JP3227208B2 - Liquid crystal display - Google Patents

Liquid crystal display

Info

Publication number
JP3227208B2
JP3227208B2 JP18206192A JP18206192A JP3227208B2 JP 3227208 B2 JP3227208 B2 JP 3227208B2 JP 18206192 A JP18206192 A JP 18206192A JP 18206192 A JP18206192 A JP 18206192A JP 3227208 B2 JP3227208 B2 JP 3227208B2
Authority
JP
Japan
Prior art keywords
voltage
potential
liquid crystal
common
reference voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18206192A
Other languages
Japanese (ja)
Other versions
JPH0627901A (en
Inventor
幹夫 大城
克憲 田中
俊也 小野寺
克彦 岸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP18206192A priority Critical patent/JP3227208B2/en
Publication of JPH0627901A publication Critical patent/JPH0627901A/en
Application granted granted Critical
Publication of JP3227208B2 publication Critical patent/JP3227208B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、液晶表示装置に関し、
特に、アクティブマトリクス方式の液晶表示装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal display device,
In particular, the present invention relates to an active matrix type liquid crystal display device.

【0002】[0002]

【従来の技術】アクティブマトリクス方式の液晶表示装
置は、画素電極と共通電極の間に液晶を挟み込み、該液
晶の透過率を両電極間の電位差に応じて変化させるもの
で、画素電極に与える電圧を表示データの輝度情報に対
応させることにより、任意の表示輝度を得ることができ
る。 [第1の従来例]図5は、画素電極と共通電極に対する
基本的な電圧割り当て図である。この図において、V0
〜V7 および(V0 )〜(V7 )は電位差一定の画素電
極用の電圧(以下、基準電圧)、VCOM は共通電極用の
電圧(以下、コモン電圧)、Mは反転制御信号である。
信号MがL論理の期間(B)ではV0 〜V7 を使用し、
H論理の期間(A)では(V0 )〜(V7 )を使用す
る。例えば、両電極間の電位差が最小のときに光の透過
率が最大(白レベル)となるノーマリ・ホワイト型の液
晶の場合には、図6に示すように、画素電極にV0 (ま
たは(V0 ))を与えると白レベル、V7 (または(V
7 ))を与えると黒レベルを表示でき、さらに、V
0 (または(V0 ))からV7 (または(V7 ))まで
の間の任意の電圧を与えると、その電圧に応じた中間レ
ベルを表示できる。すなわち、図5によれば、V0 (ま
たは(V0 ))からV7 (または(V7 ))までの数と
同数の8階調を表示できる。次表1は、第1の従来例に
おける基準電圧の選択動作をまとめたものである。
2. Description of the Related Art In an active matrix type liquid crystal display device, a liquid crystal is sandwiched between a pixel electrode and a common electrode, and the transmittance of the liquid crystal is changed according to the potential difference between the two electrodes. Corresponds to the luminance information of the display data, it is possible to obtain an arbitrary display luminance. [First Conventional Example] FIG. 5 is a basic voltage assignment diagram for a pixel electrode and a common electrode. In this figure, V 0
VV 7 and (V 0 ) 〜 (V 7 ) are a voltage for a pixel electrode having a constant potential difference (hereinafter, a reference voltage), V COM is a voltage for a common electrode (hereinafter, a common voltage), and M is an inversion control signal. is there.
In a period (B) where the signal M is at L logic, V 0 to V 7 are used,
In the H logic period (A), (V 0 ) to (V 7 ) are used. For example, in the case of a normally white type liquid crystal in which the light transmittance is maximum (white level) when the potential difference between both electrodes is minimum, as shown in FIG. 6, V 0 (or ( V 0 )), the white level, V 7 (or (V
7 )), the black level can be displayed.
When an arbitrary voltage between 0 (or (V 0 )) and V 7 (or (V 7 )) is given, an intermediate level corresponding to that voltage can be displayed. That is, according to FIG. 5, V 0 (or (V 0)) show the number and eight gradations of the same number of up to V 7 (or (V 7)) from. Table 1 below summarizes the operation of selecting a reference voltage in the first conventional example.

【0003】 [0003]

【0004】しかしながら、かかる基本的な電圧割り当
てにあっては、図7にその基準電圧発生回路の例を示す
ように、高電位側電源VDDと低電位側電源VLOWの間の
電位差を8×2段階に抵抗分圧する必要があり、少なく
とも8×2個の抵抗R0 〜R 15と同じく8×2個のバッ
ファアンプB0 〜B15を備えなければならず、階調数の
2倍の基準電圧発生回路が必要になるといった不具合が
ある。また、電源VDDとVSSの間の電位差を少なくとも
16ステップ(1ステップは基準電圧間の電位差)以上
としなければならず、高電位の電源電圧を必要とする不
具合がある。 [第2の従来例]図8は上記の不具合を解消した電圧割
り当て図であり、反転制御信号Mに同期してコモン電圧
COM の極性を交互に反転させるようにしたものであ
る。
However, such basic voltage allocation
FIG. 7 shows an example of the reference voltage generating circuit.
As shown in FIG.DDAnd low-potential-side power supply VLOWBetween
It is necessary to divide the potential difference into 8 × 2 resistance steps.
Both 8 × 2 resistors R0 ~ R Fifteen8 x 2
FA AMP B0~ BFifteenMust be provided.
The disadvantage that a double reference voltage generation circuit is required
is there. Power supply VDDAnd VSSAt least the potential difference between
16 steps or more (1 step is the potential difference between reference voltages)
And requires a high-potential power supply voltage.
There is a condition. [Second Conventional Example] FIG. 8 is a diagram showing a voltage split in which the above problem is solved.
FIG. 9 is a diagram showing a common voltage synchronized with the inversion control signal M.
VCOMPolarity is alternately reversed.
You.

【0005】図9は、第2の従来例の基準電圧発生回路
の構成図である。この例では、VDDとVSSの間の電位差
を8個の抵抗R20〜R27で分圧し、8個のバッファアン
プB 20〜B27を介して8種類の基準電圧V0 〜V7 を取
り出している。これらの基準電圧は、液晶パネルのデー
タドライバ(図3参照)に与えられ、このデータドライ
バにおいて、1つの基準電圧が表示データ信号の内容に
応じて選択されるようになっている。これによれば、回
路規模の増大を回避できると共に、抵抗分圧のステップ
数を減少して電源の低電圧化を図ることができる。
FIG. 9 shows a second conventional reference voltage generating circuit.
FIG. In this example, VDDAnd VSSPotential difference between
With eight resistors R20~ R27And divide the pressure by 8
B 20~ B278 kinds of reference voltages V through0~ V7Take
It is protruding. These reference voltages are
Data driver (see Fig. 3).
One reference voltage is applied to the contents of the display data signal.
It is selected according to. According to this, times
It is possible to avoid the increase of the road scale, and the step of resistance partial pressure
The number of power supplies can be reduced by reducing the number.

【0006】なお、次表2は、第2の従来例における基
準電圧の選択動作をまとめたものである。 従って、第1の従来例では、16種類の基準電圧を発生
してこれをデータドライバに入力していたが、第2の従
来例では、半分の8種類で済む。
The following Table 2 summarizes the operation of selecting the reference voltage in the second conventional example. Therefore, in the first conventional example, 16 types of reference voltages are generated and input to the data driver, but in the second conventional example, only half of the 8 types are required.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記第
2の従来例にあっては、基準電圧間の電位差が一定であ
ったため、例えば、液晶の透過率が最小となる付近にお
ける階調変化がはっきりしなくなるといった問題点があ
る。すなわち、例えばノーマリ・ホワイト型の液晶の透
過率(図6参照)は、白レベルから黒レベルの直前にか
けて直線性よく推移するが、黒レベル付近の直線性が悪
いため、基準電圧V0 〜V7 の電位差ΔVが一定である
と、V0 −V1 、V 1 −V2 、……、V5 −V6 間の各
透過率の差に対してV6 −V7 の透過率の差が小さくな
り、黒レベル付近の階調変化が明瞭でなくなってしま
う。 [目的]そこで、本発明は、液晶への印加電圧を適正化
することにより、液晶の透過率が最小となる付近におけ
る階調の変化をはっきりとさせ、表示品質を改善するこ
とを目的とする。
SUMMARY OF THE INVENTION
In the second conventional example, the potential difference between the reference voltages is constant.
For example, in the vicinity where the transmittance of the liquid crystal becomes minimum,
The problem is that the gradation change
You. That is, for example, the transparency of normally white liquid crystal
Excess rate (see Fig. 6)
Is linear, but the linearity near the black level is poor.
The reference voltage V0~ V7Is constant.
And V0-V1, V 1-VTwo, ..., VFive-V6Between each
V for the difference in transmittance6-V7The difference in transmittance of
And the gradation change near the black level is not clear.
U. [Purpose] Therefore, the present invention optimizes the voltage applied to the liquid crystal.
By doing so, the liquid crystal transmittance is minimized
To improve the display quality
aimed to.

【0008】[0008]

【課題を解決するための手段】本発明は、上記目的を達
成するために、所定の高電位から所定の低電位までの間
を複数に等分したそれぞれの電位を有する基準電圧の1
つを表示データに応じて選択し、該選択電圧を液晶の画
素電極に与えると共に、該液晶の共通電極に極性が交互
に変化するコモン電圧を与え、該画素電極と共通電極間
の電位差に応じた透過率の変化を両電極間の液晶に生じ
させる液晶表示装置において、前記高電位よりも高い電
位を持つ第1の電圧と、前記低電位よりも低い電位を持
つ第2の電圧を生成し、前記コモン電圧が負極性のとき
は、前記複数の基準電圧のうち最も高い電位を有する基
準電圧に代えて第1の電圧を使用する一方、前記コモン
電圧が正極性のときは、前記複数の基準電圧のうち最も
低い電位を有する基準電圧に代えて第2の電圧を使用す
るように構成したことを特徴とする。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides a reference voltage having a potential between a predetermined high potential and a predetermined low potential, each of which is equally divided into a plurality of parts.
One according to the display data, applying the selected voltage to the pixel electrode of the liquid crystal, applying a common voltage of which polarity alternates to the common electrode of the liquid crystal, and according to the potential difference between the pixel electrode and the common electrode. A first voltage having a higher potential than the high potential and a second voltage having a lower potential than the low potential. When the common voltage has a negative polarity, the first voltage is used instead of the reference voltage having the highest potential among the plurality of reference voltages, while when the common voltage has a positive polarity, It is characterized in that the second voltage is used in place of the reference voltage having the lowest potential among the reference voltages.

【0009】[0009]

【作用】本発明では、例えばノーマリ・ホワイト型液晶
の場合の黒レベル表示において、コモン電圧の極性ごと
に第1の電圧と第2の電圧が交互に選択される。ここ
で、第1の電圧は所定の高電位よりも高い電圧であり、
また、第2の電圧は所定の低電位よりも低い電圧であ
る。したがって、第1の電圧と所定の高電位の間の電位
差、または第2の電圧と所定の低電位の間の電位差の分
だけ、液晶の透過率が大きく変化するから、液晶の透過
率が最小となる付近における階調の変化が明瞭化され
る。
According to the present invention, for example, in the black level display in the case of a normally white liquid crystal, the first voltage and the second voltage are alternately selected for each polarity of the common voltage. Here, the first voltage is a voltage higher than a predetermined high potential,
The second voltage is a voltage lower than a predetermined low potential. Therefore, the transmittance of the liquid crystal greatly changes by the potential difference between the first voltage and the predetermined high potential or the potential difference between the second voltage and the predetermined low potential. The change of the gradation in the vicinity of becomes clear.

【0010】[0010]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。図1〜図4は本発明に係る液晶表示装置の一実施
例を示す図である。図1において、VCOM は反転制御信
号Mに同期して極性が交互に反転するコモン電圧であ
り、このコモン電圧VCOM は液晶の共通電極に印加され
る。また、V 0 〜V7 および(V0 )〜(V7’)
は、表示データに応じて選択される8種類の階調電圧で
あり、これらの電圧は、図2の基準電圧発生回路によっ
て作られる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to the drawings.
I do. 1 to 4 show one embodiment of a liquid crystal display device according to the present invention.
It is a figure showing an example. In FIG. 1, VCOMIs the inversion control signal
The common voltage whose polarity is alternately inverted in synchronization with the signal M
This common voltage VCOMIs applied to the common electrode of the liquid crystal
You. Also, V 0~ V7 And (V0) To (V7’)
Are eight gradation voltages selected according to display data.
These voltages are generated by the reference voltage generation circuit of FIG.
Made

【0011】本実施例の基準電圧発生回路は、高電位側
電源VDDと低電位側電源VSSの間に、スイッチング用の
トランジスタTrを介して9個の抵抗R30〜R38を直列
に接続し、各抵抗の両端から計10種類の分圧電圧
A 、VB 、VC 、VD 、VE 、VF 、VG 、VH 、V
I およびVJ を取り出している。ここで、両端の2つの
抵抗R38、R30を除く7個の抵抗R31〜R37の値は等し
く、VB からVI までの電位差は一定である。したがっ
て、VA およびVJ を除くVB 、VC 、VD 、VE、V
F 、VG 、VH およびVI の各電圧は、所定の高電位と
してのVB から所定の低電位としてのVI までの間を7
等分したそれぞれの電位を有する電圧(以下、基準電
圧)であり、また、VA は所定の高電位(VB )よりも
高い電位を持つ第1の電圧、VJ は所定の低電位
(VI )よりも低い電位を持つ第2の電圧である。
[0011] The reference voltage generating circuit of this embodiment, between the high-potential power supply V DD and the low potential side power source V SS, nine resistors R 30 to R 38 via the transistor Tr for switching in series Connected, and a total of 10 divided voltages V A , V B , V C , V D , V E , V F , V G , V H , V
I and V J are taken out. Here, the value of seven resistors R 31 to R 37, excluding the two resistors R 38, R 30 at both ends are equal, the potential difference from V B to V I is constant. Therefore, V B , V C , V D , V E , V except for V A and V J
F, V G, the voltages V H and V I is the period from V B as a predetermined high potential to V I as a predetermined low potential 7
V A is a first voltage having a potential higher than a predetermined high potential (V B ), and V J is a predetermined low potential (hereinafter referred to as a reference voltage). a second voltage having a potential lower than V I).

【0012】SW1〜SW4はH論理の制御入力でオン
するアナログスイッチ、Gはインバータゲート、LS
1、LS2はレベルシフト回路であり、反転制御信号M
と逆相の信号SMXをSW1とSW3に与えると共に、同
相の信号SM をSW2とSW4に与えて各スイッチのオ
ン/オフをコントロールする。信号MのL論理期間では
SW1とSW3がオンとなってVA およびVI が選択さ
れる一方、H論理期間ではSW2とSW4がオンとなっ
てVB およびVJ が選択される。
SW1 to SW4 are analog switches which are turned on by H logic control input, G is an inverter gate, LS
1, LS2 is a level shift circuit, and an inversion control signal M
And the signal S MX reverse phase with giving the SW1 and SW3, controls the on / off of each switch giving a signal S M-phase to SW2 and SW4. In L logic period of the signal M is SW1 and SW3 are while V A and V I turned on is selected, the H logic period SW2 and SW4 are V B and V J is selected turned on.

【0013】VA (またはVB )、VI (またはVJ
およびVC 〜VH の基準電圧は、図3に示すように、液
晶表示装置のデータドライバに与えられる。このデータ
ドライバは、制御回路からの制御信号に従って液晶パネ
ルのデータラインを線順次に選択すると共に、その選択
データラインを1つの基準電圧で駆動するもので、基準
電圧は、制御回路からの表示データ(階調信号)と制御
信号中の反転制御信号Mとに従って選択される。
V A (or V B ), V I (or V J )
The reference voltages V C and V H are applied to the data driver of the liquid crystal display device as shown in FIG. The data driver selects a data line of the liquid crystal panel line-sequentially in accordance with a control signal from the control circuit, and drives the selected data line with one reference voltage. (Gradation signal) and the inverted control signal M in the control signal.

【0014】次表3は、図3のデータドライバにおける
基準電圧の選択動作をまとめたものである。
Table 3 below summarizes the operation of selecting the reference voltage in the data driver of FIG.

【0015】この表3から理解されるように、反転制御
信号MがL論理の期間(言い替えればコモン電圧VCOM
の負極性期間)に黒レベルを表示する際は、VB 〜VI
の中で最も高い電位を有する基準電圧(VB )の代わり
に、それよりも高電位の第1の電圧VA が使用される。
あるいは、反転制御信号MがH論理の期間(言い替えれ
ばコモン電圧VCOM の正極性期間)に黒レベルを表示す
る際は、VB 〜VI の中で最も低い電位を有する基準電
圧(VI )の代わりに、それよりも低い電位の第2の電
圧VJ が使用される。
As can be understood from Table 3, the inversion control signal M is in the period of L logic (in other words, the common voltage V COM
When the black level is displayed during the negative polarity period), V B to V I
Instead of the reference voltage (V B ) having the highest potential, a first voltage VA having a higher potential is used.
Alternatively, when the inverted control signal M to display the black level during the H logic (positive polarity period of the common voltage V COM other words) is, V B ~V reference voltage (V I having the lowest potential in the I ), A lower potential second voltage V J is used.

【0016】したがって、図4に示すように、V6 とV
7’の間の電位差および(V6 )と(V7’)の間の電位
差が、V0 〜V6 および(V0 )〜(V6 )の間の電位
差よりも拡大される結果、直線性の点で問題のある黒レ
ベル(但し、ノーマリ・ホワイト型液晶の場合)付近に
おける透過率の変化量を、上記電位差に対応させて大き
くすることができ、当該黒レベル付近での階調の変化を
はっきりさせることができる。
[0016] Therefore, as shown in FIG. 4, V 6 and V
The potential difference between the 7 'potential difference between the and the (V 6) (V 7' ) is, V 0 ~V 6 and (V 0) ~ results is enlarged than the potential difference between (V 6), linear The amount of change in transmittance near a black level (however, in the case of a normally white liquid crystal) which has a problem in terms of characteristics can be increased in accordance with the potential difference, and the gradation of the gray level near the black level can be increased. The change can be clarified.

【0017】なお、本実施例では8階調を例としている
がこの階調数に限定されないことは勿論であり、また、
ノーマリ・ブラック型にも適用できることは言うまでも
ない。
In this embodiment, eight gradations are taken as an example, but it is needless to say that the number of gradations is not limited.
Needless to say, it can be applied to a normally black type.

【0018】[0018]

【発明の効果】本発明によれば、液晶への印加電圧を適
正化したので、液晶の透過率が最小となる付近における
階調の変化をはっきりとさせ、表示品質を改善すること
ができる。
According to the present invention, since the voltage applied to the liquid crystal is optimized, the gradation change near the minimum transmittance of the liquid crystal can be made clear and the display quality can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】一実施例の電圧割り当ての概念図である。FIG. 1 is a conceptual diagram of voltage assignment according to one embodiment.

【図2】一実施例の基準電圧発生回路の構成図である。FIG. 2 is a configuration diagram of a reference voltage generation circuit according to one embodiment.

【図3】一実施例の液晶表示装置のブロック図である。FIG. 3 is a block diagram of a liquid crystal display device according to one embodiment.

【図4】一実施例の透過率−電圧(T−V)特性図であ
る。
FIG. 4 is a transmittance-voltage (TV) characteristic diagram of an example.

【図5】第1の従来例の電圧割当の概念図である。FIG. 5 is a conceptual diagram of voltage allocation according to a first conventional example.

【図6】第1の従来例の透過率−電圧(T−V)特性図
である。
FIG. 6 is a transmittance-voltage (TV) characteristic diagram of the first conventional example.

【図7】第1の従来例の基準電圧発生回路の構成図であ
る。
FIG. 7 is a configuration diagram of a reference voltage generation circuit of a first conventional example.

【図8】第2の従来例の電圧割当の概念図である。FIG. 8 is a conceptual diagram of voltage allocation according to a second conventional example.

【図9】第2の従来例の基準電圧発生回路の構成図であ
る。
FIG. 9 is a configuration diagram of a second conventional reference voltage generation circuit.

【符号の説明】[Explanation of symbols]

B :分圧電圧(所定の高電位) VI :分圧電圧(所定の低電位) VB 〜VI :基準電圧 VCOM :コモン電圧 VA :第1の電圧 VJ :第2の電圧V B: divided voltage (a predetermined high potential) V I: divided voltage (a predetermined low potential) V B ~V I: reference voltage V COM: the common voltage V A: the first voltage V J: second Voltage

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岸田 克彦 神奈川県川崎市中原区上小田中1015番地 富士通株式会社内 (58)調査した分野(Int.Cl.7,DB名) G09G 3/36 G02F 1/133 520 G02F 1/133 550 G02F 1/133 575 G09G 3/20 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Katsuhiko Kishida 1015 Kamiodanaka, Nakahara-ku, Kawasaki City, Kanagawa Prefecture Inside Fujitsu Limited (58) Field surveyed (Int.Cl. 7 , DB name) G09G 3/36 G02F 1 / 133 520 G02F 1/133 550 G02F 1/133 575 G09G 3/20

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】所定の高電位から所定の低電位までの間を
複数に等分したそれぞれの電位を有する基準電圧の1つ
を表示データに応じて選択し、 該選択電圧を液晶の画素電極に与えると共に、該液晶の
共通電極に極性が交互に変化するコモン電圧を与え、 該画素電極と共通電極間の電位差に応じた透過率の変化
を両電極間の液晶に生じさせる液晶表示装置において、 前記高電位よりも高い電位を持つ第1の電圧と、前記低
電位よりも低い電位を持つ第2の電圧を生成し、 前記コモン電圧が負極性のときは、前記複数の基準電圧
のうち最も高い電位を有する基準電圧に代えて第1の電
圧を使用する一方、 前記コモン電圧が正極性のときは、前記複数の基準電圧
のうち最も低い電位を有する基準電圧に代えて第2の電
圧を使用するように構成したことを特徴とする液晶表示
装置。
1. A method for selecting one of reference voltages having respective potentials equally divided into a plurality of portions from a predetermined high potential to a predetermined low potential according to display data, and selecting the selected voltage with a pixel electrode of a liquid crystal. And a common voltage whose polarity changes alternately is applied to a common electrode of the liquid crystal, and a change in transmittance according to a potential difference between the pixel electrode and the common electrode is caused in the liquid crystal between the two electrodes. Generating a first voltage having a higher potential than the high potential and a second voltage having a lower potential than the low potential; and when the common voltage has a negative polarity, among the plurality of reference voltages, While the first voltage is used instead of the reference voltage having the highest potential, when the common voltage has a positive polarity, the second voltage is used instead of the reference voltage having the lowest potential among the plurality of reference voltages. Configured to use The liquid crystal display device, characterized in that.
JP18206192A 1992-07-09 1992-07-09 Liquid crystal display Expired - Lifetime JP3227208B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18206192A JP3227208B2 (en) 1992-07-09 1992-07-09 Liquid crystal display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18206192A JP3227208B2 (en) 1992-07-09 1992-07-09 Liquid crystal display

Publications (2)

Publication Number Publication Date
JPH0627901A JPH0627901A (en) 1994-02-04
JP3227208B2 true JP3227208B2 (en) 2001-11-12

Family

ID=16111664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18206192A Expired - Lifetime JP3227208B2 (en) 1992-07-09 1992-07-09 Liquid crystal display

Country Status (1)

Country Link
JP (1) JP3227208B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101107111B (en) * 2005-01-21 2011-06-08 东洋制罐株式会社 Method and device for feeding molten resin, and method of manufacturing molded part by using the fed molten resin

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3199978B2 (en) * 1995-03-31 2001-08-20 シャープ株式会社 Liquid crystal display
TW518882B (en) * 2000-03-27 2003-01-21 Hitachi Ltd Liquid crystal display device for displaying video data
JP3511592B2 (en) 2000-09-27 2004-03-29 株式会社アドバンスト・ディスプレイ Liquid crystal display
KR100415510B1 (en) * 2001-03-15 2004-01-16 삼성전자주식회사 Liquid crystal display device with a function of adaptive brightness intensifier and method for therefor
KR100840672B1 (en) * 2001-12-29 2008-06-24 엘지디스플레이 주식회사 Gamma reference voltage setting device in lcd and setting method using it
KR101330353B1 (en) * 2008-08-08 2013-11-20 엘지디스플레이 주식회사 Liquid Crystal Display and Driving Method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101107111B (en) * 2005-01-21 2011-06-08 东洋制罐株式会社 Method and device for feeding molten resin, and method of manufacturing molded part by using the fed molten resin

Also Published As

Publication number Publication date
JPH0627901A (en) 1994-02-04

Similar Documents

Publication Publication Date Title
JP3568644B2 (en) Liquid crystal display device and driving method thereof
JP4579377B2 (en) Driving circuit and method for displaying multi-gradation digital video data
US20060232534A1 (en) Liquid crystal display device and driving method for liquid crystal display device
JPH0546125A (en) Liquid crystal display device
US20040075674A1 (en) Gamma correction apparatus for a liquid crystal display
JPH0549085B2 (en)
JP3391334B2 (en) Driving method, driving circuit, and display device for liquid crystal device
JP2003114659A (en) Liquid crystal driving device
EP0488516A2 (en) Method and apparatus for displaying gray-scale levels
JP3227208B2 (en) Liquid crystal display
JP2708380B2 (en) Digital-to-analog converter for performing gamma correction and liquid crystal display
JPH0540451A (en) Liquid crystal driving voltage generating circuit
JP2001201732A (en) Liquid crystal display device
JP2000137467A (en) Signal line driving circuit for liquid crystal display
JP3426723B2 (en) Liquid crystal display device and driving method thereof
JPS5823090A (en) Display
JP3943605B2 (en) Multi-gradation display device
JPH1124637A (en) Drive method for simple matrix liquid crystal display
JP3482667B2 (en) Driving method of liquid crystal display device and liquid crystal display device
JP3633943B2 (en) Liquid crystal display
JPH06301356A (en) Driving circuit for liquid crystal display device
JP3391048B2 (en) Liquid crystal device driving method, liquid crystal device driving circuit, and display device
EP1486944B1 (en) Gamma correction apparatus for a liquid crystal display
JP3482940B2 (en) Driving method, driving circuit, and display device for liquid crystal device
JPH07114001A (en) Liquid crystal display device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010821

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070831

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080831

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080831

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090831

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090831

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 11

EXPY Cancellation because of completion of term