JP3402878B2 - Charging device, image forming device, and process cartridge - Google Patents

Charging device, image forming device, and process cartridge

Info

Publication number
JP3402878B2
JP3402878B2 JP28931095A JP28931095A JP3402878B2 JP 3402878 B2 JP3402878 B2 JP 3402878B2 JP 28931095 A JP28931095 A JP 28931095A JP 28931095 A JP28931095 A JP 28931095A JP 3402878 B2 JP3402878 B2 JP 3402878B2
Authority
JP
Japan
Prior art keywords
charging
charged
voltage
contact
image forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28931095A
Other languages
Japanese (ja)
Other versions
JPH09106144A (en
Inventor
展之 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP28931095A priority Critical patent/JP3402878B2/en
Publication of JPH09106144A publication Critical patent/JPH09106144A/en
Application granted granted Critical
Publication of JP3402878B2 publication Critical patent/JP3402878B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrophotography Configuration And Component (AREA)
  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)
  • Control Or Security For Electrophotography (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、帯電装置、画像形
成装置、及びプロセスカートリッジに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a charging device, an image forming device, and a process cartridge.

【0002】[0002]

【従来の技術】従来、例えば電子写真装置(複写機・プ
リンタ・ファクシミリなど)、静電記録装置等の画像形
成装置において、電子写真感光体・静電記録誘電体、転
写材、その他の被帯電体を帯電処理(除電処理も含む)
する手段としてはコロナ帯電器を用いた「コロナ帯電方
式」が使用されてきた。近年は、「接触帯電方式」の帯
電装置が実用化されている。またオゾンレスで、低電力
の「接触注入帯電(電荷注入帯電)方式」の帯電装置も
開発されている。
2. Description of the Related Art Conventionally, in image forming apparatuses such as electrophotographic devices (copiers, printers, facsimiles, etc.) and electrostatic recording devices, electrophotographic photosensitive members, electrostatic recording dielectrics, transfer materials, and other materials to be charged. Charging the body (including static elimination)
A "corona charging method" using a corona charger has been used as a means for doing so. In recent years, a “contact charging type” charging device has been put into practical use. A ozone-less, low-power “contact injection charging (charge injection charging) type” charging device has also been developed.

【0003】A)コロナ帯電方式 被帯電体にコロナ帯電器を非接触に対向配設して、コロ
ナ帯電器から放出されるコロナに被帯電体をさらして被
帯電体面を所定の極性・電位に帯電させるものである。
A) Corona charging method A corona charger is disposed in a non-contact manner opposite to a body to be charged, and the body to be charged is exposed to the corona discharged from the corona charger so that the surface of the body to be charged has a predetermined polarity and potential. It is to be charged.

【0004】B)接触帯電方式 ローラ型・ブレード型・ブラシ型・磁気ブラシ等の帯電
部材を被帯電体に当接させ、該帯電部材に電圧を印加し
て被帯電体面を帯電させるもので、低オゾン、低電力を
目的としており、中でも特に帯電部材として導電ローラ
を用いたローラ帯電方式が帯電の安定性があり、さらに
発生オゾン量がコロナ帯電器の約1000分の1という
点でオフィス環境にも好ましいので特に近年広く用いら
れるようになってきた。
B) Contact charging method: A charging member such as a roller type, a blade type, a brush type, or a magnetic brush is brought into contact with an object to be charged, and a voltage is applied to the charging member to charge the surface of the object to be charged. It is aimed at low ozone and low power consumption. Above all, the roller charging method using a conductive roller as a charging member has stable charging, and the amount of ozone generated is about 1/1000 of that of a corona charger, which is an office environment. Since it is also preferred, it has been widely used in recent years.

【0005】ローラ帯電では、導電性の弾性ローラ(帯
電ローラ)を被帯電体に加圧当接させ、これに電圧を印
加することによって被帯電体の帯電を行なう。
In roller charging, a conductive elastic roller (charging roller) is brought into pressure contact with an object to be charged, and a voltage is applied to the object to charge the object.

【0006】具体的には、帯電は帯電部材から被帯電体
への放電によって行なわれるため、ある閾値電圧以上の
電圧を印加することによって帯電が開始される。例を示
すと、被帯電体としての厚さ25μmの電子写真OPC
感光体に対して帯電ローラを加圧当接させた場合には、
約640V以上の電圧を印加すれば感光体の表面電位が
上昇し始め、それ以降は印加電圧に対して傾き1で線形
に感光体表面電位が増加する。この閾値電圧を帯電開始
電圧Vthと定義する。
Specifically, since the charging is performed by discharging from the charging member to the body to be charged, the charging is started by applying a voltage equal to or higher than a certain threshold voltage. As an example, an electrophotographic OPC having a thickness of 25 μm as a member to be charged
When the charging roller is pressed against the photoconductor,
When a voltage of about 640 V or higher is applied, the surface potential of the photoconductor starts to rise, and thereafter, the surface potential of the photoconductor linearly increases with an inclination of 1 with respect to the applied voltage. This threshold voltage is defined as the charging start voltage Vth.

【0007】つまり、電子写真に必要とされる感光体表
面電位Vdを得るためには帯電ローラにはVd+Vth
という必要とされる表面電位Vd以上のDC電圧(直流
電圧)が必要となる。このようにしてDC電圧のみを接
触帯電部材に印加して帯電を行なう方法をDCバイアス
方式(DC帯電方式)と称する。
That is, in order to obtain the photoreceptor surface potential Vd required for electrophotography, Vd + Vth is applied to the charging roller.
That is, a DC voltage (DC voltage) higher than the required surface potential Vd is required. A method of applying only the DC voltage to the contact charging member in this way to perform charging is called a DC bias method (DC charging method).

【0008】しかし、DCバイアス方式においては環境
変動等によって接触帯電部材の抵抗値が変動するため、
また被帯電体としての感光体が繰り返し使用につれて削
れていくことによって膜厚が変化すると帯電開始電圧V
thが変動するため、感光体の帯電電位を所望の値にす
ることが難しかった。
However, in the DC bias method, the resistance value of the contact charging member fluctuates due to environmental fluctuations and the like.
Further, when the photosensitive member as the member to be charged is repeatedly worn away and the film thickness is changed, the charging start voltage V
Since th varies, it is difficult to set the charging potential of the photoconductor to a desired value.

【0009】このため、更なる帯電の均一化を図るため
に特開昭63−149669号公報に開示されるよう
に、所望の被帯電体表面電位Vdに相当するDC電圧に
2×Vth以上のピーク間電圧を持つAC成分(交流電
圧成分)を重畳した振動電圧(時間とともに電圧値が周
期的に変化する電圧)を接触帯電部材に印加して帯電を
行なうACバイアス方式(AC帯電方式)が用いられ
る。これは、AC成分による電位のならし効果を目的と
したものであり、被帯電体の電位はAC電圧のピークの
中央であるVdに収束し、環境等の外乱には影響される
ことはない。
Therefore, as disclosed in Japanese Patent Laid-Open No. 63-149669, in order to further homogenize charging, the DC voltage corresponding to the desired surface potential Vd of the member to be charged is 2 × Vth or more. There is an AC bias method (AC charging method) in which an oscillating voltage (a voltage whose voltage value periodically changes with time) superposed with an AC component (AC voltage component) having a peak-to-peak voltage is applied to a contact charging member to perform charging. Used. This is for the purpose of leveling the potential by the AC component, and the potential of the charged body converges on Vd which is the center of the peak of the AC voltage, and is not affected by disturbance such as the environment. .

【0010】しかし、上述の接触帯電方式においてDC
バイアス方式でもACバイアス方式でも、その本質的な
帯電機構は、帯電部材から被帯電体への放電現象を用い
ているため、先に述べたように帯電部材に印加する電圧
は被帯電体の所望の表面電位Vd以上の値が必要とさ
れ、微量のオゾンは発生する。また、帯電均一化のため
にACバイアス方式を行なった場合にはさらなるオゾン
の発生、AC電圧の電界による帯電部材と被帯電体の振
動騒音(AC帯電音)の発生、また放電による被帯電体
表面の劣化等が顕著になり、新たな問題点となってい
た。
However, in the above-mentioned contact charging system, DC
In both the bias method and the AC bias method, the essential charging mechanism uses the discharge phenomenon from the charging member to the charged member. Therefore, as described above, the voltage applied to the charging member is the desired voltage of the charged member. The surface potential Vd is required to be equal to or higher than the surface potential Vd, and a minute amount of ozone is generated. Further, when the AC bias system is used for uniform charging, further ozone is generated, vibration noise (AC charging sound) of the charging member and the charged body due to the electric field of the AC voltage is generated, and the charged body is caused by discharge. Deterioration of the surface became remarkable and became a new problem.

【0011】C)接触注入帯電方式 そこで新たな帯電方式として、被帯電体(感光体)への
電荷の直接注入による帯電方式が特開平6−3921号
公報に開示されている。
C) Contact injection charging system Then, as a new charging system, Japanese Patent Laid-Open No. 6-3921 discloses a charging system by directly injecting an electric charge to an object to be charged (photoconductor).

【0012】この接触注入帯電方式は、帯電ローラ、帯
電ブラシ、帯電磁気ブラシ等の接触帯電部材に電圧を印
加し、被帯電体としての感光体表面にある電荷注入層の
導電粒子に電荷を注入して帯電を行なう方法である。
In this contact injection charging system, a voltage is applied to a contact charging member such as a charging roller, a charging brush, a charging magnetic brush, etc., and charges are injected into the conductive particles in the charge injection layer on the surface of the photosensitive member as the member to be charged. Is a method of charging.

【0013】この帯電方式では、放電現象を用いないた
め、帯電に必要とされる電圧は所望する感光体表面電位
Vd分のみであり、オゾンの発生量も上記B)の接触帯
電方式におけるローラ帯電方式の10分の1以下と優れ
ている。
In this charging method, since the discharge phenomenon is not used, the voltage required for charging is only the desired photoconductor surface potential Vd, and the amount of ozone generated is the roller charging in the contact charging method of the above B). It is excellent as less than 1/10 of the method.

【0014】この接触注入帯電方式の場合も、DC電圧
のみを接触帯電部材に印加して帯電を行なうDCバイア
ス方式と、AC成分を有する電圧を接触帯電部材に印加
して帯電を行なうACバイアス方式がある。この場合
は、DCバイアス方式に比べるとACバイアス方式の方
が接触帯電部材の耐久劣化や環境変動の際にも安定した
帯電性能を示すことから最近特にこの接触注入帯電方式
・ACバイアス方式(AC注入帯電)の研究が進められ
ている。
Also in the case of this contact injection charging method, a DC bias method in which only a DC voltage is applied to the contact charging member to perform charging, and an AC bias method in which a voltage having an AC component is applied to the contact charging member to perform charging. There is. In this case, compared with the DC bias method, the AC bias method exhibits stable charging performance even when the contact charging member is deteriorated in durability or changes in the environment. Therefore, the contact injection charging method / AC bias method (AC Injection charging) is under study.

【0015】接触注入帯電方式では、接触帯電部材にた
とえACバイアスが印加されても前記B)の接触帯電方
式のローラ帯電方式のようにDCバイアス方式に比べ大
幅にオゾン発生量が増えてしまうことがないことが知ら
れている。
In the contact injection charging method, even if an AC bias is applied to the contact charging member, the amount of ozone generated is significantly increased as compared with the DC bias method like the roller charging method of the contact charging method in the above B). It is known that there is no.

【0016】その理由は、ローラ帯電方式のような丸い
形の固体の帯電ローラと被帯電体間で放電が発生しやす
い空隙が常に存在する場合に対し、特に磁性キャリア
(磁性粒子)の磁気ブラシを接触帯電部材として用いた
場合の接触注入帯電方式ではDCあるいはACバイアス
が印加されると磁気ブラシを構成する帯電した流動性の
ある磁性キャリアが被帯電体に注入された反対電荷に引
きつけられて多量に移動し、ローラ帯電方式より大きな
接触面積を形成し磁気ブラシと被帯電体は完全に密着し
放電するような空隙が存在しないからではないかと考え
られる。
The reason is that a magnetic brush of a magnetic carrier (magnetic particles) is used especially in the case where there is always a gap in which discharge easily occurs between a round solid charging roller and an object to be charged as in a roller charging system. In the contact injection charging method in which is used as a contact charging member, when a DC or AC bias is applied, the charged and flowable magnetic carrier forming the magnetic brush is attracted to the opposite charge injected into the body to be charged. It is considered that this is because there is no air gap that moves a large amount and forms a contact area larger than that of the roller charging method, and the magnetic brush and the member to be charged are in complete contact and discharge.

【0017】接触注入帯電方式・ACバイアス方式とし
て、特開平4−21873号公報、特開平4−1166
74号公報には、磁気ブラシに直流成分を含む交流バイ
アス電圧を印加して像形成体を帯電する磁気ブラシ帯電
方法が提案された。
The contact injection charging system and the AC bias system are disclosed in Japanese Patent Laid-Open Nos. 4-21873 and 4-11666.
Japanese Laid-Open Patent Publication No. 74 proposes a magnetic brush charging method in which an AC bias voltage containing a DC component is applied to the magnetic brush to charge the image forming body.

【0018】しかしながら、前記公報に記載の帯電方法
では、適切なピーク間電圧Vpーp を設定しないと環境変
化時に低温低湿になると磁性粒子の抵抗が高くなり、像
形成体に磁性粒子が付着したり、電荷の注入が充分に行
なわれず帯電ムラを発生するという問題がある。また、
高温高湿時には磁性粒子の抵抗が低くなり、ブレークダ
ウンが発生するという問題がある。
[0018] However, in the method of charging according to the publication, is not set voltage Vp over p between appropriate peaks when the temperature becomes lower low humidity during environmental changes increases the resistance of the magnetic particles, the magnetic particles adhere to the image forming body However, there is a problem in that charging is not sufficiently performed and uneven charging occurs. Also,
There is a problem that the resistance of the magnetic particles becomes low at high temperature and high humidity, causing breakdown.

【0019】これを解決するために、特開平6−314
016号公報において、交流バイアス電圧の直流成分は
電圧源より供給され、その時の直流成分の電流値より
交流成分の電圧を調整又は直流成分の電圧値を変更する
ことにより帯電電位を変更する方法が、また特開平6−
138753号公報において、印加バイアスの交流電流
AC及び磁気ブラシと像担持体の形成する接触幅を厳し
く制御する方法などが提案されている。
To solve this, Japanese Patent Laid-Open No. 6-314
In the 016 publication, the DC component of the AC bias voltage is
A method in which the charging potential is changed by adjusting the voltage of the AC component or changing the voltage value of the DC component supplied from a constant voltage source at that time and the current value of the DC component is also disclosed.
In Japanese Patent No. 138753, a method of strictly controlling the alternating current I AC of the applied bias and the contact width formed by the magnetic brush and the image carrier is proposed.

【0020】[0020]

【発明が解決しようとする課題】しかしながら、前記特
開平6−314016号公報や特開平6−138753
号公報に記載の方法を考慮した上で実際に装置をいくつ
か作成し実検してみると、個々の帯電性能に大きな実力
差があることがわかった。
However, the above-mentioned JP-A-6-314016 and JP-A-6-138753.
When several devices were actually created and actually tested in consideration of the method described in the publication, it was found that there was a large difference in actual charging performance.

【0021】即ち、特開平6−314016号公報に記
載の方法の様に直流成分の電流値を制御しても、また特
開平6−138753号公報に記載の方法の様に交流電
流IAC及び磁気ブラシと像形成体の形成する接触幅(帯
電部幅)を厳しく制御しても出力する画像のレベルがま
ちまちなのである。
That is, even if the current value of the DC component is controlled as in the method described in JP-A-6-314016, the AC current I AC and the AC current I AC in the method described in JP-A-6-138753 are also used. Even if the contact width (charging portion width) formed by the magnetic brush and the image forming body is strictly controlled, the level of the output image varies.

【0022】そこで本発明は、接触注入帯電方式・AC
バイアス方式の帯電装置および該帯電装置を使用した機
器について、上記従来技術の欠点であった帯電性能の実
力の個体差をなくし、様々な環境においても、初期から
長時間経過の後でも安定した帯電性能を得られるように
することを目的とする。
Therefore, in the present invention, the contact injection charging method AC
With respect to a bias type charging device and an apparatus using the charging device, it is possible to eliminate the individual difference in the ability of the charging performance, which was the drawback of the above-mentioned conventional technology, and to perform stable charging even in various environments even after a long time has passed from the initial stage. The purpose is to obtain performance.

【0023】[0023]

【課題を解決するための手段】本発明は下記の構成を特
徴とする、帯電装置、画像形成装置、及びプロセスカー
トリッジである。
SUMMARY OF THE INVENTION The present invention is a charging device, an image forming apparatus, and a process cartridge characterized by the following configurations.

【0024】(1)表面に電荷注入層を有する被帯電体
に交流電圧と直流電圧を重畳した電圧を印加した接触帯
電部材を当接させて帯電を行なう帯電装置において、前
記接触帯電部材から前記被帯電体に供給する交流電流を
モニターし、この交流電流の波形の1周期内における正
成分の最大値、負成分の絶対値の最大値を可変に調節す
ることによって、帯電後の被帯電体の帯電電位を所望の
値にすることを特徴とする帯電装置。
(1) In a charging device for charging an object to be charged having a charge injection layer on its surface by contacting a contact charging member to which a voltage in which an AC voltage and a DC voltage are superimposed , is contacted, By monitoring the alternating current supplied to the charged body and variably adjusting the maximum value of the positive component and the maximum value of the absolute value of the negative component within one cycle of the waveform of the alternating current, the charged body after charging A charging device, characterized in that the charging potential of is set to a desired value.

【0025】[0025]

【0026】(2)前記交流電流波形1周期内の正成分
の最大値Imax+、負成分絶対値の最大値Imax-の関係が
0.7≦Imax+/Imax-≦1.4であることを特徴とす
(1)に記載の帯電装置。(3) 前記接触帯電部材として磁性粒子で構成される磁
気ブラシを用いることを特徴とする(1)又は(2)
記載の帯電装置。
(2) The relationship between the maximum value Imax + of the positive component and the maximum value Imax- of the absolute value of the negative component within one cycle of the AC current waveform is 0.7 ≦ Imax + / Imax− ≦ 1.4. The charging device according to (1) . (3) The charging device according to (1) or (2) , wherein a magnetic brush composed of magnetic particles is used as the contact charging member.

【0027】(4)前記接触帯電部材としてブラシ繊維
を用いることを特徴とする(1)又は(2)に記載の帯
電装置。
(4) The charging device according to (1) or (2) , characterized in that brush fibers are used as the contact charging member.

【0028】(5)像担持体に該像担持体面を帯電する
工程を含む画像形成プロセスを適用して画像形成を実行
する画像形成装置であり、前記像担持体は表面に電荷注
入層を有し、該像担持体を帯電する工程手段が(1)乃
(4)の何れか1つに記載の帯電装置であることを特
徴とする画像形成装置。
(5) An image forming apparatus for performing image formation by applying an image forming process including a step of charging the surface of the image carrier to the image carrier, wherein the image carrier has a charge injection layer on its surface. An image forming apparatus, wherein the step means for charging the image carrier is the charging device according to any one of (1) to (4) .

【0029】(6)画像形成装置本体に対して着脱自在
に装着されるプロセスカートリッジであり、(1)乃至
(4)の何れか1つに記載の帯電装置の少なくとも接触
帯電部材と、像担持体、現像装置、クリーニング装置の
少なくとも1つとを収容していることを特徴とするプロ
セスカートリッジ。
(6) A process cartridge that is detachably attached to the main body of the image forming apparatus.
A process cartridge containing at least a contact charging member of the charging device according to any one of (4) and at least one of an image carrier, a developing device, and a cleaning device.

【0030】〈作 用〉即ち、前述した従来技術の欠点
であった帯電性能の実力の個体差現象を詳しく調査した
結果、ACバイアス電圧波形のわずかな固体差が、その
時のAC電流波形に大きな固体差を生み、この違いが帯
電性能の差としてあらわれたことが原因であると判明し
た。即ち、安定した帯電性能のためにはAC電流波形を
制御することが、必須なのである。
<Operation> That is, as a result of detailed investigation of the individual difference phenomenon of the charging performance, which was a drawback of the above-mentioned conventional technique, a slight individual difference in the AC bias voltage waveform is large in the AC current waveform at that time. It was found that the difference between the solids produced and this difference appeared as a difference in charging performance. That is, it is essential to control the AC current waveform for stable charging performance.

【0031】そこで本発明では、表面に電荷注入層を有
する被帯電体に交流電圧と直流電圧を重畳した電圧を印
加した接触帯電部材を当接させて帯電を行なう接触注入
帯電方式・ACバイアス方式の帯電装置、該帯電装置を
使用した機器において、AC電流波形を制御する、より
具体的には、接触帯電部材から被帯電体に供給する交流
電流をモニターし、この交流電流の波形の1周期内にお
ける正成分の最大値、負成分の絶対値の最大値を可変に
調節することによって、従来技術の欠点であった帯電性
能の実力の固体差もなくなり、様々な環境においても、
初期から長時間経過の後でも安定した帯電性能を得られ
るようになった。
Therefore, in the present invention, a contact injection charging method or an AC bias method in which a contact charging member to which a voltage obtained by superimposing an AC voltage and a DC voltage is applied is brought into contact with an object to be charged having a charge injection layer on its surface to perform charging. In the charging device and the device using the charging device, the AC current waveform is controlled. More specifically, the AC current supplied from the contact charging member to the member to be charged is monitored, and one cycle of the waveform of the AC current is controlled. By variably adjusting the maximum value of the positive component and the maximum value of the absolute value of the negative component in the above, the individual difference in the ability of the charging performance, which was the drawback of the conventional technology, is eliminated, and even in various environments,
It became possible to obtain stable charging performance even after a long time had passed from the beginning.

【0032】[0032]

【発明の実施の形態】DETAILED DESCRIPTION OF THE INVENTION

〈実施形態例1〉(図1〜図4) (1)画像形成装置例 図1は画像形成装置の一例の概略構成図である。本例の
画像形成装置は、転写式電子写真プロセス利用、接触注
入帯電方式・ACバイアス方式、プロセスカートリッジ
着脱方式のレーザービームプリンタである。
<Embodiment 1> (FIGS. 1 to 4) (1) Example of image forming apparatus FIG. 1 is a schematic configuration diagram of an example of an image forming apparatus. The image forming apparatus of this example is a laser beam printer using a transfer type electrophotographic process, a contact injection charging type / AC bias type, and a process cartridge attaching / detaching type.

【0033】1は像担持体(被帯電体)としての回転ド
ラム型の電子写真感光体(感光ドラム)である。本例の
ものは表面に電荷注入層を有するOPC感光体であり、
矢示の時計方向に所定のプロセススピード(周速度)を
もって回転駆動される。
Reference numeral 1 is a rotary drum type electrophotographic photosensitive member (photosensitive drum) as an image bearing member (charged member). This example is an OPC photoreceptor having a charge injection layer on the surface,
It is rotationally driven in the clockwise direction indicated by an arrow at a predetermined process speed (peripheral speed).

【0034】2は感光体1に接触させた接触帯電部材と
しての導電磁気ブラシ、S1はこの磁気ブラシに帯電バ
イアスを印加する電源である。
Reference numeral 2 denotes a conductive magnetic brush as a contact charging member which is brought into contact with the photosensitive member 1, and S1 is a power source for applying a charging bias to this magnetic brush.

【0035】感光体1は回転過程において、電圧が印加
された導電磁気ブラシ2による所定の極性・電位の一様
な一次帯電処理を接触注入帯電方式・ACバイアス方式
で受け、次いで画像露光手段としての、本例の場合はレ
ーザーダイオード・ポリゴンミラー等を含む不図示のレ
ーザービームスキャナから出力される、目的の画像情報
の時系列電気ディジタル画素信号に対応して強度変調さ
れたレーザービームによる走査露光Lを受けることで、
回転感光体1の周面に対して目的の画像情報に対応した
静電潜像が形成される。
In the rotating process, the photosensitive member 1 is subjected to a uniform primary charging process of a predetermined polarity and potential by a conductive magnetic brush 2 to which a voltage is applied by a contact injection charging system / AC bias system, and then as an image exposing means. In the case of this example, scanning exposure is performed by a laser beam whose intensity is modulated corresponding to a time-series electric digital pixel signal of target image information output from a laser beam scanner (not shown) including a laser diode, a polygon mirror, and the like. By receiving L,
An electrostatic latent image corresponding to desired image information is formed on the peripheral surface of the rotating photoconductor 1.

【0036】その静電潜像は現像装置3によりトナー画
像として現像される。現像装置3は本例は磁性ー成分絶
縁トナー(ネガトナー)を用いた反転現像装置である。
3aはマグネット3bを内包する直径16mmの非磁性
現像スリーブであり、この現像スリーブ3aに上記のネ
ガトナーをコートし、感光体1表面との距離を300μ
mに固定した状態で、感光体1と等速で回転させ、スリ
ーブ3aに現像バイアス電源S2より現像バイアス電圧
を印加する。電圧は、−500VのDC電圧と、周波数
1800Hz、ピーク間電圧1600Vの矩形のAC電
圧を重畳したものを用い、スリーブ3aと感光体1の間
でジャンピング現像を行なわせる。
The electrostatic latent image is developed as a toner image by the developing device 3. The developing device 3 is a reversal developing device using a magnetic component insulating toner (negative toner) in this example.
Reference numeral 3a denotes a non-magnetic developing sleeve having a diameter of 16 mm, which contains a magnet 3b. The developing sleeve 3a is coated with the above negative toner so that the distance from the surface of the photoconductor 1 is 300 μm.
In the state of being fixed to m, the photoconductor 1 is rotated at the same speed, and a development bias voltage is applied to the sleeve 3a from the development bias power source S2. As the voltage, a DC voltage of -500 V and a rectangular AC voltage having a frequency of 1800 Hz and a peak-to-peak voltage of 1600 V are superimposed, and jumping development is performed between the sleeve 3 a and the photoconductor 1.

【0037】一方、不図示の給紙部から被記録材として
の転写材Pが供給されて、回転感光体1と、これに所定
の押圧力で当接させた接触転写手段としての、中抵抗の
転写ローラ4との圧接ニップ部(転写部)Tに所定のタ
イミングにて導入される。転写ローラ4には転写バイア
ス印加電源S3から所定の転写バイアス電圧が印加され
る。転写部Tに導入された転写材Pはこの転写部Tを挟
持搬送されて、その表面側に回転感光体1の表面に形成
担持されているトナー画像が順次に静電気力と押圧力に
て転写されていく。本例では転写ローラ4として抵抗値
5×108 Ωのものを用い、+2000VのDC電圧を
印加して転写を行なった。
On the other hand, a transfer material P as a recording material is supplied from a paper feeding section (not shown), and the rotary photosensitive member 1 is brought into contact with the transfer material P with a predetermined pressing force. Is introduced into the pressure contact nip portion (transfer portion) T with the transfer roller 4 at a predetermined timing. A predetermined transfer bias voltage is applied to the transfer roller 4 from the transfer bias applying power source S3. The transfer material P introduced into the transfer portion T is nipped and conveyed through the transfer portion T, and the toner images formed and carried on the surface of the rotary photosensitive member 1 are sequentially transferred onto the surface side thereof by electrostatic force and pressing force. Will be done. In this example, a transfer roller 4 having a resistance value of 5 × 10 8 Ω was used, and a DC voltage of +2000 V was applied to transfer.

【0038】トナー画像の転写を受けた転写材Pは感光
体1の面から分離されて熱定着方式等の定着装置5へ導
入されてトナー画像の定着を受け、画像形成物(プリン
ト、コピー)として装置外へ排出される。
The transfer material P on which the toner image has been transferred is separated from the surface of the photoconductor 1 and is introduced into a fixing device 5 such as a heat fixing system to receive the toner image fixing, and an image-formed product (print, copy). Is discharged outside the device.

【0039】また転写材Pに対するトナー画像転写後の
感光体面はクリーニング装置6により残留トナー等の付
着汚染物の除去を受けて清掃され繰り返して作像に供さ
れる。
The surface of the photosensitive member after the transfer of the toner image onto the transfer material P is cleaned by the cleaning device 6 to remove adhered contaminants such as residual toner, and is repeatedly used for image formation.

【0040】本例の画像形成装置は、感光体1・接触帯
電部材2・現像装置3・クリーニング装置6の4つのプ
ロセス機器をカートリッジ30に包含させて画像形成装
置本体に対して一括して着脱交換自在のカートリッジ方
式の装置である。31・31はこのプロセスカートリッ
ジ30のプリンタ本体内での位置決め支持部材である。
プロセスカートリッジ30に包含させるプロセス機器の
組み合わせは上記に限られるものではない。
In the image forming apparatus of this embodiment, four process equipments of the photosensitive member 1, the contact charging member 2, the developing device 3 and the cleaning device 6 are included in the cartridge 30 and are collectively attached to and detached from the main body of the image forming apparatus. It is a replaceable cartridge type device. Reference numerals 31 and 31 are positioning support members of the process cartridge 30 in the printer body.
The combination of process equipment included in the process cartridge 30 is not limited to the above.

【0041】(2)感光体1 本例の感光体1は、アルミニウム製のドラム基体上に下
記の第1〜第5の5層の機能層を下から順に設けた、表
面に電荷注入層を有する直径30mmの負帯電のOPC
感光体であり、150mm/secのプロセススピード
(周速度)をもって回転駆動される。
(2) Photoreceptor 1 In the photoreceptor 1 of the present example, the following first to fifth functional layers are provided in order from the bottom on an aluminum drum substrate, and a charge injection layer is formed on the surface. Negatively charged OPC with a diameter of 30 mm
It is a photoconductor and is rotationally driven at a process speed (peripheral speed) of 150 mm / sec.

【0042】第1層;下引き層であり、アルミニウムド
ラム基体の欠陥等をならすため、またレーザー露光の反
射によるモアレの発生を防止するために設けられてい
る、厚さ約20μmの導電層である。
First layer: an undercoat layer, which is a conductive layer having a thickness of about 20 μm, which is provided to smooth defects such as the aluminum drum substrate and to prevent moire due to reflection of laser exposure. is there.

【0043】第2層;正電荷注入防止層であり、アルミ
ニウムドラム基体から注入された正電荷が感光体表面に
帯電された負電荷を打ち消すのを防止する役割を果た
し、アミラン樹脂とメトキシメチル化ナイロンによって
106 Ωcm程度に抵抗調整された、厚さ約1μmの中
抵抗層である。
Second layer: a positive charge injection preventing layer, which plays a role of preventing the positive charges injected from the aluminum drum substrate from canceling out the negative charges charged on the surface of the photoconductor, and the amylan resin and methoxymethylation. It is a medium resistance layer having a thickness of about 1 μm, whose resistance is adjusted to about 10 6 Ωcm by nylon.

【0044】第3層;電荷発生層であり、ジスアゾ系の
顔料樹脂に分散した厚さ約0.3μmの層であり、レー
ザー露光を受けることによって正負の電荷対を発生す
る。
Third layer: a charge generation layer, which is a layer having a thickness of about 0.3 μm dispersed in a disazo pigment resin, and generates a positive and negative charge pair upon exposure to laser.

【0045】第4層;電荷輸送層であり、ポリカーボネ
ート樹脂にヒドラゾンを分散したものであり、P型半導
体である。従って、感光体表面に帯電された負電荷はこ
の層を移動することはできず、電荷発生層で発生した正
電荷のみを感光体表面に輸送することができる。
Fourth layer: a charge transport layer, which is a polycarbonate resin in which hydrazone is dispersed, and is a P-type semiconductor. Therefore, the negative charges charged on the surface of the photoconductor cannot move in this layer, and only the positive charges generated in the charge generation layer can be transported to the surface of the photoconductor.

【0046】第5層;電荷注入層であり、光硬化性のア
クリル樹脂に微粒子のSnO2 を分散した材料の塗工層
である。具体的には、アンチモンをドーピングし、低抵
抗化した粒径約0.03μmのSnO2 粒子を樹脂に対
して70重量パーセント分散した材料の塗工層である。
このようにして調合した塗工液をディッピング塗工法に
て、厚さ約2μmに塗工して電荷注入層とした。
Fifth layer: a charge injection layer, which is a coating layer of a material in which fine particles of SnO 2 are dispersed in a photocurable acrylic resin. Specifically, it is a coating layer made of a material in which antimony-doped SnO 2 particles having a low resistance and a particle size of about 0.03 μm are dispersed in a resin in an amount of 70% by weight.
The coating solution thus prepared was applied by dipping to a thickness of about 2 μm to form a charge injection layer.

【0047】図2の感光体1と導電磁性ブラシ2の構造
模型図において、11は感光体1のアルミニウムドラム
基体、12は電荷輸送層、13は電荷注入層、13aは
この電荷注入層中に分散した導電粒子(SnO2 )であ
る。下引き層・正電荷注入防止層・電荷発生層は図には
省略してある。
In the structural model diagram of the photoconductor 1 and the conductive magnetic brush 2 of FIG. 2, 11 is an aluminum drum substrate of the photoconductor 1, 12 is a charge transport layer, 13 is a charge injection layer, and 13a is in this charge injection layer. The dispersed conductive particles (SnO 2 ). The undercoat layer, the positive charge injection prevention layer, and the charge generation layer are omitted in the figure.

【0048】(3)接触帯電部材2 接触帯電部材としての磁気ブラシ2は、図2の構造模型
図のように心金21aに固定支持させたマグネット21
と、これに回転可能に外嵌させた、直径16mmの非磁
性の電極スリーブ22と、この電極スリーブ22の外周
面にマグネット21の磁力により付着保持させた磁性粒
子(磁性キャリア)の磁気ブラシ層23からなる。電極
スリーブ22上でのマグネット21による磁束密度は8
00×10-4T(テスラ)である。
(3) Contact charging member 2 The magnetic brush 2 as a contact charging member is a magnet 21 fixedly supported by a mandrel 21a as shown in the structural model diagram of FIG.
And a non-magnetic electrode sleeve 22 having a diameter of 16 mm, which is rotatably fitted on the electrode sleeve 22, and a magnetic brush layer of magnetic particles (magnetic carrier) attached and held by the magnetic force of the magnet 21 on the outer peripheral surface of the electrode sleeve 22. It consists of 23. The magnetic flux density by the magnet 21 on the electrode sleeve 22 is 8
It is 00 × 10 −4 T (Tesla).

【0049】磁気ブラシ層23は厚さ1mmでコートし
て感光体1との間に幅約5mmの帯電ニップNを形成さ
せてある。本例で磁気ブラシ層23の磁性粒子量は約1
0gで電極スリーブ22と感光体1との帯電ニップNで
のギャップは500μmである。電極スリーブ22は帯
電ニップNにおいて感光体1の回転方向とは逆方向(カ
ウンター方向)である矢示方向に回転駆動され、この電
極スリーブ22の回転に磁気ブラシ層23も回転して感
光体1面を摺擦する。
The magnetic brush layer 23 is coated with a thickness of 1 mm to form a charging nip N having a width of about 5 mm with the photoconductor 1. In this example, the amount of magnetic particles in the magnetic brush layer 23 is about 1
At 0 g, the gap at the charging nip N between the electrode sleeve 22 and the photoconductor 1 is 500 μm. The electrode sleeve 22 is rotationally driven in the charging nip N in a direction (counter direction) opposite to the rotation direction of the photoconductor 1, and the magnetic brush layer 23 is also rotated by the rotation of the electrode sleeve 22 and the photoconductor 1 is rotated. Rub the surface.

【0050】磁気ブラシ2の電極スリーブ22には帯電
バイアス印加電源S1から−700VのDC電圧にV
P-P =800V、周波数1kHzの矩形波ACが重畳さ
れた帯電バイアスVDC+VACが印加されていて、回転感
光体1の外周面がほぼ−700Vに一様に、接触注入帯
電方式・ACバイアス方式で帯電される。
The electrode sleeve 22 of the magnetic brush 2 is applied with a DC voltage of -700V from the charging bias applying power source S1.
A charging bias V DC + V AC on which a rectangular wave AC having a frequency of 1 kHz and PP = 800 V is superimposed is applied, and the outer peripheral surface of the rotating photoconductor 1 is uniformly set to approximately -700 V by the contact injection charging method / AC bias method. Is charged with.

【0051】ここで磁気ブラシ2と感光体1との周速比
は、以下の式で定義する。
Here, the peripheral speed ratio between the magnetic brush 2 and the photosensitive member 1 is defined by the following equation.

【0052】周速比%=(磁気ブラシ周速ー感光体周
速)/感光体周速×100 *磁気ブラシ2の周速はカウンター回転の場合は負の
値。
Peripheral speed ratio% = (magnetic brush peripheral speed-photosensitive body peripheral speed) / photosensitive body peripheral speed × 100 * The peripheral speed of the magnetic brush 2 is a negative value in the case of counter rotation.

【0053】周速比は、−100%は磁気ブラシが停止
している状態なので、磁気ブラシの感光体表面に停止し
た形状がそのまま帯電不良となって、画像に出てしま
う。また順方向の回転は、カウンター方向と同じ周速比
を得ようとすると、磁気ブラシの回転数が高くなってし
まう。磁気ブラシが遅い速度で感光体と順回転で接触す
ると、磁気ブラシの磁性粒子が感光体に付着しやすくな
る。よって、周速比は−100%以下が好ましく、本例
では−150%とした。
Since the magnetic brush is in a stopped state at a peripheral speed ratio of -100%, the stopped shape of the magnetic brush on the surface of the photoconductor becomes defective as it is and appears in the image. Further, in the forward rotation, if an attempt is made to obtain the same peripheral speed ratio as in the counter direction, the rotational speed of the magnetic brush will increase. When the magnetic brush comes into contact with the photoconductor at a slow speed in the forward rotation, the magnetic particles of the magnetic brush easily adhere to the photoconductor. Therefore, the peripheral speed ratio is preferably −100% or less, and in this example, set to −150%.

【0054】磁気ブラシ層23を構成させる磁性粒子と
しては次のようなものを使用できる。
The following can be used as the magnetic particles forming the magnetic brush layer 23.

【0055】a)樹脂とマグネタイト等の磁性粉体を混
練して粒子に成型したもの、もしくはこれに抵抗値調節
のために導電カーボン等を混ぜたもの b)焼結したマグネタイト、フェライト、もしくはこれ
らを還元または酸化処理して抵抗値を調節したもの c)上記の磁性粒子を抵抗調整をしたコート材(フェノ
ール樹脂にカーボンを分散したもの等)でコートまたは
Ni等の金属でメッキ処理して抵抗値を適当な値にした
もの これらの磁性粒子の抵抗値としては、高すぎると感光体
に電荷が均一に注入できず、微小な帯電不良によるカブ
リ画像となってしまう。低すぎると感光体表面にピンホ
ールがあったとき、ピンホールに電流が集中して帯電電
圧が降下し感光体表面を帯電することができず、帯電ニ
ップ状の帯電不良となる。よって磁性粒子の抵抗値とし
ては、1×104 〜1×107 Ωが望ましい。磁性粒子
の抵抗値は、電圧が印加できる金属セル(底面積228
mm2 )に磁性粒子を2g入れた後加重し、電圧を1〜
1000V印加して測定した。
A) Resin and magnetic powder such as magnetite are kneaded and molded into particles, or are mixed with conductive carbon or the like to adjust the resistance value. B) Sintered magnetite, ferrite, or these. C) whose resistance value has been adjusted by reducing or oxidizing c) The above magnetic particles are coated with a resistance-adjusted coating material (such as phenol resin in which carbon is dispersed) or plated with a metal such as Ni for resistance. If the resistance value of these magnetic particles is too high, electric charges cannot be evenly injected into the photoconductor, resulting in a fog image due to minute charging failure. If it is too low, when there are pinholes on the surface of the photoconductor, current concentrates on the pinholes, the charging voltage drops, and the surface of the photoconductor cannot be charged, resulting in a charging nip-like charging failure. Therefore, the resistance value of the magnetic particles is preferably 1 × 10 4 to 1 × 10 7 Ω. The resistance value of the magnetic particles depends on the metal cell (bottom area 228
2g of magnetic particles are put in mm 2 ) and then weighted, and the voltage is 1 to
It was measured by applying 1000 V.

【0056】磁性粒子の磁気特性としては、感光体への
磁性粒子付着を防止するために磁気拘束力を高くする方
がよく、飽和磁化が50(A・m2/kg)以上が望まし
い。
Regarding the magnetic characteristics of the magnetic particles, it is better to increase the magnetic restraining force in order to prevent the magnetic particles from adhering to the photosensitive member, and the saturation magnetization is preferably 50 (A · m 2 / kg) or more.

【0057】実際に、本例で用いた磁性粒子は、平均粒
径が30μmで、抵抗値が1×106 Ω、飽和磁化が5
8(A・m2/kg)であった。
In practice, the magnetic particles used in this example had an average particle size of 30 μm, a resistance value of 1 × 10 6 Ω, and a saturation magnetization of 5.
It was 8 (A · m 2 / kg).

【0058】(4)電荷注入帯電の原理 電荷注入帯電は、中抵抗の接触帯電部材で、中抵抗の表
面抵抗を持つ被帯電体表面に電荷注入を行なうものであ
り、本例では被帯電体としての感光体の表面材質のもつ
トラップ電位に電荷を注入するものでなく、電荷注入層
13の導電粒子13aに電荷を充電して帯電を行なう方
式である。
(4) Principle of Charge Injection Charging Charge injection charging is a contact charging member having a medium resistance and performs charge injection on the surface of a charged body having a medium resistance surface resistance. In this example, the charged body is charged. No charge is injected into the trapping potential of the surface material of the photoconductor as described above, but the conductive particles 13a of the charge injection layer 13 are charged with electric charge for charging.

【0059】具体的には図3の等価回路模型図に示すよ
うに、電荷輸送層12を誘電体、アルミニウムドラム基
体11と電荷注入層13内の導電粒子(SnO2 )13
aを両電極板とする微小なコンデンサーに、接触帯電部
材2で電荷を充電する理論に基づくものである。
Specifically, as shown in the equivalent circuit model diagram of FIG. 3, the charge transport layer 12 is a dielectric, the aluminum drum substrate 11 and the conductive particles (SnO 2 ) 13 in the charge injection layer 13 are formed.
This is based on the theory that the contact charging member 2 charges a minute capacitor having a as both electrode plates.

【0060】この際、導電粒子13aは互いに電気的に
は独立であり、一種の微小なフロート電極を形成してい
る。このため、マクロ的には感光体表面は均一電位に充
電、帯電されているように見えるが、実祭には微小な無
数の充電された導電粒子13aが感光体表面を覆ってい
るような状況となっている。このため、レーザーによっ
て画像露光Lを行なってもそれぞれの導電粒子13aは
電気的に独立なため、静電潜像を保持することが可能に
なる。
At this time, the conductive particles 13a are electrically independent of each other and form a kind of minute float electrode. For this reason, the surface of the photoconductor seems to be charged and charged to a uniform potential on a macroscopic scale, but in reality, countless minute charged conductive particles 13a cover the photoconductor surface. Has become. For this reason, even if the image exposure L is performed by the laser, the respective conductive particles 13a are electrically independent, so that the electrostatic latent image can be held.

【0061】(5)接触帯電部材から被帯電体に供給す
るAC電流波形の調節 図2に接触帯電部材としての磁気ブラシ2から被帯電体
としての感光体1に供給するAC電流波形の形を調節す
ることによって、帯電後感光体帯電電位を所望の値にす
る制御系のブロック図を示した。
(5) Adjustment of AC Current Waveform supplied from Contact Charging Member to Charged Member FIG. 2 shows the shape of AC current waveform supplied from the magnetic brush 2 as a contact charging member to the photoreceptor 1 as a charged member. A block diagram of a control system in which the charge potential of the photosensitive member after charging is adjusted to a desired value by adjustment is shown.

【0062】即ち、AC電流の正成分、負成分をダイオ
ードdを使って分離し、それらを抵抗器Rを通してAC
電流をモニターする。71・72は電圧計である。この
AC電流値はA/D変換器81・82によつてディジタ
ル値に変換された後CPU84に入力される。このAC
電流データ中最大値であるImax 値を読み取り、これを
CPU84によりROM85にデータとして収納されて
いる図4の(b)中のImax 目標値と比較し、電源S1
から出力される交流電圧波形を最初の、図4の(a)中
aのものから例えばb方向に傾きを変えるなどして交流
電圧波形を変化させた新しい波形を制御信号としてCP
U84から出力される。この制御信号はD/A変換器8
3によってアナログ値に変換され電源S1に送出され新
しい交流電圧波形を出力する。
That is, the positive component and the negative component of the AC current are separated by the diode d, and they are connected to the AC through the resistor R.
Monitor current. 71 and 72 are voltmeters. The AC current value is converted into a digital value by the A / D converters 81 and 82 and then input to the CPU 84. This AC
The maximum value Imax value in the current data is read and compared with the target value Imax in FIG. 4B stored in the ROM 85 by the CPU 84 as data, and the power source S1
A new waveform obtained by changing the AC voltage waveform output from the first AC voltage waveform by changing the inclination in the direction b from the one in FIG. 4A is used as a control signal.
It is output from U84. This control signal is the D / A converter 8
3 is converted into an analog value and sent to the power source S1 to output a new AC voltage waveform.

【0063】以上の制御を適度に繰り返し、その結果A
C電流波形のImax が正・負ともImax 目標値になるよ
うに調節される。このようにAC電流波形を制御するこ
とによって、従来技術の欠点であった帯電性能の実力の
固体差もなくなり、様々な環境においても、初期から長
時間経過の後でも安定した帯電性能を得られるようにな
った。
The above control is appropriately repeated, resulting in A
The I current of the C current waveform is adjusted so that both positive and negative become the I max target value. By controlling the AC current waveform in this way, the solid difference in the performance of the charging performance, which was a drawback of the conventional technology, is eliminated, and stable charging performance can be obtained in various environments even after a long time has passed from the initial stage. It became so.

【0064】〈実施形態例2〉(図5・図6) 本例は、実施形態例1と同様の構成において、多種のA
C電圧波形を使用し、多様なAC電流波形を作り出し
て、実施形態例1と同様のImax 値と、本例は時間的平
均値であるAC電流IACを図2中抵抗Rの代わりに直流
電流計を置き、正負それぞれIAC+ 及びIAC- を測定し
てみた。さらに、その時の帯電性能の指標として感光体
(感光ドラム)の帯電の立ち上がり速度を飽和電位−1
周目電位(図5)の値を測定した。この値は小さいほ
ど、帯電能力が良いと考えられる。
<Embodiment 2> (FIGS. 5 and 6) In this embodiment, various types of A
Using the C voltage waveform, creating a variety of AC current waveform, similar to Imax values as in the first embodiment, this embodiment direct the AC current I AC is the temporal average value instead of in FIG resistor R An ammeter was placed to measure positive and negative I AC + and I AC- , respectively. Further, as an index of the charging performance at that time, the rising speed of charging of the photoconductor (photosensitive drum) is set to the saturation potential −1.
The value of the peripheral potential (Fig. 5) was measured. It is considered that the smaller this value is, the better the charging ability is.

【0065】以上の結果を考察することによって、どん
な特徴を持つAC電流波形が感光体の帯電に適している
かを知ることが出来る。
By considering the above results, it is possible to know what characteristics the AC current waveform has, which is suitable for charging the photosensitive member.

【0066】その結果のうち負成分について図6に示
す。これより、時間的平均値であるAC電流IACよりも
Imax 値の方が帯電性能に関係が深いことが理解され
る。したがって特開平6−138753号公報のように
AC値で帯電性能を維持するのは難しいことがわかる。
Of the results, the negative component is shown in FIG. From this, it is understood that the Imax value is more closely related to the charging performance than the AC current I AC which is the temporal average value. Therefore, it can be seen that it is difficult to maintain the charging performance at the I AC value as in Japanese Patent Laid-Open No. 6-138753.

【0067】即ち、Imax 値のなるべく大きなAC電流
波形となる電気的、物理的構成をとることが帯電能力u
pにつながるのである。
In other words, it is necessary to have an electrical / physical structure in which an AC current waveform having a maximum Imax value is obtained.
It leads to p.

【0068】〈実施形態例3〉(図7) 実施形態例2と同様に正負それぞれIAC+ 及びIAC-
図7中(1)〜(3)のようなAC電圧波形について測
定してみた。図7をみると(1)や(2)のような場
合、Imax について正負に非対称的な特性を示し、
(3)のような特性とは対照的である。(3)のような
波形を使うと一般的に感光体に帯電させるとき電圧の直
流成分の値付近の電位に収束する傾向がある。しかし
(1)や(2)のような波形を本発明で使っているよう
な電荷直接注入用の感光体を使ってみると、感光体に帯
電させるとき電圧の直流成分の値付近の電位に収束しな
いのである。ある条件下で所望の電位に収束させるべく
電圧の直流成分を調整しても、ちょっとでも条件変わ
ると所望の電位に収束しないばかりか、制御不能になっ
てしまう。その理由が図7のImax の正負に非対称的な
特性であることが我々の詳細な実験の結果判明した。
<Embodiment 3> (FIG. 7) Similar to Embodiment 2, positive and negative I AC + and I AC- are measured for AC voltage waveforms such as (1) to (3) in FIG. . Looking at FIG. 7, in the cases of (1) and (2), positive and negative asymmetric characteristics of Imax are shown.
This is in contrast to the property (3). When the waveform as shown in (3) is used, generally when charging the photoreceptor, it tends to converge to a potential near the value of the DC component of the voltage. However, when a photoconductor for direct charge injection such as that used in the present invention with waveforms such as (1) and (2) is used, the potential near the value of the DC component of the voltage is applied when the photoconductor is charged. It does not converge. Even if the DC component of the voltage is adjusted so as to converge to a desired potential under a certain condition, if the condition changes even a little, not only the potential does not converge to the desired potential, but control becomes impossible. As a result of our detailed experiments, it was found that the reason is the asymmetrical characteristic of Imax in FIG.

【0069】以上のようにImax の正負にほぼ対称的な
特性(完全対称だと、帯電させることが難しく、そのバ
ランスは0.7≦Imax+/Imax-≦1.4が適当であっ
た)を持たせることによって、コピー初期、時間経過後
共に安定して良好な帯電性能が得られるようになった。 〈その他〉 1)接触帯電部材としての磁気ブラシ2は実施形態例で
はスリーブ回転タイプであるが、回転マグネットローラ
に直接にまたは導電性コート層を介して導電性磁性粒子
を磁気ブラシ層として磁気吸着させて保持させたマグネ
ット回転タイプとすることもできる。非回転の磁気ブラ
シ体とすることもできる。
As described above, the characteristic that Imax is substantially symmetric with respect to positive and negative (when it is completely symmetrical, charging is difficult, and the balance is 0.7 ≦ Imax + / Imax− ≦ 1.4 is appropriate). By providing the toner, stable charging performance can be obtained both in the initial stage of copying and after a lapse of time. <Others> 1) The magnetic brush 2 as the contact charging member is a sleeve rotating type in the embodiment, but the conductive magnetic particles are magnetically attracted as the magnetic brush layer to the rotating magnet roller directly or through the conductive coat layer. It is also possible to use a magnet rotating type that is held by holding it. It may be a non-rotating magnetic brush body.

【0070】磁気ブラシでなくとも、導電性ファーブラ
シ、導電性ローラ、導電性ブレードなど他の形態の接触
帯電部材とすることもできる。
Instead of the magnetic brush, the contact charging member of other forms such as a conductive fur brush, a conductive roller, a conductive blade, etc. can be used.

【0071】図8は実施形態例の画像形成装置におい
て、接触帯電部材としての磁気ブラシ2に代えて導電性
繊維のブラシからなるファーブラシ2Aを用いた。他の
装置構成は実施形態例と同様であるため再度の説明を省
略する。本例のファーブラシ2Aは、外径が10mmの
芯金ローラ24の外周面に、毛足長さが3mm、植毛密
度が10万本/inch2 、抵抗値が1×106 Ωの導
電性繊維25をブラシ状に植毛した総外径16mmのも
のである。
In FIG. 8, in the image forming apparatus of the embodiment, a fur brush 2A made of a conductive fiber brush is used instead of the magnetic brush 2 as the contact charging member. The rest of the device configuration is the same as that of the embodiment, and thus the repetitive description is omitted. In the fur brush 2A of this example, the outer diameter of the core metal roller 24 having an outer diameter of 10 mm is 3 mm, the bristle length is 3 mm, the flocking density is 100,000 / inch 2 , and the resistance value is 1 × 10 6 Ω. It has a total outer diameter of 16 mm in which fibers 25 are planted in a brush shape.

【0072】このファーブラシ2Aを、導電性繊維ブラ
シ部25を感光体1面に接触させて配設する。導電性繊
維ブラシ部25と感光体1の帯電ニップNの幅は7mm
とした。このファーブラシ2Aを感光体1に対しカウン
ター方向に回転するように構成した。
This fur brush 2A is arranged with the conductive fiber brush portion 25 in contact with the surface of the photosensitive member 1. The width of the electrically conductive fiber brush portion 25 and the charging nip N of the photoconductor 1 is 7 mm.
And The fur brush 2A is configured to rotate in the counter direction with respect to the photoconductor 1.

【0073】そして、該ファーブラシ2Aに帯電バイア
ス印加電源S1より所定の帯電バイアスを印加し回転駆
動させることで、回転感光体1面が帯電電圧の印加され
た導電性繊維ブラシ25で摺擦され、感光体1が所望の
電位に注入帯電方式で一様に一次帯電処理される。
Then, by applying a predetermined charging bias from the charging bias applying power source S1 to the fur brush 2A to rotate the fur brush 2A, the surface of the rotating photoconductor 1 is rubbed by the conductive fiber brush 25 to which the charging voltage is applied. The photoconductor 1 is uniformly charged to a desired potential by the injection charging method.

【0074】2)被帯電体としての像担持体は電子写真
感光体に限らず、静電記録における誘電体等であっても
よい。また被帯電体は像担持体に限られるものでもな
い。
2) The image bearing member as the member to be charged is not limited to the electrophotographic photosensitive member, but may be a dielectric member or the like in electrostatic recording. The member to be charged is not limited to the image carrier.

【0075】3)本発明において画像形成装置は、被帯
電体の面に形成した画像部分を表示部に位置させて閲読
に供し、然る後その画像を記録媒体に転写することなし
に、被帯電体面からクリーニング除去し、被帯電体は繰
り返して表示画像の形成に使用するような画像形成表示
装置、また直接方式の画像形成装置、即ち感光紙や静電
記録紙等の被帯電体に帯電工程を含む作像プロセスを適
用して転写工程なしに画像形成を実行する装置等であっ
てもよい。
3) In the present invention, the image forming apparatus positions the image portion formed on the surface of the member to be charged on the display unit for reading, and thereafter transfers the image to the recording medium without transferring the image. The surface of the charged body is cleaned and removed, and the body to be charged is repeatedly used to form a display image.An image forming display device or a direct type image forming apparatus, that is, a body to be charged such as photosensitive paper or electrostatic recording paper is charged. It may be an apparatus or the like that applies an image forming process including steps to execute image formation without a transfer step.

【0076】[0076]

【発明の効果】以上説明したように本発明によれば、表
面に電荷注入層を有する被帯電体に交流電圧と直流電圧
を重畳した電圧を印加した接触帯電部材を当接させて帯
電を行なう帯電装置、該帯電装置を備えた機器におい
て、AC電流波形を制御する、すなわち接触帯電部材か
ら被帯電体に供給する交流電流をモニターし、この交流
電流の波形の1周期内における正成分の最大値、負成分
の絶対値の最大値を可変に調節することによって、前述
の従来技術の欠点であった帯電性能の実力の個体差もな
くなり、様々な環境においても、初期から長時間経過の
後でも安定した帯電性能を得られるようになった。
As described above, according to the present invention, an AC voltage and a DC voltage are applied to a member to be charged having a charge injection layer on its surface.
A charging device for charging by contacting a contact charging member to which a superimposed voltage is applied, and an AC current waveform is controlled in a device including the charging device, that is, an alternating current supplied from the contact charging member to a body to be charged. Is monitored and the maximum value of the positive component and the maximum value of the absolute value of the negative component in one cycle of the waveform of the alternating current are variably adjusted, thereby reducing the charging performance, which is a drawback of the above-mentioned conventional technology. There is no individual difference, and stable charging performance can be obtained in various environments even after a long time has passed from the initial stage.

【図面の簡単な説明】[Brief description of drawings]

【図1】画像形成装置の一例の概略構成図FIG. 1 is a schematic configuration diagram of an example of an image forming apparatus.

【図2】感光体と導電磁性ブラシの構造模型図FIG. 2 is a structural model diagram of a photoconductor and a conductive magnetic brush.

【図3】注入帯電メカニズムの等価回路図模型図FIG. 3 Equivalent circuit diagram model diagram of injection charging mechanism

【図4】電流波形調整の説明図FIG. 4 is an explanatory diagram of current waveform adjustment.

【図5】感光体1周目電位と感光体飽和電位図FIG. 5 is a diagram showing the potential of the first round of the photoreceptor and the saturation potential of the photoreceptor.

【図6】制御パラメータImax と帯電性能の関係の説明
FIG. 6 is an explanatory diagram of a relationship between a control parameter Imax and charging performance.

【図7】制御パラメータImax の正負のバランスの重要
性を説明する図
FIG. 7 is a diagram for explaining the importance of positive / negative balance of the control parameter Imax.

【図8】接触帯電部材がファーブラシである場合の概略
FIG. 8 is a schematic view when the contact charging member is a fur brush.

【符号の説明】[Explanation of symbols]

1・・被帯電体(電子写真感光体)、2・・接触帯電部
材(磁気ブラシ)、3・・現像装置、4・・転写ロー
ラ、5・・定着装置、6・・クリーニング装置、30・
・プロセスカートリッジ、S1〜S3・・バイアス印加
電源、P・・被記録材(転写材)、11・・アルミニウ
ムドラム基体、12・・電荷輸送層、13・・電荷注入
層、13a・・導電粒子(SnO2 )、71・72・・
電圧計、81〜83・・A/D又はD/A変換器、84
・・CPU、85・・ROM
1 ... Charged member (electrophotographic photoreceptor), 2. Contact charging member (magnetic brush), 3. Developing device, 4. Transfer roller, 5. Fixing device, 6. Cleaning device, 30.
· Process cartridge, S1 to S3 · · Bias applying power source, P · · Recording material (transfer material), 11 · · Aluminum drum substrate, 12 · · Charge transport layer, 13 · · Charge injection layer, 13a · · Conductive particles (SnO 2 ), 71 ・ 72 ・ ・
Voltmeter, 81-83 ... A / D or D / A converter, 84
..CPU, 85..ROM

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 表面に電荷注入層を有する被帯電体に交
流電圧と直流電圧を重畳した電圧を印加した接触帯電部
材を当接させて帯電を行なう帯電装置において、 前記接触帯電部材から前記被帯電体に供給する交流電流
をモニターし、この交流電流の波形の1周期内における
正成分の最大値、負成分の絶対値の最大値を可変に調節
することによって、帯電後の被帯電体の帯電電位を所望
の値にすることを特徴とする帯電装置。
1. A charging device for charging an object to be charged having a charge injection layer on its surface by contacting a contact charging member to which a voltage obtained by superposing an AC voltage and a DC voltage is applied, the charging device comprising: By monitoring the AC current supplied to the charged body and variably adjusting the maximum value of the positive component and the maximum value of the absolute value of the negative component within one cycle of the waveform of this AC current, the charged body of the charged body is charged. A charging device characterized by setting a charging potential to a desired value.
【請求項2】 前記交流電流波形1周期内の正成分の最
大値Imax+、負成分絶対値の最大値Imax−の関
係が 0.7≦Imax+/Imax−≦1.4 であることを特徴とする請求項1に記載の帯電装置。
2. The relationship between the maximum value Imax + of the positive component and the maximum value Imax- of the negative component absolute value within one cycle of the AC current waveform is 0.7 ≦ Imax + / Imax− ≦ 1.4. The charging device according to claim 1.
【請求項3】 前記接触帯電部材として磁性粒子で構成
される磁気ブラシを用いることを特徴とする請求項1又
は2に記載の帯電装置。
3. The charging device according to claim 1, wherein a magnetic brush composed of magnetic particles is used as the contact charging member.
【請求項4】 前記接触帯電部材としてブラシ繊維を用
いることを特徴とする請求項1又は2に記載の帯電装
置。
4. The charging device according to claim 1, wherein brush fibers are used as the contact charging member.
【請求項5】 像担持体に該像担持体面を帯電する工程
を含む画像形成プロセスを適用して画像形成を実行する
画像形成装置であり、 前記像担持体は表面に電荷注入層を有し、 該像担持体を帯電する工程手段が請求項1乃至4の何れ
か1つに記載の帯電装置であることを特徴とする画像形
成装置。
5. An image forming apparatus for performing image formation by applying an image forming process including a step of charging the surface of the image carrier to the image carrier, the image carrier having a charge injection layer on the surface. An image forming apparatus, wherein the step means for charging the image carrier is the charging device according to any one of claims 1 to 4.
【請求項6】 画像形成装置本体に対して着脱自在に装
着されるプロセスカートリッジであり、 請求項1乃至4の何れか1つに記載の帯電装置の少なく
とも接触帯電部材と、像担持体、現像装置、クリーニン
グ装置の少なくとも1つとを収容していることを特徴と
するプロセスカートリッジ。
6. A process cartridge detachably attached to the main body of the image forming apparatus, wherein at least the contact charging member of the charging device according to claim 1, an image carrier, and a developing unit. A process cartridge containing at least one of a device and a cleaning device.
JP28931095A 1995-10-11 1995-10-11 Charging device, image forming device, and process cartridge Expired - Fee Related JP3402878B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28931095A JP3402878B2 (en) 1995-10-11 1995-10-11 Charging device, image forming device, and process cartridge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28931095A JP3402878B2 (en) 1995-10-11 1995-10-11 Charging device, image forming device, and process cartridge

Publications (2)

Publication Number Publication Date
JPH09106144A JPH09106144A (en) 1997-04-22
JP3402878B2 true JP3402878B2 (en) 2003-05-06

Family

ID=17741533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28931095A Expired - Fee Related JP3402878B2 (en) 1995-10-11 1995-10-11 Charging device, image forming device, and process cartridge

Country Status (1)

Country Link
JP (1) JP3402878B2 (en)

Also Published As

Publication number Publication date
JPH09106144A (en) 1997-04-22

Similar Documents

Publication Publication Date Title
JPH09325578A (en) Image forming device
JPH0434566A (en) Recorder
JP3495839B2 (en) Charging device, magnetic brush charger, image recording device and process cartridge
US6144824A (en) Image forming method for preventing an uneven potential of an image bearing member having a charge injecting layer
JP3287792B2 (en) Charging device and image forming device
JPH0990715A (en) Electrifying member, electrifying device, image forming device and process cartridge
JP3507277B2 (en) Image forming device
JP3402878B2 (en) Charging device, image forming device, and process cartridge
JP3352384B2 (en) Charging method, charging device, image forming apparatus, and process cartridge
JP3517553B2 (en) Image forming device
JP3495873B2 (en) Image forming device
JP4261741B2 (en) Image forming apparatus
JPH06175509A (en) Image forming device
JP3559654B2 (en) Charging device, image recording device and process cartridge
JPH1048921A (en) Method for controlling electrification device and method for controlling image-forming device
JP3246306B2 (en) Charging device, image forming device, and process cartridge
JPH09244355A (en) Charging device, image recording device, and process cartridge
JP3232472B2 (en) Contact charging member, charging device, image forming apparatus, and process cartridge
JPH09106143A (en) Electrifying device, image forming device and process cartridge
JPH08152770A (en) Image forming device
JPH0850396A (en) Charging device, image recording device and processing cartridge
JPH0850392A (en) Charging device
JP4617003B2 (en) Image forming apparatus
JP2004077971A (en) Image forming apparatus
JPH11119517A (en) Electrifying device and image forming device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080229

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090228

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100228

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees