JP3225238B2 - Thermal decomposition method of synthetic polymer compound - Google Patents

Thermal decomposition method of synthetic polymer compound

Info

Publication number
JP3225238B2
JP3225238B2 JP27317399A JP27317399A JP3225238B2 JP 3225238 B2 JP3225238 B2 JP 3225238B2 JP 27317399 A JP27317399 A JP 27317399A JP 27317399 A JP27317399 A JP 27317399A JP 3225238 B2 JP3225238 B2 JP 3225238B2
Authority
JP
Japan
Prior art keywords
reaction
synthetic polymer
acid
polymer compound
thermal decomposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27317399A
Other languages
Japanese (ja)
Other versions
JP2000103901A (en
Inventor
邦夫 新井
雅文 阿尻
昇 井川
覚士 古田
隆一 福里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP27317399A priority Critical patent/JP3225238B2/en
Publication of JP2000103901A publication Critical patent/JP2000103901A/en
Application granted granted Critical
Publication of JP3225238B2 publication Critical patent/JP3225238B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、利用されないまま
大量に廃棄されている産業・家庭廃棄物、特にこれら廃
棄物中の比率が高まる一方の合成高分子化合物(以下、
単にポリマーということがある)を高速にしかも大量に
処理して再利用可能な低〜中分子有用化合物を回収する
ことのできる方法に関し、詳細には超臨界状態または亜
臨界状態にある水が良好なイオン的反応領域を形成する
ことを利用し、ポリマー類を構成単位若しくはそれらの
オリゴマー程度の結合体までに効率良く分解することの
できる方法に関するものである。
[0001] The present invention relates to industrial and domestic wastes that are discarded in large quantities without being used, and in particular to synthetic polymer compounds (hereinafter, referred to as "high-molecular-weight") whose proportion in these wastes increases.
Process that can be processed at high speed and in large quantities to recover reusable low-to-medium molecular useful compounds, and in particular, water in a supercritical or subcritical state is good. The present invention relates to a method capable of efficiently decomposing polymers into constituent units or conjugates as small as oligomers thereof by utilizing the formation of a suitable ionic reaction region.

【0002】[0002]

【従来の技術】産業・家庭廃棄物には、多量のバイオポ
リマーや合成ポリマーが含まれているが、そのほとんど
が再利用されずに廃棄されているのが実情である。これ
らのポリマーは貴重な化学原料やエネルギー資源となり
得るものであり、これらを大量に処理して有効に利用す
ることのできる技術の開発が望まれている。
2. Description of the Related Art Industrial and domestic wastes contain a large amount of biopolymers and synthetic polymers, but most of them are discarded without being reused. Since these polymers can be valuable chemical raw materials and energy resources, there is a demand for the development of a technology capable of treating these polymers in large quantities and effectively utilizing them.

【0003】ポリマー資源のうち最も期待されているも
のの1つとしては、紙,木材,わら等の農林生産物中に
含まれている大量のセルロースやリグニンが挙げられ
る。セルロースからグルコースを生成する技術としては
基本的に、熱分解法、酸触媒を用いた高温加水分解
法、酵素による加水分解法等、様々な方法が知られて
いるが、いずれの方法もグルコースの大量生産方法とい
う観点では有効な方法とは言い難いのが実情である。
One of the most promising polymer resources is a large amount of cellulose and lignin contained in agricultural and forestry products such as paper, wood and straw. As a technique for producing glucose from cellulose, various methods are basically known, such as a pyrolysis method, a high-temperature hydrolysis method using an acid catalyst, and an enzymatic hydrolysis method. It is difficult to say that this method is effective in terms of mass production.

【0004】上記の方法では、反応制御が不可能であ
り、グルコースの生成率が低いという欠点がある。また
の方法では、添加する酸による装置腐食や生成物から
の酸除去等の問題があり、またこの様な不都合を回避す
る為に酸の濃度を抑制するとグルコースの生成率が低く
なるという欠点がある。更にの方法では、反応速度が
遅く工業的な生産技術としては利用できない。
[0004] The above-mentioned method has the drawback that the reaction cannot be controlled and the production rate of glucose is low. The other methods have problems such as equipment corrosion due to the added acid and removal of the acid from the product, and the drawback that if the concentration of the acid is suppressed to avoid such inconvenience, the rate of glucose production is reduced. is there. Further, the reaction rate is too slow to be used as an industrial production technique.

