JP3218871B2 - Refrigeration equipment - Google Patents

Refrigeration equipment

Info

Publication number
JP3218871B2
JP3218871B2 JP18441994A JP18441994A JP3218871B2 JP 3218871 B2 JP3218871 B2 JP 3218871B2 JP 18441994 A JP18441994 A JP 18441994A JP 18441994 A JP18441994 A JP 18441994A JP 3218871 B2 JP3218871 B2 JP 3218871B2
Authority
JP
Japan
Prior art keywords
refrigerant
superheat
degree
heat exchanger
expansion valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18441994A
Other languages
Japanese (ja)
Other versions
JPH0849949A (en
Inventor
俊之 桃野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP18441994A priority Critical patent/JP3218871B2/en
Publication of JPH0849949A publication Critical patent/JPH0849949A/en
Application granted granted Critical
Publication of JP3218871B2 publication Critical patent/JP3218871B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、冷凍装置に係り、特
に、蒸発器として機能する熱交換器の性能向上対策に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerating apparatus, and more particularly to a measure for improving the performance of a heat exchanger functioning as an evaporator.

【0002】[0002]

【従来の技術】従来より、例えば特開平2−17358
号公報に開示されているような空気調和装置等に備えら
れる冷凍装置は、圧縮機、凝縮器、開度調整可能な膨張
弁及び蒸発器を冷媒配管によって順次接続して成る冷媒
回路を備えている。そして、凝縮器及び蒸発器には冷媒
の流通が自在な複数本の冷媒管が備えられ、この各冷媒
管の下流端の夫々はガスヘッダに接続され、このガスヘ
ッダにおいて各冷媒管から導出された冷媒が合流される
ようになっている。また、このガスヘッダは1本の連絡
管によって冷媒配管に接続されている。また、上記蒸発
器下流側の連絡管には感温筒等の冷媒ガスの過熱度を検
出するための手段が取付けられている。
2. Description of the Related Art Conventionally, for example, Japanese Unexamined Patent Publication No.
The refrigeration apparatus provided in an air conditioner or the like as disclosed in Japanese Unexamined Patent Publication (Kokai) No. 2000-163, includes a refrigerant circuit in which a compressor, a condenser, an expansion valve whose opening is adjustable, and an evaporator are sequentially connected by refrigerant piping. I have. The condenser and the evaporator are provided with a plurality of refrigerant tubes through which the refrigerant can flow freely, and each of the downstream ends of each of the refrigerant tubes is connected to a gas header. Are merged. The gas header is connected to the refrigerant pipe by one connecting pipe. A means for detecting the degree of superheat of the refrigerant gas, such as a temperature-sensitive cylinder, is attached to the communication pipe downstream of the evaporator.

【0003】そして、この種の冷凍装置の運転時には、
蒸発器下流側の連絡管を流通する冷媒ガスの過熱度を感
温筒等によって検出し、この過熱度に基づいて膨張弁の
開度を制御している。つまり、過熱度が高い場合には膨
張弁の開度を大きくし、逆に、過熱度が低い場合には膨
張弁の開度を小さくして、冷凍装置の運転効率を高く維
持しながら蒸発器での空気と冷媒との熱交換効率を高く
するようにしている。
[0003] When operating this type of refrigeration system,
The degree of superheat of the refrigerant gas flowing through the communication pipe on the downstream side of the evaporator is detected by a temperature sensing tube or the like, and the opening of the expansion valve is controlled based on the degree of superheat. In other words, when the degree of superheat is high, the opening of the expansion valve is increased. The heat exchange efficiency between the air and the refrigerant in the air is increased.

【0004】[0004]

【発明が解決しようとする課題】ところが、上述したよ
うな構成では、以下に述べるような課題がある。
However, the above-described configuration has the following problems.

【0005】つまり、比較的大きな空間であるガスヘッ
ダ内部から連絡管に冷媒が導出される際に圧力損失が生
じ、これによって冷媒の循環量が減少して冷凍装置の性
能が低下してしまう。
That is, a pressure loss occurs when the refrigerant is led out from the inside of the gas header, which is a relatively large space, to the connecting pipe, thereby reducing the circulation amount of the refrigerant and deteriorating the performance of the refrigeration system.

【0006】この課題を解消するために、連絡管を大径
にすることが考えられるが、これでは、連絡管を曲げ加
工する必要がある際に、既存の加工機で連絡管を加工す
ることができなくなることがあり、この場合、大径の配
管を曲げ加工するための新たな加工機が必要になってし
まう。
[0006] In order to solve this problem, it is conceivable to increase the diameter of the connecting pipe. However, in this case, when it is necessary to bend the connecting pipe, the connecting pipe is processed by an existing processing machine. In this case, a new machine for bending a large-diameter pipe is required.

【0007】また、もう1つの課題として、特に、熱源
側の熱交換器が蒸発器として機能している場合、蒸発器
を通過する空気の流速が該蒸発器の各部(例えば上部と
下部)で異なっていることがあり、このような状況で
は、この蒸発器内の各冷媒管での冷媒の蒸発状態も夫々
異なっている。即ち、冷媒管によって冷媒の過熱度に差
が生じている。そして、上述した従来の構成では、これ
ら過熱度に差が生じている各冷媒管内の冷媒をガスヘッ
ダで合流させ、この合流した冷媒の過熱度を該ガスヘッ
ダ下流側の連絡管において検出するようにしているた
め、各冷媒管のうち、冷媒と空気との熱交換量が多くて
過熱度が高くなり易い冷媒管では、十分な能力を得るこ
とができなかった。
Another problem is that, especially when the heat exchanger on the heat source side functions as an evaporator, the flow velocity of the air passing through the evaporator varies in each part (for example, upper and lower parts) of the evaporator. It may be different, and in such a situation, the evaporation state of the refrigerant in each refrigerant pipe in the evaporator is also different. That is, the degree of superheat of the refrigerant varies depending on the refrigerant pipe. In the above-described conventional configuration, the refrigerant in each refrigerant pipe having a difference in the degree of superheat is merged at the gas header, and the degree of superheat of the merged refrigerant is detected at the communication pipe downstream of the gas header. Therefore, among the refrigerant pipes, a refrigerant pipe having a large amount of heat exchange between the refrigerant and the air and having a high degree of superheat tends to have insufficient capacity.

【0008】つまり、この熱交換量が多い冷媒管では冷
媒の過熱度が高くなっているにも拘らず、実際に検出さ
れる合流後の冷媒の過熱度はそれよりも低く、この低い
過熱度に基いて膨張弁の開度が調整されることになる。
このため、この冷媒管においては、本来、熱交換効率が
高い部分であるにも拘らず、それを十分に生かすことが
できなかったので、冷媒側熱伝達率が低くなって蒸発器
全体としての性能を十分に得ることができなかった。
[0008] That is, in the heat exchanging amount is large refrigerant tube Despite becomes higher degree of superheat of the refrigerant actually superheat of the refrigerant after the confluence to be detected is lower than that, the low superheat The opening degree of the expansion valve is adjusted based on the above.
For this reason, in this refrigerant pipe, although it was originally a part having a high heat exchange efficiency, it could not be fully utilized, so that the heat transfer coefficient on the refrigerant side was lowered and the evaporator as a whole was reduced. Performance could not be fully obtained.

【0009】また、このように冷媒ガスの過熱度に基づ
いて膨張弁の開度を制御するとき、過熱度の設定値を0
℃近くに設定すれば蒸発器の性能を十分に利用できるこ
とになる。ところが、このような制御では、蒸発器出口
側の冷媒は実際には湿り状態で存在することになるため
正確な冷媒温度が検出できず、過熱度制御が正確に行え
なくなる。そのため、この過熱度制御では、過熱度の設
定値を例えば5℃程度に設定しておく必要があり、この
ような比較的高い設定値とした場合、従来の構成では上
述した課題を解消することはできなかった。
When the opening of the expansion valve is controlled based on the degree of superheat of the refrigerant gas, the set value of the degree of superheat is set to 0.
If the temperature is set near ℃, the performance of the evaporator can be fully utilized. However, in such control, the refrigerant at the evaporator outlet side actually exists in a wet state, so that an accurate refrigerant temperature cannot be detected, and the superheat degree control cannot be performed accurately. Therefore, in this superheat degree control, it is necessary to set the set value of the superheat degree to, for example, about 5 ° C. If such a relatively high set value is used, the above-described problem can be solved by the conventional configuration. Could not.

【0010】本発明は、これらの点に鑑みてなされたも
のであって、蒸発器周辺部の構成を改良することによ
り、連絡管を大径にすることなしにガスヘッダから連絡
管に導出される冷媒の圧力損失を低減でき、且つ蒸発器
内の各冷媒管での冷媒の過熱度に差が生じている場合で
あっても、過熱度制御の設定値を比較的高く設定したま
まで、冷媒側熱伝達率が高く維持でき蒸発器全体として
の性能を十分に得ることを目的とする。
The present invention has been made in view of these points, and by improving the configuration of the peripheral portion of the evaporator, the connection pipe is led out of the gas header to the connection pipe without increasing the diameter of the connection pipe. Even if the pressure loss of the refrigerant can be reduced and the degree of superheat of the refrigerant in each refrigerant pipe in the evaporator is different, the refrigerant is kept at a relatively high superheat degree control setting value. An object is to maintain a high side heat transfer coefficient and sufficiently obtain the performance of the entire evaporator.

【0011】[0011]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明は、ガスヘッダ下流側の連絡管を複数本設
けると共に、そのうち、最も過熱度が高い冷媒が流通す
るものにおいてのみ冷媒の過熱度を検出し、この検出さ
れた過熱度に基いて膨張弁の開度を調整するようにし
た。具体的に、請求項1記載の発明は、図1に示すよう
に、圧縮機(2)と、互いに独立した複数の冷媒管(7a),(7
a)…を有する熱源側熱交換器(7)と、冷媒管(7a),(7a)…
のガス側に接続されたガスヘッダ(23)と、開度調整可能
な膨張弁(15a)と、利用側熱交換器(4)とが接続されてな
る冷媒回路(1)を備え、冷媒ガスの過熱度を過熱度検出
手段(16)によって検出し、この過熱度に基き上記膨張弁
(15a)が開度調整される冷凍装置を前提としている。そ
して、上記ガスヘッダ(23)に、圧縮機(2)に向って延び
る複数本の連絡管(24),(25)を接続させ、上記過熱度検
出手段(16)に、熱源側熱交換器(7)のガス側に設けられ
た過熱度検出器(15f)を備えさせる。また、上記膨張弁
(15a)は感温式のものであって、上記過熱度検出器(15f)
は、冷媒温度に基いて上記膨張弁(15a)を開度調整する
感温筒で、上記各連絡管(24),(25)のうち、最も過熱度
が高い冷媒が流通するものに設られた構成としている。
In order to achieve the above object, the present invention provides a plurality of communication pipes on the downstream side of the gas header, and among them, only the refrigerant having the highest degree of superheat is circulated. The degree of superheat is detected, and the degree of opening of the expansion valve is adjusted based on the detected degree of superheat. Specifically, as shown in FIG. 1, the invention according to claim 1 includes a compressor (2) and a plurality of refrigerant pipes (7a), (7
a) a heat source side heat exchanger (7) having ... and refrigerant tubes (7a), (7a) ...
A gas header (23) connected to the gas side, an expansion valve (15a) whose degree of opening can be adjusted, and a refrigerant circuit (1) in which a use side heat exchanger (4) is connected. The degree of superheat is detected by superheat degree detecting means (16), and based on the degree of superheat, the expansion valve
(15a) is premised on a refrigeration device whose opening is adjusted. Then, a plurality of connecting pipes (24), (25) extending toward the compressor (2) are connected to the gas header (23), and the superheat degree detecting means (16) is connected to the heat source side heat exchanger ( A superheat degree detector (15f) provided on the gas side of 7) is provided. Also, the expansion valve
(15a) is a temperature-sensitive type, the superheat degree detector (15f)
Adjusts the opening of the expansion valve (15a) based on the refrigerant temperature
The temperature sensing tube is configured so as to be provided in one of the communication tubes (24) and (25) through which the refrigerant having the highest degree of superheat flows.

【0012】請求項2記載の発明は、圧縮機(2)と、互
いに独立した複数の冷媒管(7a),(7a)…を有する熱源側
熱交換器(7)と、冷媒管(7a),(7a)…のガス側に接続され
たガスヘッダ(23)と、開度調整可能な膨張弁(15a)と、
利用側熱交換器(4)とが接続されてなる冷媒回路(1)を備
え、冷媒ガスの過熱度を過熱度検出手段(16)によって検
出し、この過熱度に基き上記膨張弁(15a)が開度調整さ
れる冷凍装置を前提としている。そして、上記ガスヘッ
ダ(23)には、圧縮機(2)に向って延びる複数本の連絡管
(24),(25)が接続されており、上記過熱度検出手段(16)
には、熱源側熱交換器(7)のガス側に設けられた過熱度
検出器(15f)が備えられている。更に、上記熱源側熱交
換器(7)は、複数の冷媒管(7a),(7a)…の内部を流通する
冷媒と、この複数の冷媒管(7a),(7a)…の外部を流れる
空気との間で熱交換を行うようになっており、この各冷
媒管(7a),(7a)…の外部を流れる空気の流速分布が各冷
媒管(7a),(7a)…の夫々において異なっている。加え
て、上記過熱度検出器(15f)は、上記各連絡管(24),(25)
のうち、最も過熱度が高い冷媒が流通するものに設けら
れ、該過熱度検出器(15f)が設けられる連絡管(24)は、
上記空気の流速が高い冷媒管(7a)に対応してガスヘッダ
(23)に接続された構成としている。
According to a second aspect of the present invention, the compressor (2)
Heat source side having a plurality of independent refrigerant pipes (7a), (7a) ...
Connected to the heat exchanger (7) and the gas side of the refrigerant pipes (7a), (7a) ...
Gas header (23), an expansion valve (15a) with adjustable opening,
Equipped with a refrigerant circuit (1) connected to the user-side heat exchanger (4)
The superheat degree of the refrigerant gas is detected by the superheat degree detection means (16).
The expansion valve (15a) is adjusted for opening based on the degree of superheat.
It is assumed that a refrigeration system is used. And the gas head
(23) have a plurality of connecting pipes extending toward the compressor (2).
(24), (25) are connected, the superheat degree detection means (16)
Is the degree of superheat provided on the gas side of the heat source side heat exchanger (7).
A detector (15f) is provided. Further, the heat source-side heat exchanger (7) flows a refrigerant flowing through the plurality of refrigerant tubes (7a), the internal (7a) ..., the plurality of refrigerant tubes (7a), a (7a) ... external being adapted to perform heat exchange with the air, the respective refrigerant pipes (7a), (7a) ... flow velocity distribution respective refrigerant tube of the air flowing through the external (7a), in people (7a) ... husband Is different . In addition
The superheat degree detector (15f) is connected to each of the communication pipes (24) and (25).
Of the refrigerant with the highest degree of superheat
Is, connection pipe that the superheat degree detector (15f) is provided (24),
Gas header corresponding to refrigerant pipe (7a) with high air flow rate
The configuration is connected to (23).

【0013】請求項3記載の発明は、上記請求項2記載
の冷凍装置において、熱源側熱交換器(7)を、側面に空
気吸込口(21a)が形成され且つ上面に空気吹出口(21b)が
形成されたユニットケーシング(21)内に、水平方向に延
びる各冷媒管(7a),(7a)…が鉛直方向に並設されるよう
に空気吸込口(21a)に対向して配設させ、ガスヘッダ(2
3)を上記各冷媒管(7a),(7a)…に対向して鉛直方向に延
設させ、連絡管(24),(25)を、ガスヘッダ(23)の上下方
向に間隔を存して複数本並設させる。そして、過熱度検
出器(15f)を、ガスヘッダ(23)に対する接続位置が最上
部に位置する上記連絡管(24)に設けた構成としている。
According to a third aspect of the present invention, in the refrigeration apparatus according to the second aspect, the heat source side heat exchanger (7) is provided with an air inlet (21a) on a side surface and an air outlet (21b) on an upper surface. ) Are formed in the unit casing (21) in which the refrigerant pipes (7a), (7a)... Extending in the horizontal direction are opposed to the air suction port (21a) so as to be arranged in a vertical direction. Gas header (2
3) is vertically extended to face each of the refrigerant pipes (7a), (7a)..., And the connecting pipes (24), (25) are spaced apart in the vertical direction of the gas header (23). Arrange a plurality of them. The superheat degree detector (15f) is provided in the connecting pipe (24) where the connection position to the gas header (23) is located at the top.

【0014】請求項4記載の発明は、上記請求項2また
は3記載の冷凍装置において、膨張弁(15a)を感温式の
ものとし、過熱度検出器(15f)を、冷媒温度に基いて上
記膨張弁(15a)を開度調整する感温筒とした構成として
いる。
According to a fourth aspect of the present invention, in the refrigeration apparatus according to the second or third aspect, the expansion valve (15a) is of a temperature-sensitive type, and the superheat detector (15f) is controlled based on the refrigerant temperature. The expansion valve (15a) is configured as a temperature-sensitive cylinder for adjusting the opening.

【0015】[0015]

【作用】上記の構成により、本発明では以下に述べるよ
うな作用が得られる。請求項1記載の発明では、例えば
冷凍装置の暖房運転時には、圧縮機(2)より吐出した高
圧の冷媒は、利用側熱交換器(4)で凝縮して液化し、こ
の液冷媒は、膨張弁(15a)で減圧された後、熱源側熱交
換器(7)で蒸発して圧縮機(2)に戻る。そして、この運転
サイクル時において、熱源側熱交換器(7)から導出され
た冷媒は、その内部に備えられた複数の冷媒管(7a),(7
a),…からガスヘッダ(23)に導入され、その後、複数の
連絡管(24),(25)を経て圧縮機(2)に戻される。このた
め、連絡管(24),(25)を大径にすることなしにガスヘッ
ダ(23)下流側の流路を大きく確保できるので、ガスヘッ
ダ(23)から連絡管(24),(25)に冷媒が導出される際の圧
力損失が低減され、冷媒の循環量が大きく確保される。
また、冷媒管(7a),(7a),…によって冷媒の過熱度に差が
生じているような場合、膨張弁(15a)の開度を調整する
ための冷媒の過熱度は、最も過熱度が高い冷媒が流通す
る連絡管(24)において加熱度検出器(15f)によって検出
されることになるので、過熱度が高くなり易い冷媒管(7
a)に対して最適な膨張弁(15a)の開度調整が行われるこ
とになる。つまり、この冷媒管(7a)における冷媒の過熱
度及び合流後の冷媒の過熱度を低く設定でき、これによ
って、冷媒側熱伝達率を高くでき蒸発器全体としての性
能が向上する。
According to the above construction, the following effects can be obtained in the present invention. According to the first aspect of the present invention, for example, during a heating operation of the refrigeration system, the high-pressure refrigerant discharged from the compressor (2) is condensed and liquefied in the use-side heat exchanger (4), and this liquid refrigerant is expanded. After the pressure is reduced by the valve (15a), it is evaporated in the heat source side heat exchanger (7) and returns to the compressor (2). During this operation cycle, the refrigerant led out of the heat source side heat exchanger (7) is supplied to a plurality of refrigerant pipes (7a), (7
a), ... are introduced into the gas header (23), and then returned to the compressor (2) through a plurality of communication pipes (24), (25). Therefore, a large flow path on the downstream side of the gas header (23) can be secured without increasing the diameter of the connecting pipes (24) and (25), so that the connecting pipes (24) and (25) can be connected from the gas header (23). Pressure loss when the refrigerant is discharged is reduced, and a large circulation amount of the refrigerant is ensured.
When the degree of superheat of the refrigerant is different due to the refrigerant pipes (7a), (7a), ..., the degree of superheat of the refrigerant for adjusting the opening degree of the expansion valve (15a) is the highest degree of superheat. Is detected by the heating degree detector (15f) in the communication pipe (24) through which the refrigerant having a high degree of heat flows, so that the refrigerant pipe (7
The adjustment of the opening degree of the expansion valve (15a) is optimized for (a). That is, the degree of superheat of the refrigerant in the refrigerant pipe (7a) and the degree of superheat of the refrigerant after merging can be set low, thereby increasing the refrigerant-side heat transfer coefficient and improving the performance of the entire evaporator.

【0016】更に、膨張弁(15a)を感温筒(15f)が検出す
る冷媒温度によって開度調整する感温式のものにしたた
め、簡単な構成で膨張弁(15a)の開度調整を行うことが
できる。
Further, the temperature sensing cylinder (15f) detects the expansion valve (15a).
Temperature-sensitive type that adjusts the opening according to the refrigerant temperature
Therefore, the opening of the expansion valve (15a) can be adjusted with a simple configuration.
it can.

【0017】請求項2記載の発明では、各冷媒管(7a),
(7a)…の外部を流れる空気の風速分布が各冷媒管(7a),
(7a)…の夫々において異なっていることに起因して各冷
媒管(7a),(7a),…での冷媒の過熱度に差が生じている状
況において、過熱度検出器(15f)が設けられる連絡管(2
4)を、空気の流速が高い冷媒管(7a)に対応してガスヘッ
ダ(23)に接続させたことで、確実に、最も過熱度が高い
冷媒が流通する連絡管(24)において冷媒の過熱度を検出
することができる。
In the invention according to claim 2, each refrigerant pipe (7a),
(7a) ... the wind velocity distribution of the air flowing outside the refrigerant pipes (7a),
In a situation where the degree of superheat of the refrigerant in each of the refrigerant pipes (7a), (7a), ... is different due to the difference in each of (7a) ..., the superheat degree detector (15f) Connecting pipe (2
4) is connected to the gas header (23) in correspondence with the refrigerant pipe (7a) having a high air flow rate, so that the refrigerant is superheated in the connecting pipe (24) through which the refrigerant with the highest degree of superheat flows. Degree can be detected.

【0018】請求項3記載の発明では、熱源側熱交換器
(7)が側方吸込・上方吹出型のユニットケーシング(21)
の空気吸込口(21a)に対向した位置に配設されているこ
とにより、該熱源側熱交換器(7)の上部では冷媒管(7a)
の外部を流れる空気の風速が高く、下部では低くなって
いる。つまり、熱源側熱交換器(7)の上部に位置する冷
媒管(7a)は空気と冷媒との熱交換効率が特に高いもので
あり、この冷媒管(7a)に過熱度検出器(15f)を取付けた
ことにより、最も過熱度が高い冷媒が流通する連絡管(2
4)において冷媒の過熱度を検出することができる。
According to the third aspect of the present invention, the heat source side heat exchanger
(7) is a side suction / upward blow type unit casing (21)
Is disposed at a position facing the air suction port (21a) of the heat source side heat exchanger (7).
The wind speed of the air flowing outside is high, and it is low at the bottom. That is, the refrigerant pipe (7a) located above the heat source side heat exchanger (7) has a particularly high heat exchange efficiency between air and refrigerant, and the refrigerant pipe (7a) has a superheat degree detector (15f). Is installed, the communication pipe (2
In 4), the degree of superheat of the refrigerant can be detected.

【0019】請求項4記載の発明では、請求項2または
3の発明において、膨張弁(15a)を感温筒(15f)が検出す
る冷媒温度によって開度調整する感温式のものにしたた
め、簡単な構成で膨張弁(15a)の開度調整を行うことが
できる。
According to the invention described in claim 4, claim 2 or
In the invention of the third aspect, since the expansion valve (15a) is a temperature-sensitive type in which the opening is adjusted by the refrigerant temperature detected by the temperature-sensitive cylinder (15f), the opening of the expansion valve (15a) is adjusted with a simple configuration. be able to.

【0020】[0020]

【実施例】次に、本発明の実施例を図面に基いて説明す
る。図1に示すように、冷凍装置は、冷温水を生成して
冷暖房を行う空気調和装置であって、冷媒が循環する冷
媒回路(1)を備えている。
Next, an embodiment of the present invention will be described with reference to the drawings. As shown in FIG. 1, the refrigeration apparatus is an air conditioner that performs cooling and heating by generating cold and hot water, and includes a refrigerant circuit (1) through which a refrigerant circulates.

【0021】該冷媒回路(1)は、圧縮機(2)と四路切換弁
(3)と利用側熱交換器としての水側熱交換器(4)と受液器
(5)と膨張機構(6)と2台の熱源側熱交換器としての空気
側熱交換器(7),(7)とが順に冷媒配管(8)によって接続さ
れて成り、四路切換弁(3)は、冷房運転時に実線のよう
に、暖房運転時に破線のように切換わって冷媒の循環方
向を切換えるように構成されている。
The refrigerant circuit (1) includes a compressor (2) and a four-way switching valve.
(3) Water-side heat exchanger (4) and receiver as use-side heat exchanger
(5), an expansion mechanism (6) and two air-side heat exchangers (7) and (7) as heat source-side heat exchangers are connected in order by a refrigerant pipe (8), and a four-way switching valve is provided. (3) is configured to switch as shown by the solid line during the cooling operation and as shown by the broken line during the heating operation to switch the circulation direction of the refrigerant.

【0022】上記水側熱交換器(4)は、冷房運転時に蒸
発器として、暖房運転時に凝縮器として機能し、空調用
水が流出入して冷媒と空調用水とを熱交換するように構
成されている。
The water-side heat exchanger (4) functions as an evaporator during the cooling operation and as a condenser during the heating operation, and is configured so that air-conditioning water flows in and out to exchange heat between the refrigerant and the air-conditioning water. ing.

【0023】上記2台の空気側熱交換器(7),(7)は並列
に接続されており、各空気側熱交換器(7),(7)は、冷房
運転時に凝縮器として、暖房運転時に蒸発器として機能
し、冷媒と室外空気とを熱交換するように構成されてい
る。
The two air-side heat exchangers (7), (7) are connected in parallel, and each of the air-side heat exchangers (7), (7) serves as a condenser during a cooling operation and serves as a condenser. It functions as an evaporator during operation and is configured to exchange heat between the refrigerant and the outdoor air.

【0024】また、上記受液器(5)は、常時高圧液配管
(9)に介設されており、該常時高圧液配管(9)の入口側
は、空気側熱交換器(7)に連通する空気側液配管(10)
と、水側熱交換器(4)に連通する水側液配管(11)とがそ
れぞれ逆止弁(12),(12),…を介して接続される一方、常
時高圧液配管(9)の出口側は、膨張機構(6)に接続されて
いる。尚、上記受液器(5)より下流側の常時高圧液配管
(9)にはドライヤ(13)が設けられている。
The liquid receiver (5) is always provided with a high-pressure liquid pipe.
(9), the inlet side of the constantly high-pressure liquid pipe (9) is an air-side liquid pipe (10) communicating with the air-side heat exchanger (7).
And the water-side liquid pipe (11) communicating with the water-side heat exchanger (4) are connected via check valves (12), (12),. Is connected to the expansion mechanism (6). It should be noted that the always high-pressure liquid pipe downstream of the receiver (5)
(9) is provided with a dryer (13).

【0025】上記膨張機構(6)は、冷却用減圧部(14)と
2つの並列な加熱用減圧部(15),(15)とより構成され、
該冷却用減圧部(14)と加熱用減圧部(15),(15)との冷媒
流入側は、上記常時高圧液配管(9)の出口側に接続され
る一方、冷却用減圧部(14)の冷媒流出側は水側液配管(1
1)に、加熱用減圧部(15)の冷媒流出側は空気側液配管(1
0)にそれぞれ接続されている。
The expansion mechanism (6) comprises a cooling decompression unit (14) and two parallel heating decompression units (15) and (15).
The refrigerant inflow sides of the cooling decompression unit (14) and the heating decompression units (15) and (15) are connected to the outlet side of the high-pressure liquid pipe (9), while the cooling decompression unit (14) ) Is the water side liquid piping (1
In (1), the refrigerant outflow side of the heating decompression section (15) is connected to the air-side liquid pipe (1).
0).

【0026】上記冷却用減圧部(14)及び加熱用減圧部(1
5)は、それぞれ感温式膨張弁(14a),(15a)を有するメイ
ン減圧通路(14b),(15b)と、該メイン減圧通路(14b),(15
b)に並列な補助膨張通路(14c),(15c)とを備えている。
そして、該補助膨張通路(14c),(15c)は、開閉部である
電磁弁(14d),(15d)と絞り部であるキャピラリチューブ
(14e),(15e)とが直列に接続されてなり、該電磁弁(14
d),(15d)は、フルロード運転時(100%容量運転時)
に開口して液冷媒がメイン減圧通路(14b),(15b)の他、
補助減圧通路(14c),(15c)を流れるように構成されてい
る。
The cooling decompression section (14) and the heating decompression section (1)
5) includes main pressure reducing passages (14b) and (15b) having temperature-sensitive expansion valves (14a) and (15a), and main pressure reducing passages (14b) and (15
The auxiliary expansion passages (14c) and (15c) are provided in parallel with b).
The auxiliary expansion passages (14c) and (15c) are provided with solenoid valves (14d) and (15d) as opening / closing portions and a capillary tube as a throttle portion.
(14e) and (15e) are connected in series, and the solenoid valve (14
d) and (15d) are for full load operation (100% capacity operation)
And the liquid refrigerant is opened to the main pressure reducing passages (14b) and (15b),
It is configured to flow through the auxiliary pressure reducing passages (14c) and (15c).

【0027】また、上記冷却用減圧部(14)における感温
式膨張弁(14a)の感温筒(14f)は、圧縮機(2)の吸込側冷
媒配管(8a)であって四路切換弁(3)より下流側に取付け
られている。そして、この感温式膨張弁(14a)は、冷房
運転時に冷媒の過熱度に対応して開度が調整され、暖房
運転時に全閉になるように構成されている。
The temperature-sensitive cylinder (14f) of the temperature-sensitive expansion valve (14a) in the cooling pressure-reducing section (14) is a suction-side refrigerant pipe (8a) of the compressor (2) and is a four-way switching type. Mounted downstream from valve (3). The temperature-sensitive expansion valve (14a) is configured such that its opening is adjusted according to the degree of superheat of the refrigerant during the cooling operation, and is fully closed during the heating operation.

【0028】また、上記圧縮機(2)は、スクリュー式圧
縮機で構成されており、アンローダ機構(2a)が設けられ
ている。
Further, the compressor (2) is constituted by a screw type compressor and provided with an unloader mechanism (2a).

【0029】該アンローダ機構(2a)は、圧縮機(2)の低
圧側と高圧側とに連通するアンロード通路(2b)に第1ア
ンロード弁〜第4アンロード弁(2c)〜(2f)が設けられて
構成されている。そして、上記アンローダ機構(2a)は、
第1アンロード弁(2c)を開放して圧縮機(2)の容量を1
2%に、第2アンロード弁(2d)を開放して圧縮機(2)の
容量を25%に、第3アンロード弁(2e)を開放して圧縮
機(2)の容量を40%に、第4アンロード弁(2f)を開放
して圧縮機(2)の容量を70%に切換えるように構成さ
れている。
The unloader mechanism (2a) includes first to fourth unload valves (2c) to (2f) in an unload passage (2b) communicating with the low pressure side and the high pressure side of the compressor (2). ) Is provided. And the unloader mechanism (2a)
Open the first unload valve (2c) to reduce the capacity of the compressor (2) to 1
2%, the second unload valve (2d) is opened to increase the capacity of the compressor (2) to 25%, and the third unload valve (2e) is opened to reduce the capacity of the compressor (2) to 40%. Further, the fourth unload valve (2f) is opened to switch the capacity of the compressor (2) to 70%.

【0030】また、上記圧縮機(2)の低圧側と高圧側と
には、圧力取出し管(2g)が接続され、該圧力取出し管(2
g)には、冷媒回路(1)の高圧圧力を検出する高圧圧力セ
ンサ(SENH)と、冷媒回路(1)の低圧圧力を検出する低圧
圧力センサ(SENL)とが設けられると共に、高圧圧力の過
上昇時と低圧圧力の過低下時とに作動する圧力スイッチ
(HLPS)が設けられている。
Further, a pressure extraction pipe (2 g) is connected to the low pressure side and the high pressure side of the compressor (2), and the pressure extraction pipe (2
g), a high pressure sensor (SENH) for detecting the high pressure of the refrigerant circuit (1) and a low pressure sensor (SENL) for detecting the low pressure of the refrigerant circuit (1) are provided. Pressure switch that activates when the pressure rises excessively and when the low pressure drops excessively
(HLPS).

【0031】次に、本例の特徴である空気側熱交換器
(7)及びその周辺の構造について説明する。先ず、図2
に基き、空気側熱交換器(7)が備えられる室外ユニット
(20)について説明する。この室外ユニット(20)は、所謂
側方吸込・上方吹出型のものであって、ユニットケーシ
ング(21)の側面が開放されて空気吸込口(21a)が形成さ
れており、該ユニットケーシング(21)の上面には空気吹
出口(21b)が形成されている。また、この空気吹出口(21
b)にはファンモータ(22a)によって回転可能とされたフ
ァン(22)が設けられている。そして、ユニットケーシン
グ(21)内における空気吸込口(21a)に臨む部分に空気側
熱交換器(7),(7)が配設されている。このような構成で
あるため、本室外ユニット(20)では、ファン(22)の回転
に伴って空気吸込口(21a)から空気が吸込まれ、この空
気が空気側熱交換器(7)を通過して冷媒との間で熱交換
を行った後、空気吹出口(21b)から吹出されるようにな
っている。尚、このように室外ユニット(20)が構成され
ている場合、図2に示す風速分布の如く、空気側熱交換
器(7)の上側部分はファン(22)が近接しているために空
気の流速が高く、下側部分に向うに従ってファン(22)と
の距離が大きくなるために空気の流速が低くなる。つま
り、空気側熱交換器(7)の上側部分は空気と冷媒との熱
交換効率が特に高い部分であって、下側部分はその熱交
換効率が特に低い部分となっている。
Next, the air-side heat exchanger which is a feature of the present embodiment.
(7) and the surrounding structure will be described. First, FIG.
Outdoor unit equipped with an air-side heat exchanger (7)
(20) will be described. The outdoor unit (20) is of a so-called side suction / upward discharge type, and has an air suction port (21a) formed by opening a side surface of a unit casing (21). ) Has an air outlet (21b) formed on the upper surface thereof. In addition, this air outlet (21
b) is provided with a fan (22) rotatable by a fan motor (22a). Further, the air-side heat exchangers (7), (7) are arranged in a portion facing the air suction port (21a) in the unit casing (21). With this configuration, in the main outdoor unit (20), air is sucked in from the air suction port (21a) as the fan (22) rotates, and the air passes through the air-side heat exchanger (7). After exchanging heat with the refrigerant, the air is blown out from the air outlet (21b). When the outdoor unit (20) is configured as described above, the upper part of the air-side heat exchanger (7) is close to the fan (22) due to the proximity of the fan (22) as shown in the wind speed distribution shown in FIG. The flow velocity of the air is high, and the distance to the fan (22) increases toward the lower part, so that the flow velocity of the air decreases. That is, the upper part of the air-side heat exchanger (7) is a part where the heat exchange efficiency between the air and the refrigerant is particularly high, and the lower part is a part where the heat exchange efficiency is particularly low.

【0032】そして、本例の特徴は、上記空気側熱交換
器(7)における暖房運転時の出口部分の構成にある。図
1の如く、空気側熱交換器(7)は、冷媒の流通が自在な
複数本の冷媒管(7a),(7a),…が上下に並設され、この各
冷媒管(7a),(7a),…の出口側端部(図1における左側
部)の夫々は各冷媒管(7a),(7a),…を流通した冷媒を合
流させる上下方向に延びるガスヘッダ(23)に接続されて
いる。
The feature of this embodiment resides in the configuration of the outlet of the air-side heat exchanger (7) during the heating operation. As shown in FIG. 1, the air-side heat exchanger (7) includes a plurality of refrigerant pipes (7a), (7a),. Each of the outlet-side ends (left side in FIG. 1) of (7a),... Is connected to a vertically extending gas header (23) for joining the refrigerant flowing through each of the refrigerant pipes (7a), (7a),. ing.

【0033】そして、本例の特徴の1つとして、ガスヘ
ッダ(23)と冷媒配管(8)との間は上下一対の2本の連絡
管(24),(25)によって接続されている。この連絡管(24),
(25)のうち、上側に位置する第1連絡管(24)はガスヘッ
ダ(23)の側面における上端部近傍位置に接続されている
一方、下側に位置する第2連絡管(25)はガスヘッダ(23)
の側面における上下方向略中央部位置に接続されてい
る。また、この各連絡管(24),(25)のガスヘッダ(23)に
対する接続位置は、該ガスヘッダ(23)から導出される冷
媒の各連絡管(24),(25)における流通量が略均等になる
ような位置に設定されている。
As one of the features of this embodiment, the gas header (23) and the refrigerant pipe (8) are connected by a pair of upper and lower two communication pipes (24) and (25). This connecting pipe (24),
Of the (25), the first connecting pipe (24) located on the upper side is connected to a position near the upper end on the side surface of the gas header (23), while the second connecting pipe (25) located on the lower side is connected to the gas header. (twenty three)
Is connected to a substantially central position in the vertical direction on the side surface of the. Further, the connection position of each of the connecting pipes (24) and (25) with respect to the gas header (23) is such that the amount of refrigerant flowing from the gas header (23) in each of the connecting pipes (24) and (25) is substantially equal. The position is set so that

【0034】このガスヘッダ(23)及び各連絡管(24),(2
5)の配設構成を図3〜図5によって具体的に説明する。
尚、図3は室外ユニット(20)の内部を示す平面図、図4
はその側面図、図5は連絡管(24),(25)の形状を示す図
3及び図4におけるV矢視図である。これら図のよう
に、第1連絡管(24)は、ガスヘッダ(23)の内側面におけ
る上端部近傍位置から水平方向中央側に延びた後、下方
に向うに従って図4における右方向へ傾斜され、その
後、水平方向中央側に延びて冷媒配管(8)に接続されて
いる。一方、第2連絡管(25)は、ガスヘッダ(23)の側面
における上下方向略中央部位置から水平方向中央側に延
びた後、上方に向うに従って図4における右方向へ傾斜
されて第1連絡管(24)の上側まで延び、その後、水平方
向中央側に延びて冷媒配管(8)に接続されている。そし
て、各連絡管(24),(25)が接続された冷媒配管(8)は、鉛
直下方に延びた後、図3における右側へ水平方向に延
び、その後、図5における右側へ水平方向に延び、更
に、下方へ延びて四路切換弁(3)を経て圧縮機(2)の吸込
側に向って延びている。
This gas header (23) and each connecting pipe (24), (2
The arrangement configuration 5) will be specifically described with reference to FIGS.
FIG. 3 is a plan view showing the inside of the outdoor unit (20), and FIG.
FIG. 5 is a side view, and FIG. 5 is a view taken in the direction of the arrow V in FIGS. 3 and 4 showing the shape of the connecting pipes (24), (25). As shown in these figures, the first communication pipe (24) extends to the center in the horizontal direction from a position near the upper end on the inner surface of the gas header (23), and then is inclined rightward in FIG. Then, it extends to the center in the horizontal direction and is connected to the refrigerant pipe (8). On the other hand, the second communication pipe (25) extends from the substantially vertical center position on the side surface of the gas header (23) to the center in the horizontal direction, and is inclined rightward in FIG. It extends to the upper side of the pipe (24), then extends to the center in the horizontal direction, and is connected to the refrigerant pipe (8). Then, the refrigerant pipe (8) to which the connecting pipes (24) and (25) are connected extends vertically downward, then horizontally to the right in FIG. 3, and then horizontally to the right in FIG. It extends downward and further extends toward the suction side of the compressor (2) via the four-way switching valve (3).

【0035】そして、本例のもう1つの特徴として、上
記第1連絡管(24)には、加熱用減圧部(15)の感温式膨張
弁(15a)の過熱度検出器としての感温筒(15f)が取付けら
れている。つまり、この感温式膨張弁(15a)の開度調整
は、第1連絡管(24)を通過して圧縮機(2)に戻る冷媒の
過熱度のみに基いて設定されるような構成となってい
る。また、この感温式膨張弁(15a)は冷房運転時に全閉
になるように構成されている。このようにして、この感
温筒(15f)と上述した感温筒(14f)とによって本発明でい
う過熱度検出手段(16)が構成されている。
As another characteristic of the present embodiment, the first communication pipe (24) is provided with a temperature-sensitive expansion valve (15a) of the heating pressure reducing section (15) as a superheat degree detector. A tube (15f) is attached. That is, the opening degree of the temperature-sensitive expansion valve (15a) is adjusted based only on the degree of superheat of the refrigerant returning to the compressor (2) through the first communication pipe (24). Has become. The temperature-sensitive expansion valve (15a) is configured to be fully closed during the cooling operation. Thus, the superheat degree detecting means (16) according to the present invention is constituted by the thermosensitive cylinder (15f) and the above-described thermosensitive cylinder (14f).

【0036】次に、上述した空気調和装置の冷暖房運転
動作について説明する。
Next, the cooling and heating operation of the above-described air conditioner will be described.

【0037】先ず、冷房運転サイクル時には、圧縮機
(2)より吐出した高圧の冷媒は、空気側熱交換器(7),(7)
で凝縮して液化し、この液冷媒は、空気側液配管(7),
(7)を経て受液器(5)及びドライヤ(13)を通過して冷却用
減圧部(14)に導かれて減圧された後、水側熱交換器(4)
に流入し、この水側熱交換器(4)で蒸発して圧縮機(2)に
戻る循環となる。
First, during the cooling operation cycle, the compressor
The high-pressure refrigerant discharged from (2) is the air-side heat exchanger (7), (7)
This liquid refrigerant is condensed and liquefied by the air side liquid pipe (7),
After passing through the liquid receiver (5) and the dryer (13) through (7), it is guided to the cooling depressurizing section (14) and depressurized, and then the water-side heat exchanger (4)
And the water is returned to the compressor (2) after being evaporated in the water-side heat exchanger (4).

【0038】一方、暖房運転サイクル時には、圧縮機
(2)より吐出した高圧の冷媒は、水側熱交換器(4)で凝縮
して液化し、この液冷媒は、水側液配管(11),(11)を経
て受液器(5)及びドライヤ(13)を通過して加熱用減圧部
(15),(15)に導かれて減圧された後、空気側熱交換器(7)
に流入し、この空気側熱交換器(7)で蒸発して圧縮機(2)
に戻る循環となる。
On the other hand, during the heating operation cycle, the compressor
The high-pressure refrigerant discharged from (2) is condensed and liquefied in the water-side heat exchanger (4), and this liquid refrigerant is passed through the water-side liquid pipes (11) and (11), and the liquid receiver (5) And through the dryer (13)
(15), after being decompressed by (15), air side heat exchanger (7)
And evaporates in this air-side heat exchanger (7) and the compressor (2)
Return to the circulation.

【0039】また、この各運転サイクル時において、要
求される冷凍能力に応じてアンローダ機構(2a)の各アン
ロード弁(2c)〜(2f)が切換えられて圧縮機(2)の容量が
制御される。また、この圧縮機(2)の容量が100%の
フルロード状態の場合、冷房時には冷却用減圧部(14)の
電磁弁(14d)が、暖房時には加熱用減圧部(15)の電磁弁
(15d)が夫々開放され、感温式膨張弁(14a),(15a)と共に
キャピラリチューブ(14e),(15e)においても冷媒の減圧
が行われて冷媒の循環量が大きく確保される。また、圧
縮機(2)がアンロード状態の場合には、各電磁弁(14d),
(15d)は共に閉鎖されて感温式膨張弁(14a),(15a)のみに
おいて冷媒の減圧が行われる。
In each operation cycle, the unload valves (2c) to (2f) of the unloader mechanism (2a) are switched according to the required refrigerating capacity to control the capacity of the compressor (2). Is done. When the capacity of the compressor (2) is 100% full load, the solenoid valve (14d) of the cooling decompression unit (14) is used for cooling, and the solenoid valve (14) of the heating decompression unit (15) is used for heating.
(15d) is opened, and the refrigerant is depressurized in the capillary tubes (14e) and (15e) together with the temperature-sensitive expansion valves (14a) and (15a), so that a large circulation amount of the refrigerant is secured. When the compressor (2) is in the unloaded state, each solenoid valve (14d),
(15d) is closed, and the pressure of the refrigerant is reduced only in the temperature-sensitive expansion valves (14a) and (15a).

【0040】また、上記運転サイクル時の過渡時などに
おいて、高圧冷媒圧力が過上昇したり過低下した場合に
は、圧力スイッチ(HLPS)の作動により、圧縮機(2)が強
制停止される。
If the high-pressure refrigerant pressure rises or falls too much during the above-mentioned operation cycle, the compressor (2) is forcibly stopped by the operation of the pressure switch (HLPS).

【0041】そして、本例の特徴とする動作は、暖房運
転時における感温式膨張弁(15a)の開度調整動作にあ
る。この動作は、上述したように、暖房運転用の感温式
膨張弁(15a)の感温筒(15f)において検出される冷媒の過
熱度は、第1連絡管(24)を通過して圧縮機(2)に戻る冷
媒のみであって、感温式膨張弁(15a)の開度調整は、こ
の第1連絡管(24)を通過して圧縮機(2)に戻る冷媒の過
熱度のみによって行われる。また、この第1連絡管(24)
はガスヘッダ(23)の側面における上端部近傍位置に接続
されており、このガスヘッダ(23)の側面における上端部
近傍位置は、空気側熱交換器(7)を通過する空気の流速
が高くて特に空気と冷媒との熱交換効率が特に高い部分
であることから、冷媒の過熱度が大きくなり易い冷媒管
(7a)の接続部分に対応した位置となっている。このた
め、感温式膨張弁(15a)の開度調整は、各冷媒管(7a),(7
a),…を流通してガスヘッダ(23)において合流された冷
媒のうち最も過熱度が高い部分に基いて行われているこ
とになる。
The characteristic operation of the present embodiment lies in the operation of adjusting the opening of the temperature-sensitive expansion valve (15a) during the heating operation. In this operation, as described above, the degree of superheat of the refrigerant detected in the temperature-sensitive cylinder (15f) of the temperature-sensitive expansion valve (15a) for the heating operation passes through the first communication pipe (24) and is compressed. The degree of opening of the temperature-sensitive expansion valve (15a) is adjusted only by the degree of superheat of the refrigerant returning to the compressor (2) through the first communication pipe (24). Done by In addition, this first communication pipe (24)
Is connected to a position near the upper end portion on the side surface of the gas header (23) .The position near the upper end portion on the side surface of the gas header (23) has a high flow velocity of air passing through the air-side heat exchanger (7). A refrigerant pipe in which the degree of superheat of the refrigerant is likely to be large because the heat exchange efficiency between the air and the refrigerant is particularly high.
The position corresponds to the connection part of (7a). Therefore, the opening of the temperature-sensitive expansion valve (15a) is adjusted by adjusting the refrigerant pipes (7a) and (7
a),..., are performed based on the portion of the refrigerant having the highest degree of superheat among the refrigerants joined at the gas header (23).

【0042】このように、本例の構成によれば、連絡管
(24),(25)を2本設けたことにより、該連絡管(24),(25)
を大径にすることなしにガスヘッダ(23)下流側の冷媒流
路を大きく確保できるので、連絡管を曲げ加工するため
の新たな加工機を必要とすることなく、ガスヘッダ(23)
から連絡管(24),(25)に冷媒が導出される際の圧力損失
を低減することができ、冷媒の循環量が大きく確保でき
て、冷凍装置の性能が向上できる。
As described above, according to the configuration of this embodiment, the communication pipe
By providing two (24) and (25), the connecting pipes (24) and (25)
A large refrigerant flow path on the downstream side of the gas header (23) can be secured without increasing the diameter of the gas header (23), so that a new processing machine for bending the connecting pipe is not required, and the gas header (23)
The pressure loss when the refrigerant is led out to the communication pipes (24) and (25) can be reduced, a large amount of refrigerant can be circulated, and the performance of the refrigeration system can be improved.

【0043】また、感温式膨張弁(15a)の開度を調整す
るための冷媒の過熱度を、最も過熱度が高い冷媒が流通
する第1連絡管(24)において検出しているので、図6に
示すように、実線で示す従来のもの(冷媒過熱度は各冷
媒管から導出された冷媒の過熱度の平均である)に比べ
て破線で示す本例の場合の冷媒の過熱度を低く設定する
ことができ、特に、過熱度が高くなり易い上部に位置す
る冷媒管(7a)に対して過熱度が高くなり過ぎないように
最適な感温式膨張弁(15a)の開度調整を行うことができ
る。つまり、この図6では、縦軸が図2に示す熱交換器
(7)の高さ位置、横軸が冷媒の過熱度を夫々示してお
り、一点鎖線で示す過熱度の設定値(例えば5℃)とな
るように過熱度制御した場合、熱交換器の高さ位置の高
い部分で過熱度(5℃)設定が行え、過熱度制御の設定
値を比較的高く設定して正確な冷媒温度の検出を可能に
しながら、従来のものに比べて合流後の冷媒の過熱度が
低く設定できて蒸発器の性能を十分に利用できる。これ
によって図7に示すように、実線で示す従来のものに比
べて破線で示す本引例の場合の冷媒側熱伝達率を高くす
ることができ冷凍装置全体としての性能の向上を図るこ
とができる。この図7では、縦軸が熱交換器(7)の高さ
位置、横軸が冷媒側熱伝達率を夫々示している。
Since the degree of superheat of the refrigerant for adjusting the opening of the temperature-sensitive expansion valve (15a) is detected in the first communication pipe (24) through which the refrigerant having the highest degree of superheat flows, As shown in FIG. 6, the superheat degree of the refrigerant in the case of the present example shown by the broken line is compared with the conventional one (the refrigerant superheat degree is the average of the superheat degrees of the refrigerant derived from the respective refrigerant pipes) shown by the solid line. The degree of opening of the temperature-sensitive expansion valve (15a) can be set low, especially for the refrigerant pipe (7a) located at the top, where the degree of superheating tends to be high, so that the degree of superheating does not become too high. It can be performed. That is, in FIG. 6, the vertical axis represents the heat exchanger shown in FIG.
The height position of (7) and the horizontal axis indicate the degree of superheat of the refrigerant, respectively. When the superheat degree is controlled so as to be a set value (for example, 5 ° C.) indicated by a dashed line, the height of the heat exchanger The superheat degree (5 ° C) can be set in the high position, and the superheat control value can be set relatively high to enable accurate detection of the refrigerant temperature. The degree of superheat can be set low, and the performance of the evaporator can be fully utilized. As a result, as shown in FIG. 7, the refrigerant-side heat transfer coefficient in the case of the present embodiment shown by the broken line can be increased as compared with the conventional one shown by the solid line, and the performance of the entire refrigeration apparatus can be improved. . In FIG. 7, the vertical axis indicates the height position of the heat exchanger (7), and the horizontal axis indicates the refrigerant-side heat transfer coefficient.

【0044】尚、本実施例では、感温筒(15f)が検出す
る冷媒温度によって開度調整される感温式の膨張弁(15
a)を採用した場合について説明したが、本発明は、これ
に限らず、空気側熱交換器(7)の出入口両側に温度セン
サを夫々設け、この温度センサにより検出される冷媒の
温度差により冷媒の過熱度を検出するようにしたもの等
を採用してもよい。
In this embodiment, a temperature-sensitive expansion valve (15) whose opening is adjusted by the refrigerant temperature detected by the temperature-sensitive cylinder (15f).
Although the case where a) is adopted has been described, the present invention is not limited to this, and temperature sensors are provided on both sides of the entrance and exit of the air-side heat exchanger (7), respectively, and the temperature difference of the refrigerant detected by this temperature sensor is used. What detected the degree of superheat of a refrigerant may be adopted.

【0045】[0045]

【発明の効果】以上説明してきたように、本発明によれ
ば以下に述べるような効果が発揮される。請求項1記載
の発明によれば、ガスヘッダに、複数本の連絡管を接続
させ、過熱度検出器を、各連絡管のうち、最も過熱度が
高い冷媒が流通するものに設けたために、連絡管を大径
にすることなしにガスヘッダ下流側の流路を大きく確保
できるので、連絡管を曲げ加工するための新たな加工機
を必要とすることなく、ガスヘッダから連絡管に冷媒が
導出される際の圧力損失を低減することができ、冷媒の
循環量が大きく確保できて、冷凍装置の性能が向上でき
る。
As described above, according to the present invention, the following effects are exhibited. According to the first aspect of the present invention, a plurality of communication tubes are connected to the gas header, and the superheat detector is provided in one of the communication tubes through which the refrigerant having the highest superheat flows. A large flow path on the downstream side of the gas header can be secured without increasing the diameter of the pipe, so the refrigerant is led out of the gas header to the connection pipe without requiring a new processing machine for bending the connection pipe. Pressure loss at the time can be reduced, a large circulation amount of the refrigerant can be secured, and the performance of the refrigeration apparatus can be improved.

【0046】また、膨張弁の開度を調整するための冷媒
の過熱度を、最も過熱度が高い冷媒が流通する連絡管に
おいて検出することになるので、従来のものに比べて冷
媒の過熱度を低く設定することができ、特に、冷媒の過
熱度が高くなり易い冷媒管に対して過熱度が高くなり過
ぎないように最適な膨張弁の開度調整を行うことができ
る。これによって、過熱度制御の設定値を比較的高く設
定して正確な冷媒温度の検出を可能にしながら、従来の
ものに比べて冷媒側熱伝達率を高くすることができ冷凍
装置全体としての性能の向上を図ることができる。
Further, the degree of superheat of the refrigerant for adjusting the degree of opening of the expansion valve is detected in the communication pipe through which the refrigerant having the highest degree of superheat flows. Can be set low, and in particular, the opening degree of the expansion valve can be adjusted optimally so that the superheat degree does not become too high for the refrigerant pipe in which the superheat degree of the refrigerant tends to be high. As a result, the refrigerant-side heat transfer coefficient can be increased as compared with the conventional one, while setting the superheat control value relatively high to enable accurate detection of the refrigerant temperature. Can be improved.

【0047】更に、膨張弁を感温筒が検出する冷媒温度
によって開度調整する感温式のものにしたため、簡単な
構成で膨張弁の開度調整を行うことができる。
Further, the refrigerant temperature at which the temperature sensing cylinder detects the expansion valve
Because it is a temperature-sensitive type that adjusts the opening by
With this configuration, the opening degree of the expansion valve can be adjusted.

【0048】請求項2記載の発明によれば、各冷媒管の
外部を流れる空気の流速分布が各冷媒管の夫々において
異なっていることを考慮して過熱度検出器の配設位置を
設定したために、確実に、最も過熱度が高い冷媒が流通
する連絡管において冷媒の過熱度を検出することができ
る。
According to the second aspect of the present invention, the arrangement position of the superheat degree detector is set in consideration of the fact that the flow velocity distribution of the air flowing outside the respective refrigerant pipes is different in each of the refrigerant pipes. In addition, the degree of superheat of the refrigerant can be reliably detected in the communication pipe through which the refrigerant with the highest degree of superheat flows.

【0049】請求項3記載の発明によれば、熱源側熱交
換器の上部に位置する冷媒管での空気と冷媒との熱交換
効率が高い側方吸込・上方吹出型のユニットに対して、
この上部に位置する連絡管に過熱度検出器を取付けたた
めに、これによっても最も過熱度が高い冷媒が流通する
連絡管において冷媒の過熱度を検出することができる。
According to the third aspect of the present invention, a side suction / upper discharge type unit having a high heat exchange efficiency between the air and the refrigerant in the refrigerant pipe located above the heat source side heat exchanger is provided.
Since the superheat degree detector is attached to the communication pipe located at the upper part, the superheat degree of the refrigerant can be detected in the communication pipe through which the refrigerant having the highest superheat degree flows.

【0050】請求項4記載の発明によれば、請求項2ま
たは3の発明において、膨張弁を感温筒が検出する冷媒
温度によって開度調整する感温式のものにしたため、簡
単な構成で膨張弁の開度調整を行うことができる。
[0050] According to the fourth aspect of the present invention, claim 2 or
According to the third aspect of the present invention, since the expansion valve is a temperature-sensitive type in which the opening is adjusted by the refrigerant temperature detected by the temperature-sensitive cylinder, the opening of the expansion valve can be adjusted with a simple configuration.

【図面の簡単な説明】[Brief description of the drawings]

【図1】冷凍装置の冷媒配管系統図である。FIG. 1 is a refrigerant piping system diagram of a refrigeration apparatus.

【図2】室外ユニットにおける空気側熱交換器の配設状
態を示す断面図である。
FIG. 2 is a cross-sectional view illustrating an arrangement state of an air-side heat exchanger in an outdoor unit.

【図3】室外ユニットの内部を示す平面図である。FIG. 3 is a plan view showing the inside of the outdoor unit.

【図4】室外ユニットの内部を示す側面図である。FIG. 4 is a side view showing the inside of the outdoor unit.

【図5】図3及び図4におけるV矢視図である。FIG. 5 is a view taken in the direction of the arrow V in FIGS. 3 and 4;

【図6】熱交換器の高さ位置と冷却管出口側の冷媒過熱
度との関係を示す図である。
FIG. 6 is a diagram illustrating a relationship between a height position of a heat exchanger and a degree of superheat of a refrigerant at a cooling pipe outlet side.

【図7】熱交換器の高さ位置と冷媒側熱伝達率との関係
を示す図である。
FIG. 7 is a diagram showing a relationship between a height position of a heat exchanger and a heat transfer coefficient on a refrigerant side.

【符号の説明】[Explanation of symbols]

(1) 冷媒回路 (2) 圧縮機 (4) 水側熱交換器(利用側熱交換器) (7) 空気側熱交換器(熱源側熱交換器) (7a) 冷媒管 (15a) 感温式膨張弁 (15f) 感温筒(過熱度検出器) (16) 過熱度検出手段 (21) ユニットケーシング (21a) 空気吸込口 (21b) 空気吹出口 (23) ガスヘッダ (24) 第1連絡管 (25) 第2連絡管 (1) Refrigerant circuit (2) Compressor (4) Water side heat exchanger (use side heat exchanger) (7) Air side heat exchanger (heat source side heat exchanger) (7a) Refrigerant tube (15a) Temperature sensing (15f) Thermosensitive cylinder (superheat detector) (16) Superheat detector (21) Unit casing (21a) Air inlet (21b) Air outlet (23) Gas header (24) First connection pipe (25) Second communication pipe

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 圧縮機(2)と、互いに独立した複数の冷
媒管(7a),(7a)…を有する熱源側熱交換器(7)と、冷媒管
(7a),(7a)…のガス側に接続されたガスヘッダ(23)と、
開度調整可能な膨張弁(15a)と、利用側熱交換器(4)とが
接続されてなる冷媒回路(1)を備え、冷媒ガスの過熱度
を過熱度検出手段(16)によって検出し、 この過熱度に基き上記膨張弁(15a)が開度調整される冷
凍装置において、 上記ガスヘッダ(23)には、圧縮機(2)に向って延びる複
数本の連絡管(24),(25)が接続されており、 上記過熱度検出手段(16)には、熱源側熱交換器(7)のガ
ス側に設けられた過熱度検出器(15f)が備えられてお
り、上記膨張弁(15a)は感温式のものであって、 上記 過熱度検出器(15f)は、冷媒温度に基いて上記膨張
弁(15a)を開度調整する感温筒で、上記各連絡管(24),(2
5)のうち、最も過熱度が高い冷媒が流通するものに設け
られていることを特徴とする冷凍装置。
1. A compressor (2), a heat source side heat exchanger (7) having a plurality of refrigerant tubes (7a), (7a).
(7a), a gas header (23) connected to the gas side of (7a) ...
A refrigerant circuit (1) in which an expansion valve (15a) whose opening is adjustable and a use side heat exchanger (4) are connected is provided, and the degree of superheat of the refrigerant gas is detected by a superheat degree detecting means (16). In the refrigerating apparatus in which the opening of the expansion valve (15a) is adjusted based on the degree of superheating, the gas header (23) includes a plurality of communication tubes (24), (25) extending toward the compressor (2). The superheat detection means (16) is provided with a superheat detector (15f) provided on the gas side of the heat source side heat exchanger (7), and the expansion valve ( 15a) are intended thermostatic, the degree of superheat detector (15f), said inflation based on the refrigerant temperature
A temperature-sensitive cylinder that adjusts the opening of the valve (15a).
5) A refrigeration apparatus provided in a refrigerant through which a refrigerant having the highest degree of superheat flows.
【請求項2】 圧縮機(2)と、互いに独立した複数の冷
媒管(7a),(7a)…を有する熱源側熱交換器(7)と、冷媒管
(7a),(7a)…のガス側に接続されたガスヘッダ(23)と、
開度調整可能な膨張弁(15a)と、利用側熱交換器(4)とが
接続されてなる冷媒回路(1)を備え、冷媒ガスの過熱度
を過熱度検出手段(16)によって検出し、 この過熱度に基き上記膨張弁(15a)が開度調整される冷
凍装置において、 上記ガスヘッダ(23)には、圧縮機(2)に向って延びる複
数本の連絡管(24),(25)が接続されており、 上記過熱度検出手段(16)には、熱源側熱交換器(7)のガ
ス側に設けられた過熱度検出器(15f)が備えられる一
方、 上記 熱源側熱交換器(7)は、複数の冷媒管(7a),(7a)…の
内部を流通する冷媒と、この複数の冷媒管(7a),(7a)…
の外部を流れる空気との間で熱交換を行うようになって
おり、この各冷媒管(7a),(7a)…の外部を流れる空気の
流速分布が各冷媒管(7a),(7a)…の夫々において異なっ
ており、上記過熱度検出器(15f)は、上記各連絡管(24),(25)のう
ち、最も過熱度が高い冷媒が流通するものに設けられ、
過熱度検出器(15f)が設けられる連絡管(24)は、上記
空気の流速が高い冷媒管(7a)に対応してガスヘッダ(23)
に接続されていることを特徴とする冷凍装置
2. A compressor (2) and a plurality of independent cooling units.
A heat source side heat exchanger (7) having medium tubes (7a), (7a) ...
(7a), a gas header (23) connected to the gas side of (7a) ...
The expansion valve (15a) with adjustable opening and the use-side heat exchanger (4)
Equipped with a connected refrigerant circuit (1), the degree of superheat of the refrigerant gas
Is detected by means of superheat detection means (16), and based on the degree of superheat, the expansion valve (15a) is adjusted to open.
In the refrigerating apparatus, the gas header (23) includes a plurality of gas headers extending toward the compressor (2).
Several connecting pipes (24) and (25) are connected, and the superheat detection means (16) is connected to the heat source side heat exchanger (7).
A superheat degree detector (15f)
Write, the heat source-side heat exchanger (7), a plurality of refrigerant tubes (7a), (7a) ... inside and the refrigerant flowing through, the plurality of refrigerant tubes (7a), (7a) ...
The heat exchange is performed between air flowing outside the refrigerant pipes, and the flow velocity distribution of the air flowing outside the refrigerant pipes (7a), (7a). , And the superheat degree detector (15f) is connected to each of the connecting pipes (24) and (25).
That is, the refrigerant having the highest degree of superheat is provided in the refrigerant,
The superheat degree detector connection tube (15f) is provided (24), gas header corresponding to the flow rate of the air is high refrigerant pipe (7a) (23)
A refrigeration apparatus , wherein the refrigeration apparatus is connected to a refrigerator .
【請求項3】 熱源側熱交換器(7)は、側面に空気吸込
口(21a)が形成され且つ上面に空気吹出口(21b)が形成さ
れたユニットケーシング(21)内に、水平方向に延びる各
冷媒管(7a),(7a)…が鉛直方向に並設されるように空気
吸込口(21a)に対向して配設されており、 ガスヘッダ(23)は上記各冷媒管(7a),(7a)…に対向して
鉛直方向に延設され、 連絡管(24),(25)は、ガスヘッダ(23)の上下方向に間隔
を存して複数本が並設されており、 過熱度検出器(15f)は、ガスヘッダ(23)に対する接続位
置が最上部に位置する上記連絡管(24)に設けられている
ことを特徴とする請求項2記載の冷凍装置。
3. A heat source side heat exchanger (7) is disposed horizontally in a unit casing (21) having an air inlet (21a) formed on a side surface and an air outlet (21b) formed on an upper surface. Each of the extending refrigerant pipes (7a), (7a)... Is disposed so as to face the air suction port (21a) so as to be arranged side by side in the vertical direction, and the gas header (23) is disposed in each of the refrigerant pipes (7a). , (7a) ..., extending in the vertical direction, and a plurality of connecting pipes (24), (25) are juxtaposed at intervals in the vertical direction of the gas header (23). The refrigerating apparatus according to claim 2, wherein the degree detector (15f) is provided in the communication pipe (24) at a position where the degree of connection to the gas header (23) is located at the uppermost position.
【請求項4】 膨張弁(15a)は感温式のものであって、 過熱度検出器(15f)は、冷媒温度に基いて上記膨張弁(15
a)を開度調整する感温筒であることを特徴とする請求項
または3記載の冷凍装置。
4. The expansion valve (15a) is of a temperature-sensitive type, and the superheat degree detector (15f) detects the expansion valve (15f) based on refrigerant temperature.
claims, characterized in that: a) a temperature sensing tube for adjusting opening
4. The refrigeration apparatus according to 2 or 3.
JP18441994A 1994-08-05 1994-08-05 Refrigeration equipment Expired - Fee Related JP3218871B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18441994A JP3218871B2 (en) 1994-08-05 1994-08-05 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18441994A JP3218871B2 (en) 1994-08-05 1994-08-05 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JPH0849949A JPH0849949A (en) 1996-02-20
JP3218871B2 true JP3218871B2 (en) 2001-10-15

Family

ID=16152840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18441994A Expired - Fee Related JP3218871B2 (en) 1994-08-05 1994-08-05 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JP3218871B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6468300B2 (en) * 2017-02-13 2019-02-13 株式会社富士通ゼネラル Air conditioner

Also Published As

Publication number Publication date
JPH0849949A (en) 1996-02-20

Similar Documents

Publication Publication Date Title
US8220531B2 (en) Heat pump system with auxiliary water heating
US8056348B2 (en) Refrigerant charge control in a heat pump system with water heater
KR100856991B1 (en) Refrigerating air conditioner, operation control method of refrigerating air conditioner, and refrigerant quantity control method of refrigerating air conditioner
US7185505B2 (en) Refrigerant circuit and heat pump type hot water supply apparatus
JP4730738B2 (en) Air conditioner
US20080197206A1 (en) Refrigerant System With Water Heating
US20060107683A1 (en) Air conditioning system and method for controlling the same
JP4375171B2 (en) Refrigeration equipment
KR100561537B1 (en) Air conditioner
KR101101946B1 (en) Refrigeration apparatus
JP4036288B2 (en) Air conditioner
JP2009222248A (en) Air conditioning system and accumulator thereof
JP4704728B2 (en) Refrigerant temperature control device and control method for air conditioner
JP4462435B2 (en) Refrigeration equipment
JP2006112708A (en) Refrigerating air conditioner
JP4550153B2 (en) Heat pump device and outdoor unit of heat pump device
JP4418936B2 (en) Air conditioner
JP4462436B2 (en) Refrigeration equipment
JP6267952B2 (en) Refrigeration cycle equipment
JP4767340B2 (en) Heat pump control device
JP5708421B2 (en) Refrigeration equipment
KR20190041091A (en) Air Conditioner
JP6964776B2 (en) Refrigeration cycle equipment
JP3218871B2 (en) Refrigeration equipment
JPWO2018055739A1 (en) Air conditioner

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010710

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080810

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080810

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090810

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees