comprising heating the film in a gas atmosphere containing 20% by volume or more of oxygen gas to convert the film into a ceramic silicon oxide film.
JP04582493A 1993-02-09 1993-02-10 Method for forming silicon oxide film Expired - Fee Related JP3229419B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP04582493A JP3229419B2 (en) 1993-02-10 1993-02-10 Method for forming silicon oxide film
US08/187,239 US5380555A (en) 1993-02-09 1994-01-26 Methods for the formation of a silicon oxide film
DE69423991T DE69423991T2 (en) 1993-02-09 1994-02-08 Process for producing a silicon oxide film
EP94101924A EP0610899B1 (en) 1993-02-09 1994-02-08 Methods for the formation of a silicon oxide film
KR1019940002644A KR100295485B1 (en) 1993-02-09 1994-02-08 Manufacturing method of silicon oxide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04582493A JP3229419B2 (en) 1993-02-10 1993-02-10 Method for forming silicon oxide film

Publications (2)

Publication Number Publication Date
JPH06240455A JPH06240455A (en) 1994-08-30
JP3229419B2 true JP3229419B2 (en) 2001-11-19

Family

ID=12730000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04582493A Expired - Fee Related JP3229419B2 (en) 1993-02-09 1993-02-10 Method for forming silicon oxide film

Country Status (1)

Country Link
JP (1) JP3229419B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006022259A1 (en) 2004-08-24 2006-03-02 Sharp Kabushiki Kaisha Active matrix substrate and display unit provided with it
KR101035737B1 (en) 2006-03-15 2011-05-20 샤프 가부시키가이샤 Active matrix substrate, display device and television receiver
EP2385423A1 (en) 2006-07-19 2011-11-09 Sharp Kabushiki Kaisha Active matrix substrate, liquid crystal display panel, television receiver
CN101563646B (en) 2006-12-26 2012-11-07 夏普株式会社 Liquid crystal panel, liquid crystal display device, and television device
JP4916461B2 (en) * 2008-02-18 2012-04-11 シャープ株式会社 Active matrix substrate and display device including the same
WO2014065235A1 (en) 2012-10-26 2014-05-01 シャープ株式会社 Production method for active element substrate, active element substrate, and display device
SG11201706317QA (en) 2015-02-04 2017-09-28 Sakai Display Products Corp Positive photosensitive siloxane composition, active matrix substrate, display device, and method for producing active matrix substrate
US10283348B2 (en) * 2016-01-20 2019-05-07 Versum Materials Us, Llc High temperature atomic layer deposition of silicon-containing films

Also Published As

Publication number Publication date
JPH06240455A (en) 1994-08-30

Similar Documents

Publication Publication Date Title
US5380555A (en) Methods for the formation of a silicon oxide film
JP3174417B2 (en) Method for forming silicon oxide film
JP3210457B2 (en) Method for forming silicon oxide film
US6022812A (en) Vapor deposition routes to nanoporous silica
JP3174416B2 (en) Method for forming silicon oxide film
KR100498834B1 (en) Coating composition for the production of insulating thin films
US6318124B1 (en) Nanoporous silica treated with siloxane polymers for ULSI applications
US6177143B1 (en) Electron beam treatment of siloxane resins
US6806161B2 (en) Process for preparing insulating material having low dielectric constant
KR100613682B1 (en) Compositions for preparing low dielectric materials containing solvents
US20050173803A1 (en) Interlayer adhesion promoter for low k materials
JPH02178330A (en) Insulating layer of silsesquioxane flattened ladder polymer
JP4180417B2 (en) Composition for forming porous film, method for producing porous film, porous film, interlayer insulating film, and semiconductor device
JP3229419B2 (en) Method for forming silicon oxide film
JP2001520805A (en) Nanoporous dielectric film with graded density and method of making such a film
JP2003115482A (en) Insulation film forming composition
JP3229418B2 (en) Method for forming silicon oxide film
US20040096398A1 (en) Siloxane-based resin and method of forming an insulating film between interconnect layers of a semiconductor device using the same
JP2002201416A (en) Coating liquid for forming semiconductor silica coating film, semiconductor silica coating film, and semiconductor device
JP3188782B2 (en) Method for forming silicon oxide film
TW200307709A (en) Organosiloxanes
JP4501379B2 (en) Method for forming ruthenium-silicon mixed film
JPH06181201A (en) Insulating film for semiconductor device and liquid applied for growing that insulating film
JP3520930B2 (en) Method for producing coating liquid for forming silica-based coating, coating liquid for forming silica-based coating, method for producing silica-based coating, silica-based coating and semiconductor element
JP2000272915A (en) Coating solution for forming silica-based coating film, production of silica-based coating film, silica-based coating film and semiconductor device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010731

LAPS Cancellation because of no payment of annual fees