JPS6234043B2 - - Google Patents

Info

Publication number
JPS6234043B2
JPS6234043B2 JP53160189A JP16018978A JPS6234043B2 JP S6234043 B2 JPS6234043 B2 JP S6234043B2 JP 53160189 A JP53160189 A JP 53160189A JP 16018978 A JP16018978 A JP 16018978A JP S6234043 B2 JPS6234043 B2 JP S6234043B2
Authority
JP
Japan
Prior art keywords
saponification
reaction mixture
copolymer
saponified
olefin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53160189A
Other languages
Japanese (ja)
Other versions
JPS5589304A (en
Inventor
Ryoji Ishimoto
Reiji Myamoto
Masamitsu Nakabayashi
Fumihiro Tsuneura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takeda Pharmaceutical Co Ltd
Dow Mitsui Polychemicals Co Ltd
Original Assignee
Du Pont Mitsui Polychemicals Co Ltd
Takeda Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Du Pont Mitsui Polychemicals Co Ltd, Takeda Chemical Industries Ltd filed Critical Du Pont Mitsui Polychemicals Co Ltd
Priority to JP16018978A priority Critical patent/JPS5589304A/en
Publication of JPS5589304A publication Critical patent/JPS5589304A/en
Publication of JPS6234043B2 publication Critical patent/JPS6234043B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、着色のないオレフイン−ビニルエス
テル共重合体のケン化物を製造する方法に関する
ものであり、詳しくはケン化反応において生ずる
着色をケン化反応後に有機過酸化物を添加するこ
とにより防止する方法である。 一般に、エチレン−酢酸ビニル共重合体のケン
化物はエチレン−酢酸ビニル共重合体に比較して
軟化温度及び融点が高く、引張り弾性率及び硬度
も高い。又ガスバリヤー性にも優れている。更に
種々の材料に対する密着性も優れている。その他
各種溶媒に浸漬した場合の膨潤性が低く、かつガ
ソリンの透過量も極めて少ないという優れた特性
があり、包装材料、成形物、接着剤、織物繊維用
の熱シール材、ガラス容器被覆材等広範な分野で
使用されている。 しかしこれらの分野で使用されるには樹脂の着
色にともなう品質のバラツキ等は不都合を生ず
る。 従つて、着色のないケン化物をつくるのは必須
である。 従来、着色しないエチレン−酢酸ビニル共重合
体のケン化方法については数多くの方法が提案さ
れている。 それらを大別すると、次の2つに分けられる。
その1つはケン化反応前に添加剤等を加えるか或
はケン化反応を格別の条件で行うことにより着色
を防ぐ方法であり、他の1つはケン化反応終了
後、添加剤を加え、ケン化反応によつて生成した
着色物を処理する方法である。 例えば前者の例としては、ケン化反応における
共重合体濃度を極めて低くする方法(米国特許
2386347号、特公昭44−27902号)があり、更には
ケン化反応系にアセトン等のケトン化合物及びブ
チルアルデヒド等の高級アルデヒドを、使用する
アルコールに対し0.1〜10重量%添加する方法
(特公昭49−17433号)等がある。 しかし、これらは、ケン化反応の生産性が低
く、反応に要するコストが極めて高くなつたり、
更にはケン化反応物を回収する場合に生ずる溶媒
の処理が複雑となり、これに要するコストも極め
て高くなり工業的に不利となる。 更に後者の添加剤による後処理によつて着色を
防止する(脱色する)例としては紫外線を照射す
る方法(特公昭51−35505号)や塩素系酸化剤
(特開昭51−68693号)や塩素(特開昭51−49293
号)を添加する方法があるが、コストが高く、又
製造装置が腐食されるといつた問題があり工業的
に不利である。 本発明者は前記の如きエチレン−酢酸ビニル共
重合体等のオレフイン−ビニルエステル共重合体
ケン化にかかわる着色の問題を工業的にも有利な
方法で解決すべく鋭意研究を重ねた結果、ケン化
反応終了後に有機過酸化物を作用させることによ
り、着色が有効に防止されることを見出し、本発
明に到達した。 本発明によれば、ビニルエステル含量が10〜50
重量%のα−オレフイン−ビニルエステル共重合
体のケン化物の製造方法において、α−オレフイ
ン−ビニルエステル共重合体を、炭化水素溶媒、
低沸点アルコール及びアルカリ触媒を含む系中で
ケン化し、ケン化反応混合物中にを添加して残留
触媒を失活させ、この反応混合物に、或いは低沸
点成分を除去した反応混合物にケン化共重合体当
り0.05乃至1.0重量部の有機過酸化物を作用させ
た後、有機過酸化物を分解させ、最後に反応混合
物からケン化共重合体を沈殿として分離すること
から成る着色が防止された非架橋オレフイン−ビ
ニルエステル共重合体ケン化物の製造方法が提供
される。 本発明に用いられるα−オレフイン−ビニルエ
ステル共重合体とはα−オレフインの少なくとも
一種とビニルエステルの少なくとも一種の共重合
体である。 α−オレフインとしてはエチレン、プロピレ
ン、ブテン、ペンテン等が例示され、ビニルエス
テルとしてはギ酸ビニル、酢酸ビニル、プロピオ
ン酸ビニル、酪酸ビニル、安息香酸ビニル等が例
示される。 本発明の該共重合体中のビニルエステル含量は
本発明が本質的にビニルエステル単位のケン化に
おいて一般的に発生する着色の問題にかかわるも
のであるので特に限定されるべきではないが反応
によつて得られるポリマーが前記包装材料、成形
容器、接着剤、繊維用熱シール材、ガラス容器被
覆材等の用途に供せられるものとしては10〜50重
量%のものが好ましい。 本発明におけるケン化反応は炭化水素溶媒、低
沸点アルコール及びアルカリ触媒より成る系で行
う。もちろんこれらの系に少量の水があつても差
しつかえない。低沸点アルコールとしては、C1
〜C4のアルコール、特にメタノール、エタノー
ル、イソプロパノール、プロパノール、n−ブタ
ノール、イソブタノール等は使用され、アルカリ
触媒としては、アルカリ金属のアルコラート、特
にナトリウム・メチラート、ナトリウム・エチラ
ート、カリウム・メチラート、カリウム・エチラ
ートや、アルカリ金属の水酸化物、特に水酸化ナ
トリウム、水酸化カリウム等が使用される。更に
炭化水素溶媒としては、ヘキサン、ヘプタン、オ
クタン、ノナン、デカン、ドデカン、シクロヘキ
サン、シクロヘプタン、シクロノナン、シクロデ
カン、メチルシクロヘキサン、エチルシクロヘキ
サンの如き炭素数6〜12の脂肪族炭化水素類及び
シクロパラフイン類、ベンゼン、トルエン、キシ
レン、エチルベンゼン、イソプロピルベンゼン、
ジエチルベンゼン、サイメン、ブチルベンゼン等
の炭素数6〜14の芳香族炭化水素類が例示でき
る。 ケン化反応に際してアルカリ触媒は共重合体中
のビニルエステルに対し0.001〜0.5倍当量、特に
0.005〜0.2倍当量の割合で使用でき低沸点アルコ
ールは共重合体中のビニルエステルのケン化しよ
うとする量に対し少なくとも当量である量、好適
は当量よりも過剰である量で使用される。ケン化
反応は、常温乃至80℃の温度、特に30乃至60℃の
温度で10分乃至180分間行うのが望ましく、圧力
は常圧乃至10気圧程度迄の加圧とすることができ
る。 本発明においてケン化物の着色防止するために
は、有機過酸化物を作用させるケン化物は、ケン
化反応後、例えば低沸点溶媒等の留去の目的で
100℃よりも高い温度での熱履歴を受けていても
よい。また、100℃よりも高い温度で有機過酸化
物を作用させてもよい。 本発明に用いられる有機過酸化物としては、過
酸化水素、メチルハイドロパーオキサイド、エチ
ルハイドロパーオキサイド、イソプロピルハイド
ロパーオキサイド、t−ブチルハイドロパーオキ
サイド、イソブチルハイドロパーオキサイド、n
−ヘキシルハイドロパーオキサイド、p−メチル
ベンジルハイドロパーオキサイド、p−メタンハ
イドロパーオキサイド、ジイソプロピルベンゼン
ハイドロパーオキサイド、2・5−ジメチルヘキ
サン−2・5−ジハイドロパーオキサイド、クメ
ンハイドロパーオキサイド等のヒドロ過酸化物
類;ジエチルパーオキサイド、メチルイソプロピ
ルパーオキサイド、ジt−ブチルパーオキサイ
ド、t−ブチルクミルパーオキサイド、ジクミル
パーオキサイド、2・5−ジメチル−2・5−ジ
(t−ブチルパーオキシ)ヘキサン、2・5−ジ
メチル−2・5−ジ(t−ブチルパーオキシ)ヘ
キシン−3、α−α′ビス(t−ブチルパーオキ
シ)ジイソプロピルベンゼン等の過酸化ジアルキ
ル類;過酢酸、過プロピオン酸、過安息香酸等の
過カルボン酸類;過酸化アセチル、過酸化デカノ
イル、過酸化ラウロイル、過酸化ベンゾイル、過
酸化p−クロロベンゾイル、過酸化2・4−ジク
ロロベンゾイル、過ジ炭酸ジイソプロピル、過ジ
炭酸ジ−2−エチルヘキシン、アセチルシクロヘ
キサンスルホニルパーオキサイド等の過酸化ジア
シル類;過酢酸t−ブチル、過イソ酪酸t−ブチ
ル、過ビバリン酸t−ブチル、過2−エチルヘキ
サン酸t−ブチル、過安息香酸t−ブチル、t−
ブチル過炭酸エチル、t−ブチル過炭酸イソプロ
ピル、過ジ炭酸ジイソプロピル、過ジ炭酸ジイソ
プロピル等の過酸エステル類;エチルメチルケト
ンパーオキサイド、シクロヘキサノンパーオキサ
イド、アセチルアセトンパーオキサイド、1・1
−ビス(t−ブチルパーオキシ)−3・3・5−
トリメチルシクロヘキサン等のアルキリデンパー
オキサイド類;及び環状過酸化物;有機金属過酸
化物;有機リン酸過酸化物;有機イオウ過酸化物
等を挙げることができる。 中でもヒドロ過酸化物類、過酸化ジアルキル
類、過カルボン酸類、過酸化ジアシル類、過酸エ
ステル類及びアルキリデンパーオキサイド類が好
ましい。 更に好ましいのは半減期が10時間となるための
温度が40〜120℃であるものである。 これらの過酸化物は単独又は2種以上混合して
使用される。又これらの過酸化物は液体を含浸さ
せたもの、溶媒で希釈したもの、又は液体に分散
させたものであつてもよく、安全の面からもむし
ろその方が好ましい。 有機過酸化物は、一般にケン化物を溶液、乳化
液或いは懸濁液の状態に維持しながら作用させる
ことが望ましい。かくして、ケン化反応終了後、
ケン化反応生成物に先に水を添加し、ケン化反応
終了時点での残存触媒をあらかた失活させ次いで
有機過酸化物を添加する。この態様によれば、有
機過酸化物の使用量も少なくてすみ、また着色防
止効果が大である。水の添加量はアルカリ触媒に
対してモル比で0.2乃至20の範囲が良好である。
また、反応終了後、生成したケン化物をメタノー
ルや水等の非溶媒の添加により析出させ、これを
取出した後、再度溶媒中に溶解乃至分散させ、こ
の状態で過酸化物を作用させることもできる。 有機過酸化物の添加量は、触媒の残存量によつ
ても相違するが、一般的に言つて、ケン化共重合
体当り0.05乃至1.0重量%の範囲が望ましい。 有機過酸化物を添加するときのケン化物の系の
温度は、30乃至100℃、特に40乃至80℃の範囲に
あることが望ましく、過酸化物を添加した後、撹
拌下に60℃以上、好適には80乃至150℃の温度
で、有機過酸化物が完全に分解する迄処理を行う
のがよい。またケン化物の着色防止だけを行いた
い場合は有機過酸化物を100℃以上の温度で添加
しそのままの温度で作用させることも可能であ
る。これらの一連の処理は、不活性ガスの存在下
に行うのが望ましい。 この様にケン化反応及び、脱色のための処理を
実施して得られた混合物からのポリマーの回収は
該混合物を冷却するか該混合物に低沸点アルコー
ル又は水を添加して冷却し、微粉末又は細粉末と
して析出させる方法、該混合物に加熱下で不活性
ガスを導入しつつ溶媒を留去するか溶媒の一部が
残存している段階で冷却して粉末化する方法、該
混合物に加熱下で不活性ガスを導入しつつ溶媒の
一部を留去し水又は界面活性剤を含む水を添加し
て冷却し粉末化する方法、該混合物に水蒸気を吹
き込んで溶媒を除きポリマーを水性懸濁液とし冷
却する方法等の方法によりポリマーを粉末化し、
これを分離、洗浄、乾燥する事で達成できる。 以下本発明の効果を実施例によつて詳述する
が、これは例示のためのものであつて、本発明の
範囲を制限するものではない。 例 1 20のステンレス反応機に撹拌機、コンデンサ
ー、温度計ならびに窒素導入管を設置した。反応
開始まで、系をN2ガスでフラツシユし、反応機
内を完全にN2ガスで置換した。反応機にキシレ
ン7912部及びエチレン−酢酸ビニル共重合体(酢
酸ビニル含量28重量%、M.I.400g/10min)
4600部を入れ、60〜70℃に加温して均一溶液にし
た。 内温を60℃に下げ、メタノール1916部を加え、
更に内温を45〜50℃に保つた。24%のナトリウム
メトキサイド−メチノール溶液269.6部を加え、
撹拌下45〜50℃で60分間反応させた後水を64.8部
加えて1時間撹拌させて反応を停止させた。こう
して得られた反応液を4等分して各々を撹拌機、
コンデンサー、温度計、N2導入管のついた10
の4つ口ガラス製フラスコに入れた後、以下の4
つの方法で処理を行つた。 比較例 1 ケン化反応終了後の反応混合物に対し1765部の
メタノールを添加して、ケン化生成物を沈殿させ
た。濾過により生成物を捕集し、同量のメタノー
ルで1回洗浄を行つた後真空乾燥させた。 実施例 1 ケン化反応終了後の反応混合物を40〜60℃に保
ち、3.5部のBPO(ベンゾイルパーオキサイド)
を加え均一に溶解させた後、N2気流下で、120℃
まで加熱し大部分の低沸点溶媒及びキシレンの1
部を留去した後、更に120℃で30分加熱撹拌した
後、内温を60℃まで冷却、メタノール1765部を加
えてケン化生成物を沈殿させた。濾過により生成
物を捕集し、同等のメタノールで1回洗浄を行つ
た後、真空乾燥させた。 実施例 2 ケン化反応終了後の反応混合物をN2ガス気流
下120℃まで加熱し大部分の低沸点溶媒(メタノ
ール、生成酢酸メチル等)及びキシレンの1部を
留去した後、BPO3.5部を加えてから、120℃で30
分間加熱撹拌した後内温を60℃まで冷却し、メタ
ノール1765部を添加してケン化生成物を沈殿させ
た。濾過により生成物を捕集し、同量のメタノー
ルで1回洗浄を行つた後、真空乾燥させた。 上記処理の結果及び生成したエチレン−酢酸ビ
ニル共重合体のケン化物の性質を表1にまとめ
る。
The present invention relates to a method for producing a saponified product of an olefin-vinyl ester copolymer without coloring, and specifically, the coloring that occurs during the saponification reaction is prevented by adding an organic peroxide after the saponification reaction. It's a method. In general, saponified ethylene-vinyl acetate copolymers have higher softening temperatures and melting points, as well as higher tensile modulus and hardness, than ethylene-vinyl acetate copolymers. It also has excellent gas barrier properties. Furthermore, it has excellent adhesion to various materials. It also has excellent properties such as low swelling when immersed in various solvents and extremely low permeation of gasoline, and is used in packaging materials, molded products, adhesives, heat sealing materials for textile fibers, glass container coating materials, etc. Used in a wide range of fields. However, when used in these fields, variations in quality due to the coloring of the resin cause problems. Therefore, it is essential to create a saponified product without coloring. Conventionally, many methods have been proposed for saponifying a non-colored ethylene-vinyl acetate copolymer. Broadly speaking, they can be divided into the following two types.
One method is to prevent coloring by adding additives before the saponification reaction or by performing the saponification reaction under special conditions, and the other method is to add additives after the saponification reaction is completed. This is a method for treating colored substances produced by saponification reactions. For example, an example of the former is a method of extremely low copolymer concentration in the saponification reaction (U.S. patent
2386347, Japanese Patent Publication No. 44-27902), and there is also a method of adding ketone compounds such as acetone and higher aldehydes such as butyraldehyde to the saponification reaction system in an amount of 0.1 to 10% by weight based on the alcohol used (Japanese Patent Publication No. 44-27902). 49-17433) etc. However, these methods have low productivity in the saponification reaction, and the cost required for the reaction is extremely high.
Furthermore, the treatment of the solvent generated when recovering the saponification reaction product becomes complicated, and the cost required for this becomes extremely high, which is industrially disadvantageous. Furthermore, examples of preventing (decolorizing) coloring by post-treatment with the latter additive include methods of irradiating ultraviolet rays (Japanese Patent Publication No. 51-35505), chlorine-based oxidizing agents (Japanese Patent Publication No. 51-68693), and Chlorine (JP-A-51-49293
There is a method of adding (No.), but it is industrially disadvantageous because it is expensive and there are problems such as corrosion of the manufacturing equipment. The present inventor has conducted intensive research to solve the coloring problem associated with the saponification of olefin-vinyl ester copolymers such as ethylene-vinyl acetate copolymers using an industrially advantageous method. It has been discovered that coloring can be effectively prevented by applying an organic peroxide after the completion of the reaction, and the present invention has been achieved. According to the invention, the vinyl ester content is between 10 and 50
In a method for producing a saponified product of an α-olefin-vinyl ester copolymer in a proportion of % by weight, an α-olefin-vinyl ester copolymer is mixed with a hydrocarbon solvent,
Saponification is carried out in a system containing a low-boiling point alcohol and an alkali catalyst, and the remaining catalyst is deactivated by adding it to the saponification reaction mixture, and saponification copolymerization is carried out to this reaction mixture or to the reaction mixture from which low-boiling point components have been removed. A non-crosslinked product that prevents coloring, which consists of reacting with 0.05 to 1.0 parts by weight of an organic peroxide, decomposing the organic peroxide, and finally separating the saponified copolymer as a precipitate from the reaction mixture. A method for producing a saponified olefin-vinyl ester copolymer is provided. The α-olefin-vinyl ester copolymer used in the present invention is a copolymer of at least one α-olefin and at least one vinyl ester. Examples of α-olefins include ethylene, propylene, butene, and pentene, and examples of vinyl esters include vinyl formate, vinyl acetate, vinyl propionate, vinyl butyrate, and vinyl benzoate. The vinyl ester content in the copolymers of the present invention should not be particularly limited since the present invention is essentially concerned with the coloring problem that commonly occurs in the saponification of vinyl ester units, but may not be particularly limited in the reaction. If the resulting polymer can be used as packaging materials, molded containers, adhesives, heat-sealing materials for fibers, coating materials for glass containers, etc., it is preferably 10 to 50% by weight. The saponification reaction in the present invention is carried out in a system consisting of a hydrocarbon solvent, a low-boiling alcohol, and an alkali catalyst. Of course, a small amount of water can be present in these systems. As a low-boiling alcohol, C 1
-C4 alcohols, especially methanol, ethanol, isopropanol, propanol, n-butanol, isobutanol, etc., are used; as alkali catalysts, alkali metal alcoholates, especially sodium methylate, sodium ethylate, potassium methylate, potassium - Ethylate and alkali metal hydroxides, especially sodium hydroxide, potassium hydroxide, etc., are used. Furthermore, as hydrocarbon solvents, aliphatic hydrocarbons having 6 to 12 carbon atoms such as hexane, heptane, octane, nonane, decane, dodecane, cyclohexane, cycloheptane, cyclononane, cyclodecane, methylcyclohexane, and ethylcyclohexane, and cycloparaffins. , benzene, toluene, xylene, ethylbenzene, isopropylbenzene,
Examples include aromatic hydrocarbons having 6 to 14 carbon atoms such as diethylbenzene, cymene, and butylbenzene. During the saponification reaction, the alkali catalyst is used in an amount of 0.001 to 0.5 times equivalent to the vinyl ester in the copolymer, especially
The low-boiling alcohol can be used in an amount of 0.005 to 0.2 equivalents, and is used in an amount that is at least equivalent to the amount of vinyl ester in the copolymer to be saponified, preferably in excess of the equivalent. The saponification reaction is desirably carried out at a temperature of room temperature to 80°C, particularly 30 to 60°C, for 10 minutes to 180 minutes, and the pressure can be increased from normal pressure to about 10 atmospheres. In the present invention, in order to prevent coloring of the saponified product, the saponified product treated with an organic peroxide must be used for the purpose of distilling off a low boiling point solvent etc. after the saponification reaction.
It may have undergone a thermal history at temperatures higher than 100°C. Further, the organic peroxide may be applied at a temperature higher than 100°C. Examples of the organic peroxide used in the present invention include hydrogen peroxide, methyl hydroperoxide, ethyl hydroperoxide, isopropyl hydroperoxide, t-butyl hydroperoxide, isobutyl hydroperoxide, n
-Hexyl hydroperoxide, p-methylbenzyl hydroperoxide, p-methane hydroperoxide, diisopropylbenzene hydroperoxide, 2,5-dimethylhexane-2,5-dihydroperoxide, cumene hydroperoxide, etc. Peroxides; diethyl peroxide, methyl isopropyl peroxide, di-t-butyl peroxide, t-butylcumyl peroxide, dicumyl peroxide, 2,5-dimethyl-2,5-di(t-butyl peroxide) ) Hexane, dialkyl peroxides such as 2,5-dimethyl-2,5-di(t-butylperoxy)hexyne-3, α-α'bis(t-butylperoxy)diisopropylbenzene; peracetic acid, Percarboxylic acids such as propionic acid and perbenzoic acid; acetyl peroxide, decanoyl peroxide, lauroyl peroxide, benzoyl peroxide, p-chlorobenzoyl peroxide, 2,4-dichlorobenzoyl peroxide, diisopropyl percarbonate, Diacyl peroxides such as di-2-ethylhexyne dicarbonate and acetylcyclohexane sulfonyl peroxide; t-butyl peracetate, t-butyl perisobutyrate, t-butyl perbivalate, t-butyl per2-ethylhexanoate, t-Butyl perbenzoate, t-
Peracid esters such as butyl ethyl percarbonate, t-butyl isopropyl percarbonate, diisopropyl perdicarbonate, diisopropyl perdicarbonate; ethyl methyl ketone peroxide, cyclohexanone peroxide, acetylacetone peroxide, 1.1
-bis(t-butylperoxy)-3,3,5-
Examples include alkylidene peroxides such as trimethylcyclohexane; and cyclic peroxides; organometallic peroxides; organophosphoric acid peroxides; and organic sulfur peroxides. Among these, hydroperoxides, dialkyl peroxides, percarboxylic acids, diacyl peroxides, peracid esters, and alkylidene peroxides are preferred. More preferably, the temperature at which the half-life is 10 hours is 40 to 120°C. These peroxides may be used alone or in a mixture of two or more. Further, these peroxides may be impregnated with a liquid, diluted with a solvent, or dispersed in a liquid, which is preferable from the standpoint of safety. It is generally desirable to use the organic peroxide while maintaining the saponified product in a solution, emulsion, or suspension state. Thus, after the saponification reaction,
Water is first added to the saponification reaction product to approximately deactivate the catalyst remaining at the end of the saponification reaction, and then an organic peroxide is added. According to this embodiment, the amount of organic peroxide used can be small, and the effect of preventing coloration is great. The amount of water added is preferably in a molar ratio of 0.2 to 20 to the alkali catalyst.
Alternatively, after the reaction is complete, the saponified product produced can be precipitated by adding a non-solvent such as methanol or water, and after being taken out, it can be dissolved or dispersed in the solvent again and the peroxide can be applied in this state. can. The amount of organic peroxide added varies depending on the remaining amount of the catalyst, but generally speaking, it is preferably in the range of 0.05 to 1.0% by weight based on the saponified copolymer. The temperature of the saponified product system when adding the organic peroxide is preferably in the range of 30 to 100°C, especially 40 to 80°C. The treatment is preferably carried out at a temperature of 80 to 150°C until the organic peroxide is completely decomposed. Furthermore, if you only want to prevent the saponified product from discoloring, it is also possible to add the organic peroxide at a temperature of 100°C or higher and allow it to act at that temperature. These series of treatments are preferably performed in the presence of an inert gas. In this way, the polymer can be recovered from the mixture obtained by saponification and decolorization by cooling the mixture or by adding low-boiling alcohol or water to the mixture and cooling it to a fine powder. Alternatively, a method in which the mixture is precipitated as a fine powder, a method in which the solvent is distilled off while introducing an inert gas into the mixture under heating, or a method in which the solvent is cooled and powdered when a portion of the solvent remains, a method in which the mixture is heated A method in which a part of the solvent is distilled off while introducing an inert gas, water or water containing a surfactant is added, and the mixture is cooled and powdered. Powderize the polymer by a method such as turning it into a suspension and cooling it,
This can be achieved by separating, washing and drying. EXAMPLES The effects of the present invention will be described in detail below with reference to Examples, but these are for illustrative purposes only and are not intended to limit the scope of the present invention. Example 1 A 20 stainless steel reactor was equipped with a stirrer, a condenser, a thermometer, and a nitrogen inlet tube. The system was flushed with N 2 gas until the reaction started, and the inside of the reactor was completely replaced with N 2 gas. 7912 parts of xylene and ethylene-vinyl acetate copolymer (vinyl acetate content 28% by weight, MI400g/10min) in the reactor
4,600 parts were added and heated to 60-70°C to make a homogeneous solution. Lower the internal temperature to 60℃, add 1916 parts of methanol,
Furthermore, the internal temperature was maintained at 45-50°C. Add 269.6 parts of 24% sodium methoxide-methinol solution,
After reacting for 60 minutes at 45 to 50°C with stirring, 64.8 parts of water was added and stirred for 1 hour to stop the reaction. The reaction solution thus obtained was divided into four equal parts, and each was divided into four parts using a stirrer,
10 with condenser, thermometer and N2 inlet tube
After putting it in a four-necked glass flask, add the following 4
The process was carried out in two ways. Comparative Example 1 After the saponification reaction, 1765 parts of methanol was added to the reaction mixture to precipitate the saponification product. The product was collected by filtration, washed once with the same amount of methanol, and then dried under vacuum. Example 1 After the saponification reaction, the reaction mixture was kept at 40 to 60°C and 3.5 parts of BPO (benzoyl peroxide) was added.
After adding and dissolving it uniformly, heat at 120℃ under a N2 stream.
Most low-boiling solvents and xylene are heated to 1
After distilling off part of the mixture, the mixture was further heated and stirred at 120°C for 30 minutes, and then the internal temperature was cooled to 60°C, and 1765 parts of methanol was added to precipitate the saponified product. The product was collected by filtration, washed once with an equivalent amount of methanol, and then dried in vacuo. Example 2 After the saponification reaction was completed, the reaction mixture was heated to 120°C under a stream of N2 gas, most of the low boiling point solvent (methanol, methyl acetate, etc.) and a part of the xylene were distilled off, and then BPO3.5 30% at 120°C.
After heating and stirring for a minute, the internal temperature was cooled to 60° C., and 1,765 parts of methanol was added to precipitate the saponified product. The product was collected by filtration, washed once with the same amount of methanol, and then dried under vacuum. Table 1 summarizes the results of the above treatment and the properties of the saponified ethylene-vinyl acetate copolymer.

【表】 表1より、BPOの添加は明らかに脱色の効果
が認められる。得られた各々の試料をエクストル
ーダーを用いて130℃で溶融押出しし、ペレツト
化したケン化物の性質を表2に示す。
[Table] From Table 1, the addition of BPO clearly has a decolorizing effect. Each of the obtained samples was melt-extruded at 130°C using an extruder, and the properties of the saponified pellets are shown in Table 2.

【表】 表2よりわかるように実施例1及び実施例2で
は加熱溶融しても着色は起こらない。又比較例1
では加熱溶融することにより着色度が増す。 例 2 例1と同様の装置を施した20の反応機にキシ
レン6900部及びエチレン−酢酸ビニル共重合体
(酢酸ビニル含量8重量%、MI150g/10min)
3450部を入れ、60〜70℃に下げ、メタノール、
1437部を加え更に内温を45〜50℃に保つた。 24%のナトリウムメトキサイド−メタノール溶
液202.2部を加え、撹拌下45〜50℃で60分間反応
させた後、水を48.6部加えて1時間撹拌すること
によつて反応を停止させた。 こうして得られた反応液を3等分し、各々を例
1と同様な、10ガラス製4つ口フラスコに各々
を入れた後、以下の処理を行つた。 比較例 2 ケン化反応終了後の反応混合物にN2ガスを吹
き込みながら、内温を130℃まで上昇させて、
2661部の溶媒を留去した。残存溶媒はケン化物の
理論収量に対しドライベースで30重量%である。
この粘稠物をN2ガスの加圧下にコンデンサー、
N2ガス導入管、温度計を設備した20ヘンシエ
ルミキサーに移し、水5040部を加えて、510rpm
の回転数での撹拌下に加熱を行い内温を90℃に保
ち、更に30分間撹拌させることにより系を懸濁さ
せた。 この懸濁物をヘンシエルミキサーのジヤケツト
に水を入れて撹拌下に冷却を行うと平均粒径2mm
の顆粒状物が得られた。このものを濾過で捕集
し、真空乾燥を行つた。 実施例 3 ケン化反応終了後の反応混合物にN2ガスを吹
き込みながら内温を130℃まで上昇させて、2661
部の溶媒を留去した。その後内温を120℃に下
げ、BPOを4.6部加え、均一に溶解させて120℃で
30分間撹拌した。残存溶媒はケン化物の理論収量
に対し30重量%である。この粘稠物を比較例2と
同様の方法で処理を行つた後、得られた平均粒径
1.5mmのものを真空乾燥させた。 実施例 4 ケン化反応収量後の反応混合物を60℃に保ち
BPOを4.6部加え、均一に溶解させた後、N2ガス
を吹き込みながら、内温を130℃まで上昇させて
2661部の溶媒を留去した。残存溶媒はケン化物の
理論収量に対し、ドライベースで30重量%であ
る。この粘稠物を比較例2と同様の方法で処理を
行つた後、得られた平均粒径1.7mmのものを真空
乾燥した。上記処理の結果及び生成したエチレン
−酢酸ビニル共重合体のケン化物の性質を表3に
まとめる。
[Table] As can be seen from Table 2, in Examples 1 and 2, coloring did not occur even when heated and melted. Also, comparative example 1
The degree of coloring increases by heating and melting. Example 2 6900 parts of xylene and ethylene-vinyl acetate copolymer (vinyl acetate content 8% by weight, MI 150g/10min) were placed in 20 reactors equipped with the same equipment as in Example 1.
Add 3450 parts, lower the temperature to 60-70℃, methanol,
1437 parts were added and the internal temperature was maintained at 45-50°C. After adding 202.2 parts of a 24% sodium methoxide-methanol solution and reacting at 45 to 50°C for 60 minutes with stirring, the reaction was stopped by adding 48.6 parts of water and stirring for 1 hour. The reaction solution thus obtained was divided into three equal parts, each of which was placed in a four-necked 10 glass flask similar to Example 1, and then subjected to the following treatment. Comparative Example 2 After the saponification reaction, the internal temperature was raised to 130°C while blowing N 2 gas into the reaction mixture.
2661 parts of solvent was distilled off. The residual solvent is 30% by weight on a dry basis based on the theoretical yield of saponified product.
This viscous material is put into a condenser under pressure of N2 gas,
Transfer to a 20 Henschel mixer equipped with an N2 gas inlet tube and a thermometer, add 5040 parts of water, and mix at 510 rpm.
The system was heated while being stirred at a rotational speed of 100° C. to maintain the internal temperature at 90° C., and stirred for an additional 30 minutes to suspend the system. When this suspension was cooled by adding water to the jacket of a Henschel mixer and being stirred, the average particle size was 2 mm.
of granules were obtained. This material was collected by filtration and vacuum dried. Example 3 After the saponification reaction, the internal temperature was raised to 130°C while blowing N 2 gas into the reaction mixture, and the reaction mixture was heated to 2661°C.
Part of the solvent was distilled off. After that, lower the internal temperature to 120℃, add 4.6 parts of BPO, dissolve it uniformly, and heat it to 120℃.
Stir for 30 minutes. The residual solvent is 30% by weight based on the theoretical yield of saponified product. After treating this viscous material in the same manner as in Comparative Example 2, the average particle size obtained was
The 1.5 mm one was vacuum dried. Example 4 Maintaining the reaction mixture at 60°C after saponification reaction yield
After adding 4.6 parts of BPO and dissolving it uniformly, the internal temperature was raised to 130℃ while blowing N 2 gas.
2661 parts of solvent was distilled off. The residual solvent is 30% by weight on a dry basis based on the theoretical yield of the saponified product. This viscous material was treated in the same manner as in Comparative Example 2, and the resulting product with an average particle size of 1.7 mm was vacuum dried. Table 3 summarizes the results of the above treatment and the properties of the saponified product of the produced ethylene-vinyl acetate copolymer.

【表】 表3からわかるように実施例3、4の場合着色
が起こらないが比較例2の場合は着色が起こる。
[Table] As can be seen from Table 3, coloring did not occur in Examples 3 and 4, but coloring occurred in Comparative Example 2.

Claims (1)

【特許請求の範囲】 1 ビニルエステル含量が10〜50重量%のα−オ
レフイン−ビニルエステル共重合体のケン化物の
製造方法において、α−オレフイン−ビニルエス
テル共重合体を、炭化水素溶媒、低沸点アルコー
ル及びアルカリ触媒を含む系中でケン化し、ケン
化反応混合物中に水を添加して残留触媒を失活さ
せ、この反応混合物に、或いは低沸点成分を除去
した反応混合物にケン化共重合体当り0.05乃至
1.0重量部の有機過酸化物を作用させた後、有機
過酸化物を分解させ、最後に反応混合物からケン
化共重合体を沈殿として分離することから成る着
色が防止された非架橋オレフイン−ビニルエステ
ル共重合体ケン化物の製造方法。 2 α−オレフイン−ビニルエステル共重合体が
エチレン−酢酸ビニル共重合体である特許請求の
範囲第1項記載の方法。
[Scope of Claims] 1. In a method for producing a saponified product of an α-olefin-vinyl ester copolymer having a vinyl ester content of 10 to 50% by weight, an α-olefin-vinyl ester copolymer is mixed with a hydrocarbon solvent, a low Saponification is carried out in a system containing a boiling point alcohol and an alkali catalyst, water is added to the saponification reaction mixture to deactivate the residual catalyst, and saponification copolymerization is carried out to this reaction mixture or to the reaction mixture from which low boiling point components have been removed. Body hit 0.05~
Non-crosslinked olefin-vinyl with prevented coloration, which consists of the action of 1.0 parts by weight of an organic peroxide, followed by decomposition of the organic peroxide and finally separation of the saponified copolymer as a precipitate from the reaction mixture. A method for producing a saponified ester copolymer. 2. The method according to claim 1, wherein the α-olefin-vinyl ester copolymer is an ethylene-vinyl acetate copolymer.
JP16018978A 1978-12-27 1978-12-27 Preparation of saponified olefin vinyl ester copolymer or its grafted product Granted JPS5589304A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16018978A JPS5589304A (en) 1978-12-27 1978-12-27 Preparation of saponified olefin vinyl ester copolymer or its grafted product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16018978A JPS5589304A (en) 1978-12-27 1978-12-27 Preparation of saponified olefin vinyl ester copolymer or its grafted product

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP158487A Division JPS63270714A (en) 1987-01-09 1987-01-09 Manufacture of saponified and grafted olefin/vinyl ester copolymer

Publications (2)

Publication Number Publication Date
JPS5589304A JPS5589304A (en) 1980-07-05
JPS6234043B2 true JPS6234043B2 (en) 1987-07-24

Family

ID=15709738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16018978A Granted JPS5589304A (en) 1978-12-27 1978-12-27 Preparation of saponified olefin vinyl ester copolymer or its grafted product

Country Status (1)

Country Link
JP (1) JPS5589304A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0355441U (en) * 1989-10-04 1991-05-28

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0145928B1 (en) * 1983-11-07 1989-11-02 Takeda Chemical Industries, Ltd. Resin from saponified ethylene-vinyl acetate copolymers, production and use thereof
JPS6195007A (en) * 1984-10-16 1986-05-13 Takeda Chem Ind Ltd Colorless and transparent carboxyl modified resin of saponified ethylene-vinyl acetate copolymer, its production and use
EP0647659B1 (en) * 1993-04-15 1996-11-27 Nippon Gohsei Kagaku Kogyo Kabushiki Kaisha Process for producing oxidized polymer solution and process for producing laminate therefrom
JP2001220474A (en) * 1999-11-30 2001-08-14 Takeda Chem Ind Ltd Water-based emulsion composition and adhesive composition

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5045848A (en) * 1973-08-30 1975-04-24
JPS50110485A (en) * 1974-02-13 1975-08-30

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5045848A (en) * 1973-08-30 1975-04-24
JPS50110485A (en) * 1974-02-13 1975-08-30

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0355441U (en) * 1989-10-04 1991-05-28

Also Published As

Publication number Publication date
JPS5589304A (en) 1980-07-05

Similar Documents

Publication Publication Date Title
JP4129844B2 (en) Method for increasing the melt strength of polypropylene (co) polymer
US5137975A (en) Method for manufacture of modified polypropylene compositions
US5300574A (en) Substantially non-crosslinked maleic anhydride-modified ethylene polymers and process for preparing same
JP3830160B2 (en) Modification of polymers or copolymers with cyclic ketone peroxides.
US6103833A (en) Process for enhancing the melt strength of polypropylene (co)polymers
JPS5928207B2 (en) Controlled degradation of propylene polymers
UA60351C2 (en) AN EXTRUSION PROCESS for enhancing the MELT strength OF POLYPROPYLENE
EA023692B1 (en) Master mixture composition including a peroxide
JPS6234043B2 (en)
EP0559869B1 (en) Modified olefin polymers
US3780004A (en) Process for the accelerated alcoholysis of ethylene-vinyl ester interpolymers in the solid phase
US3152102A (en) Water-soluble polyvinyl alcohol-urea reaction products
CN100368453C (en) Process for producing modified poly-olefine resin
CA2035807C (en) Process for the preparation of epoxidized synthetic cis-1,4-polyisoprene
RU2398771C2 (en) Method of preparing trioxepane composition use thereof in crosslinking polymers
US3548408A (en) Process for esterification of polymers containing alcoholic groups
US5276202A (en) Organic peroxide compositions and process therefor
JPH0129809B2 (en)
US2988543A (en) Process for the treatment of poly-olefins
CN111278868A (en) Use of hydrogen peroxide in solid form for modifying the melt rheology of thermoplastic polymers
JP3327020B2 (en) Continuous production method of polyolefin emulsion
JP3225238B2 (en) Thermal decomposition method of synthetic polymer compound
US3186978A (en) Method for purifying olefin polymers
WO2002014383A1 (en) Use of trixepans in the process to modify (co) polymers
JPS621603B2 (en)