JP3224477B2 - Image forming apparatus and charging method thereof - Google Patents
Image forming apparatus and charging method thereofInfo
- Publication number
- JP3224477B2 JP3224477B2 JP17753094A JP17753094A JP3224477B2 JP 3224477 B2 JP3224477 B2 JP 3224477B2 JP 17753094 A JP17753094 A JP 17753094A JP 17753094 A JP17753094 A JP 17753094A JP 3224477 B2 JP3224477 B2 JP 3224477B2
- Authority
- JP
- Japan
- Prior art keywords
- voltage
- charging
- voltage level
- upper limit
- lower limit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Electrostatic Charge, Transfer And Separation In Electrography (AREA)
- Control Or Security For Electrophotography (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は帯電ローラその他の接触
式帯電体を用いた電子写真装置、例えば複写機、プリン
タ、ファクシミリ、若しくはこれらの機器のプロセスカ
ートリッジとして適用される画像形成装置と該画像形成
装置を構成する感光体への帯電に関する発明である。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrophotographic apparatus using a charging roller or other contact-type charged body, for example, a copying machine, a printer, a facsimile, or an image forming apparatus applied as a process cartridge of these apparatuses and the image forming apparatus. The present invention relates to charging of a photoconductor constituting a forming apparatus.
【0002】[0002]
【従来の技術】従来より感光体ドラム外周面上に、露
光、現像、転写、クリーニング(残留トナー除去)、除
電、及び帯電の各プロセス手段を配置し、所定の電子写
真プロセスにより画像形成を行なう、いわゆるカールソ
ンプロセスに基づく電子写真装置は周知である。2. Description of the Related Art Conventionally, respective process means of exposure, development, transfer, cleaning (removal of residual toner), charge elimination and charging are arranged on the outer peripheral surface of a photosensitive drum, and an image is formed by a predetermined electrophotographic process. Electrophotographic apparatuses based on the so-called Carlson process are well known.
【0003】この種の装置に用いる帯電手段は一般に細
いタングステン線に高電圧を印加してコロナ放電を行な
うコロトロン方式、又導電ローラに数百ボルトの電圧を
かけて感光体ドラムと接触帯電させるもの(特開平5ー
297690他)、更に導電性ブラシに電圧を印加して
感光体ドラムに接触させながら帯電を行なうもの、更に
又磁石体を内挿した導電スリーブに磁性粒子群を付着さ
せて刷子状の磁気穂を感光体ドラムに摺擦させスリーブ
を介して帯電バイアスを磁性粒子群に印加させて帯電を
行なう、いわゆる粒子帯電法も提案されている(特開昭
59ー133569他)。The charging means used in this type of apparatus is generally a corotron type in which a high voltage is applied to a thin tungsten wire to perform corona discharge, or a charging means in which a voltage of several hundred volts is applied to a conductive roller to contact and charge a photosensitive drum. (Japanese Unexamined Patent Publication (Kokai) No. 5-297690, etc.), a device in which a voltage is applied to a conductive brush to charge while making contact with a photoreceptor drum, and a brush is formed by attaching magnetic particles to a conductive sleeve in which a magnet is inserted. A so-called particle charging method has also been proposed, in which a magnetic brush in the form of a brush is rubbed against a photosensitive drum and a charging bias is applied to a group of magnetic particles via a sleeve to perform charging (JP-A-59-133569 and others).
【0004】しかしながらコロトロン方式は高電圧を使
用し、又オゾンを発生する等安全上、環境上の問題が多
い為、帯電ローラ、帯電ブラシ、更には帯電粒子を感光
体ドラム上に接触させた状態で、これらの接触帯電体を
介して感光体ドラム上に帯電バイアスを印加させながら
帯電を行う、いわゆる接触帯電方式が注目されている
が、このような接触式帯電方式においては、帯電体を常
時感光体ドラムに接触させた状態で帯電を行う為に、転
写後感光体ドラムに付着している残留トナーや転写時に
付着した紙粉が前記帯電体に付着し、帯電むらや円滑な
帯電が出来ない場合がある。However, since the corotron method uses a high voltage and has many safety and environmental problems such as generation of ozone, the charging roller, the charging brush, and the charged particles are brought into contact with the photosensitive drum. A so-called contact charging method, in which charging is performed while applying a charging bias to the photoreceptor drum via these contact charging members, has been attracting attention. Since charging is performed in a state in which the photosensitive drum is in contact with the photosensitive drum, residual toner adhered to the photosensitive drum after transfer and paper powder adhered during transfer adhere to the charged body, and uneven charging and smooth charging can be performed. May not be.
【0005】このため一般的には前記帯電位置の感光体
ドラム回転方向上流側にクリーニングブレードを配し、
該クリーニングブレードにより残留トナーの除去を図っ
ているが、前記感光体ドラムにOPCドラムを用いた装
置にあっては、該OPCドラムは比較的軟らかい有機樹
脂層からなるOPC感光体層をアルミ素管上に蒸着して
形成されるものであっては、回転するOPCドラムにブ
レードとともに接触帯電体を長期に亙って摺擦させて使
用すると、感光体層の表面が徐々に摩耗していき、等価
容量変化により帯電特性が変化する。特に前記接触帯電
体に印加する帯電バイアスに直流バイアスを用いると感
光体の容量変化に大きく影響を受ける。For this reason, a cleaning blade is generally arranged upstream of the charging position in the rotation direction of the photosensitive drum.
Although the cleaning blade is used to remove residual toner, in an apparatus using an OPC drum as the photosensitive drum, the OPC drum is made of an aluminum pipe made of a relatively soft organic resin layer. If the contact charging member is used by rubbing the rotating OPC drum together with the blade for a long period of time on the rotating OPC drum, the surface of the photosensitive layer gradually wears, The charging characteristics change due to the change in equivalent capacitance. In particular, when a DC bias is used as the charging bias applied to the contact charging member, a change in the capacity of the photoconductor is greatly affected.
【0006】即ち、図4(A)に示すように直流バイア
ス電源43、帯電ローラ4、感光体ドラム1、及び接地
電位Eを直列接続した場合、図4(B)に示す等価回路
より明らかな如く、長期使用により前記感光層1aの膜
厚が減少すると、これに比例して感光体感度とともに帯
電ローラ4に流れる直流電流が増加し、感光体1の外表
面の表面電位は上昇する。この結果、現像コントラスト
及び現像濃度が上昇するとともに、背景電位に対し十分
な逆コントラストが得られず、いわゆるかぶりが生じて
しまう。That is, when the DC bias power supply 43, the charging roller 4, the photosensitive drum 1, and the ground potential E are connected in series as shown in FIG. 4A, it is clear from the equivalent circuit shown in FIG. As described above, when the film thickness of the photosensitive layer 1a decreases due to long-term use, the DC current flowing to the charging roller 4 increases in proportion to the photosensitive member sensitivity, and the surface potential of the outer surface of the photosensitive member 1 increases. As a result, the development contrast and the development density increase, and a sufficient reverse contrast with respect to the background potential cannot be obtained, so that a so-called fog occurs.
【0007】従来、かかる欠点を解消する為に、前記感
光体1に流れる電流若しくは前記層厚に対応した直流電
圧を検知し、該検知電流(電圧)に基づいて前記帯電体
4に印加される直流電圧若しくは直流電流を補正制御し
ようとする技術(特開平5ー307315号)が提案されてい
る。Conventionally, in order to solve such a drawback, a current flowing through the photosensitive member 1 or a DC voltage corresponding to the layer thickness is detected and applied to the charging member 4 based on the detected current (voltage). A technique for correcting and controlling a DC voltage or a DC current (Japanese Patent Laid-Open No. 5-307315) has been proposed.
【0008】[0008]
【発明が解決しようとする課題】しかしながらOPCド
ラムにおいては運転開始より使用限界時期までの膜減り
量、言換えれば前記感光体1の帯電容量が大きいため
に、広い制御範囲に亙って制御可能な回路を構成するこ
とは回路構成の煩雑化と製造コストの無用な増大につな
がる。しかも前記感光体1に流れる電流等は必ずしも膜
厚のみに比例して変動するのではなく、機内温度、湿度
等の環境的要因によっても変動し、この為、前記回路構
成で緻密な制御を行っても必ずしも精度よい制御ができ
ず得策ではない。However, in the case of the OPC drum, the amount of film reduction from the start of operation to the use limit time, in other words, since the charging capacity of the photosensitive member 1 is large, the OPC drum can be controlled over a wide control range. Constructing a simple circuit leads to complicated circuit configuration and unnecessary increase in manufacturing cost. In addition, the current and the like flowing through the photoreceptor 1 do not always fluctuate in proportion to the film thickness alone, but also fluctuate due to environmental factors such as temperature and humidity in the apparatus. However, accurate control is not always possible, which is not a good idea.
【0009】特に、感光体ドラム1にOPCドラムを用
いた場合は、感光体膜厚がコンデンサ的機能を有し、こ
の結果ドラム表面を帯電させるのは、図4(B)に示す
C1に帯電電圧Vを充電する事に相当し、従って感光体
に流れる表面電位VdはC1の容量の変化に応じて、具
体的には膜厚が薄くなるに連れ表面電位Vdが上昇す
る。又帯電ローラは温度と湿度によって抵抗R1が変化
するものである。従って、コンデンサ的機能を有する感
光体VC1と抵抗的機能を有する帯電ローラVR1の2つ
の異質な変動要素を緻密に制御しようとすると前記した
ように回路構成の煩雑化と製造コストの増大につながる
のみならず、帯電ローラや感光体ドラムの汚染等のノイ
ズがあり、緻密な制御が困難である。In particular, in the case of using an OPC drum to the photosensitive drum 1, the photosensitive layer thickness has a capacitor function, for charging the results drum surface, the C 1 shown in FIG. 4 (B) the charge voltage V corresponds to that charge and thus the surface potential Vd flowing through the photoreceptor in accordance with a change in the capacitance of C 1, specifically the surface potential Vd As the film thickness becomes thinner to increase. The charging roller is intended to change the resistance R 1 by temperature and humidity. Therefore, the increase in complication of the manufacturing cost of the circuit configuration as described above to attempt to precisely control the two heterogeneous variables of the charging roller VR 1 having a resistance function and the photoreceptor VC 1 having a capacitor function In addition to the connection, there is noise such as contamination of the charging roller and the photosensitive drum, and precise control is difficult.
【0010】この為、前記従来技術も含めて通常は感光
体の膜減りのみを電流検知センサにて検知してその帯電
電圧の制御を行っているのが常であったが、かかる方式
では帯電ローラの環境変動に対しては無防備である。特
に、膜減りにより耐久寿命に近付いた時点で、言換えれ
ば充電機能が上昇している時点では帯電電流が相対的に
大きく、従って環境変動に起因する表面電位変動が大き
くなり易く、特に低温低湿(定電圧の場合)での影響が
大きい。一方前記感光体ドラムの運転当初、即ち感光体
膜厚が厚い状態にある間は、充電機能が低く、言換えれ
ば帯電電流が小さく、この結果環境変動に起因する問題
が小さくてすむ。For this reason, the current detection sensor normally detects only the film thickness reduction of the photoreceptor and controls the charging voltage by using the current detection sensor. There is no defense against environmental changes in the rollers. In particular, the charging current is relatively large when approaching the endurance life due to the film decrease, in other words, when the charging function is increasing, so that the surface potential fluctuation due to environmental fluctuations is likely to increase, especially at low temperature and low humidity. (In the case of constant voltage) has a large effect. On the other hand, at the beginning of the operation of the photoconductor drum, that is, while the photoconductor film thickness is large, the charging function is low, in other words, the charging current is low, and as a result, problems caused by environmental fluctuations can be reduced.
【0011】本発明は、かかる従来技術の欠点に鑑み、
感光体の膜減り若しくは環境変動のいずれの場合でも簡
単な回路構成で前記変動に起因する表面電位の変動を抑
制し、長期に亙って安定且つ高品質の帯電及び画像形成
を行い得る発明を提供する事を目的とする。[0011] In view of the disadvantages of the prior art, the present invention provides
An invention capable of suppressing the fluctuation of the surface potential caused by the fluctuation with a simple circuit configuration in any case of the film thinning of the photoreceptor or the environmental fluctuation and performing stable and high-quality charging and image formation over a long period of time. The purpose is to provide.
【0012】[0012]
【課題を解決する為の手段】本発明は感光体にOPC感
光体、帯電バイアスに直流バイアス、又帯電体に帯電ロ
ーラを用いた装置に好適に適用されるものであるが、環
境変動は帯電ローラのみならず、粒子帯電方式、刷子帯
電方式のいずれの帯電方式にも適用できる。即ち本発明
は、感光体に接触配置した帯電体を含み、該帯電体に印
加した直流帯電電圧を介して感光体上に均一帯電を行な
いながら画像形成を行う画像形成装置において、前記感
光体にOPC感光体を用い、前記帯電体に印加される直
流帯電電圧を所定幅域内に制限する電圧上限制限手段及
び電圧下限制限手段と、前記所定幅域内で前記感光体を
流れる帯電電流を検知し、該帯電電流の増減に比例した
検知電圧を生成する手段と、前記検知電圧が下限電圧レ
ベル、または上限電圧レベルに達したときに予め設定さ
れた基準電圧に基づいて前記感光体に印加する前記帯電
電圧の生成を行う基準帯電電圧生成手段と、前記検知電
圧が前記下限電圧レベルと上限電圧レベルとの間にある
ときは、前記検知電圧に基づいて直流帯電電圧の調整を
行いながら前記感光体に流れる電流の定電流制御を行
う、定電流制御手段とを備え、前記検知電圧に基づいて
前記感光体への印加電圧を制御することを特徴とするも
のである。尚、本発明において、感光体をOPC感光体
に限定した理由は、a−Siその他の無機感光体におい
てはコンデンサ的機能より抵抗的機能が強く基本的には
OPCを用いた装置と異なる制御が必要であるからであ
る。 The present invention is suitably applied to an apparatus using an OPC photosensitive member as a photosensitive member, a DC bias as a charging bias, and a charging roller as a charging member. Not only the roller, but also any of a particle charging system and a brush charging system can be applied. That is, the present invention includes an image forming apparatus that includes a charged body that is arranged in contact with a photoconductor, and performs image formation while uniformly charging the photoconductor via a DC charging voltage applied to the charged body. Using an OPC photoconductor, a voltage upper limit unit and a voltage lower limit unit that limit a DC charging voltage applied to the charger to a predetermined width range, and detect a charging current flowing through the photoconductor within the predetermined width range, Means for generating a detection voltage proportional to the increase or decrease of the charging current; and a means for generating a detection voltage based on a preset reference voltage when the detection voltage reaches a lower limit voltage level or an upper limit voltage level. A reference charging voltage generating means for generating the charging voltage to be applied; and adjusting the DC charging voltage based on the detection voltage when the detection voltage is between the lower limit voltage level and the upper limit voltage level. Performs constant current control of the current flowing to the photosensitive member while, a constant-current control means, it is characterized in that for controlling the voltage applied to the photosensitive member on the basis of the detection voltage. In the present invention, the reason why the photoreceptor is limited to the OPC photoreceptor is that a-Si and other inorganic photoreceptors have a stronger resistance function than a capacitor function and basically have a different control from an apparatus using an OPC. there is a need Karadea
You.
【0013】又前記定電流制御手段は、前記所定幅域内
で前記感光体を流れる帯電電流を検知し、該帯電電流に
対応する検知電圧を生成する手段と、該検知電圧に基づ
いて直流帯電電圧の調整を行いながら感光体に流れる電
流の定電流制御を行うように構成するのがよい。又前記
電圧上限制限手段と下限制限手段の夫々の制限手段によ
って得られる上限若しくは下限電圧レベルは必ずしも固
定的である必要はなく、環境条件に基づいて上限若しく
は下限電圧レベルを補正可能に構成してもよい。このよ
うな構成として例えば、前記感光体を流れる帯電電流を
検知し、該帯電電流の増減に比例した検知電圧を生成す
る手段とを具え、前記検知電圧に基づいて前記上限若し
くは下限の夫々の制限手段によって得られる上限若しく
は下限電圧レベルを補正可能に構成するのが好ましい。The constant current control means detects a charging current flowing through the photoreceptor within the predetermined width range and generates a detection voltage corresponding to the charging current, and a DC charging voltage based on the detection voltage. It is preferable that the constant current control of the current flowing through the photoconductor is performed while the adjustment is made. Also, the upper limit or lower limit voltage level obtained by each of the voltage upper limit limiter and the lower limit limiter is not necessarily required to be fixed, and the upper limit or lower limit voltage level can be corrected based on environmental conditions. Is also good. As such a configuration, for example, means for detecting a charging current flowing through the photoreceptor and generating a detection voltage proportional to an increase or decrease in the charging current is provided, and each of the upper limit and the lower limit is limited based on the detection voltage. It is preferable that the upper or lower limit voltage level obtained by the means can be corrected.
【0014】そしてこのような制御を行う好ましい帯電
方法として、感光体に接触配置した帯電体に印加した直
流帯電電圧を介して感光体上に均一帯電を行なう画像形
成装置の帯電方法において、前記帯電体に印加される直
流帯電電圧を検知帯電電圧として検知し、該検知帯電電
圧が下限電圧レベル、または上限電圧レベルに達したと
きに予め設定された基準電圧に基づいて前記感光体に基
準帯電電圧を印加し、前記検知帯電電圧が前記下限電圧
レベルと上限電圧レベルとの間にあるときは、前記検知
帯電電圧に基づいて直流帯電電圧の調整を行いながら前
記感光体に流れる電流の定電流制御を行い、前記検知帯
電電圧に基づいて前記感光体への印加電圧を制御するこ
とを特徴とする。そして前記予め設定された基準電圧に
基づいて生成される帯電電圧は図5に示すように固定的
である必要はなく、図6に示すように、前記検知帯電電
圧に基づいて補正し、環境変動に対応した上限若しくは
下限帯電電圧レベルを設定してもよい事は前記した通り
である。As a preferable charging method for performing such control, in the charging method of an image forming apparatus for uniformly charging the photosensitive member via a DC charging voltage applied to the charged member arranged in contact with the photosensitive member, detecting a DC charging voltage to be applied to the body as a detection charging voltage, the detected charging electric
When the pressure reaches the lower limit voltage level or the upper limit voltage level, a reference charging voltage is applied to the photoconductor based on a preset reference voltage, and the detected charging voltage is the difference between the lower limit voltage level and the upper limit voltage level. If it is in the middle,
While adjusting the DC charging voltage based on the charging voltage a constant current control of the current flowing to the photosensitive member, the detection zone
A voltage applied to the photoconductor is controlled based on an electric voltage . The charging voltage the is generated based on a preset reference voltage need not be fixed, as shown in FIG. 5, as shown in FIG. 6, the detection charge collector
As described above , the correction may be performed based on the pressure , and the upper limit or lower limit charging voltage level corresponding to the environmental change may be set.
【0015】[0015]
【作用】本発明は基本的には図5に示すように、膜厚の
厚い運転初期においても、又長期使用によって膜厚が小
になった場合のいずれにおいても、帯電ローラへの帯電
電圧を感光体の膜減りとは無関係に、中間膜減りとほぼ
対応する電圧レベル域の下限若しくは上限定電圧を用い
て、帯電ローラに定常的に固定電圧を印加させるもので
ある。According to the present invention, as shown in FIG. 5, the charging voltage to the charging roller is basically reduced both in the early stage of operation when the film thickness is large and when the film thickness is reduced due to long-term use. Irrespective of the reduction in the film thickness of the photoreceptor, a fixed voltage is constantly applied to the charging roller using the lower limit voltage or the upper limit voltage of the voltage level range substantially corresponding to the reduction in the intermediate film.
【0016】即ち、前記したように画像形成により前記
OPC感光体が摩耗し、膜減りが生じるにつれコンデン
サ容量C1が増加するために、従来技術においてはこれ
に反比例して帯電電圧を上昇させて、言換えれば表面電
位を上昇させてVC1を一定に維持しようとする。[0016] That is, the above OPC photosensitive member is worn by the image forming as, for capacitance C 1 as the film reduction occurs is increased, by increasing the charging voltage in inverse proportion to this in the prior art , by increasing the surface potential in other words to try to maintain the VC 1 constant.
【0017】そしてこの状態で環境変動が生じると、帯
電ローラ抵抗VR1の抵抗値変化が生じ感光体に流れる電
流(充電電流)が変動し、言換えれば表面電位Vdに変
動が生じVC1に変動が生じてしまう。そこで定電流制
御により前記環境変動に起因する感光体VC1の変動を
抑制する事が前記従来技術で開示されているが、運転当
初の感光体膜厚が厚い状態から長期使用により膜厚が減
少した状態までの広い範囲に亙って電流若しくは電圧制
御を行いつつ、更に前記した環境変動に対応させて定電
流制御を行うことは前記した通り、回路構成のみなら
ず、その制御も煩雑化する。[0017] When the environmental change occurs in this state, the charging roller resistance value variation of the resistance V R1 the current flowing through the photosensitive member (charging current) is varied occurs, the VC 1 occurs is a change in the surface potential Vd if words Kaere Fluctuations occur. So although possible to suppress the fluctuation of the photosensitive member VC 1 due to the environmental change by the constant current control is disclosed in the prior art, the film thickness is reduced by long-term use photoconductor thickness of the original operation of a thick state Performing constant current control in response to the above-described environmental fluctuations while performing current or voltage control over a wide range up to the state described above complicates not only the circuit configuration but also the control thereof. .
【0018】そこで本発明は帯電体に印加される帯電電
圧を図5及び図6に示すように、所定幅域内に制限する
事により前記欠点の解消を図っている。Therefore, the present invention solves the above-mentioned drawback by limiting the charging voltage applied to the charging member to a predetermined width range as shown in FIGS.
【0019】即ち本発明の作用を図5に基づいて説明す
るに、従来の技術では、感光体の帯電容量VC1を一定
に維持するためには、図5(B)の破線で示すように、
膜減りによりC1が減少しているのであるから帯電電圧
を反比例的に上昇させる必要がある。しかしながら本発
明においては、運転初期においてはその膜厚における従
来の帯電電圧を予め上昇させた上限定電圧を用いて、該
上限定電圧を所定厚の膜減りが生じるまで電圧制御させ
ることなく定常的に固定電圧を印加させるものである。
この結果、運転当初においてはVC1が小さくなるが、
逆に環境変動による帯電ローラ抵抗VR1の抵抗値変化が
生じても相対的にこれを抑制することが出来る。又帯電
電圧を従来より大し、中間膜減りの下限制限レベルと同
等程度にすることにより、現像コントラスト及び現像濃
度が相対的に上昇し、後記する中間膜減りの帯電状態と
同様なコントラスト及び現像濃度を得ることが出来、両
者間のバラツキを抑える事が出来る。この場合前記上限
制限電圧は図6に示すように、環境条件により補正する
事により、一層緻密な制御が可能である。[0019] That is the effect of the present invention to be described with reference to FIG. 5, in the conventional art, in order to maintain the charge capacity VC 1 of the photosensitive member at a constant, as indicated by a broken line shown in FIG. 5 (B) ,
The charging voltage from C 1 by film reduction is to have decreased it is necessary to increase inversely with. However, in the present invention, in the initial stage of operation, the upper limit voltage obtained by increasing the conventional charging voltage at the film thickness in advance at the film thickness is used, and the upper limit voltage is constantly controlled without voltage control until the film thickness decreases by a predetermined thickness. Is applied with a fixed voltage.
As a result, VC 1 becomes small at the beginning of operation,
Conversely even when the resistance value change of the charging roller resistance V R1 due to environmental variations relative which can be suppressed. Also, by increasing the charging voltage to a level equivalent to the lower limit level of the reduction of the intermediate film, the development contrast and the development density are relatively increased, and the contrast and the development are the same as the charging state of the reduction of the intermediate film described later. The concentration can be obtained, and the variation between the two can be suppressed. In this case, more precise control is possible by correcting the upper limit voltage according to environmental conditions as shown in FIG.
【0020】次に長期使用により、十分膜減りが生じて
いる場合は、逆にその膜厚における従来の帯電電圧を予
め下降させた下限定電圧を用いて、図5に示すように帯
電ローラに定常的に定電圧を印加させる。この結果、V
C1は大きくなるが、図5(B)に示すように中間膜減
りの上限制限レベルと同等程度に表面電位が低くなるた
めに、中間膜減りの帯電状態と同様なコントラスト及び
現像濃度を得ることが出来、両者間のバラツキを抑える
事が出来るのみならず、背景電位に対しも十分な逆コン
トラストを得る事が出来、かぶり減少を防止出来る。こ
の場合も前記上限制限電圧は図6に示すように、環境条
件により補正する事により、一層緻密な制御が可能であ
る。尚、下限制限電圧レベルのみ環境条件により補正
し、上限制限電圧は固定電圧で構成してもよい。Next, when the film thickness has been sufficiently reduced due to long-term use, on the contrary, the charging roller is charged to the charging roller as shown in FIG. A constant voltage is applied constantly. As a result, V
C 1 is increased, because the surface potential becomes lower equivalent extent as the upper limit level of the reduced intermediate film as shown in FIG. 5 (B), to obtain the same contrast and development density and the charged state of the reduced intermediate layer As a result, not only the variation between the two can be suppressed, but also a sufficient reverse contrast with respect to the background potential can be obtained, and a reduction in fog can be prevented. In this case as well, more precise control is possible by correcting the upper limit voltage according to environmental conditions as shown in FIG. Note that only the lower limit voltage level may be corrected according to environmental conditions, and the upper limit voltage may be a fixed voltage.
【0021】最後に前記下限定電圧レベルと上限定電圧
レベルの間に位置する中間膜減り状態では、本発明は特
に帯電電圧の調整により感光体に流れる電流の定電流制
御を行い、環境変動による帯電容量VC1のバラツキの
抑制を図っている。Finally, in the state where the intermediate film is reduced between the lower limited voltage level and the upper limited voltage level, the present invention performs constant current control of the current flowing through the photoreceptor by adjusting the charging voltage. thereby achieving suppression of variation in charging capacity VC 1.
【0022】この結果図5(B)、図6(B)に示すよ
うに、運転初期及び長期使用後のいずれの場合も、中間
膜減りにおける表面電位(帯電電圧)と対応する電圧レ
ベルに近づけ、一方中間膜減り段階では環境条件に応じ
て定電流制御を行い、表面電位を常に中心部の所定電圧
レベル域に近づけようとする事により前記従来技術の欠
点の解消を図っている。As a result, as shown in FIGS. 5 (B) and 6 (B), in both the initial stage of operation and after long-term use, the voltage was brought closer to the voltage level corresponding to the surface potential (charging voltage) in the reduction of the interlayer film. On the other hand, in the step of reducing the interlayer film, constant current control is performed in accordance with environmental conditions to always bring the surface potential closer to a predetermined voltage level region at the center, thereby eliminating the drawbacks of the above-mentioned prior art.
【0023】[0023]
【実施例】以下、図面に基づいて本発明の実施例を例示
的に詳しく説明する。但しこの実施例に記載されている
構成部品の寸法、材質、形状、その相対配置などは特に
特定的な記載がない限りは、この発明の範囲をそれのみ
に限定する趣旨ではなく単なる説明例に過ぎない。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing an embodiment of the present invention; However, unless otherwise specified, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention, but are merely illustrative examples. Not just.
【0024】図2は本発明が適用される画像形成装置、
特にプリンタの感光体ドラム1周辺のプロセスユニット
の基本構成図を示し、ドラム回転方向(時計回り)に沿
ってLEDユニット8、現像ユニット60、転写ローラ
7、クリーニングブレード3、イレーサからなる除電手
段2、帯電ローラ4が配置され、周知の様に除電手段2
により除電後、帯電ローラ4により均一帯電された感光
体ドラム1上にLEDユニット8により露光潜像が書込
まれ、該露光潜像を反転現像にて現像ユニット60でト
ナー像が顕像化し、該トナー像を転写ローラ7にて記録
媒体10に転写した後、クリーニングブレード3にて残
留トナーを除去する。そして前記クリーニングブレード
3にて除去された残留トナーは不図示のスクリューによ
り廃トナーボトル(不図示)に収容される。FIG. 2 shows an image forming apparatus to which the present invention is applied.
In particular, a basic configuration diagram of a process unit around the photosensitive drum 1 of the printer is shown, and an electricity removing means 2 including an LED unit 8, a developing unit 60, a transfer roller 7, a cleaning blade 3, and an eraser is arranged along the drum rotating direction (clockwise). , A charging roller 4 is disposed, and as is well known, the charge removing means 2
After the charge is removed, the exposure latent image is written by the LED unit 8 on the photosensitive drum 1 uniformly charged by the charging roller 4, and the toner image is visualized by the developing unit 60 by reversal development of the exposure latent image, After transferring the toner image to the recording medium 10 by the transfer roller 7, the residual toner is removed by the cleaning blade 3. The residual toner removed by the cleaning blade 3 is stored in a waste toner bottle (not shown) by a screw (not shown).
【0025】次に前記各プロセス手段について説明す
る。感光体ドラム1は直径が30φで帯電極性が負極性
のOPCドラム1(有機光導電体)を用い、矢印方向に
所定周速で回転可能に構成されている。そして前記感光
体ドラム1の感光体層1aの膜厚(GGL,CTL等の
総厚さ)を25μmに設定している。Next, the respective process means will be described. The photoconductor drum 1 uses an OPC drum 1 (organic photoconductor) having a diameter of 30φ and a negative charging polarity, and is configured to be rotatable at a predetermined peripheral speed in the direction of the arrow. The thickness (the total thickness of GGL, CTL, etc.) of the photoconductor layer 1a of the photoconductor drum 1 is set to 25 μm.
【0026】LEDユニット8は公知の様に列状にLE
D素子を配列したLEDヘッドと集束レンズからなり、
画像情報に対応した露光潜像を感光体ドラム1上に書込
み可能に構成する。As is well known, the LED units 8 are
It consists of an LED head with D elements arranged and a focusing lens,
An exposure latent image corresponding to image information can be written on the photosensitive drum 1.
【0027】現像ユニット60は、キャリアとトナーか
らなる複数成分現像剤が収納された現像容器61と不図
示の固定磁石集成体が収納された現像ローラ62からな
り、該ローラ62に例えば−50〜−450Vの直流現
像バイアス電源65を接続して、低電界反転現像により
現像を行うように構成する。The developing unit 60 comprises a developing container 61 containing a multi-component developer composed of a carrier and a toner, and a developing roller 62 containing a fixed magnet assembly (not shown). A DC development bias power supply 65 of -450 V is connected to perform development by low electric field reversal development.
【0028】そして前記キャリアは、バインダ樹脂中に
磁性体が均一分散されてなるキャリア母粒子の表面に導
電性微粒子が固定されて構成されたものを用い、その磁
力は、5kOe(エールステッド)の磁場での最大磁化
が55〜80emu/g、キャリアの平均中心粒度は3
5μmで特に35μm以下の粒子を15wt%以上含む
粒径分布の現像剤を用いる。As the carrier, a carrier is used in which conductive fine particles are fixed on the surface of carrier base particles in which a magnetic substance is uniformly dispersed in a binder resin, and has a magnetic force of 5 kOe (Oersted). The maximum magnetization in a magnetic field is 55 to 80 emu / g, and the average center particle size of the carrier is 3
A developer having a particle size distribution of 5 μm, particularly containing 15 wt% or more of particles of 35 μm or less is used.
【0029】又トナーは通常の高抵抗若しくは絶縁性ト
ナーが用いられ、例えば、バインダー樹脂、着色剤、電
荷制御剤、オフセット防止剤などに、磁性体を添加して
その平均中心粒度は5〜15μm前後の磁性トナーとし
て構成し上記のキャリアとトナーと適正混合比を例えば
85〜90:15〜10重量%に設定する。As the toner, a normal high-resistance or insulating toner is used. For example, a magnetic substance is added to a binder resin, a coloring agent, a charge control agent, an offset preventing agent, etc., and the average central particle size is 5 to 15 μm. The carrier and the toner are configured as the front and rear magnetic toners, and an appropriate mixing ratio of the carrier and the toner is set to, for example, 85 to 90:15 to 10% by weight.
【0030】転写ローラ7は、抵抗率が105Ω・cm
以下の導電性弾性ローラ、具体的にはウレタンゴムロー
ラを用い、転写バイアス70を感光体1aの表面電位及
びトナー像電荷の極性と逆極性の+250Vに設定す
る。The transfer roller 7 has a resistivity of 10 5 Ω · cm.
Using the following conductive elastic roller, specifically, a urethane rubber roller, the transfer bias 70 is set to +250 V which is opposite to the surface potential of the photoconductor 1a and the polarity of the toner image charge.
【0031】一方、クリーニングブレード3は、先端が
断面楔状の板状のポリウレタンエラストマー材を不図示
の支持部材に取付けて、その先端角部が感光体ドラム1
にほぼ線接触にて当接するように配設する。On the other hand, the cleaning blade 3 is formed by attaching a plate-like polyurethane elastomer material having a wedge-shaped cross section to a support member (not shown), and having a corner at the front end of the photosensitive drum 1.
Are arranged so that they are almost in line contact.
【0032】帯電ローラ4は感光体ドラム1と同期して
従動回転しながら6φのステンレス製中実シャフトから
なる芯金周囲に、導電成分を添加したポリウレタンゴム
を成型し、表面を研磨して12φのローラ状に整形した
もので、表面にナイロン樹脂コーティングを実施して形
成される。尚、必要に応じて前記帯電ローラ4のゴム層
の表面層を硬化処理をしてもよい。The charging roller 4 is driven and rotated in synchronism with the photosensitive drum 1 to mold a polyurethane rubber to which a conductive component has been added around a 6 mm stainless steel core made of a solid shaft made of stainless steel. It is formed by applying a nylon resin coating on the surface. If necessary, the surface layer of the rubber layer of the charging roller 4 may be subjected to a curing treatment.
【0033】そして前記芯金には帯電バイアス制御回路
が接続されており、又前記帯電ローラ4の背面側にはク
リーニングローラ5が接触配置されている。A charging bias control circuit is connected to the metal core, and a cleaning roller 5 is arranged in contact with the back side of the charging roller 4.
【0034】クリーニングローラ5には、芯金の表面に
ゴム層を被覆した後、その表面に化学繊維材からなる紐
状体、好ましくは太径の毛糸状化学繊維若しくは表面に
長繊維が植毛された紐状体を、中央位置より左右に周回
方向を異ならせてスパイラル状に巻回し、前記クリーニ
ングローラ5の回転により、該ローラ5に付着した付着
物が中央側より軸端側に向け移動可能に形成している。In the cleaning roller 5, after a rubber layer is coated on the surface of the cored bar, a string-like body made of a chemical fiber material, preferably a thick yarn-like chemical fiber or a long fiber is implanted on the surface. Is wound in a spiral shape with different circumferential directions left and right from the center position, and by the rotation of the cleaning roller 5, the attached matter on the roller 5 can move from the center side to the shaft end side. Is formed.
【0035】図1は前記帯電バイアス制御回路の回路構
成図を示し、その構成を簡単に説明するに、20は一次
巻線LI、二次巻線Lo,Lsからなる高圧トランス
で、一次巻線LIの一端側に所定の直流電圧電源Vi、
他端側にコレクタ側が接地されたトランジスタQ1のエ
ミッタ側が接続されている。FIG. 1 is a circuit diagram of the charging bias control circuit. To briefly explain the structure, reference numeral 20 denotes a high-voltage transformer comprising a primary winding L I and secondary windings Lo and Ls. line L I predetermined DC voltage supply Vi at one end of,
The other end is connected to the emitter of the transistor Q1 whose collector is grounded.
【0036】30はPWM制御回路で、三角波生成回路
31と、該生成回路31よりの三角波が+入力端に導入
されているオペアンプ32からなり、該オペアンプ32
の出力側をトランジスタQ1のベース側に接続してい
る。そして二次巻線Lo側には、二次巻線側電圧Voを
平滑化しながら定電流制御を行う定電流回路25が形成
され、該定電流回路25を介して二次巻線側電圧が負荷
(ローラ)に印加されるように構成する。そして該回路
は巻線Loの+端子側に、二次側整流ダイオードD1、
抵抗R1を介して帯電ローラ4と感光体ドラム1の負荷
が接続され、又前記抵抗の両端子間に2つのコンデンサ
C1,C2が並列接続され、巻線Loの−端子側に接続さ
れている。又前記−端子側と接地電位間に電流電圧(I
/V)変換抵抗I/Vが接続されている。Numeral 30 denotes a PWM control circuit which comprises a triangular wave generating circuit 31 and an operational amplifier 32 in which a triangular wave from the generating circuit 31 is introduced to a positive input terminal.
Is connected to the base side of the transistor Q1. On the side of the secondary winding Lo, a constant current circuit 25 for performing constant current control while smoothing the secondary winding side voltage Vo is formed. (Roller). The circuit is connected to the secondary terminal rectifier diode D 1 ,
A charging roller 4 via a resistor R 1 load of the photosensitive drum 1 is connected, and the two capacitors C 1 between the terminals of the resistor, C 2 are connected in parallel, the winding Lo - connected to the terminal side Have been. A current voltage (I) is applied between the negative terminal and the ground potential.
/ V) Conversion resistor I / V is connected.
【0037】そして前記変換抵抗I/Vより取り出した帯
電電流と対応する検知電圧が制限抵抗R3を介して反転
回路34の+端子側とともに、ダイオードD2を介して
下限リミッタ35の出力端子に、夫々印加されている。
反転回路34は前記検知電圧を反転して得られるフィー
ドバック電圧をオペアンプ32の−端子側に印加する事
により+端子側より印加される三角波をスライスして、
該スライスレベルに対応したパルス幅を有するON/O
FF信号をトランジスタQ1のベース側に印加させる。The detection voltage corresponding to the charging current extracted from the conversion resistor I / V is connected to the + terminal of the inverting circuit 34 via the limiting resistor R 3 and to the output terminal of the lower limiter 35 via the diode D 2. , Respectively.
The inverting circuit 34 slices the triangular wave applied from the + terminal side by applying the feedback voltage obtained by inverting the detection voltage to the − terminal side of the operational amplifier 32,
ON / O having a pulse width corresponding to the slice level
The FF signal is applied to the base of the transistor Q 1.
【0038】反転回路34の−端子側には必要に応じて
基準電圧設定回路341を接続し、検知電圧と前記回路
341により設定される基準電圧との比較によって常に
一定電流を保つ定電流回路を構成する。A reference voltage setting circuit 341 is connected to the negative terminal of the inverting circuit 34 as necessary, and a constant current circuit that always maintains a constant current by comparing the detected voltage with the reference voltage set by the circuit 341 is provided. Constitute.
【0039】一方二次巻線Ls側には、ダイオードD3
とコンデンサC3からなり、巻線Ls電圧を平滑化させ
て検知電圧を生成する為の回路27が構成されており、
該回路27により巻線Lsに比例した検知電圧が上限リ
ミッタ36と下限リミッタ35の夫々の+入力端子側に
印加される。そして上限リミッタ36と下限リミッタ3
5の夫々の−入力端子側には、夫々基準電圧設定回路3
51、361が接続されている。On the other hand, a diode D 3 is connected to the secondary winding Ls.
And consists capacitor C 3, the circuit 27 for generating a detection voltage winding Ls voltage by smoothing is configured,
The circuit 27 applies a detection voltage proportional to the winding Ls to the + input terminal of each of the upper limiter 36 and the lower limiter 35. Then, the upper limiter 36 and the lower limiter 3
The reference voltage setting circuit 3 is connected to each of the-input terminals of
51 and 361 are connected.
【0040】次に前記回路の動作を図3に示す電圧波形
図に基づいて説明する。本回路はPWM制御によるフラ
イバック方式である為に、前記PMW制御回路30を構
成するオペアンプ32内では三角波と反転回路34若し
くは上限リミッタ36どちらか高い方の出力電圧により
比較(スライス)されてそのスライス幅に対応するON
/OFFパルスがトランジスタQ1のベース側に印加さ
れる。そして前記オペアンプ32よりのON/OFFパ
ルス信号に基づいてトランジスタQ1Q1のエミッタ/
コレクタ間がONすると、巻線1次側LIに{(1/
2)LI・i2}(LI:巻線インダクタンス・i2:一次
平均電流)のエネルギーが蓄積され、そしてトランジス
タQ1がOFFの際に二次側整流ダイオードD1を介して
エネルギーが放出され、言換えればトランジスタQ1の
エミッタ/接地間に逆起電圧Vpが発生し、トランス2
0の二次側巻線であるLo、Ls間に巻線に比例した電
圧Vo,Vsが発生する。Next, the operation of the circuit will be described with reference to the voltage waveform diagram shown in FIG. Since this circuit is a flyback system based on PWM control, the triangular wave is compared (sliced) with the output voltage of the higher one of the inverting circuit 34 and the upper limiter 36 in the operational amplifier 32 constituting the PWM control circuit 30. ON corresponding to the slice width
/ OFF pulse is applied to the base of the transistor Q 1. Then, based on the ON / OFF pulse signal from the operational amplifier 32, the transistor Q 1
The collector is turned ON, the winding primary side L I {(1 /
2) Energy of L I · i 2 } (L I : winding inductance · i 2 : primary average current) is accumulated, and when the transistor Q 1 is turned off, energy is passed through the secondary side rectifier diode D 1. is released, the counter electromotive voltage Vp is generated between the emitter / grounded transistor Q 1 if words words, transformer 2
Voltages Vo and Vs proportional to the windings are generated between Lo and Ls, which are the secondary windings of 0.
【0041】この際、LIは固定インダクタンスである
から、一次側巻線の電流imaxが可変されるすることに
より一次側出力Vpが可変する。 Vp=(imax)LI={(2・i・Ton)/(T)}LI …1) T:パルス周期 Ton:パルスON幅 従ってパルスON幅Tonに比例してVpが増減すること
となる。又一次側出力Vpと二次側側出力Voとの関係
は Vp=Vi+(n1/n2)Vo …2) Vi:入力電圧 n1:一次側巻線LI数 n2:二次側巻線Lo数 である。At this time, since L I is a fixed inductance, the primary output Vp is varied by varying the current i max of the primary winding. Vp = (i max ) L I = {(2 · i · T on ) / (T)} L I 1) T: pulse period T on : pulse ON width Therefore, Vp is proportional to pulse ON width T on. It will increase or decrease. The relationship between the primary output Vp and secondary side output Vo is Vp = Vi + (n 1 / n 2) Vo ... 2) Vi: Input Voltage n 1: the primary winding L I number n 2: secondary side The number of windings Lo.
【0042】従ってVoは(n1/n2)に比例して矩形
パルス状の交番電圧が形成されるが、前記二次側側出力
VoはコンデンサC1、C2により平滑化され、ほぼピー
ク電圧に対応する直流電圧Vが前記ローラ(負荷)に印
加される。Accordingly, Vo forms a rectangular pulse-like alternating voltage in proportion to (n 1 / n 2 ), but the secondary-side output Vo is smoothed by the capacitors C 1 and C 2 , and almost has a peak. A DC voltage V corresponding to the voltage is applied to the roller (load).
【0043】そして感光体ドラム1の膜厚が大きい運転
初期の状態では、感光体ドラム1に流れる充電電流が小
さい為に、これに対応して帯電ローラ4を含む帯電電流
が減少する。そして前記帯電電流は、変換抵抗I/Vによ
り該帯電電流に見合った検知電圧に変換され、該検知電
圧は、反転回路34により反転された後、オペアンプ3
2に入力される。In the initial state of operation in which the thickness of the photosensitive drum 1 is large, the charging current flowing through the photosensitive drum 1 is small, and accordingly, the charging current including the charging roller 4 decreases. The charging current is converted by a conversion resistor I / V into a detection voltage corresponding to the charging current. After the detection voltage is inverted by an inversion circuit 34, the operational amplifier 3
2 is input.
【0044】オペアンプ32内では三角波をスライスす
るスライスレベルがフィードバック電圧の変動に対応し
て上下し、そして該変動に見合ってパルスON幅Tonが
変化するON/OFF信号をトランジスタQ1のベース
側に印加する。そして、一次側出力VpはパルスON幅
Tonに比例して増減する為に、前記帯電電流が減少する
と、パルスON幅Tonが減少し、これに対応して出力電
圧Vは帯電電流に比例して低下し又検知用二次側側電圧
Vsもこれに対応して低下する。The slice level for slicing the triangular wave in the operational amplifier 32 is vertically in response to variations in the feedback voltage, and the base of the transistor Q 1 the ON / OFF signals of varying pulse ON width T on commensurate to the displacement movement Is applied. Then, in order the primary output Vp is increased or decreased in proportion to the pulse ON width T on, when the charging current decreases, and decreasing the pulse ON width T on, proportional to the output voltage V is charged current in response thereto And the detection-side secondary-side voltage Vs correspondingly decreases.
【0045】そして、前記検知用二次側側電圧Vsが下
限基準電圧レベルSvL以下になると、分岐路352を
介して下限リミッタ35と変換抵抗I/V間が並列接続さ
れ、これにより反転回路34に印加される検知電圧が低
くなる方向に働き、この結果、二次出力側の下限制限電
圧VLは VL§{(1/SvL)+(1/FB)}={(SvL+FB)/S
vL・FB}と対応し一方検知電圧に対応する出力電圧VFB
はFBと対応する。従ってVLはVFBに対し、(1+(SvL
/FB))倍、電圧が押上げられる事になる。そして前記
負荷に出力される下限制限電圧VLはFB電圧、即ち帯電
電流の変動に比例して変化するために、その下限制限電
圧VLは、環境変動にも対応させて調整することが出来
るために、一層精度よい調整が可能となる。When the detection-side secondary voltage Vs falls below the lower-limit reference voltage level Sv L , the lower-limit limiter 35 and the conversion resistor I / V are connected in parallel via the branch 352, whereby the inverting circuit 34, the lower limit voltage VL on the secondary output side becomes V L § {(1 / Sv L ) + (1 / FB)} = {(Sv L + FB) / S
v Output voltage V FB corresponding to L · FB} and one side corresponding to the detection voltage
Corresponds to FB. Therefore, V L is equal to V FB by (1+ (Sv L
/ FB)) times the voltage is boosted. Since the lower limit voltage VL output to the load changes in proportion to the fluctuation of the FB voltage, that is, the charging current, the lower limit voltage VL can be adjusted according to environmental fluctuations. Therefore, more accurate adjustment can be performed.
【0046】又前記感光体ドラム1を所定量使用し、前
記検知用二次側側電圧Vsが下限リミッタ35の基準電
圧レベルSvL〜上限リミッタ36の基準電圧レベルS
vUの範囲内にある場合は次の様に制御が行われる。先
ず前記帯電電流の変動は、変換抵抗I/Vにより該変動電
流に見合った検知電圧に変換され、反転回路34を介し
てオペアンプ32に入力される。オペアンプ32内では
三角波をスライスするスライスレベルがF/B電圧の変
動に対応して上下し、そして該変動に見合ってパルスO
N幅Tonが変化するON/OFF信号をトランジスタQ
1のベース側に印加する。When the photosensitive drum 1 is used in a predetermined amount, the secondary voltage Vs for detection is changed from the reference voltage level Sv L of the lower limiter 35 to the reference voltage level Sv of the upper limiter 36.
v when within range of U control as follows is performed. First, the fluctuation of the charging current is converted into a detection voltage corresponding to the fluctuation current by the conversion resistance I / V, and is input to the operational amplifier 32 via the inverting circuit 34. In the operational amplifier 32, the slice level for slicing the triangular wave rises and falls in response to the change in the F / B voltage, and the pulse O corresponds to the change.
An ON / OFF signal in which the N width Ton changes varies with the transistor Q
1 is applied to the base side.
【0047】そして前記1)式及び2)式に示すよう
に、一次側出力Vpと二次側側出力VoはパルスON幅
Tonに比例して増減する為に、前記帯電電流が増大する
と、パルスON幅Tonが減少し、これに対応して二次側
側の平滑化された出力Vが下降する方向、言換えれば帯
電電流を抑制する方向に働くために、前記帯電電流の増
大を抑え、定電流が流れる。一方、前記帯電電流が減少
すると、逆にパルスON幅Tonが増大し二次側側出力V
が上昇する方向に働くために、前記帯電電流が増大する
方向に働き、これにより帯電電流の変動、言換えれば帯
電ローラの環境変動があってもこれに対応して負荷電圧
を調整しながら定電流が流れることとなる。As shown in the above equations (1) and (2), the primary output Vp and the secondary output Vo increase and decrease in proportion to the pulse ON width T on . The pulse ON width Ton decreases, and in response to this, the secondary-side smoothed output V acts in a downward direction, in other words, in a direction to suppress the charging current. Suppress and a constant current flows. On the other hand, when the charging current decreases, the pulse ON width Ton increases, and the secondary side output V
Works in the direction in which the charging current increases, whereby even if there is a fluctuation in the charging current, in other words, a change in the environment of the charging roller, the load voltage is adjusted while adjusting the load voltage in response to the fluctuation. A current will flow.
【0048】そして長期使用により感光体ドラムの膜厚
が大きく膜減りしてくると、感光体ドラムに流れる帯電
電流が大きくなり、そして該帯電電流は、変換抵抗I/V
により該帯電電流に見合った検知電圧に変換され、該検
知電圧は反転回路34により反転された後、オペアンプ
32に入力され、該オペアンプ32内で、前記帯電電流
の増大に反比例してパルスON幅Tonが減少し、これに
対応して出力電圧Vは帯電電流に比例して増大し又検知
用二次側側電圧Vsもこれに対応して増大する。When the film thickness of the photosensitive drum is greatly reduced due to long-term use, the charging current flowing to the photosensitive drum increases, and the charging current is reduced by the conversion resistance I / V.
Is converted into a detection voltage corresponding to the charging current, and the detection voltage is inverted by an inverting circuit 34, and then input to an operational amplifier 32, where the pulse ON width is inversely proportional to the increase in the charging current. Ton decreases, and the output voltage V correspondingly increases in proportion to the charging current, and the secondary voltage Vs for detection also increases correspondingly.
【0049】そして、前記検知用二次側側電圧Vsが上
限リミッタ36の基準電圧レベルSvU以上になると、
前記反転回路34よりのフィードバック電圧FBとともに
基準電圧レベルSvUがオペアンプ32に入力され、二
次側巻線Lo側に三角波のスライスレベル(SvU+F
B)に対応した上限制限電圧VUを得ることが出来る。そ
して前記上限制限電圧VUは検知電圧、即ち帯電電流の
変動に比例して微小に変化するために、その上限制限電
圧VUも、環境変動にも対応させて調整することが出来
るために、一層精度よい調整が可能となる。[0049] Then, when the detecting secondary-side voltage Vs becomes equal to or higher than the reference voltage level Sv U of upper limiter 36,
The reference voltage level Sv U with the feedback voltage FB than the inversion circuit 34 is input to the operational amplifier 32, the secondary winding Lo side triangular wave slice level (Sv U + F
B) a can be obtained an upper limit voltage V U corresponding. The upper limit limiting voltage V U is sensed voltage, i.e. in order in proportion to the variation of the charging current varies minutely, to the upper limit limit voltage V U also can be adjusted also correspond to the environmental change, More accurate adjustment is possible.
【0050】この場合反転回路34の−端子側には必要
に応じて基準電圧設定回路341を接続することによ
り、検知電圧が前記回路341により設定される基準電
圧を越えた場合フィードバック電圧FBはオペアンプ32
に入力されず上限リミッタ36よりの上限制限電圧VU
が前記オペアンプ32の−端子側に印加され、固定的な
スライスレベルを生成する。In this case, a reference voltage setting circuit 341 is connected to the-terminal side of the inverting circuit 34 as necessary, so that when the detection voltage exceeds the reference voltage set by the circuit 341, the feedback voltage FB becomes an operational amplifier. 32
To the upper limit voltage V U from the upper limiter 36
Is applied to the negative terminal side of the operational amplifier 32 to generate a fixed slice level.
【0051】[0051]
【効果】以上記載した如く本発明によれば、感光体の膜
減り若しくは環境変動のいずれの場合でも簡単な回路構
成で前記変動に起因する表面電位の変動を抑制し、長期
に亙って安定且つ高品質の帯電及び画像形成を行い得
る。等の種々の著効を有す。As described above, according to the present invention, the fluctuation of the surface potential due to the fluctuation can be suppressed with a simple circuit configuration, regardless of the film thickness of the photoreceptor or the environmental fluctuation, and stable over a long period of time. In addition, high quality charging and image formation can be performed. And so on.
【図1】本発明の実施例にかかる帯電ローラに印加され
る帯電電圧の制御回路である。FIG. 1 is a control circuit of a charging voltage applied to a charging roller according to an embodiment of the present invention.
【図2】本発明に適用される画像形成装置の概略構成図FIG. 2 is a schematic configuration diagram of an image forming apparatus applied to the present invention.
【図3】図1の回路における電圧レベルを示す波形図で
ある。FIG. 3 is a waveform chart showing voltage levels in the circuit of FIG.
【図4】帯電ローラと感光体ドラムにおける帯電印加状
態を示す基本構成図(A)とその等価回路(B)であ
る。FIGS. 4A and 4B are a basic configuration diagram showing a charging application state on a charging roller and a photosensitive drum, and an equivalent circuit thereof.
【図5】上限若しくは下限の夫々の制限手段によって得
られる上限若しくは下限帯電電圧レベルを固定させた帯
電電圧レベルと負荷変動の関係を示すグラフ図(A)と
表面電位と環境変動を示すグラフ図(B)である。FIG. 5 is a graph (A) showing a relationship between a charging voltage level and a load fluctuation with a fixed upper or lower charging voltage level obtained by respective upper and lower limit means, and a graph showing surface potential and environmental fluctuation. (B).
【図6】上限若しくは下限の夫々の制限手段によって得
られる上限若しくは下限帯電電圧レベルを環境条件によ
って変動させた帯電電圧レベルと負荷変動の関係を示す
グラフ図(A)と表面電位と環境変動を示すグラフ図
(B)である。FIG. 6 is a graph (A) showing a relationship between a charging voltage level and a load variation in which an upper limit or a lower limit charging voltage level obtained by each of an upper limit or a lower limit is changed according to environmental conditions; It is a graph figure (B) shown.
【符号の説明】 1 感光体(感光体ドラム) 1a 感光体 4 帯電体(帯電ローラ) 43 帯電バイアス電源[Description of Signs] 1 Photoconductor (Photoconductor drum) 1a Photoconductor 4 Charged body (Charging roller) 43 Charging bias power supply
フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G03G 15/02 102 G03G 21/00 398 Continuation of the front page (58) Field surveyed (Int. Cl. 7 , DB name) G03G 15/02 102 G03G 21/00 398
Claims (4)
帯電体に印加した直流帯電電圧を介して感光体上に均一
帯電を行ないながら画像形成を行う画像形成装置におい
て、 前記感光体にOPC感光体を用い、前記帯電体に印加さ
れる直流帯電電圧を所定幅域内に制限する電圧上限制限
手段及び電圧下限制限手段と、 前記所定幅域内で前記感光体を流れる帯電電流を検知
し、該帯電電流の増減に比例した検知電圧を生成する手
段と、 前記検知電圧が下限電圧レベル、または上限電圧レベル
に達したときに予め設定された基準電圧に基づいて前記
感光体に印加する前記帯電電圧の生成を行う基準帯電電
圧生成手段と、 前記検知電圧が前記下限電圧レベルと上限電圧レベルと
の間にあるときは、前記検知電圧に基づいて直流帯電電
圧の調整を行いながら前記感光体に流れる電流の定電流
制御を行う、定電流制御手段とを備え、 前記検知電圧に基づいて前記感光体への印加電圧を制御
することを特徴とする画像形成装置。1. An image forming apparatus, comprising: a charged member disposed in contact with a photosensitive member, wherein an image is formed while uniformly charging the photosensitive member via a DC charging voltage applied to the charged member; Using an OPC photoconductor, a voltage upper limit unit and a voltage lower limit unit that limit a DC charging voltage applied to the charger to a predetermined width range, and detect a charging current flowing through the photoconductor within the predetermined width range. Means for generating a detection voltage proportional to the increase or decrease of the charging current; and said charging applied to the photoconductor based on a preset reference voltage when the detection voltage reaches a lower limit voltage level or an upper limit voltage level. Reference charging voltage generating means for generating a voltage, and when the detection voltage is between the lower limit voltage level and the upper limit voltage level, adjust the DC charging voltage based on the detection voltage. Performs constant current control of the current flowing to want the photosensitive member, and a constant-current control means, the image forming apparatus characterized by controlling the voltage applied to the photosensitive member on the basis of the detection voltage.
を補正設定可能に構成したことを特徴とする請求項1記
載の画像形成装置。2. The image forming apparatus according to claim 1, wherein the lower limit voltage level and the upper limit voltage level can be corrected and set.
直流帯電電圧を介して感光体上に均一帯電を行なう画像
形成装置の帯電方法において、 前記帯電体に印加される直流帯電電圧を検知帯電電圧と
して検知し、 該検知帯電電圧が下限電圧レベル、または上限電圧レベ
ルに達したときに予め設定された基準電圧に基づいて前
記感光体に基準帯電電圧を印加し、 前記検知帯電電圧が前記下限電圧レベルと上限電圧レベ
ルとの間にあるときは、前記検知帯電電圧に基づいて直
流帯電電圧の調整を行いながら前記感光体に流れる電流
の定電流制御を行い、 前記検知帯電電圧に基づいて前記感光体への印加電圧を
制御することを特徴とする画像形成装置における帯電方
法。3. A charging method for an image forming apparatus for uniformly charging a photosensitive body via a DC charging voltage applied to a charged body arranged in contact with the photosensitive body, wherein the DC charging voltage applied to the charged body is detected. charging voltage <br/> to detect, the reference charging voltage is applied to the photosensitive body based on a preset reference voltage when said detection charging voltage reaches the lower limit voltage level or the upper limit voltage level, When the detected charging voltage is between the lower limit voltage level and the upper limit voltage level, perform constant current control of a current flowing through the photoconductor while adjusting a DC charging voltage based on the detected charging voltage , A charging method for an image forming apparatus, comprising: controlling a voltage applied to the photosensitive member based on a detected charging voltage .
上限電圧レベルを、環境変動に対応して補正する事を特
徴とする請求項3記載の画像形成装置における帯電方
法。4. A lower limit voltage level of the charging voltage or
4. The charging method according to claim 3, wherein the upper limit voltage level is corrected according to environmental fluctuation.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17753094A JP3224477B2 (en) | 1994-07-06 | 1994-07-06 | Image forming apparatus and charging method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17753094A JP3224477B2 (en) | 1994-07-06 | 1994-07-06 | Image forming apparatus and charging method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0822170A JPH0822170A (en) | 1996-01-23 |
JP3224477B2 true JP3224477B2 (en) | 2001-10-29 |
Family
ID=16032545
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17753094A Expired - Fee Related JP3224477B2 (en) | 1994-07-06 | 1994-07-06 | Image forming apparatus and charging method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3224477B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001209237A (en) * | 2000-01-28 | 2001-08-03 | Nec Niigata Ltd | Contact type electrifying device and transfer device |
JP2002229306A (en) * | 2001-01-31 | 2002-08-14 | Canon Inc | Electrifying device, image forming device and processing cartridge |
JP4590778B2 (en) * | 2001-05-24 | 2010-12-01 | 富士ゼロックス株式会社 | Contact charging device and electrophotographic printing method using the same |
JP4876588B2 (en) * | 2005-03-29 | 2012-02-15 | 富士ゼロックス株式会社 | Image forming apparatus |
JP5012846B2 (en) * | 2009-04-06 | 2012-08-29 | ブラザー工業株式会社 | Power source for image forming apparatus and charger |
JP6275682B2 (en) * | 2014-12-02 | 2018-02-07 | キヤノンファインテックニスカ株式会社 | Image forming apparatus |
WO2016088366A1 (en) * | 2014-12-02 | 2016-06-09 | キヤノンファインテック株式会社 | Image formation device |
-
1994
- 1994-07-06 JP JP17753094A patent/JP3224477B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0822170A (en) | 1996-01-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3768800B2 (en) | Image forming apparatus | |
US4959688A (en) | Image forming apparatus having charging and discharging means | |
US5412455A (en) | Charging device, image forming apparatus and detachably mountable process cartridge having a constant voltage power source feature | |
JP3214120B2 (en) | Charging device and image forming device | |
JP3220670B2 (en) | Image forming device | |
JP3224477B2 (en) | Image forming apparatus and charging method thereof | |
JP2004333789A (en) | Image forming apparatus | |
JPH11327262A (en) | Electrification device and image forming device | |
JP3599187B2 (en) | Image forming device | |
JPH1165229A (en) | Electrifier and image forming device | |
JPS60249166A (en) | Method for adjusting image density of electrophotograph | |
JP2002174944A (en) | Image forming device | |
JPH05281860A (en) | Image forming device | |
JP3146272B2 (en) | Image forming method | |
JP3961758B2 (en) | Image forming method | |
JP3402878B2 (en) | Charging device, image forming device, and process cartridge | |
JP3535772B2 (en) | Image forming device | |
JPH10339988A (en) | Toner image recorder | |
JP2814778B2 (en) | Charging device | |
JP4323688B2 (en) | Image forming apparatus | |
JPH06202502A (en) | Transfer device | |
JP3437288B2 (en) | Charging device | |
JPH06118770A (en) | Image forming device | |
JP3359202B2 (en) | Image forming device | |
JP3232472B2 (en) | Contact charging member, charging device, image forming apparatus, and process cartridge |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080824 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080824 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090824 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100824 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100824 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110824 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120824 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130824 Year of fee payment: 12 |
|
LAPS | Cancellation because of no payment of annual fees |