【0005】ところで上記従来技術のうち酸を用いる加
水分解法(前記の方法)の具体例として、第2次世界
大戦中に行なわれたフォレスト・プロダクツ・ラボラト
リー(Forest Products Laboratory) のJ.F.Saemanによ
る研究では、セルロースの酸による分解反応において、
グルコースの生成速度と、望ましくないグルコースの分
解の反応速度が同程度であり、高いグルコースの収率向
上が見込まれないことが報告されている。
[0005] As a specific example of the hydrolysis method using an acid (the above-mentioned method) among the above-mentioned prior arts, a study by JFSaeman of Forest Products Laboratory conducted during World War II, In the decomposition reaction of cellulose with acid,
It has been reported that the rate of glucose production is almost equal to the rate of undesired glucose decomposition reaction, and high glucose yield improvement is not expected.

【0006】グルコースの収率を向上させる為に、セル
ロース含有物質をエチレンジアミン,水酸化カドミウム
および水等で前処理を施した後酸処理する技術も提案さ
れているが(特開昭59−160755号)、グルコー
スの収率は依然として十分ではなかった。更に特開昭5
9−500648号に見られる様に、酸の濃度を高くす
ることによって高収率を得る技術も提案されているが、
酸の分解工程等の煩雑な処理がより一層必要となる。
In order to improve the yield of glucose, a technique has been proposed in which a cellulose-containing substance is pretreated with ethylenediamine, cadmium hydroxide, water and the like, followed by acid treatment (JP-A-59-160755). ), The yield of glucose was still not sufficient. Furthermore, Japanese Unexamined Patent Publication No.
As seen in JP-A-9-500648, a technique for obtaining a high yield by increasing the concentration of an acid has been proposed.
Complicated treatments such as an acid decomposition step are further required.

【0007】一方「バイオテクノロジー・アンド・バイ
オエンジニアリング」[Vol.XX P503 〜525 (1978)]に
記載されているHans E.Grethleinの論文(Comparison o
f the Economics of Acid and Enzymatic Hydrolysis o
f Newsprint )によれば、低温下で測定されたセルロー
スおよびグルコースの分解反応速度から高温下の加水分
解反応速度を評価すると、高温(但し300℃以下)の
加水分解では、硫酸添加量が2%の場合に0.035 秒の反
応時間で約90%のグルコース収率が得られる可能性が
あることが示されている。又この思想に基づいて例えば
特開昭57−129699号に示される様な装置や方法
も提案されている。
On the other hand, Hans E. Grethlein's paper (Comparison o) described in "Biotechnology and Bioengineering" [Vol.XX P503-525 (1978)]
f the Economics of Acid and Enzymatic Hydrolysis o
f According to Newsprint), when the hydrolysis reaction rate at high temperature is evaluated based on the decomposition reaction rate of cellulose and glucose measured at low temperature, the amount of sulfuric acid added is 2% at high temperature (300 ° C or lower). It has been shown that a reaction time of 0.035 seconds can result in a glucose yield of about 90%. On the basis of this idea, an apparatus and a method as disclosed in, for example, JP-A-57-129699 have been proposed.

【0008】しかしながら、本発明者らが実験によって
確認したところ、高温高圧下の水の誘電率,イオン積は
低温常圧下とは大きく異なり、低温下で評価された加水
分解反応速度を外挿して高温高圧下の反応速度をそのま
ま評価することはできないことがわかった。更に上記の
公開公報に示されている手法には操作性に難点があり、
工業的大量処理技術には適用できない。
However, the present inventors have confirmed by experiments that the dielectric constant and ionic product of water under high temperature and high pressure are significantly different from those under low temperature and normal pressure, and the hydrolysis reaction rate evaluated at low temperature is extrapolated. It has been found that the reaction rate under high temperature and high pressure cannot be directly evaluated. Furthermore, the technique disclosed in the above publication has a difficulty in operability,
Not applicable to industrial mass processing technology.

【0009】上記の説明では、セルロースの場合を中心
に述べたが、上記の各種ポリマー廃棄物、例えばプラス
チックフィルム,プラスチックボトル,プラスチックト
レー,その他各種プラスチック成形物などについても同
様の問題があり、これらを選択的に分解して有用な低〜
中分子化合物を回収することは省資源あるいは地球環境
保護における重要課題のひとつとなっている。
In the above description, the case of cellulose has been mainly described. However, the above-mentioned various polymer wastes, such as plastic films, plastic bottles, plastic trays, and other various plastic molded products, have similar problems. Is useful to selectively decompose low
Recovering medium molecular compounds has become one of the important issues in saving resources or protecting the global environment.

【0010】[0010]

【発明が解決しようとする課題】本発明はこうした状況
のもとになされたものであって、その目的は、従来技術
における不都合を発生させることなく、産業・家庭廃棄
物中に多量に含まれる各種合成高分子化合物を効率良く
選択的に分解して再利用できる低〜中分子化合物を回収
する為の最適な方法を提供する点にある。
SUMMARY OF THE INVENTION The present invention has been made under such a circumstance, and its object is to include a large amount in industrial and domestic waste without causing inconvenience in the prior art. It is an object of the present invention to provide an optimal method for recovering low to medium molecular compounds that can be used for efficiently decomposing and reusing various synthetic polymer compounds.

【0011】[0011]

【課題を解決するための手段】上記目的を達成し得た本
発明とは、合成高分子化合物を、超臨界状態または亜臨
界状態の水を溶媒として用いて、酸化剤を添加せずに、
前記合成高分子化合物の構成単位若しくはそれらのオリ
ゴマーに熱分解する点に要旨を有するものである。本発
明で対象とする合成高分子化合物には、ポリスチレン,
ポリエチレン,ポリプロピレン等の合成ポリマーが挙げ
られ、本発明においてはこれらの1種または2種以上の
ポリマーを含有する廃棄物を効果的に熱分解できる。
Means for Solving the Problems The present invention, which has achieved the above object, comprises a step of preparing a synthetic polymer compound using supercritical or subcritical water as a solvent without adding an oxidizing agent.
The gist lies in the fact that the synthetic polymer compound is thermally decomposed into constituent units or oligomers thereof. The synthetic polymer compounds targeted in the present invention include polystyrene,
Synthetic polymers such as polyethylene and polypropylene are exemplified. In the present invention, waste containing one or more of these polymers can be effectively thermally decomposed.

【0012】[0012]

【発明の実施の形態】本発明者らは、まずセルロースを
効果的に分解する方法について様々な角度から検討し
た。その結果、超臨界状態または亜臨界状態の水を用い
てセルロースを分解することによって、酸を用いずとも
20%以上の高収率で制御性良くグルコースが生成でき
ることを見出し、その技術的意義が認められたので先に
出願した(特願平2−238085号)。また酸を添加
する場合は、反応液の酸濃度を従来の10分の1以下に
してもグルコースを高い収率(例えば30%以上)で得
られることもわかった。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors first studied from various angles a method for effectively decomposing cellulose. As a result, they found that glucose can be produced in a high yield of 20% or more with good controllability without using an acid by decomposing cellulose using water in a supercritical or subcritical state. The application was filed earlier (Japanese Patent Application No. 2-238085). It was also found that when an acid is added, glucose can be obtained in a high yield (for example, 30% or more) even when the acid concentration of the reaction solution is 1/10 or less of the conventional value.

【0013】超臨界状態または亜臨界状態の水による作
用・効果における理論的根拠は、その全てが解明された
訳ではないが、次の様に考えることができる。超臨界状
態または亜臨界状態の水は、温度および圧力を制御する
ことによって、誘電率およびイオン積(Kw)を容易且
つ大幅に変化させることができる。図1は水のイオン積
(Kw)の各圧力における温度依存性を示すグラフであ
り、圧力が高い程高温領域までイオン積(Kw)の高い
状態を保っており、かなりの高温下においても、良好な
イオン的反応(加水分解反応や脱水反応)の為の領域を
形成するものと期待できる。即ち、超臨界状態または亜
臨界状態の水のイオン積や誘電率は大きく、又温度や圧
力の制御によってこれらを幅広い範囲で調整できるの
で、この様な状態の水を加水分解反応の溶媒として用い
ることによって、セルロースから例えばグルコース,5
−HMF,種々のカルボン酸への分解にとって最適な環
境が提供されるものと考えられた。
The rationale for the action and effect of water in a supercritical or subcritical state has not been fully elucidated, but can be considered as follows. Supercritical or subcritical water can easily and drastically change its dielectric constant and ionic product (Kw) by controlling temperature and pressure. FIG. 1 is a graph showing the temperature dependence of the ionic product (Kw) of water at each pressure. The higher the pressure, the higher the ionic product (Kw) is maintained up to a high-temperature region. It can be expected to form a region for favorable ionic reactions (hydrolysis reaction and dehydration reaction). That is, since the ionic product and dielectric constant of water in a supercritical state or a subcritical state are large, and these can be adjusted in a wide range by controlling temperature and pressure, water in such a state is used as a solvent for the hydrolysis reaction. Thus, for example, glucose, 5
-It was thought that an optimal environment was provided for decomposition into HMF and various carboxylic acids.

【0014】本発明者らは、上記発明が完成された後
も、様々な合成高分子化合物について上記方法の有用性
について検討を重ねてきた。その結果、超臨界状態また
は亜臨界状態の水を溶媒として用いて分解すれば、ポリ
スチレン,ポリエチレン,ポリプロピレン等の様々なポ
リマーにおいても効果的に選択的分解されて有用な構単
位分子またはそれらのオリゴマー類を回収できることを
見出し、本発明を完成した。
The present inventors have repeatedly studied the usefulness of the above method for various synthetic polymer compounds even after the completion of the above invention. As a result, when decomposed using water in a supercritical or subcritical state as a solvent, various polymers such as polystyrene, polyethylene, and polypropylene are effectively and selectively decomposed, and useful structural unit molecules or oligomers thereof are useful. The present inventors have found that such species can be recovered and completed the present invention.

【0015】尚上記セルロースの分解は、加水分解反応
が中心に進行するものと考えられるが、ポリエチレン,
ポリプロピレン,ポリスチレン等の分解はラジカル反応
的な(熱分解や酸化反応)分解によるものと考えられ
る。即ちこれらのポリマーの分解は、ガスの発生が少な
いことから、低圧下での熱分解と異なり、高圧の水の存
在により制御された熱分解又は高濃度の水素ラジカルが
関与した別の反応が生じているものと考えられるが、本
発明ではこれを便宜上熱分解と呼んでいる。
The decomposition of cellulose is thought to proceed mainly by a hydrolysis reaction.
The decomposition of polypropylene, polystyrene and the like is considered to be due to radical reaction (thermal decomposition or oxidation reaction) decomposition. In other words, the decomposition of these polymers is different from the thermal decomposition under low pressure, because the generation of gas is small, and the controlled thermal decomposition or another reaction involving a high concentration of hydrogen radicals occurs due to the presence of high pressure water. In the present invention, this is referred to as pyrolysis for convenience.

【0016】本発明における上記熱分解反応の制御機構
は次の様に考えることができる。常圧下での熱分解(結
合の開裂)は、温度、周りの分子、ラジカル濃度に依存
するが、分解して生成した一次生成物は、2次分解した
り、他のラジカルと結合したりして、分解がさらに進行
する。しかしながら熱分解反応場に高密度の不活性分子
が存在すると、熱分解反応、1次生成物の2次分解も抑
制され、反応速度や反応経路が変化することになる。又
水分子は、水素ラジカルの供給源ともなるため、常圧下
での熱分解とは異なる反応系となり、またイオン的反応
の寄与も大きくなる。超臨界状態では、圧力温度の操作
により、水及びラジカル密度を大幅に制御ができるの
で、このような場での熱分解もかなりの程度制御が可能
であると考えられる。
The control mechanism of the thermal decomposition reaction in the present invention can be considered as follows. Thermal decomposition (bond cleavage) under normal pressure depends on temperature, surrounding molecules, and radical concentration, but the primary products generated by decomposition decompose into secondary substances or combine with other radicals. Thus, the decomposition proceeds further. However, if a high-density inert molecule is present in the thermal decomposition reaction field, the thermal decomposition reaction and the secondary decomposition of the primary product are also suppressed, and the reaction rate and the reaction path are changed. Further, since water molecules also serve as a supply source of hydrogen radicals, they form a reaction system different from thermal decomposition under normal pressure, and the contribution of ionic reactions increases. In the supercritical state, the density of water and radicals can be largely controlled by manipulating the pressure and temperature, so that it is considered that thermal decomposition in such a field can be controlled to a considerable extent.

【0017】本発明を実施するに当たり、超臨界状態ま
たは亜臨界状態の水を形成する為には、少なくとも温
度:200〜800℃、圧力:2.0 〜90MPaの範囲
で温度および圧力を適切に調整すればよい。また本発明
における分解反応は酸を添加せずとも効果的に進行する
が、2%以下の酸濃度となる様に少量の酸を添加するこ
とは収率を高める上で有効であり、また酸濃度が低いの
で装置腐食を生じることもなく且つ反応終了後の酸の除
去も比較的容易である。上記の酸としては、硫酸,塩
酸,燐酸等が挙げられるが、その添加効果および後処理
等を考慮すれば、より好ましい酸濃度は0.05%以下であ
る。即ち、本発明によれば、酸濃度が0.05%程度であっ
ても酸添加による効果を十分に発揮できる。
In practicing the present invention, in order to form water in a supercritical state or a subcritical state, the temperature and pressure must be appropriately adjusted at least in the range of 200 to 800 ° C. and pressure of 2.0 to 90 MPa. I just need. In addition, the decomposition reaction in the present invention effectively proceeds without adding an acid. However, adding a small amount of an acid so as to have an acid concentration of 2% or less is effective in increasing the yield. Since the concentration is low, corrosion of the apparatus does not occur, and removal of the acid after the completion of the reaction is relatively easy. Examples of the above-mentioned acid include sulfuric acid, hydrochloric acid, phosphoric acid and the like, and the more preferable acid concentration is 0.05% or less in consideration of the effect of addition and post-treatment. That is, according to the present invention, even when the acid concentration is about 0.05%, the effect of the acid addition can be sufficiently exhibited.

【0018】以下本発明を実施例によって更に詳細に説
明するが、下記実施例は本発明を限定する性質のもので
はなく、前・後記の趣旨に徴して設計変更することはい
ずれも本発明の技術的範囲に含まれるものである。
Hereinafter, the present invention will be described in more detail with reference to examples. However, the following examples do not limit the present invention. It is included in the technical scope.

【0019】[0019]

【実施例】本発明者らは、ポリスチレン、ポリエチレン
およびポリプロピレンの各ポリマーについて本発明を実
施して分解実験を行ない、本発明の効果について検討し
た。このときの分解反応実験は、回分式装置を用いて行
なった。即ち反応管(容積6ml, SUS製)に各ポリ
マー約0.5gと水3mlを仕込み、反応管内を窒素置
換した後、400℃に加熱された金属浴に反応管を入
れ、急速(800K/min)に昇温した。400℃,
30MPaの条件で1分間反応させた後、反応管を冷水
に入れて急冷し、反応管内のポリマー残渣を回収してそ
の重量を測定し、転化率を算出した。尚、転化率とは、
ポリマーが分解して他の物質に変化した割合を示すもの
であり、例えば転化率が1.0とはポリマーの100%
が分解したことを意味する。
EXAMPLES The present inventors carried out the present invention with respect to each polymer of polystyrene, polyethylene and polypropylene, conducted a decomposition experiment, and examined the effects of the present invention. The decomposition reaction experiment at this time was performed using a batch type apparatus. That is, about 0.5 g of each polymer and 3 ml of water were charged into a reaction tube (volume: 6 ml, made of SUS), and the inside of the reaction tube was replaced with nitrogen. Then, the reaction tube was put into a metal bath heated to 400 ° C., and rapidly (800 K / min). ). 400 ° C,
After reacting at 30 MPa for 1 minute, the reaction tube was quenched by putting it in cold water, polymer residue in the reaction tube was recovered, its weight was measured, and the conversion was calculated. In addition, the conversion is
It indicates the rate at which the polymer decomposed and changed into another substance. For example, a conversion of 1.0 means 100% of the polymer.
Means decomposed.

【0020】その結果を表1に示すが、いずれのポリマ
ーにおいても短時間で速やかに選択的な熱分解が進行し
ており、ポリマーの大量処理技術としての有効性が示唆
された。このとき常圧下の熱分解反応に見られるような
大量のガスの発生はほとんどみられず、高密度の水の存
在によって制御された熱分解反応が生じていると考えら
れた。尚表1には各ポリマーの結合形式についても示し
た。
The results are shown in Table 1. As can be seen from Table 1, selective pyrolysis of all the polymers proceeded quickly and in a short period of time, suggesting the effectiveness of the technique as a technique for treating a large amount of polymers. At this time, the generation of a large amount of gas as seen in the thermal decomposition reaction under normal pressure was hardly observed, and it was considered that the thermal decomposition reaction controlled by the presence of high-density water occurred. Table 1 also shows the bonding type of each polymer.

【0021】[0021]

【表1】 [Table 1]

【0022】[0022]

【発明の効果】本発明は以上の様に構成されており、超
臨界または亜臨界の水を溶媒として用いることによっ
て、合成高分子化合物を効果的に選択的分解することが
できる様になった。この様な本発明方法は合成高分子化
合物を多量に含む産業・家庭廃棄物の大量処理技術、特
にそれらから有用化合物を選択的に回収する技術として
大いに期待できる。
Industrial Applicability The present invention is constituted as described above. By using supercritical or subcritical water as a solvent, a synthetic polymer compound can be effectively and selectively decomposed. . Such a method of the present invention can be greatly expected as a technique for treating industrial and domestic waste containing a large amount of a synthetic polymer compound in a large amount, particularly a technique for selectively recovering a useful compound therefrom.

【図面の簡単な説明】[Brief description of the drawings]

【図1】水のイオン積の各圧力における温度依存性を示
すグラフである。
FIG. 1 is a graph showing the temperature dependence of the ionic product of water at each pressure.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 福里 隆一 芦屋市高浜町9−1−1912 (56)参考文献 特開 昭61−66789(JP,A) 特公 昭60−54119(JP,B2) 特表 昭56−501205(JP,A) 米国特許4113446(US,A) 国際公開91/11394(WO,A1) (58)調査した分野(Int.Cl.7,DB名) C08J 11/00 - 11/28 B09B 3/00 302 - 304 ──────────────────────────────────────────────────続 き Continuation of front page (72) Inventor Ryuichi Fukusato 9-1-1912, Takahama-cho, Ashiya-shi (56) References JP-A-61-66789 (JP, A) JP-B-60-54119 (JP, B2) JP-A-56-501205 (JP, A) U.S. Pat. No. 4,113,446 (US, A) WO 91/11394 (WO, A1) (58) Fields investigated (Int. Cl. 7 , DB name) C08J 11/00- 11/28 B09B 3/00 302-304

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 合成高分子化合物を、超臨界状態または
亜臨界状態の水を溶媒として用いて、酸化剤を添加せず
に、前記合成高分子化合物の構成単位若しくはそれらの
オリゴマーに熱分解することを特徴とする合成高分子化
合物の熱分解方法。
1. A synthetic polymer compound prepared by using supercritical or subcritical water as a solvent without adding an oxidizing agent.
In the structural unit of the synthetic polymer compound or their
A method for thermally decomposing a synthetic polymer compound, which is thermally decomposed into oligomers .
【請求項2】 合成高分子化合物が、ポリスチレン,ポ
リエチレン,ポリプロピレンよりなる群から選択される
1種または2種以上である請求項1に記載の熱分解方
法。
2. The thermal decomposition method according to claim 1, wherein the synthetic polymer compound is at least one selected from the group consisting of polystyrene, polyethylene, and polypropylene.
JP27317399A 1990-09-08 1999-09-27 Thermal decomposition method of synthetic polymer compound Expired - Fee Related JP3225238B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27317399A JP3225238B2 (en) 1990-09-08 1999-09-27 Thermal decomposition method of synthetic polymer compound

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP23808590 1990-09-08
JP2-238085 1990-09-08
JP27317399A JP3225238B2 (en) 1990-09-08 1999-09-27 Thermal decomposition method of synthetic polymer compound

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP3255725A Division JP3042076B2 (en) 1990-09-08 1991-09-07 Method for selective hydrolysis of natural or synthetic polymer compounds

Publications (2)

Publication Number Publication Date
JP2000103901A JP2000103901A (en) 2000-04-11
JP3225238B2 true JP3225238B2 (en) 2001-11-05

Family

ID=26533526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27317399A Expired - Fee Related JP3225238B2 (en) 1990-09-08 1999-09-27 Thermal decomposition method of synthetic polymer compound

Country Status (1)

Country Link
JP (1) JP3225238B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200536879A (en) * 2004-02-12 2005-11-16 Teijin Ltd Method for decomposing polycarbonate
JP2007186669A (en) * 2005-12-14 2007-07-26 Toss Ltd Phosphor material

Also Published As

Publication number Publication date
JP2000103901A (en) 2000-04-11

Similar Documents

Publication Publication Date Title
JP3042076B2 (en) Method for selective hydrolysis of natural or synthetic polymer compounds
JP4834680B2 (en) Method and apparatus for biomass conversion
JP2003212888A (en) Method for producing glucose and/or water-soluble cellooligosaccharide
JP2019529532A (en) Glycolide synthesis method
JP2006129735A (en) Method for hydrolyzing cellulose using catalyst and method for producing glucose using the catalyst
JP2824551B2 (en) Improved recovery method of alkali metal or alkaline earth metal terephthalate and alkylene glycol from polyalkylene terephthalate
FR2503160A1 (en) PROCESS FOR THE PRODUCTION OF AROMATIC BIS (ETHER ANHYDRIDE) BY EXCHANGE REACTION BETWEEN AROMATIC BIS (ETHER-N-ORGANOPHTHALIMIDE) AND PHTHALIC ACID
JP3225238B2 (en) Thermal decomposition method of synthetic polymer compound
US4599429A (en) Destruction of DNPI in an all nitric acid nitration process
WO2022074462A1 (en) Styrene-assisted depolymerization of polyolefins
JPH022888B2 (en)
JP2754066B2 (en) Method for producing cellulose acetate
JP2009195189A (en) Method for producing monosaccharide or oligosaccharide from polysaccharide
CN104998434A (en) Methyl chloroformate exhaust gas treatment process
KR970059199A (en) Process for preparing a polymer having succinyl repeat units
JP2002179955A (en) Method of peeling thermosetting coating film
JP2009001733A (en) Method for decomposing/liquefying solid cellulose, and resultant decomposed product
JPS6016420B2 (en) Vinylpyridine recovery method
CN114956969B (en) Preparation method of 4-ethoxy-1, 1-trifluoro-3-butene-2-ketone
CN113614062B (en) Method for treating acesulfame potassium waste liquid
JP4613326B2 (en) Protein insolubilization method, protein-derived resin production method, protein-derived resin and biodegradable plastic
JPS6234043B2 (en)
JP3836744B2 (en) Carbon dioxide immobilization method and organic acid synthesis method
JPH07304763A (en) Production of lactide
RU2001111416A (en) METHOD FOR FOLLOWING THERMAL TREATMENT OF A SPLITTING PRODUCT FROM THE CATALYZED ACID DECLINEMENT OF A CUMILHYDROPEROXIDE

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010327

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010731

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070824

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080824

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080824

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090824

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees