JP3225286B2 - Method for measuring residual stress of metallic materials - Google Patents

Method for measuring residual stress of metallic materials

Info

Publication number
JP3225286B2
JP3225286B2 JP19187297A JP19187297A JP3225286B2 JP 3225286 B2 JP3225286 B2 JP 3225286B2 JP 19187297 A JP19187297 A JP 19187297A JP 19187297 A JP19187297 A JP 19187297A JP 3225286 B2 JP3225286 B2 JP 3225286B2
Authority
JP
Japan
Prior art keywords
indenter
stress
residual stress
indenters
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19187297A
Other languages
Japanese (ja)
Other versions
JPH1123383A (en
Inventor
信夫 戸塚
俊治 酒井
宣雄 中島
弘道 光田
Original Assignee
株式会社原子力安全システム研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社原子力安全システム研究所 filed Critical 株式会社原子力安全システム研究所
Priority to JP19187297A priority Critical patent/JP3225286B2/en
Publication of JPH1123383A publication Critical patent/JPH1123383A/en
Application granted granted Critical
Publication of JP3225286B2 publication Critical patent/JP3225286B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、主として各種プラ
ントの構成部材である金属材料の健全性あるいは寿命評
価の手段の1つである金属材料の残留応力測定方法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring residual stress of a metal material, which is one of means for evaluating the soundness or life of a metal material which is a component of various plants.

【0002】[0002]

【従来の技術】従来の残留応力測定技術としては、抵抗
線歪みゲージ(以下歪みゲージと略す)を測定対象物表
面に接着剤で貼り付けた後、該歪みゲージ周辺を穿孔あ
るいは切断して該歪みゲージ部の残留応力を開放するこ
とにより測定する方法や、X線を利用し、X線源から測
定対象個所にX線を照射し、測定対象個所で回折してX
線検出機で検出した回折X線を解析することにより格子
歪みを測定する方法が最も汎用的に使用されている方法
である。
2. Description of the Related Art As a conventional residual stress measurement technique, a resistance wire strain gauge (hereinafter, abbreviated as a strain gauge) is attached to the surface of an object to be measured with an adhesive, and the periphery of the strain gauge is perforated or cut. A method of measuring by releasing the residual stress of the strain gauge part, or using X-rays, irradiating X-rays from an X-ray source to a measurement target location, diffracting the X-rays at the measurement target location,
A method of measuring lattice distortion by analyzing diffracted X-rays detected by a line detector is the most widely used method.

【0003】しかしながらこれら従来法では、以下に述
べるような欠点があった。すなわち、歪みゲージによる
方法では、歪みゲージを張りつけるために対象物表面を
清浄にしたり、歪みゲージを張りつける作業が必要にな
るため、これらの作業が困難な長いパイプの内面や隙間
部分のような狭隘部の測定が困難であるという問題があ
る。また、この歪みゲージを張りつけた後に応力除去作
業を行うことから、応力測定を行うまでの間に上記歪み
ゲージやリード線を傷つけて測定できなくなってしまう
危険性がある。
However, these conventional methods have the following disadvantages. In other words, in the method using a strain gauge, it is necessary to clean the surface of the object in order to attach the strain gauge or to attach the strain gauge. There is a problem that the measurement of the part is difficult. In addition, since the stress is removed after the strain gauge is attached, there is a risk that the strain gauge or the lead wire may be damaged before the stress measurement is performed, and the measurement may not be performed.

【0004】一方、X線による方法では、X線発生源及
びX線検出機を対象物の直近に配置しなくてはならない
ため、歪みゲージによる方法よりもさらに広い作業空間
が必要になり、かつ測定用機材も大きなものとなること
から、持ち運びにも不便であるという欠点がある。
On the other hand, in the method using X-rays, an X-ray source and an X-ray detector must be arranged in the immediate vicinity of an object, so that a larger work space is required than the method using strain gauges, and There is a drawback in that it is inconvenient to carry because the measuring equipment becomes large.

【0005】[0005]

【発明が解決しようとする課題】本発明は上記従来技術
の欠点を克服し、測定用機材の持ち運びも簡単で且つ狭
隘部でも測定可能な簡便な残留応力の測定方法を提供す
ることを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a simple method for measuring residual stress, which overcomes the above-mentioned disadvantages of the prior art and can easily carry measuring equipment even in a narrow portion. I do.

【0006】[0006]

【課題を解決するための手段】本願発明者等は、表面を
特に清浄にしなくても残留応力を測定できる方法として
測定対象物の表面に正確に一定距離を刻印し、かつその
距離を正確に測定することによって上記従来技術の欠点
が克服可能であることを発見し、この発明に至ったもの
である。
SUMMARY OF THE INVENTION The present inventors have proposed a method for imprinting a predetermined distance on the surface of an object to be measured and measuring the distance accurately as a method for measuring residual stress without particularly cleaning the surface. The inventors have found that the above-mentioned drawbacks of the prior art can be overcome by measurement, and have led to the present invention.

【0007】すなわち、本発明の金属材料の残留応力測
定方法は、多角錘状に形成した複数の圧子を、角錘の頂
部を先端として所定間隔をおいてマーカーのヘッド部に
固定し、このマーカーのヘッド部を金属の表面に押し当
てて上記圧子により刻印を施し、のちこの刻印を施した
金属を周囲から切り離して応力開放し、この応力開放し
た状態で測定した刻印間の距離と上記圧子の先端間の距
離とを比較することにより上記金属の残留応力を測定す
ることを特徴とする。
That is, in the method for measuring residual stress of a metal material according to the present invention, a plurality of indenters formed in a polygonal pyramid shape are fixed to a head portion of a marker at a predetermined interval with the top of a pyramid as a tip, and The head part is pressed against the surface of the metal to make a mark with the indenter, then the metal with the mark is separated from the surroundings to release the stress, and the distance between the marks measured in a state where the stress is released and the indenter of the indenter The method is characterized in that the residual stress of the metal is measured by comparing the distance between the tips.

【0008】また、上記本発明の測定方法において、上
記圧子をダイヤモンド、サファイヤ、または超硬金属の
何れか1つにより構成し、かつこの圧子がなす多角錘の
形状を、頂部が底面の中心上にある多角錘とすることも
好適である。さらに、上記圧子の先端同士を結ぶ線が、
直線または多角形をなすように、これら複数の圧子を配
設することも好適である。
In the measuring method of the present invention, the indenter is made of any one of diamond, sapphire and cemented carbide, and the shape of the polygon formed by the indenter is such that the top is above the center of the bottom surface. Is also preferable. Furthermore, the line connecting the tips of the indenter is
It is also preferable to arrange these indenters so as to form a straight line or a polygon.

【0009】[0009]

【作用】上記本発明の測定方法に使用するマーカーは、
多角錘状の圧子を採用していることから、例えば頂点が
磨耗したとしても角錘の稜線(母線)をたどることによ
って頂点の位置を決定することが可能である。
The marker used in the measurement method of the present invention is as follows:
Since a polygonal pyramid-shaped indenter is employed, even if the apex is worn, for example, the position of the apex can be determined by following the ridge line (generating line) of the pyramid.

【0010】すなわち、上記本発明においては、残留応
力測定対象金属の表面に常に正確に2点間距離を刻印す
ることが可能であり、この刻印間距離を応力開放の後に
測定用顕微鏡等を用いて精密に測定すると共に、この測
定値を上記マーカーの圧子先端間の距離と比較すること
により、特に洗浄や研磨等の前処理を必要とすることな
く、また狭いパイプの内部等の部位でも金属材料の残留
応力を簡便に測定することが可能である。
That is, in the present invention, the distance between two points can always be imprinted accurately on the surface of the metal to be measured for residual stress, and the distance between the imprints is determined using a measuring microscope or the like after releasing the stress. In addition to measuring accurately and comparing the measured value with the distance between the indenter tips of the above markers, no special treatment such as cleaning or polishing is required, It is possible to easily measure the residual stress of the material.

【0011】[0011]

【発明の実施の形態】以下さらに添付図面を参照して、
本発明の実施の形態を説明する。
BRIEF DESCRIPTION OF THE DRAWINGS FIG.
An embodiment of the present invention will be described.

【0012】図1〜図5は夫々本発明実施形態のマーカ
ーのヘッド部を示す正面図及び側面図、図6、図7は同
マーカーの圧子を示す正面図及び側面図である。
FIGS. 1 to 5 are a front view and a side view showing a head portion of a marker according to an embodiment of the present invention, and FIGS. 6 and 7 are a front view and a side view showing an indenter of the marker.

【0013】本発明の測定方法に使用するマーカーは、
例えば図6、図7に示すように底面aの中心bの真上に
頂部cがあるような正三角錘や四角錘の複数の圧子1を
備えている。これら圧子1はダイヤモンド、サファイヤ
や、超硬金属等の高硬度のものからなり、上記マーカー
は、これら複数の圧子1を、角錘の頂部cを先端とし
て、かつ決められた間隔をもってヘッド部2に固定して
いる。
The marker used in the measuring method of the present invention is
For example, as shown in FIGS. 6 and 7, a plurality of indenters 1 having a regular triangular pyramid or a quadrangular pyramid having a top c right above a center b of a bottom surface a is provided. These indenters 1 are made of a material having a high hardness such as diamond, sapphire, or a super hard metal. It is fixed to.

【0014】このヘッド部2への圧子1の固定は、圧子
1の先端c同士を結ぶ線が図1のような直線状、図2に
示すような直角二等辺三角形状、図3に示すような正三
角形状、図4に示すような正方形状、あるいは図5に示
すような長方形状等を採用しうる。圧子1は何れも強力
な接着剤によりヘッド部に固定されている。
The indenter 1 is fixed to the head portion 2 by connecting a line connecting the tips c of the indenter 1 to a straight line as shown in FIG. 1, a right-angled isosceles triangle as shown in FIG. An equilateral triangular shape, a square shape as shown in FIG. 4, or a rectangular shape as shown in FIG. Each of the indenters 1 is fixed to the head portion by a strong adhesive.

【0015】本発明の残留応力の測定方法は、かかるマ
ーカーのヘッド部2を金属表面に押し当てて上記圧子1
により刻印を施し、その後、この刻印を施した金属を周
囲から切り離して応力開放し、この応力開放した状態で
測定した刻印間の距離と上記圧子1の先端間の距離とを
比較する。
In the method for measuring residual stress according to the present invention, the indenter 1 is pressed by pressing the head portion 2 of the marker against a metal surface.
Then, the metal with the mark is separated from the surroundings to release the stress, and the distance between the marks measured in the state where the stress is released and the distance between the tips of the indenter 1 are compared.

【0016】(実験例1)本発明の残留応力測定方法の
精度を検証するため、下記表1に示す各種形状、材質の
圧子を有する2点マーカー(図1参照)を用いて以下の
検証を行った。なお、歪み量から応力を計算するには、
試験を単軸引張りと考えて下記の数式1を用いた。ま
た、ヤング率は、21000kg/mm2 として計算し
た。
(Experimental Example 1) In order to verify the accuracy of the residual stress measurement method of the present invention, the following verification was performed using a two-point marker (see FIG. 1) having indenters of various shapes and materials shown in Table 1 below. went. To calculate the stress from the strain amount,
The following formula 1 was used, considering the test as uniaxial tension. The Young's modulus was calculated as 21,000 kg / mm 2 .

【0017】[0017]

【数1】σ=E・ε σ:応力 E:ヤング率 ε:歪み量 以下余白Σ = E · ε σ: stress E: Young's modulus ε: amount of distortion or less

【0018】[0018]

【表1】 以下余白[Table 1] Below margin

【0019】すなわち図8に示す形状の高張力鋼(Y
S;78.3Kg/mm2 )製の引張り試験片Sの片面
に歪みゲージ(ゲージ長5mm、120Ω、1軸)を貼
り付け、ごの試験片Sを引き張り試験機にセットし、引
っ張り応力がある値になった時点で2点マーカーで刻印
し、同時に歪みゲージの値を測定したあと除荷した。そ
して、刻印間距離を測定用顕微鏡で測定すると共に、マ
ーカーの圧子先端間の距離と比較することにより、歪み
量を測定し、歪みゲージの値および試験機の値と比較し
た。その結果を前記表1に示すが、いずれの圧子での測
定でも歪みゲージと同等以上の精度が得られた。なお、
ここで実績荷重が試験機の値で真値であり、この値に近
いほど精度の高い測定値と言える。
That is, a high-tensile steel (Y
S: A strain gauge (gauge length 5 mm, 120 Ω, uniaxial) was attached to one surface of a tensile test piece S made of 78.3 kg / mm 2 ), and the test piece S was set on a tensile tester, and tensile stress was applied. When a certain value was reached, marking was performed with a two-point marker, and at the same time, the value of the strain gauge was measured and then unloaded. The distance between the marks was measured with a measuring microscope, and the distance between the indenters of the marker was compared with the distance between the indenters. The amount of strain was measured and compared with the value of a strain gauge and the value of a testing machine. The results are shown in Table 1 above, and the measurement with any indenter gave an accuracy equal to or higher than that of the strain gauge. In addition,
Here, the actual load is a true value in the value of the tester, and the closer to this value, the higher the accuracy of the measured value.

【0020】(実験例2)次に、図2〜図5に示したよ
うな3点または4点マーカーヘッド部2を用い、例えば
このヘッド部2を図9に示す如きマーキングジグに組み
入れることにより、狭いパイプP内部にも刻印すること
が可能である。図において、2は図示左右に移動するマ
ーカーヘッド部、3はこのマーカーヘッド部2の反力を
受ける反力受け、4は駆動伝達軸、5はクランプ、6は
モータを夫々示している。
(Experimental Example 2) Next, a three-point or four-point marker head 2 as shown in FIGS. 2 to 5 is used, and this head 2 is assembled into a marking jig as shown in FIG. 9 by way of example. It is also possible to inscribe the inside of the narrow pipe P. In the drawing, reference numeral 2 denotes a marker head portion that moves left and right in the figure, 3 denotes a reaction force receiver that receives the reaction force of the marker head portion 2, 4 denotes a drive transmission shaft, 5 denotes a clamp, and 6 denotes a motor.

【0021】このようなジグを用いればマーカーのヘッ
ド部2が入る隙間があれば刻印することが可能であり、
内径50mm、外径70mm、長さ2mのステンレス鋼
製パイプの片端から反対側の端の内面に刻印することが
できた。
If such a jig is used, it is possible to engrave if there is a gap into which the head part 2 of the marker can enter.
The stainless steel pipe having an inner diameter of 50 mm, an outer diameter of 70 mm, and a length of 2 m could be stamped on the inner surface of one end from the other end.

【0022】また、同じパイプPの片端部に歪みゲージ
(ゲージ長1mm、120Ω、2軸)を図10(A)
(B)に示す位置にはりつけた後、端部50mmを圧縮
試験機で圧縮し、一定荷重に達した時点でパイプPの反
対側から刻印部を切出し、パイプ軸方向と周方向の2点
間距離を夫々測定して歪みゲージと比較した。その結果
を表2に示す。なお、表2中、−は圧縮力を示す。ただ
しマーカーは3点マーカーと4点マーカー計4種類を使
用したが、圧子は四角錘のダイヤモンドのみとした。こ
れからも明らかなように、本発明による測定は、歪みゲ
ージによる方法と同等以上の精度が得られたことがわか
る。
A strain gauge (gauge length: 1 mm, 120Ω, biaxial) is provided at one end of the same pipe P as shown in FIG.
After fixing to the position shown in (B), the end 50 mm was compressed with a compression tester, and when a certain load was reached, the engraved part was cut out from the opposite side of the pipe P, and between the two points in the pipe axial direction and the circumferential direction. Each distance was measured and compared with a strain gauge. Table 2 shows the results. In Table 2,-indicates a compressive force. However, four types of markers, a three-point marker and a four-point marker, were used, but the indenter was only a square pyramid diamond. As is clear from the above, it is understood that the measurement according to the present invention has obtained an accuracy equal to or higher than that of the method using a strain gauge.

【0023】なお、歪み量から応力を計算するには、下
記の数式1を用いた。また、ヤング率は、18000k
g/mm2 として計算した。
The following equation 1 was used to calculate the stress from the amount of strain. The Young's modulus is 18000k
g / mm 2 .

【0024】[0024]

【数1】 x方向応力 σX =E・(1−γ2 )・(εx +εy ・γ) y方向応力 σy =E・(1−γ2 )・(εy +εx ・γ) σx :x方向応力 E:ヤング率 εx :x方向歪み量 σy :y方向応力 γ:ポアソン比 εy :y方向歪み量 以下余白## EQU1 ## Stress in the x direction σ X = E · (1−γ 2 ) · (ε x + ε y · γ) Stress in the y direction σ y = E · (1−γ 2 ) · (ε y + ε x · γ) σ x : stress in x direction E: Young's modulus ε x : amount of strain in x direction σ y : stress in y direction γ: Poisson's ratio ε y : amount of strain in y direction

【0025】[0025]

【表2】 [Table 2]

【0026】[0026]

【発明の効果】以上説明したように、本発明の金属材料
の残留応力測定方法は、多角錘状に形成した複数の圧子
を、角錘の頂部を先端として所定間隔をおいてマーカー
のヘッド部に固定し、このマーカーのヘッド部を金属の
表面に押し当てて上記圧子により刻印を施し、のちこの
刻印を施した金属を周囲から切り離して応力開放し、こ
の応力開放した状態で測定した刻印間の距離と上記圧子
の先端間の距離とを比較することにより上記金属の残留
応力を測定するものであり、上記角錘状の圧子によって
残留応力測定対象金属の表面に常に正確に2点間距離を
刻印することが可能であり、この刻印間距離を上記応力
開放の後に精密に測定すると共に、この測定値を上記マ
ーカーの圧子先端間の距離と比較することにより、特に
洗浄や研磨等の前処理を必要とすることなく、しかも従
来は測定が困難であったパイプ内部等の狭隘部において
も残留応力を簡便に測定しうるとの顕著な効果を奏する
ものである。
As described above, in the method for measuring residual stress of a metal material according to the present invention, a plurality of indenters formed in the shape of a polygonal pyramid are formed by placing a plurality of indenters at a predetermined interval with the top of a pyramid as a tip. , The head of the marker is pressed against the surface of the metal, and the indenter is used to perform engraving. Thereafter, the engraved metal is cut off from the surroundings to release the stress, and the interval between the inscriptions measured in a state where the stress is released is obtained. The residual stress of the metal is measured by comparing the distance between the tip and the tip of the indenter, and the distance between two points is always accurately measured by the pyramidal indenter on the surface of the metal to be measured for residual stress. The distance between the marks can be precisely measured after the stress release, and the measured value can be compared with the distance between the indenter tips of the markers, especially before washing or polishing. Without the need for physical, yet those conventionally that a marked effect of the measurement can be conveniently measuring the residual stress in the narrow portion of the pipe inside such difficult.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(A)本発明測定方法に使用する2点マーカー
ヘッドを示す正面図である。 (B)同、側面図である。
FIG. 1A is a front view showing a two-point marker head used in the measurement method of the present invention. (B) The same is a side view.

【図2】(A)同、3点マーカーヘッドを示す正面図で
ある。 (B)同、側面図である。
FIG. 2A is a front view showing the same three-point marker head. (B) The same is a side view.

【図3】(A)同、3点マーカーヘッドの他の例を示す
正面図である。 (B)同、側面図である。
FIG. 3A is a front view showing another example of the three-point marker head. (B) The same is a side view.

【図4】(A)同、4点マーカーヘッドを示す正面図で
ある。 (B)同、側面図である。
FIG. 4A is a front view showing the same four-point marker head. (B) The same is a side view.

【図5】(A)同、4点マーカーヘッドの他の例を示す
正面図である。 (B)同、側面図である。
FIG. 5A is a front view showing another example of the same four-point marker head. (B) The same is a side view.

【図6】(A)三角錘状の圧子を示す正面図である。 (B)同、側面図である。FIG. 6A is a front view showing a triangular pyramid-shaped indenter. (B) It is a side view.

【図7】(A)四角錘状の圧子を示す正面図である。 (B)同、側面図である。FIG. 7A is a front view showing a quadrangular pyramid-shaped indenter. (B) It is a side view.

【図8】(A)引張試験片を示す正面図である。 (B)同、側面図である。FIG. 8A is a front view showing a tensile test piece. (B) It is a side view.

【図9】本発明の測定方法に使用するマーカージグの一
例を示す正面図である。
FIG. 9 is a front view showing an example of a marker jig used in the measurement method of the present invention.

【図10】(A)パイプによる応力測定試験の状態を示
す模式図である。 (B)同図(A)から90°角度を変えて行った応力測
定試験の状態を示す模式図である。
FIG. 10A is a schematic diagram showing a state of a stress measurement test using a pipe. (B) It is a schematic diagram which shows the state of the stress measurement test performed by changing 90 degree angle from FIG.

【符号の説明】[Explanation of symbols]

1 圧子 2 ヘッド部(マーカー) 3 反力受け 4 駆動伝達軸 5 クランプ 6 モータ c 角錘の頂部(圧子の先端) Reference Signs List 1 indenter 2 head (marker) 3 reaction force receiver 4 drive transmission shaft 5 clamp 6 motor c top of pyramid (tip of indenter)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中島 宣雄 京都府相楽郡精華町大字南稲八妻小字大 谷123番地株式会社原子力安全システム 研究所内 (72)発明者 光田 弘道 京都府相楽郡精華町大字南稲八妻小字大 谷123番地株式会社原子力安全システム 研究所内 (56)参考文献 特開 昭62−44637(JP,A) 特開 昭61−269032(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01L 1/00 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Norio Nakajima 123, Osamu, Minami-Ina, Yasuma-cho, Seika-cho, Soraku-gun, Kyoto Nuclear Safety Systems Research Institute, Inc. (72) Hiromichi Mitsuda Hiromichi Mitsuda 123, Otani Minami-Ina, Yasuma-Small, Otani, Japan Nuclear Safety Systems Research Institute, Inc. (56) References JP-A-62-44637 (JP, A) JP-A-61-269032 (JP, A) (58) (Int.Cl. 7 , DB name) G01L 1/00

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 多角錘状に形成した複数の圧子を、角錘
の頂部を先端として所定間隔をおいてマーカーのヘッド
部に固定し、このマーカーのヘッド部を金属の表面に押
し当てて上記圧子により刻印を施し、のちこの刻印を施
した金属を周囲から切り離して応力開放し、この応力開
放した状態で測定した刻印間の距離と上記圧子の先端間
の距離とを比較することにより上記金属の残留応力を測
定することを特徴とする金属材料の残留応力測定方法。
1. A plurality of indenters formed in the shape of a polygonal pyramid are fixed to a head portion of a marker at predetermined intervals with a top of a pyramid as a tip, and the head portion of the marker is pressed against a surface of a metal to form The metal is imprinted with an indenter, and then the metal with the imprint is separated from the surroundings to release the stress.The distance between the indentations measured in a state where the stress is released and the distance between the tips of the indenter are compared with each other. A method for measuring the residual stress of a metallic material, comprising measuring the residual stress of a metal material.
【請求項2】 上記圧子がダイヤモンド、サファイヤ、
または超硬金属の何れか1つからなり、かつこの圧子が
なす多角錘の形状が、頂部が底面の中心上にある多角錘
である請求項1記載の金属材料の残留応力測定方法。
2. The method according to claim 1, wherein the indenter is diamond, sapphire,
The method for measuring residual stress of a metal material according to claim 1, wherein the polygonal pyramid is formed of any one of a cemented carbide metal, and the shape of the polygonal pyramid formed by the indenter is a polygonal pyramid whose top is located at the center of the bottom surface.
【請求項3】 圧子の先端同士を結ぶ線が直線をなすよ
うに、これら複数の圧子を配設した請求項1または2記
載の金属材料の残留応力測定方法。
3. The method according to claim 1, wherein the plurality of indenters are arranged such that a line connecting the tips of the indenters forms a straight line.
【請求項4】 上記圧子の先端同士を結ぶ線が多角形を
なすように、これら複数の圧子を配設した請求項1また
は2記載の金属材料の残留応力測定方法。
4. The method according to claim 1, wherein the plurality of indenters are arranged so that a line connecting the tips of the indenters forms a polygon.
JP19187297A 1997-07-01 1997-07-01 Method for measuring residual stress of metallic materials Expired - Fee Related JP3225286B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19187297A JP3225286B2 (en) 1997-07-01 1997-07-01 Method for measuring residual stress of metallic materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19187297A JP3225286B2 (en) 1997-07-01 1997-07-01 Method for measuring residual stress of metallic materials

Publications (2)

Publication Number Publication Date
JPH1123383A JPH1123383A (en) 1999-01-29
JP3225286B2 true JP3225286B2 (en) 2001-11-05

Family

ID=16281887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19187297A Expired - Fee Related JP3225286B2 (en) 1997-07-01 1997-07-01 Method for measuring residual stress of metallic materials

Country Status (1)

Country Link
JP (1) JP3225286B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103090999B (en) * 2013-01-11 2015-01-14 北京工业大学 Heating device used for through silicon via (TSV) fill copper residual stress measurement
CN103630453B (en) * 2013-11-11 2015-10-28 湖南大学 One can control high-precision grinding study mechanism experimental provision
CN112763318B (en) * 2020-12-29 2024-04-09 中国航空工业集团公司西安飞机设计研究所 Metal material residual stress simulation test device and method
CN115166195A (en) * 2022-08-03 2022-10-11 河北华建检测试验有限责任公司 Intelligent metal material nondestructive test equipment

Also Published As

Publication number Publication date
JPH1123383A (en) 1999-01-29

Similar Documents

Publication Publication Date Title
JP5288689B2 (en) Method and apparatus for burnishing process control
Waters The indentation of thin rubber sheets by spherical indentors
US8214162B2 (en) Estimation of non-equibiaxial stress using instrumented indentation technique
US20110126605A1 (en) Bend bar quality control method for laser shock peening
JP3225286B2 (en) Method for measuring residual stress of metallic materials
US4313446A (en) Steel wire pressure aesthesiometer
KR102046372B1 (en) Marking Device for Concrete Ultrasonic test of Structural Safety Diagnosis
JP4261080B2 (en) Residual stress measurement method
GB2165362A (en) Method and device for measuring small forces and small movements in a materials testing machine or other loading device
KR100736436B1 (en) Method for measuring indentation hardness through analysis of indentation shape
EP2992309B1 (en) A non-contact method for measurement of strain profile at a location interposed within a soft deformable object with dynamic evolution of the strain under dynamic loading or fracture of the object
JP3021834B2 (en) Residual stress measurement method and apparatus
JP3194133B2 (en) Marking device for measuring residual stress of metal tube for nuclear reactor and method for measuring residual stress of metal tube using this device
JP2005091171A (en) Method and device for testing rubbing strength, and test piece therefor
CN109959319A (en) A kind of coating calibrator
Livitsanos et al. Rapid determination of the deformation-induced martensite in metastable stainless steels
CN112051164B (en) Device and method for testing breaking energy of soft material under dynamic puncture or cutting
JP2006250589A (en) Gage mark engraving device
RU2279056C1 (en) Method of determining dynamic microscopic hardness of surface layer on wedge-shaped part
CN210243347U (en) Flexible printed circuit board bending fatigue testing device
JPS6037890B2 (en) Non-cutting toughness testing device for cutting tool materials
JP3063828U (en) Marking indicator paper for metal elongation test
JP2001194280A (en) Device for measuring leveling strength of disk saw
US3270550A (en) Impact tool tester
JPS6126014B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080831

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080831

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090831

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130831

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees