JP2530076B2 - Sensor probe for measuring the amount of dissolved hydrogen in molten metal and method of using the same - Google Patents

Sensor probe for measuring the amount of dissolved hydrogen in molten metal and method of using the same

Info

Publication number
JP2530076B2
JP2530076B2 JP3347386A JP34738691A JP2530076B2 JP 2530076 B2 JP2530076 B2 JP 2530076B2 JP 3347386 A JP3347386 A JP 3347386A JP 34738691 A JP34738691 A JP 34738691A JP 2530076 B2 JP2530076 B2 JP 2530076B2
Authority
JP
Japan
Prior art keywords
molten metal
hydrogen
measuring
sensor probe
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3347386A
Other languages
Japanese (ja)
Other versions
JPH07225211A (en
Inventor
邦博 小出
保 矢嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TYK Corp
Original Assignee
TYK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TYK Corp filed Critical TYK Corp
Priority to JP3347386A priority Critical patent/JP2530076B2/en
Priority to KR1019920021565A priority patent/KR970003280B1/en
Priority to AU28557/92A priority patent/AU654219B2/en
Priority to US07/981,873 priority patent/US5439579A/en
Priority to EP92120184A priority patent/EP0544281B1/en
Priority to AT92120184T priority patent/ATE166973T1/en
Priority to CA002083909A priority patent/CA2083909C/en
Priority to DE69225778T priority patent/DE69225778T2/en
Priority to TW081109836A priority patent/TW207568B/zh
Priority to US08/302,604 priority patent/US5445725A/en
Publication of JPH07225211A publication Critical patent/JPH07225211A/en
Application granted granted Critical
Publication of JP2530076B2 publication Critical patent/JP2530076B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、溶融金属中の水素濃度
を測定するための水素溶解量測定用センサプローブ及び
その使用方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sensor probe for measuring the amount of dissolved hydrogen for measuring the hydrogen concentration in molten metal, and a method of using the sensor probe.

【0002】[0002]

【従来の技術】溶融金属中の水素濃度を測定する方法と
しては、減圧下のサンプルの表面に最初に気泡が発生
したときの圧力とサンプルの温度とから水素ガス量を算
出するイニシャルバブル法、減圧下で凝固させたサン
プル中の気泡の状態観察、標準試料の比重との比較及び
試料断面の気泡の状態から水素ガス量を測定する減圧凝
固法、並びに少量のガスを溶湯に注入し、これを溶湯
中で循環させた後、回収し、このガス中に水素ガスが拡
散し、平衡状態になったところで、ガスクロマトグラフ
ィ法により前記排出ガス中の水素ガスを分析するテレガ
ス法等がある。
2. Description of the Related Art As a method for measuring the hydrogen concentration in a molten metal, an initial bubble method for calculating the amount of hydrogen gas from the pressure when a bubble is first generated on the surface of a sample under reduced pressure and the temperature of the sample, Observation of the state of bubbles in a sample solidified under reduced pressure, comparison with the specific gravity of a standard sample and the reduced pressure solidification method for measuring the amount of hydrogen gas from the state of bubbles in the sample cross section, as well as injecting a small amount of gas into the melt, Is circulated in the molten metal and then recovered, and when the hydrogen gas diffuses into this gas and becomes in an equilibrium state, there is a telegas method or the like in which the hydrogen gas in the exhaust gas is analyzed by a gas chromatography method.

【0003】しかし、これらの方法では、実際の鋳造現
場で使用するには測定時間がかかりすぎたり、精度が悪
かったり、装置が大がかりになったり、測定に多大のコ
ストがかかるという問題点がある。
However, these methods have problems that measurement time is too long, accuracy is low, equipment is large, and measurement is very costly when used at an actual casting site. .

【0004】本願発明者等は、これまでに高温でプロト
ン導電性を示す固体電解質SrCe0.95Yb0.053-x
を用いてガルバニ電池式の水素センサを構成し、センサ
の基準極側の水素分圧と溶融金属中の水素濃度との間の
水素活量差によって生じる起電力から溶融金属中の水素
濃度を測定する方法を提案している。この方法は、測定
にかかる費用も少なく、短時間に測定ができ、溶融金属
内の水素濃度の変化を連続的に起電力として測定するこ
とができる等の利点がある。
The inventors of the present application have proposed a solid electrolyte SrCe 0.95 Yb 0.05 O 3-x which exhibits proton conductivity at high temperatures.
A hydrogen sensor of galvanic cell type is constructed by using and the hydrogen concentration in the molten metal is measured from the electromotive force generated by the hydrogen activity difference between the hydrogen partial pressure on the reference electrode side of the sensor and the hydrogen concentration in the molten metal. Suggesting a way to do it. This method has the advantages that the measurement cost is low, the measurement can be performed in a short time, and the change in the hydrogen concentration in the molten metal can be continuously measured as an electromotive force.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、溶融金
属、特にアルミニウムのように平衡酸素分圧が極めて低
い金属中では、固体電解質が還元されて、固体電解質と
溶融金属との界面に絶縁性の酸化物膜ができてしまい、
長時間の測定が困難であるという難点がある。即ち、プ
ロトン導電性固体電解質を用いた溶融金属中の水素濃度
を測定する際に、直接センサプローブを溶融金属中に浸
漬すると、センサの使用温度400〜1100℃で溶融
金属と固体電解質との界面に絶縁性の酸化物膜が生じ、
これにより水素濃度の測定が不能になってしまう。
However, in a molten metal, particularly in a metal having an extremely low equilibrium oxygen partial pressure, such as aluminum, the solid electrolyte is reduced, and an insulating oxide is formed on the interface between the solid electrolyte and the molten metal. A material film is formed,
It is difficult to measure for a long time. That is, when measuring the hydrogen concentration in the molten metal using the proton-conductive solid electrolyte, if the sensor probe is directly immersed in the molten metal, the interface between the molten metal and the solid electrolyte at a sensor operating temperature of 400 to 1100 ° C. An insulating oxide film is formed on the
This makes measurement of hydrogen concentration impossible.

【0006】本発明はかかる問題点に鑑みてなされたも
のであって、センサ素子を構成する部分の固体電解質の
還元を防止するために、センサ素子の起電力測定部分を
直接溶湯中に浸漬することなく溶融金属中の水素濃度を
測定することができる溶融金属中の水素溶解量測定用セ
ンサプローブを提供することを目的とする。
The present invention has been made in view of such a problem, and in order to prevent reduction of a solid electrolyte in a portion constituting a sensor element, an electromotive force measuring portion of the sensor element is directly immersed in a molten metal. It is an object of the present invention to provide a sensor probe for measuring the amount of dissolved hydrogen in molten metal which can measure the concentration of hydrogen in molten metal without the need.

【0007】[0007]

【課題を解決するための手段】本発明に係る溶融金属中
の水素溶解量測定用センサプローブは、ペロブスカイト
型プロトン導電性固体電解質からなる一端閉塞形の素子
と、この素子の開放端側を突出させて外嵌し保持するス
リーブと、前記素子の外面に形成された多孔質電極から
なる基準極と、前記素子の内面に形成された多孔質電極
からなる測定極と、前記基準極と測定極とを隔離するシ
ール材と、前記基準極と接触して配置されガルバニ起電
力の基準となる固体基準物質とを有することを特徴とす
る。
A sensor probe for measuring the amount of dissolved hydrogen in molten metal according to the present invention comprises a perovskite-type proton-conducting solid electrolyte element with one closed end and an open end side of this element. A sleeve for external fitting and holding, a reference electrode composed of a porous electrode formed on the outer surface of the element, a measurement electrode composed of a porous electrode formed on the inner surface of the element, the reference electrode and the measurement electrode And a solid reference material which is placed in contact with the reference electrode and serves as a reference for galvanic electromotive force.

【0008】この溶融金属中の水素溶解量測定用センサ
プローブは、前記素子の開放端側端部を溶融金属中に浸
漬して配置し、前記素子の内部に溶融金属の湯面に接触
する密閉空間を形成することにより、溶融金属中の水素
溶解量を測定する。
The sensor probe for measuring the amount of hydrogen dissolved in the molten metal is arranged by immersing the open end side end of the element in the molten metal, and sealing the inside of the element in contact with the molten metal surface. The amount of hydrogen dissolved in the molten metal is measured by forming the space.

【0009】前記ペロブスカイト型プロトン導電性固体
電解質は、SrCe0.95Yb0.053-x、BaCe0.9
Nb0.13-x、CaZr0.9In0.13-x等の組成を有
する。また、前記カップ状のセンサホルダはガス非透過
性の緻密なセラミックス製の材料で形成されている。ま
た、前記シール材は、センサ使用前にシール処理をする
場合は、前記固体電解質、例えばSrCe0.95Yb0.05
3-x,CaZr0.9,In0.13-x及びBaCe0.95
0.053-x等のセンサ使用温度域300〜1100℃
間における熱膨張係数8.5×10-6〜9.8×10-6
(/℃)に近い熱膨張係数8.0×10-6〜10.0×
10-6(/℃)をもち、流動点がセンサ使用温度以上で
ある緻密質ガラスシール材を使用するか、又はセンサ使
用時にシールする場合は、使用温度以下の軟化温度を持
ち、且つ、使用温度以上の流動点を持つ緻密質ガラスシ
ール材を使用することが好ましい。
The perovskite-type proton conductive solid electrolyte is SrCe 0.95 Yb 0.05 O 3-x , BaCe 0.9
It has a composition such as Nb 0.1 O 3-x and CaZr 0.9 In 0.1 O 3-x . The cup-shaped sensor holder is formed of a dense, gas-impermeable, ceramic material. Further, when the sealing material is subjected to a sealing treatment before use of the sensor, the solid electrolyte, for example, SrCe 0.95 Yb 0.05
O 3-x , CaZr 0.9 , In 0.1 O 3-x and BaCe 0.95
Sensor operating temperature range of 300 to 1100 ° C such as Y 0.05 O 3-x
Coefficient of thermal expansion between 8.5 × 10 -6 and 9.8 × 10 -6
Thermal expansion coefficient close to (/ ° C) 8.0 × 10 -6 to 10.0 ×
Use a dense glass sealing material having a temperature of 10 -6 (/ ° C) and a pour point above the sensor usage temperature, or if you seal when using the sensor, have a softening temperature below the usage temperature and use It is preferable to use a dense glass sealing material having a pour point above the temperature.

【0010】[0010]

【作用】本発明においては、先ずセンサ素子の開放端側
の端部を溶融金属中に浸漬する。これにより、前記セン
サ素子内に溶融金属と接する密閉空間を閉じ込める。そ
して、溶融金属中からこの空間内のガス中に出てくる水
素ガスの量を空間内ガス中の水素分圧として測定する。
この測定原理は、プロトン導電性固体電解質を用いたガ
ルバニ電池の起電力を測定することにより行うものであ
る。このようにして、この水素溶解量測定用センサプロ
ーブで溶融金属の表面近傍の高温部分の水素濃度を測定
し、この空間内の水素濃度が平衡値に達したときの水素
濃度から溶融金属中の水素濃度を決定することができ
る。なお、本発明においては、固体電解質からなるセン
サ素子の開放端側の端部を溶融金属中に浸漬する。しか
し、この浸漬部分はセンサ素子の一部であり、従来のよ
うに、固体電解質及び測定極の全部を溶融金属中に浸漬
する場合と異なって、起電力測定部分は浸漬されない。
このため、この部分に絶縁性酸化物膜は発生しないの
で、測定動作に支障はない。
In the present invention, first, the open end of the sensor element is immersed in the molten metal. Thereby, the sealed space in contact with the molten metal is confined in the sensor element. Then, the amount of hydrogen gas that comes out from the molten metal into the gas in this space is measured as the hydrogen partial pressure in the gas in the space.
This measurement principle is performed by measuring the electromotive force of a galvanic cell using a proton conductive solid electrolyte. In this manner, the hydrogen concentration in the high-temperature portion near the surface of the molten metal is measured with the sensor probe for measuring the amount of dissolved hydrogen, and the hydrogen concentration in the space when the hydrogen concentration in the space reaches the equilibrium value is measured. The hydrogen concentration can be determined. In the present invention, the open end of the sensor element made of a solid electrolyte is immersed in molten metal. However, this immersion part is a part of the sensor element, and unlike the conventional case where the entire solid electrolyte and the measurement electrode are immersed in the molten metal, the electromotive force measurement part is not immersed.
For this reason, since no insulating oxide film is generated in this portion, there is no problem in the measurement operation.

【0011】プロトン導電性を示す固体電解質を用いる
水素濃淡電池式の水素センサは高温で安定に作動し、下
記数式1で与えられる理論値に近い起電力を示す。
A hydrogen concentration cell type hydrogen sensor using a solid electrolyte exhibiting proton conductivity operates stably at high temperatures and exhibits an electromotive force close to the theoretical value given by the following mathematical formula 1.

【0012】[0012]

【数1】 E=(RT/2F)ln[PH2(1)/PH2(2)]E = (RT / 2F) ln [P H2 (1) / P H2 (2)]

【0013】但し、Eは起電力(V)、Rは気体定数、
FはFaraday 定数、Tは絶対温度、PH2(1)及びPH2
(2)は夫々密閉空間の溶湯上の水素分圧及び基準ガス
の水素分圧である。
Where E is an electromotive force (V), R is a gas constant,
F is Faraday constant, T is absolute temperature, P H2 (1) and P H2
(2) is the hydrogen partial pressure on the molten metal in the closed space and the hydrogen partial pressure of the reference gas, respectively.

【0014】溶融金属中の水素濃度とその溶湯上の水素
分圧との間には平衡関係が成り立ち、下記数式2のSiev
ertsの規則に従う。
An equilibrium relationship is established between the hydrogen concentration in the molten metal and the hydrogen partial pressure on the molten metal.
Follow the rules of erts.

【0015】[0015]

【数2】S=K(PH21/2 [Equation 2] S = K (P H2 ) 1/2

【0016】但し、Sは水素の平衡溶解度、Kは定数、
H2は溶湯上の水素分圧である。
Where S is the equilibrium solubility of hydrogen, K is a constant,
P H2 is the hydrogen partial pressure on the melt.

【0017】この数式2から分かるように、溶湯に接し
た気相中の水素分圧を測定できれば溶湯中に溶解してい
る水素濃度を求めることができる。
As can be seen from Equation 2, if the hydrogen partial pressure in the gas phase in contact with the molten metal can be measured, the concentration of hydrogen dissolved in the molten metal can be determined.

【0018】一般に溶融金属中の水素濃度は、その溶湯
と接した気相中の水素分圧と溶湯温度とに依存し、その
水素分圧及び溶湯温度の依存性はSieverts則とHenry則
に従う。このため、水素濃度Sは下記数式3で表すこと
ができる。
Generally, the hydrogen concentration in the molten metal depends on the hydrogen partial pressure and the melt temperature in the vapor phase in contact with the melt, and the dependence of the hydrogen partial pressure and the melt temperature follows the Sieverts rule and the Henry rule. For this reason, the hydrogen concentration S can be expressed by the following equation (3).

【0019】[0019]

【数3】 logS=A−(B/T)+(1/2)log(PH2) 但し、A及びBは金属の組成に依存した定数である。LogS = A− (B / T) + (1 /) log (P H2 ) where A and B are constants depending on the metal composition.

【0020】そこで、図1に示すような形状のセンサプ
ローブを組み、センサ素子の端部を溶湯中に浸漬させて
タンマン管状の電解質センサ素子内に溶湯と接触した気
相が占める空間を形成し、この気相中に溶湯から放出さ
れる水素ガスの分圧を本発明の水素溶解量測定用センサ
プローブを用いて測定する。このセンサプローブの基準
極と測定極との間に発生する起電力から、前記数式1を
用いて水素分圧PH2を求め、この水素分圧を数式3に代
入することにより、溶湯中の水素濃度Sを求めることが
できる。
Therefore, a sensor probe having a shape as shown in FIG. 1 is assembled, and the end of the sensor element is immersed in the molten metal to form a space occupied by the gas phase in contact with the molten metal in the Tamman tubular electrolyte sensor element. The partial pressure of the hydrogen gas released from the molten metal into the gas phase is measured using the sensor probe for measuring the amount of dissolved hydrogen of the present invention. From the electromotive force generated between the reference electrode and the measurement electrode of the sensor probe, the hydrogen partial pressure P H2 is obtained by using the above-described equation (1), and the hydrogen partial pressure is substituted into the equation (3), whereby hydrogen in the molten metal is obtained. The concentration S can be determined.

【0021】このように本発明によれば、固体電解質か
らなるセンサ素子測定極が設けられた部分を直接溶湯金
属と接触させずに、溶湯中の水素濃度を長時間測定する
ことができる。
As described above, according to the present invention, the hydrogen concentration in the molten metal can be measured for a long time without directly contacting the portion where the sensor element measuring electrode made of the solid electrolyte is provided with the molten metal.

【0022】[0022]

【実施例】次に、本発明の実施例について添付の図面を
参照して具体的に説明する。
Embodiments of the present invention will now be specifically described with reference to the accompanying drawings.

【0023】図1は本発明の第1の実施例に係る水素溶
解量測定用センサプローブを示す断面図である。
FIG. 1 is a sectional view showing a sensor probe for measuring the amount of dissolved hydrogen according to a first embodiment of the present invention.

【0024】センサ素子1はペロブスカイト型プロトン
導電性固体電解質(例えば、SrCe0.95Yb0.05
3-x、CaZr0.9In0.13-x、BaCe0.950.05
3-x等)からなる一端閉塞形状をなし、そのセンサ素子
1の外面と内面に多孔質の例えば、Pt,Ni、又は酸
化物導電体等からなる夫々基準極2及び測定極3が焼付
けにより形成されている。
The sensor element 1 is a perovskite type proton conductive solid electrolyte (for example, SrCe 0.95 Yb 0.05 O).
3-x , CaZr 0.9 In 0.1 O 3-x , BaCe 0.95 Y 0.05 O
3-x, etc.) having a closed shape at one end, and the reference electrode 2 and the measurement electrode 3 made of porous material such as Pt, Ni, or an oxide conductor are formed on the outer surface and the inner surface of the sensor element 1 by baking. Has been formed.

【0025】そして、緻密質のセラミックス製(例え
ば、アルミナ質、ムライト質、又は窒化珪素質)のスリ
ーブ状ホルダー8がセンサ素子1に外嵌されている。セ
ンサ素子1はその開放端側端部がホルダー8の先端部か
ら若干突出するようにホルダー8内に配置され、ホルダ
ー8の先端部にてガラスシール材7によりホルダー8と
センサ素子1とが相互に固定されている。このガラスシ
ール材7により、基準極2が外気及び測定極3の雰囲気
から気密的に分離されている。
A sleeve-shaped holder 8 made of dense ceramics (for example, alumina, mullite, or silicon nitride) is fitted on the sensor element 1. The sensor element 1 is arranged in the holder 8 such that the end portion on the open end side slightly projects from the tip portion of the holder 8, and the holder 8 and the sensor element 1 are connected to each other by the glass sealing material 7 at the tip portion of the holder 8. It is fixed to. The reference electrode 2 is airtightly separated from the outside air and the atmosphere of the measurement electrode 3 by the glass sealing material 7.

【0026】このホルダー8の外面には、センサ素子1
の内面からその開放側端部で若干外面まで延出した測定
極3に電気的に接続するようにして導電性ペーストから
なるリード9が形成されており、このリード9を介して
測定極3が外部の処理装置(図示せず)に接続されてい
る。一方、セラミックホルダー8内の上半部には、セン
サ支持用のセラミック絶縁管4の一端部が挿入されてお
り、この絶縁管4の中心孔内には、Pt線又はNi線等
のリード線5が挿入されている。このリード線5はPt
又はNi等の導電性ペースト6により多孔質基準極2と
電気的に接続され、基準極2がリード線5を介して外部
処理装置に導出されている。絶縁管4はホルダー8にガ
ラスシール材10により固定され、更に絶縁管4とホル
ダー8との間の隙間がこのガラスシール材10により外
界からシールされている。
The sensor element 1 is provided on the outer surface of the holder 8.
A lead 9 made of a conductive paste is formed so as to be electrically connected to the measuring electrode 3 extending slightly from the inner surface to the outer surface at the open end thereof. It is connected to an external processing device (not shown). On the other hand, one end of a ceramic insulating tube 4 for supporting a sensor is inserted in the upper half of the ceramic holder 8, and a lead wire such as a Pt wire or a Ni wire is inserted into the center hole of the insulating tube 4. 5 is inserted. This lead wire 5 is Pt
Alternatively, it is electrically connected to the porous reference electrode 2 by a conductive paste 6 such as Ni, and the reference electrode 2 is led to an external processing device via a lead wire 5. The insulating tube 4 is fixed to the holder 8 by the glass sealing material 10, and the gap between the insulating tube 4 and the holder 8 is sealed from the outside by the glass sealing material 10.

【0027】ホルダー8内のセンサ素子1とセラミック
絶縁管4との間には、ガルバニ起電力の基準となる固体
基準物質11が基準極2と接触して充填されている。こ
の固体基準物質11としてはハイドロキシアパタイト及
びリン酸アルミニウム等がある(特開昭63-269053号公
報)。
A space between the sensor element 1 and the ceramic insulating tube 4 in the holder 8 is filled with a solid reference substance 11, which serves as a reference for galvanic electromotive force, in contact with the reference electrode 2. Examples of the solid reference substance 11 include hydroxyapatite and aluminum phosphate (JP-A-63-269053).

【0028】次に、このように構成されたセンサプロー
ブの動作について説明する。プロトン導電性固体基準物
質からなるセンサ素子1の下端部を溶湯(図示せず)内
に浸漬し、センサ素子1内に、センサ素子1、ホルダー
8及び溶湯19の湯面に囲まれた空間を形成する。セン
サ素子1はその端部の一部のみ溶湯19に浸漬させ、そ
の測定極3の大部分は前記空間内に位置させる。
Next, the operation of the sensor probe thus configured will be described. The lower end portion of the sensor element 1 made of a proton conductive solid reference substance is immersed in a molten metal (not shown), and a space surrounded by the molten metal surface of the sensor element 1, the holder 8 and the molten metal 19 is formed in the sensor element 1. Form. The sensor element 1 is only partially immersed in the molten metal 19 at its end, and most of its measuring electrode 3 is located in the space.

【0029】そうすると、溶湯内に溶解している水素
が、センサ素子1及び溶湯19(図3参照)に囲まれた
空間内の水素ガスと平衡になり、溶湯中の水素溶解度S
と前記空間内の水素分圧PH2との間には、前記数式3に
て示す関係が成立する。そこで、この空間内の水素分圧
H2を、センサ素子1により、ガルバニ起電力を利用し
て測定する。即ち、ガルバニ起電力の基準となる固体基
準物質11に接触する基準極2と、前記空間内のガスに
接触する測定極3との間に発生する起電力Eを検出し、
この起電力から前記数式1に従って溶湯上の水素分圧P
H2を求める。そして、この水素分圧PH2から、前記数式
3により、溶湯中の水素溶解度Sを求める。このように
して、溶湯中の水素溶解度を、センサ素子1の測定極3
の形成部、即ち起電力測定部を溶湯中に浸漬させずに測
定することができる。このため、溶湯によるセンサ素子
1の浸食が回避され、長時間に亘って水素溶解量を測定
することができる。
Then, the hydrogen dissolved in the molten metal becomes in equilibrium with the hydrogen gas in the space surrounded by the sensor element 1 and the molten metal 19 (see FIG. 3), and the hydrogen solubility S in the molten metal becomes
And the hydrogen partial pressure P H2 in the space establishes the relationship represented by the above-described Expression 3. Therefore, the hydrogen partial pressure P H2 in this space is measured by the sensor element 1 using the galvanic electromotive force. That is, the electromotive force E generated between the reference electrode 2 that comes into contact with the solid reference substance 11 that serves as the reference of the galvanic electromotive force and the measurement electrode 3 that comes into contact with the gas in the space is detected,
From this electromotive force, the hydrogen partial pressure P on the molten metal is calculated according to Equation 1 above.
Find H2 . Then, from the hydrogen partial pressure P H2 , the hydrogen solubility S in the molten metal is calculated by the above-mentioned formula 3. In this way, the solubility of hydrogen in the molten metal is measured by the measuring electrode 3 of the sensor element 1.
Can be measured without immersing the forming part of the, i.e., the electromotive force measuring part in the molten metal. Therefore, the erosion of the sensor element 1 by the molten metal is avoided, and the hydrogen dissolution amount can be measured for a long time.

【0030】次に、図1に示す実施例のセンサプローブ
を製造し、溶湯中の水素溶解量の測定試験をした結果に
ついて説明する。先ず、ペロブスカイト型プロトン導電
性固体電解質であるCaZr0.9ln0.13-xからなる
一端閉塞型センサ素子1の内面及び外面に、白金多孔質
電極を900℃の温度で焼き付けた。その後、アルミナ
ホルダー8をセンサ素子1に外嵌し、粉末ガラスシール
材7(組成;Na23・B23・SiO2、熱膨張係
数:9.5×10-6、軟化点;695℃、流動点;88
0℃)により、ホルダー8と素子1とを固定した。次
に、ホルダー8内に、固体基準物質11としてAlPO
4とLa0.4Sr0.6CoO3-xの混合粉末を充填し、Pt
リード線5を通したアルミナ絶縁管4をその先端にPt
ペースト6を塗布してホルダー8内に挿入し、粉末ガラ
スシール材10により絶縁管4をホルダー8に固定し
た。そして、絶縁管4の先端部のPtペースト6により
リード線5と基準極2とを電気的に接続した。このよう
にして組み立てたものを電気炉にて加熱し、粉末ガラス
シール材7,10を融着した。
Next, the results obtained by manufacturing the sensor probe of the embodiment shown in FIG. 1 and conducting a measurement test of the amount of hydrogen dissolved in the molten metal will be described. First, a platinum porous electrode was baked at a temperature of 900 ° C. on the inner and outer surfaces of the one-end closed sensor element 1 made of CaZr 0.9 ln 0.1 O 3−x which is a perovskite type proton conductive solid electrolyte. Thereafter, fitted around the alumina holder 8 to the sensor element 1, powdered glass sealing material 7 (composition; Na 2 O 3 · B 2 O 3 · SiO 2, the thermal expansion coefficient: 9.5 × 10 -6, the softening point; 695 ° C, pour point: 88
The holder 8 and the element 1 were fixed at 0 ° C. Next, in the holder 8, AlPO was used as the solid reference material 11.
4 and La 0.4 Sr 0.6 CoO 3−x mixed powder was filled, and Pt was added.
At the tip of the alumina insulating tube 4 passing through the lead wire 5, Pt
The paste 6 was applied and inserted into the holder 8, and the insulating tube 4 was fixed to the holder 8 with the powder glass sealing material 10. Then, the lead wire 5 and the reference electrode 2 were electrically connected by the Pt paste 6 at the tip of the insulating tube 4. The thus-assembled one was heated in an electric furnace to fuse the powder glass sealing materials 7 and 10.

【0031】次に、このセンサプローブを使用して、図
2に示すように、黒鉛坩堝30内で溶融させたアルミニ
ウム溶湯31中の水素溶解量を測定した。センサ素子1
の基準ガスは、水素濃度が1%である。アルミニウム溶
湯31上の水素ガス分圧は、Arガス源37と水素ガス
源36とに連結されたガス混合器35から、これらのガ
スの配合量を種々設定して得た混合ガスを坩堝30内に
導入することにより、調節した。そして、この種々の水
素分圧雰囲気下におくことにより、溶湯中の水素濃度を
種々の値に制御し、その条件でセンサ素子1の起電力を
測定した。溶湯温度及び起電力の測定値はレコーダ33
に記録した。なお、坩堝30内の溶湯はヒータ34によ
り加熱して所定の温度に保持した。
Next, using this sensor probe, as shown in FIG. 2, the amount of hydrogen dissolved in the molten aluminum 31 melted in the graphite crucible 30 was measured. Sensor element 1
Has a hydrogen concentration of 1%. The hydrogen gas partial pressure on the aluminum melt 31 is obtained by mixing a mixed gas obtained by setting various amounts of these gases from the gas mixer 35 connected to the Ar gas source 37 and the hydrogen gas source 36 into the crucible 30. Was adjusted. Then, the hydrogen concentration in the molten metal was controlled to various values by being placed under these various hydrogen partial pressure atmospheres, and the electromotive force of the sensor element 1 was measured under the conditions. The measured values of the molten metal temperature and electromotive force are the recorder 33
Recorded. The molten metal in the crucible 30 was heated by the heater 34 and maintained at a predetermined temperature.

【0032】本実施例のセンサプローブの測定値の精度
を見積もるため、ガスクロマトグラフィ分析装置38を
使用して、アルミニウム溶湯31内の水素濃度をTelega
s(テレガス法)法により測定した。この場合に、窒素
ガス源40から窒素ガスを溶湯中に吹き込み、溶湯中で
窒素ガスをバブリングさせて、循環させ、溶湯湯面上の
雰囲気窒素ガス中の水素濃度が溶湯内の水素濃度と平衡
に達したときの窒素ガス中の水素濃度を、ガスクロマト
グラフ分析装置38に導き、このガスクロマトグラフィ
分析装置38により水素濃度を測定した。また、測定対
象の溶湯31の温度はK熱電対32により測定した。な
お、溶湯の温度は700〜800℃であった。なお、こ
のテレガス法は、溶湯中の水素濃度を高精度で測定でき
る方法として知られているものである。
In order to estimate the accuracy of the measured value of the sensor probe of this embodiment, the hydrogen concentration in the molten aluminum 31 is Telega using the gas chromatography analyzer 38.
It was measured by the s (telegas method) method. In this case, nitrogen gas is blown into the melt from the nitrogen gas source 40, and the nitrogen gas is bubbled and circulated in the melt so that the hydrogen concentration in the atmosphere nitrogen gas on the surface of the melt balances with the hydrogen concentration in the melt. The hydrogen concentration in the nitrogen gas at the time when the temperature reached was led to a gas chromatograph analyzer 38, and the hydrogen concentration was measured by the gas chromatograph analyzer 38. The temperature of the molten metal 31 to be measured was measured by the K thermocouple 32. In addition, the temperature of the molten metal was 700-800 degreeC. The telegas method is known as a method capable of measuring the hydrogen concentration in a molten metal with high accuracy.

【0033】図3は、横軸にテレガス法により測定した
水素濃度をとり、縦軸にセンサ素子の起電力をとってそ
の測定値を○で示すグラフ図である。但し、このデータ
は、99重量%の純度のアルミニウム溶湯を750℃に
加熱した場合のものである。この図3に示すように、テ
レガス法により測定した溶湯中の水素濃度とセンサ素子
の起電力との間には、極めて良好な相関関係が存在す
る。他の温度条件等においても同様の関係が得られる。
FIG. 3 is a graph showing the hydrogen concentration measured by the telegas method on the horizontal axis and the electromotive force of the sensor element on the vertical axis, and the measured value is indicated by ◯. However, this data is obtained when a 99% by weight pure aluminum melt is heated to 750 ° C. As shown in FIG. 3, there is a very good correlation between the hydrogen concentration in the molten metal measured by the telegas method and the electromotive force of the sensor element. The same relationship can be obtained under other temperature conditions.

【0034】図4はテレガス法により求めた溶湯中の水
素濃度測定値を横軸にとり、本実施例のセンサ素子を用
いて測定した水素濃度の測定値を縦軸にとって、両者を
比較したグラフ図である。この図4から明らかなよう
に、テレガス法で求めた値と本発明に係るセンサを用い
て測定した値は極めてよく一致した。従って、本実施例
のセンサプローブの測定値の精度が極めて高いことがわ
かる。
FIG. 4 is a graph comparing the measured values of hydrogen concentration in the molten metal obtained by the telegas method on the horizontal axis and the measured values of hydrogen concentration measured using the sensor element of this embodiment on the vertical axis. Is. As is apparent from FIG. 4, the value obtained by the telegas method and the value measured using the sensor according to the present invention were in very good agreement. Therefore, it can be seen that the accuracy of the measurement value of the sensor probe of this embodiment is extremely high.

【0035】[0035]

【発明の効果】本発明によれば、溶融金属(溶湯)中に
センサプローブのセンサ素子の一部を浸漬するだけで、
この溶湯中に溶解している水素濃度を測定することがで
き、センサプローブのセンサ素子の起電力測定部自体は
溶湯に接触しないので、長時間にわたる連続測定が可能
である。また、センサプローブのセンサ素子の起電力を
測定するだけで、溶湯中の水素濃度を測定できるので、
測定装置の小型化が可能であり、実際の鋳造工程で使用
するに当たり、操作性が向上する。また、テレガス法の
ようにガスを循環させる必要がないため、測定に必要な
ランニングコストも低減できる。このため、本発明によ
り、小型で測定精度が高く、信頼性が高い溶融金属中の
水素濃度測定装置を提供することができる。
According to the present invention, by immersing a part of the sensor element of the sensor probe in the molten metal (molten metal),
The concentration of hydrogen dissolved in the melt can be measured, and since the electromotive force measuring portion of the sensor element of the sensor probe does not contact the melt, continuous measurement over a long period of time is possible. Also, the hydrogen concentration in the molten metal can be measured simply by measuring the electromotive force of the sensor element of the sensor probe,
The measuring device can be downsized, and the operability is improved when it is used in the actual casting process. Further, since there is no need to circulate gas unlike the telegas method, the running cost required for measurement can be reduced. Therefore, according to the present invention, it is possible to provide an apparatus for measuring the concentration of hydrogen in molten metal that is small, has high measurement accuracy, and has high reliability.

【0036】また、従来、測定精度が優れているとされ
るテレガス法による場合は、脱ガス処理行程のときのよ
うに溶湯の流れが速いような場合には使用することがで
きない。しかし、本発明に係るセンサプローブは、溶湯
に流れがあっても何ら支障なく水素濃度を測定すること
ができるので、その測定対象が著しく拡大され、本発明
は水素濃度測定を必要とする技術分野において、極めて
有益である。
Further, in the case of the telegas method, which has been conventionally considered to have excellent measurement accuracy, it cannot be used in the case where the flow of the molten metal is fast as in the degassing process. However, since the sensor probe according to the present invention can measure the hydrogen concentration without any problem even if the molten metal has a flow, the object to be measured is significantly expanded, and the present invention is a technical field requiring the hydrogen concentration measurement. Is extremely useful.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係る水素溶解量測定用センサ
プローブを示す断面図である。
FIG. 1 is a cross-sectional view illustrating a sensor probe for measuring the amount of dissolved hydrogen according to an embodiment of the present invention.

【図2】本実施例のセンサプローブの測定精度を試験す
る装置を示す模式図である。
FIG. 2 is a schematic diagram showing an apparatus for testing the measurement accuracy of the sensor probe of this embodiment.

【図3】テレガス法による水素濃度測定値と、本実施例
のセンサ素子の起電力との関係を示すグラフ図である。
FIG. 3 is a graph showing the relationship between the hydrogen concentration measurement value by the telegas method and the electromotive force of the sensor element of this example.

【図4】テレガス法による水素濃度測定値と、本実施例
のセンサ素子の起電力との関係を示すグラフ図である。
FIG. 4 is a graph showing a relationship between a measured hydrogen concentration by the telegas method and an electromotive force of the sensor element of the present embodiment.

【符号の説明】[Explanation of symbols]

1;センサ素子 2;基準極 3;測定極 4;セラミック絶縁管 5;リード線 6,9;導電性ペースト 7,10;粉末ガラスシール 8;セラミックホルダー 1; Sensor element 2; Reference electrode 3; Measuring electrode 4; Ceramic insulating tube 5; Lead wire 6, 9; Conductive paste 7, 10; Powder glass seal 8; Ceramic holder

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ペロブスカイト型プロトン導電性固体電
解質からなる一端閉塞形の素子と、この素子の開放端側
を突出させて外嵌し保持するスリーブと、前記素子の外
面に形成された多孔質電極からなる基準極と、前記素子
の内面に形成された多孔質電極からなる測定極と、前記
基準極と測定極とを隔離するシール材と、前記基準極と
接触して配置されガルバニ起電力の基準となる固体基準
物質とを有することを特徴とする溶融金属中の水素溶解
量測定用センサプローブ。
1. A one-end-closed element made of a perovskite-type proton conductive solid electrolyte, a sleeve for externally fitting and holding the open end side of the element, and a porous electrode formed on the outer surface of the element. A reference electrode consisting of, a measurement electrode consisting of a porous electrode formed on the inner surface of the element, a sealant separating the reference electrode and the measurement electrode, a galvanic electromotive force arranged in contact with the reference electrode A sensor probe for measuring the amount of dissolved hydrogen in a molten metal, which has a solid reference material as a reference.
【請求項2】 前記請求項1に記載の水素溶解量測定用
センサプローブを、前記素子の開放端側端部を溶融金属
中に浸漬して配置し、前記素子の内部に溶融金属の湯面
に接触する密閉空間を形成することを特徴とする水素溶
解量測定用センサプローブの使用方法。
2. The sensor probe for measuring the amount of dissolved hydrogen according to claim 1, wherein the open end side end portion of the element is immersed in molten metal and disposed, and the molten metal level inside the element. A method of using a sensor probe for measuring the amount of dissolved hydrogen, which comprises forming a closed space in contact with a substrate.
JP3347386A 1991-11-26 1991-12-27 Sensor probe for measuring the amount of dissolved hydrogen in molten metal and method of using the same Expired - Lifetime JP2530076B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP3347386A JP2530076B2 (en) 1991-12-27 1991-12-27 Sensor probe for measuring the amount of dissolved hydrogen in molten metal and method of using the same
KR1019920021565A KR970003280B1 (en) 1991-11-26 1992-11-17 Sensor probe for measuring hydrogen concentration in molten metal
AU28557/92A AU654219B2 (en) 1991-11-26 1992-11-23 Sensor probe for measuring hydrogen concentration in molten metal and method for measuring hydrogen concentration
US07/981,873 US5439579A (en) 1991-11-26 1992-11-25 Sensor probe for measuring hydrogen concentration in molten metal
AT92120184T ATE166973T1 (en) 1991-11-26 1992-11-26 METHOD AND DEVICE FOR MEASUREMENT OF HYDROGEN CONCENTRATION IN LIQUID METALS
CA002083909A CA2083909C (en) 1991-11-26 1992-11-26 Sensor probe for measuring hydrogen concentration in molten metal and method for measuring hydrogen concentration
EP92120184A EP0544281B1 (en) 1991-11-26 1992-11-26 Sensor probe for measuring hydrogen concentration in molten metal and method for measuring hydrogen concentration
DE69225778T DE69225778T2 (en) 1991-11-26 1992-11-26 Method and device for measuring the hydrogen concentration in liquid metals
TW081109836A TW207568B (en) 1991-11-26 1992-12-08
US08/302,604 US5445725A (en) 1991-11-26 1994-09-08 Sensor probe for measuring hydrogen concentration in molten metal and method for measuring hydrogen concentration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3347386A JP2530076B2 (en) 1991-12-27 1991-12-27 Sensor probe for measuring the amount of dissolved hydrogen in molten metal and method of using the same

Publications (2)

Publication Number Publication Date
JPH07225211A JPH07225211A (en) 1995-08-22
JP2530076B2 true JP2530076B2 (en) 1996-09-04

Family

ID=18389879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3347386A Expired - Lifetime JP2530076B2 (en) 1991-11-26 1991-12-27 Sensor probe for measuring the amount of dissolved hydrogen in molten metal and method of using the same

Country Status (1)

Country Link
JP (1) JP2530076B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021002199A1 (en) * 2019-07-01 2021-01-07 東京窯業株式会社 Solid reference material and hydrogen gas sensor

Also Published As

Publication number Publication date
JPH07225211A (en) 1995-08-22

Similar Documents

Publication Publication Date Title
KR970003280B1 (en) Sensor probe for measuring hydrogen concentration in molten metal
RU2107906C1 (en) Probe measuring concentration of oxygen and process of measurement of concentration of oxygen
JP2530076B2 (en) Sensor probe for measuring the amount of dissolved hydrogen in molten metal and method of using the same
JP2578542B2 (en) Sensor probe for measuring the amount of dissolved hydrogen in molten metal
JPH06273374A (en) Sensor probe for measuring solubility of oxygen in molten metal and measuring method
JPH07119730B2 (en) Sensor probe for measuring the amount of hydrogen dissolved in molten metal
JP2578544B2 (en) Sensor probe for measuring the amount of dissolved hydrogen in molten metal
JP2578543B2 (en) Sensor probe for measuring the amount of hydrogen dissolved in molten metal and method of using the same
JPH0720083A (en) Sensor probe for measuring amount of hydrogen in dissolution in melted metal
JPH07119728B2 (en) Sensor probe for measuring the amount of hydrogen dissolved in molten metal
JPH07119732B2 (en) Sensor probe for measuring the amount of hydrogen dissolved in molten metal
JPH0749331A (en) Sensor probe for measuring dissolution value of hydrogen in molten metal
CA1304128C (en) Unitary self-generating reference gas sensor
JP2878603B2 (en) Sensor for measuring dissolved amount of hydrogen in molten metal
JP3029473B2 (en) Sensor probe for measuring hydrogen concentration in molten metal
JPH04283654A (en) Measuring method for hydrogen concentration in melted metal and sensor prove used in execution thereof
JPH0829379A (en) Sensor for measuring quantity of hydrogen dissolved in molten metal
US5294313A (en) Sensors for monitoring waste glass quality and method of using the same
JPH0829381A (en) Sensor for measuring quantity of hydrogen dissolved in molten metal
JPH0829376A (en) Sensor for measuring quantity of hydrogen dissolved in molten metal
CA1293023C (en) Unitary self-referencing combined dual gas sensor
JPH01291155A (en) Method of measuring concentration of hydrogen
JPS6281560A (en) Hydrogen sensor for molten metal
JPH0829377A (en) Sensor for measuring quantity of hydrogen dissolved in molten metal
CN114072665A (en) Solid reference substance and hydrogen sensor