JP3227887B2 - Electrode element for chlorine gas detector and method for producing the same - Google Patents

Electrode element for chlorine gas detector and method for producing the same

Info

Publication number
JP3227887B2
JP3227887B2 JP08922493A JP8922493A JP3227887B2 JP 3227887 B2 JP3227887 B2 JP 3227887B2 JP 08922493 A JP08922493 A JP 08922493A JP 8922493 A JP8922493 A JP 8922493A JP 3227887 B2 JP3227887 B2 JP 3227887B2
Authority
JP
Japan
Prior art keywords
electrode
chloride
solid electrolyte
tube
electrode element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08922493A
Other languages
Japanese (ja)
Other versions
JPH06273373A (en
Inventor
靖弘 岡島
芳秋 森
榮佑 杉本
宏通 青野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP08922493A priority Critical patent/JP3227887B2/en
Publication of JPH06273373A publication Critical patent/JPH06273373A/en
Application granted granted Critical
Publication of JP3227887B2 publication Critical patent/JP3227887B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、固体電解質を用いた塩
素ガス検出装置に使用される電極素子及びその製造方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode element used in a chlorine gas detector using a solid electrolyte and a method for manufacturing the same.

【0002】[0002]

【従来の技術】工業的に、塩素はハロゲン元素の中でも
最も広範囲に使用されており、その有毒性や排出による
大気汚染を考えると、その排出量をモニターできるセン
サの開発が必要となる。
2. Description of the Related Art In industry, chlorine is most widely used among halogen elements. Considering its toxicity and air pollution due to emission, it is necessary to develop a sensor capable of monitoring the amount of emission.

【0003】ガス濃度をリアルタイムに測定できる点
で、固体電解質を用いたガス濃淡電池方式のセンサが最
も優れていることが知られており、その代表的なものが
2 センサであり、他にSOx ,NOx ,CO2 等のガ
スセンサも報告されている。固体電解質型塩素センサと
しては、PbCl2 及びSrCl2 に少量のKClを固
溶させて導電率を高めた材料を固体電解質として使用し
たものが報告されている。
It is known that a gas concentration cell type sensor using a solid electrolyte is the most excellent in that the gas concentration can be measured in real time, and a typical one is an O 2 sensor. Gas sensors such as SO x , NO x , CO 2 have also been reported. As a solid electrolyte type chlorine sensor, there has been reported a sensor using a material in which a small amount of KCl is dissolved in PbCl 2 and SrCl 2 to increase the conductivity as a solid electrolyte.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、塩化物
はセラミックスとは異なり、焼結による高密度化が期待
できないため、強度的な問題を有している。従って、従
来の固体電解質型塩素センサの固体電解質は全て圧粉体
が用いられているが、強度的な問題を解決するには至っ
ていない。
However, unlike ceramics, chlorides cannot be expected to have high density by sintering, and therefore have a problem in strength. Therefore, all solid electrolytes of the conventional solid electrolyte chlorine sensor use compacts, but have not yet solved the problem of strength.

【0005】例えば、塩化物電解質粉末を圧縮成形し、
これにAg等の金属電極を無機接着剤で接着することに
より、上記センサに使用する電極部材を製造することが
考えられる。しかし、この場合には、無機接着剤に含ま
れている水分が塩化物相に吸収され、該塩化物相がふや
けた状態となってしまうため、強度低下を免れない。ま
た塩化物電解質粉末の圧縮成形体(圧粉体)を金属電極
材とともに加圧して圧着する方法も考えられるが、Ag
等の電極材表面が滑らかで圧粉体とはなじみにくいた
め、剥がれやすいという問題を生じる。
For example, a chloride electrolyte powder is compression-molded,
It is conceivable that an electrode member used for the sensor is manufactured by bonding a metal electrode such as Ag to this with an inorganic adhesive. However, in this case, the moisture contained in the inorganic adhesive is absorbed by the chloride phase, and the chloride phase becomes swelled, so that the strength is inevitably reduced. A method of pressing a compact (compact compact) of a chloride electrolyte powder together with a metal electrode material by pressing is also conceivable.
And the like, the surface of the electrode material is smooth and hardly fits into the compact, so that there is a problem that the electrode material is easily peeled off.

【0006】また塩化物電解質を圧粉体の形で使用する
場合には、センサの応答性が遅いという基本的な問題も
ある。
When the chloride electrolyte is used in the form of a compact, there is also a fundamental problem that the response of the sensor is slow.

【0007】従って本発明の目的は、強度の問題が有効
に解決され、しかも迅速な応答性を有する塩素ガス検出
装置に使用される電極素子及びその製造方法を提供する
ことにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide an electrode element used in a chlorine gas detector having a quick response, in which the problem of strength is effectively solved, and a method of manufacturing the same.

【0008】[0008]

【課題を解決するための手段】本発明によれば、塩化物
から成る固体電解質層と、金属材料から成る電極層と
が、該塩化物と金属材料との同時溶融により密着して形
成されていることを特徴とする塩素ガス検出装置用電極
素子が提供される。
According to the present invention, a solid electrolyte layer made of a chloride and an electrode layer made of a metal material are formed in close contact by simultaneous melting of the chloride and the metal material. An electrode element for a chlorine gas detection device is provided.

【0009】本発明によれば更に、固体電解質形成用塩
化物と、該塩化物よりも大きい比重を有する電極形成用
金属材料とを、セラミックス製タンマン管内に充填し、
加熱溶融し、次いで冷却することから成る塩素ガス検出
装置用電極素子の製造方法が提供される。
According to the present invention, a ceramic for forming a solid electrolyte and a metal material for forming an electrode having a specific gravity higher than the chloride are filled in a ceramic Taman tube.
There is provided a method for producing an electrode element for a chlorine gas detection device, comprising heating, melting, and then cooling.

【0010】[0010]

【作用】本発明の電極素子は、固体電解質と電極とが同
時溶融法により密着して形成されていることが顕著な特
徴であり、これにより種々の利点がもたらされる。
The electrode element of the present invention has a remarkable feature that the solid electrolyte and the electrode are formed in close contact with each other by a simultaneous melting method, which brings various advantages.

【0011】例えば固体電解質と電極形成用金属材料と
を同時溶融せしめた場合、両者は比重差により分離する
が、その界面には金属塩化物の薄層が形成され、この薄
層が橋渡し的な作用を示すことにより、両者の密着性は
極めて高くなる。
For example, when the solid electrolyte and the metal material for forming an electrode are melted at the same time, the two are separated due to a difference in specific gravity, but a thin layer of metal chloride is formed at the interface, and this thin layer acts as a bridge. By exhibiting the action, the adhesion between the two becomes extremely high.

【0012】また、塩化物の固体電解質層は一旦溶融さ
れているため、非多孔質であり、ガスが侵入する開孔が
少ない。本発明の方法で得られた電極素子の電解質層
と、圧粉体(1t/cm2 で10分間処理したディスク型
試料)の電解質層との表面を、SEM観察したところ、
圧粉体表面では各粒子の大きさが異なり、大きい粒子に
は成型圧により亀裂が発生しており、粒子間にも隙間が
見られた。一方、本発明における電解質表面では、溶融
されているため、各粒子が小さく揃っており、ガスが侵
入しそうな隙間は殆ど見られなかった。従って、圧粉体
を用いた塩素ガス検出装置では、固体電解質内に入り込
んだ検出ガスが抜けにくいため、応答速度に悪影響を与
え、例えば起電力が平衡に達するまでの応答時間が10
分以上となるが、本発明の電極素子を用いた場合には、
このような問題は全くなく、その応答性は著しく向上す
る。
Further, since the chloride solid electrolyte layer is once melted, it is non-porous and has few openings through which gas enters. When the surface of the electrolyte layer of the electrode element obtained by the method of the present invention and the surface of the electrolyte layer of the compact (disc-type sample treated at 1 t / cm 2 for 10 minutes) were observed by SEM,
On the surface of the green compact, the size of each particle was different, cracks were generated in the large particles due to the molding pressure, and gaps were observed between the particles. On the other hand, on the electrolyte surface according to the present invention, since the particles were melted, each particle was small and uniform, and there was almost no gap where gas could enter. Therefore, in a chlorine gas detection device using a green compact, the detection gas that has entered the solid electrolyte is difficult to escape, which adversely affects the response speed. For example, the response time until the electromotive force reaches equilibrium is 10 times.
Minutes or more, but when the electrode element of the present invention is used,
There is no such problem at all, and the response is remarkably improved.

【0013】[0013]

【発明の好適態様】固体電解質 本発明において、固体電解質としては、電気炉で溶融可
能であれば任意の塩化物を使用することができ、その代
表例としては、塩化鉛、塩化バリウム、塩化ストロンチ
ウム等を挙げることができる。またその導電性を高める
ために、例えばKCl等の塩化アルカリを20重量%以
内の範囲で混合することもできる。
BEST MODE FOR CARRYING OUT THE INVENTION Solid Electrolyte In the present invention, any solid chloride can be used as long as it can be melted in an electric furnace. Typical examples thereof include lead chloride, barium chloride and strontium chloride. And the like. Further, in order to increase the conductivity, for example, an alkali chloride such as KCl can be mixed in a range of 20% by weight or less.

【0014】電極形成用金属材料 上記の固体電解質と密着させる電極を形成するために使
用される金属としては、同様に電気炉で溶融可能であれ
ば任意のものを使用することができるが、特に固体電解
質との同時溶融により速やかに分離するために、該固体
電解質よりも比重の大きいものであることが必要であ
り、一般的には、銀、鉛等が使用される。
Metal Materials for Forming Electrodes As the metal used for forming the electrodes to be brought into close contact with the solid electrolyte, any metal can be used as long as it can be melted in an electric furnace. In order to quickly separate by simultaneous melting with the solid electrolyte, it is necessary that the solid electrolyte has a specific gravity greater than that of the solid electrolyte. In general, silver, lead, or the like is used.

【0015】電極素子の製造 本発明の電極素子の構造及びその製造工程を示す図1に
おいて、先ずアルミナ、ジルコニウム等のセラミックス
製のタンマン管1に、前述した固体電解質の塩化物及び
電極形成用金属材料を充填し、電気炉中で加熱溶融し、
次いで冷却を行う。これにより、比重の低い塩化物と比
重の高い金属材料は分離し、塩化物は上方で固体電解質
層2を形成し、金属材料は下方で電極3を形成する。ま
た固体電解質層2と電極3との間には金属塩化物の薄層
4が形成される。この薄層4が両者の界面に介在してい
ることにより、その密着性は極めて良好となる。例え
ば、電極材料としてAgを用いた場合、薄層4は塩化銀
(AgCl)となる。
[0015] In FIG 1 illustrating the structure and manufacturing process of the electrode elements of the production the present invention electrode elements, first alumina, the Tamman tube 1 made of ceramics or zirconium, chlorides and electrode-forming metal of the solid electrolyte described above Fill the material, heat and melt in an electric furnace,
Next, cooling is performed. As a result, the low specific gravity chloride and the high specific gravity metal material are separated, and the chloride forms the solid electrolyte layer 2 above and the metal material forms the electrode 3 below. Further, a thin layer 4 of metal chloride is formed between the solid electrolyte layer 2 and the electrode 3. Since the thin layer 4 is interposed at the interface between the two, the adhesion becomes extremely good. For example, when Ag is used as the electrode material, the thin layer 4 becomes silver chloride (AgCl).

【0016】次いで、固体電解質層2を、ダイヤモンド
カッター等によりタンマン管1ごと切断して固体電解質
層2の表面を露出させ、また電極3を収容している低部
のタンマン管1には切込み5を入れて電極3を露出させ
てリード線6を接続し、本発明の電極素子10を得る。
この電極素子10は、全体がほとんどセラミックス製の
タンマン管1で覆われていることから頑丈であり、強度
が極めて高い。
Next, the solid electrolyte layer 2 is cut together with the tanman tube 1 with a diamond cutter or the like to expose the surface of the solid electrolyte layer 2, and a cut 5 is made in the lower tanman tube 1 containing the electrode 3. To expose the electrode 3 and connect the lead wire 6 to obtain the electrode element 10 of the present invention.
Since the electrode element 10 is almost entirely covered with the ceramic Taman tube 1, the electrode element 10 is strong and extremely strong.

【0017】塩素ガス検出装置 上述した本発明の電極素子10は、これに電極等を設け
てセンサプローブとし、塩素ガス検出装置として使用に
供される。このセンサプローブの構造を図2に示す。
Chlorine Gas Detector The above-described electrode element 10 of the present invention is provided with electrodes and the like to form a sensor probe, and is used as a chlorine gas detector. FIG. 2 shows the structure of this sensor probe.

【0018】このセンサプローブ(全体として20で示
す)は、前記固体電解質層2の露出表面に電極21が接
着され、さらにタンマン管1の底部には、例えば無機接
着剤22により絶縁性の管23が接合されている。電極
21としては、適当な耐熱性を有する限り、任意の導電
性材料を使用することができるが、好ましくは、Au,
Pt,カーボン(C),RuO2 等が使用される。また
絶縁性の管23としては、電気絶縁性及びガスに対する
密封性を有するものが使用され、例えばアルミナ、ジル
コニア等のセラミックスや、石英、ムライト、硬質ガラ
ス、パイレックス等が好適に使用される。
In this sensor probe (indicated by 20 as a whole), an electrode 21 is adhered to the exposed surface of the solid electrolyte layer 2, and an insulating tube 23 is attached to the bottom of the tanman tube 1 by, for example, an inorganic adhesive 22. Are joined. As the electrode 21, any conductive material can be used as long as it has appropriate heat resistance.
Pt, carbon (C), RuO 2 or the like is used. Further, as the insulating tube 23, a tube having electric insulation and gas-tightness is used. For example, ceramics such as alumina and zirconia, quartz, mullite, hard glass, Pyrex and the like are preferably used.

【0019】このセンサプローブ20は、図3に示す様
に、ガス導入口31及びガス排出口32を有する耐熱性
管、例えばパイレックス製のガラス管33内にセットさ
れ、且つリード線34が巻き付けられた熱電対管35
を、該リード線34が電極21と接触するようにセット
した形で塩素ガス検出装置として使用される。即ち、こ
の装置において、電極3は参照電極として作用し、また
電極21は測定電極として作用する。
As shown in FIG. 3, the sensor probe 20 is set in a heat-resistant tube having a gas inlet 31 and a gas outlet 32, for example, a glass tube 33 made of Pyrex, and a lead wire 34 is wound therearound. Thermocouple tube 35
Is set so that the lead wire 34 is in contact with the electrode 21 and used as a chlorine gas detector. That is, in this device, the electrode 3 acts as a reference electrode and the electrode 21 acts as a measurement electrode.

【0020】例えば、固体電解質2として、少量のKC
lが混合されたBaCl2 を使用し、且つ電極3(参照
電極)としてAgを使用した場合、上記の塩素ガス検出
装置は、下記の塩素濃淡電池を形成する。 PCl2 (I) (Ag,AgCl)/BaCl2 +KCl/
Cl2 (II)
For example, as the solid electrolyte 2, a small amount of KC
When BaCl 2 mixed with l is used and Ag is used as the electrode 3 (reference electrode), the above chlorine gas detector forms the following chlorine concentration cell. P Cl2 (I) (Ag, AgCl) / BaCl 2 + KCl /
P Cl2 (II)

【0021】上記において左極が参照極であり、その塩
素分圧PCl2 (I) は、下記式(1)で示される平衡関係
により一定温度では一定値を示す。 Ag(s)+1/2・Cl2 =AgCl(s) (1) (1)式の標準自由エネルギー変化をΔG°1 は、下記
式(2): ΔG°1 =−RT・ln(aAgcl/aAg・PCl2 (I) 1/2 ) (2) 式中、R:ガス定数 T:温度(K) a:各成分の活量 で表される。ここで、aAgcl及びaAgは、それぞれ1と
置けるから、前記(2)式から下記(3)式が導かれ
る。 lnPCl2 (I) =2ΔG°1 /RT (3) また上記の塩素濃淡電池の起電力Eは、下記式(4)で
表される。 E=RT/2F・ln(PCl2 (II)/PCl2 (I) ) (4) 式中、F:ファラデー定数
In the above description, the left pole is the reference pole, and its chlorine partial pressure P Cl2 (I) shows a constant value at a constant temperature due to the equilibrium relationship shown by the following equation (1). Ag (s) + / · Cl 2 = AgCl (s) (1) The change in standard free energy of equation (1) ΔG ° 1 is represented by the following equation (2): ΔG ° 1 = −RT · ln (a Agcl / A Ag · P Cl2 (I) 1/2 ) (2) where R: gas constant T: temperature (K) a: activity of each component Here, a Agcl and a Ag can be each set to 1, and the following equation (3) is derived from the above equation (2). InP Cl2 (I) = 2ΔG ° 1 / RT (3) The electromotive force E of the chlorine concentration cell is represented by the following equation (4). E = RT / 2F · ln (P Cl2 (II) / P Cl2 (I)) (4) where F: Faraday constant

【0022】従って、ΔG°1 は既知であるから、該電
池の起電力を測定することによって、上記(3)及び
(4)式より、測定ガス中の塩素ガス分圧PCl2 (II)を
算出することができる。かかる塩素ガス検出装置は、前
述した電極素子を使用していることに関連して、応答速
度が早く、迅速に塩素ガス濃度を検出することができ
る。
Therefore, since ΔG ° 1 is known, by measuring the electromotive force of the battery, the chlorine gas partial pressure P Cl2 (II) in the measurement gas can be calculated from the above equations (3) and (4). Can be calculated. Such a chlorine gas detection device has a fast response speed and can quickly detect the chlorine gas concentration in connection with the use of the above-described electrode element.

【0023】[0023]

【実施例】実施例1 純度99.9重量%以上の塩化バリウム二水塩と試薬特級
の塩化カリウムとを、 BaCl2 :KCl=97:3(重量比) となるように混合し、真空中で600℃に加熱し、乾燥
及び脱水を行った。得られた電解質粉末(3.0g)と銀
粉末(4.0g)をアルミナ管に入れ、電気炉中、空気雰
囲気で1100℃で1時間保持した後、冷却した。アル
ミナ管中で凝固した試料は、比重差によって上から電解
質層(塩化物相)と銀層とに分離しており、両者の界面
には塩化銀(AgCl)のごく薄い層が形成されてい
た。
EXAMPLE 1 Barium chloride dihydrate having a purity of 99.9% by weight or more and potassium chloride of a reagent grade were mixed so that BaCl 2 : KCl = 97: 3 (weight ratio) and mixed in a vacuum. And dried and dehydrated. The obtained electrolyte powder (3.0 g) and silver powder (4.0 g) were put in an alumina tube, kept in an electric furnace at 1100 ° C. in an air atmosphere for 1 hour, and then cooled. The sample solidified in the alumina tube was separated from the top into an electrolyte layer (chloride phase) and a silver layer due to a difference in specific gravity, and a very thin layer of silver chloride (AgCl) was formed at the interface between the two. .

【0024】次いで電解質層部をダイヤモンドカッター
で切断して電解質層を露出させ、また底部のアルミナ管
には切込みを入れて銀層を露出させた。露出した銀層に
は、銀ペーストを用いてリード線(銀線)を接続し、図
1に示される構造の電極素子を形成した。
Next, the electrolyte layer was cut with a diamond cutter to expose the electrolyte layer, and a cut was made in the bottom alumina tube to expose the silver layer. A lead wire (silver wire) was connected to the exposed silver layer by using a silver paste to form an electrode element having a structure shown in FIG.

【0025】さらに、上記で得られた電極素子の底部に
無機耐熱性接着剤(スミセラム)を用いてアルミナ管を
接着した。さらに露出した電解質層表面に酸化ルテニウ
ムペーストを塗布して450℃で1時間焼成を行ない、
図2に示す構造のセンサプローブを作製した。
Further, an alumina tube was bonded to the bottom of the electrode element obtained above using an inorganic heat-resistant adhesive (Sumiceram). Further, a ruthenium oxide paste is applied to the exposed surface of the electrolyte layer and baked at 450 ° C. for 1 hour.
A sensor probe having the structure shown in FIG. 2 was manufactured.

【0026】次いで、上記のセンサプローブを、ガス導
入口とガス排出口を有するパイレックスガラス管中にセ
ットし、熱電対保護管に巻き付けた金線を酸化ルテニウ
ム層に接触させ、図3に示す塩素ガス測定装置を作製し
た。この装置は、下記式で表される塩素濃淡電池を形成
する。 PCl2 (I) (Ag,AgCl)/BaCl2 +KCl/
Cl2 /PCl2 (II)
Next, the above-described sensor probe was set in a Pyrex glass tube having a gas inlet and a gas outlet, and a gold wire wound around a thermocouple protection tube was brought into contact with a ruthenium oxide layer, and the chlorine shown in FIG. A gas measuring device was manufactured. This device forms a chlorine concentration cell represented by the following formula. P Cl2 (I) (Ag, AgCl) / BaCl 2 + KCl /
P Cl2 / P Cl2 (II)

【0027】このガラス管中に350℃で塩素濃度が既
知の測定ガスを流し、起電力の測定を行った。図4に、
測定値のプロットと理論起電力−塩素濃度曲線を示す。
この検出装置によれば、塩素濃度50容量ppm 以上では
ほぼ理論起電力に一致した測定結果が示された。また測
定ガスの濃度変化に素早く応答し、一定起電力に達する
までの応答時間は、高濃度域で約1分、100容量ppm
以下の低濃度域では約2〜5分であった。酸化ルテニウ
ム以外の電極を使用して同様の実験を行ったが、ほぼ同
様の結果が得られた。
A measuring gas having a known chlorine concentration was passed through the glass tube at 350 ° C. to measure the electromotive force. In FIG.
The plot of measured values and the theoretical electromotive force-chlorine concentration curve are shown.
According to this detector, the measurement result almost coincided with the theoretical electromotive force at a chlorine concentration of 50 vol ppm or more. In addition, it responds quickly to changes in the concentration of the measured gas, and the response time until it reaches a certain electromotive force is about 1 minute in a high concentration range, and 100 ppm by volume.
In the following low concentration range, it took about 2 to 5 minutes. Similar experiments were performed using electrodes other than ruthenium oxide, but almost the same results were obtained.

【0028】[0028]

【発明の効果】本発明の塩素ガス検出装置用電極素子
は、固体電解質層(塩化物相)と電極層とが同時溶融法
により形成されていることから、両者の密着性は極めて
高く、且つこの電極素子を用いて構成される塩素ガス検
出装置では、塩素ガスに対する応答速度が極めて速い。
またこの電極素子は、セラミックス製の管で全体がほぼ
覆われているため、強度も高く、さらにこれを用いての
センサプローブ及び塩素ガス検出装置の作製を極めて容
易に行うことができる。
According to the electrode element for a chlorine gas detector of the present invention, since the solid electrolyte layer (chloride phase) and the electrode layer are formed by the simultaneous melting method, the adhesion between the two is extremely high, and In a chlorine gas detection device configured using this electrode element, the response speed to chlorine gas is extremely high.
Further, since the entirety of the electrode element is almost entirely covered with a ceramic tube, the strength of the electrode element is high, and a sensor probe and a chlorine gas detection device using the electrode element can be extremely easily manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の電極素子の製造工程を示す図。FIG. 1 is a view showing a manufacturing process of an electrode element of the present invention.

【図2】図1の電極素子を用いて形成されたセンサプロ
ーブの構造を示す図。
FIG. 2 is a diagram showing a structure of a sensor probe formed using the electrode element of FIG.

【図3】図2のセンサプローブを用いた塩素ガス検出装
置を示す図。
FIG. 3 is a diagram showing a chlorine gas detection device using the sensor probe of FIG. 2;

【図4】実施例1の塩素ガス検出装置を用いて350℃
で測定した測定値のプロットと理論起電力−塩素濃度曲
線を示す。
FIG. 4 shows a temperature of 350 ° C. using the chlorine gas detector of Example 1.
2 shows a plot of measured values and a theoretical electromotive force-chlorine concentration curve.

【符号の説明】[Explanation of symbols]

1:タンマン管 2:固体電解質層 3:電極層 4:金属塩化物層 1: Tamman tube 2: Solid electrolyte layer 3: Electrode layer 4: Metal chloride layer

フロントページの続き (56)参考文献 特開 昭62−43560(JP,A) 特開 昭61−155752(JP,A) 特開 昭60−256043(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01N 27/406 G01N 27/416 JICSTファイル(JOIS)Continuation of the front page (56) References JP-A-62-43560 (JP, A) JP-A-61-155752 (JP, A) JP-A-60-256043 (JP, A) (58) Fields investigated (Int) .Cl. 7 , DB name) G01N 27/406 G01N 27/416 JICST file (JOIS)

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 塩化物から成る固体電解質層と、金属材
料から成る電極層とが、該塩化物と金属材料との同時溶
融により密着して形成されていることを特徴とする塩素
ガス検出装置用電極素子。
1. A chlorine gas detecting device wherein a solid electrolyte layer made of chloride and an electrode layer made of metal material are formed in close contact by simultaneous melting of the chloride and metal material. Electrode element.
【請求項2】 前記固体電解質層と電極層との間には、
金属塩化物の薄層が介在している請求項1に記載の電極
素子。
2. Between the solid electrolyte layer and the electrode layer,
The electrode element according to claim 1, wherein a thin layer of metal chloride is interposed.
【請求項3】 前記固体電解質層と電極層とは、セラミ
ック製管内に保持されている請求項1に記載の電極素
子。
3. The electrode device according to claim 1, wherein the solid electrolyte layer and the electrode layer are held in a ceramic tube.
【請求項4】 固体電解質形成用塩化物と、該塩化物よ
りも大きい比重を有する電極形成用金属材料とを、セラ
ミックス製タンマン管内に充填し、加熱溶融し、次いで
冷却することから成る塩素ガス検出装置用電極素子の製
造方法。
4. A chlorine gas comprising a step of filling a chloride for forming a solid electrolyte and a metal material for forming an electrode having a specific gravity higher than the chloride in a ceramic Taman tube, heating and melting, and then cooling. A method for manufacturing an electrode element for a detection device.
【請求項5】 冷却後、前記タンマン管の上部を切断し
て固体電解質を露出させ、次いで下部のタンマン管に切
込みを形成し、該切込みを介して金属電極にリード線を
接続する請求項4に記載の方法。
5. After cooling, the upper part of the tanman tube is cut to expose the solid electrolyte, and then a cut is formed in the lower tanman tube, and a lead wire is connected to the metal electrode through the cut. The method described in.
JP08922493A 1993-03-24 1993-03-24 Electrode element for chlorine gas detector and method for producing the same Expired - Fee Related JP3227887B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08922493A JP3227887B2 (en) 1993-03-24 1993-03-24 Electrode element for chlorine gas detector and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08922493A JP3227887B2 (en) 1993-03-24 1993-03-24 Electrode element for chlorine gas detector and method for producing the same

Publications (2)

Publication Number Publication Date
JPH06273373A JPH06273373A (en) 1994-09-30
JP3227887B2 true JP3227887B2 (en) 2001-11-12

Family

ID=13964769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08922493A Expired - Fee Related JP3227887B2 (en) 1993-03-24 1993-03-24 Electrode element for chlorine gas detector and method for producing the same

Country Status (1)

Country Link
JP (1) JP3227887B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5369327B2 (en) * 2009-02-10 2013-12-18 大阪瓦斯株式会社 Fuel reformer and its pretreatment method, fuel cell power generation system and its operation pretreatment method

Also Published As

Publication number Publication date
JPH06273373A (en) 1994-09-30

Similar Documents

Publication Publication Date Title
US5322612A (en) Carbon dioxide gas detection element
JP3227887B2 (en) Electrode element for chlorine gas detector and method for producing the same
JP2830877B2 (en) Solid electrolyte material
JPH0467912B2 (en)
JP4014250B2 (en) Carbon dioxide sensor
JPH0470584B2 (en)
Fabry et al. Ion exchange between two solid-oxide electrolytes
GB2316178A (en) Solid electrolyte gas sensor
US4459199A (en) Ruggedized ion-responsive electrode and its manufacturing process
Richter et al. Transport numbers and ionic mobilities in nitrate melts by EMF-measurements on concentration cells with transference
Aono et al. Cl2 Gas Sensor Using Bacl2-KCl Solid Electrolyte Prepared by melting Method.
RU2677927C1 (en) Potentiometric oxygen concentration sensor
JP2878603B2 (en) Sensor for measuring dissolved amount of hydrogen in molten metal
JPS58201057A (en) Sensing element of gas
JP3029473B2 (en) Sensor probe for measuring hydrogen concentration in molten metal
JPH07119730B2 (en) Sensor probe for measuring the amount of hydrogen dissolved in molten metal
US20160169829A1 (en) Method and apparatus for sensing molecular gases
JPS6281560A (en) Hydrogen sensor for molten metal
JPH07209249A (en) Nitrogen oxide sensor
JP3845490B2 (en) Carbon dioxide sensor
JP2530076B2 (en) Sensor probe for measuring the amount of dissolved hydrogen in molten metal and method of using the same
JPH0777515A (en) Carbon dioxide gas sensors and fabrication thereof
JP2000235013A (en) Production of electrode for sensor for measuring oxygen concentration in gas mixture
JPH05107220A (en) Carbon dioxide detecting sensor
JP2004177322A (en) Concentration cell type oxygen sensor and manufacturing method of the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees