JP3217909B2 - Method for producing hydrolyzed seasonings - Google Patents

Method for producing hydrolyzed seasonings

Info

Publication number
JP3217909B2
JP3217909B2 JP19132893A JP19132893A JP3217909B2 JP 3217909 B2 JP3217909 B2 JP 3217909B2 JP 19132893 A JP19132893 A JP 19132893A JP 19132893 A JP19132893 A JP 19132893A JP 3217909 B2 JP3217909 B2 JP 3217909B2
Authority
JP
Japan
Prior art keywords
hydrolysis
hydrochloric acid
protein
less
mcp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19132893A
Other languages
Japanese (ja)
Other versions
JPH06105665A (en
Inventor
幹夫 藤井
富士雄 甲斐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Tobacco Inc
Original Assignee
Japan Tobacco Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Tobacco Inc filed Critical Japan Tobacco Inc
Priority to JP19132893A priority Critical patent/JP3217909B2/en
Publication of JPH06105665A publication Critical patent/JPH06105665A/en
Application granted granted Critical
Publication of JP3217909B2 publication Critical patent/JP3217909B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Seasonings (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は動物性蛋白質を加水分解
することにより得られる、アミノ酸系調味料(HAP)
の製造方法に関する。より詳細には、加水分解を塩酸に
よるものと蛋白分解酵素によるものとを組み合わせるこ
とにより、有害な塩素化化合物の生成を伴わず、かつ呈
味力の高い調味料の製造方法に関する。
The present invention relates to an amino acid seasoning (HAP) obtained by hydrolyzing an animal protein.
And a method for producing the same. More specifically, the present invention relates to a method for producing a seasoning having a high taste without causing the generation of harmful chlorinated compounds by combining hydrolysis with hydrochloric acid and protease.

【0002】[0002]

【従来の技術】蛋白質を加水分解した調味料には、穀類
蛋白に由来するHVP(ハイドロライズドベジタブルプ
ロテイン)と動物蛋白に由来するHAP(ハイドロライ
ズドアニマルプロテイン)とがあり、それらを加水分解
する方法としては塩酸を加えて高温で処理する方法と、
蛋白分解酵素の作用により加水分解する方法とが知られ
ている。
2. Description of the Related Art Seasonings obtained by hydrolyzing proteins include HVP (hydrolized vegetable protein) derived from cereal proteins and HAP (hydrolized animal protein) derived from animal proteins. There are two methods of adding hydrochloric acid and treating at a high temperature,
A method of hydrolyzing by the action of a protease is known.

【0003】蛋白質を塩酸を用いて高温で処理すると、
ペプチド結合のほとんどが加水分解され、呈味力の高い
調味料が製造できる反面、蛋白原料中に微量に存在して
いた油脂分が塩酸と反応することによりジクロロプロパ
ノール(以下DCPと略す)やモノクロロプロパンジオ
ール(以下MCPと略す)等の好ましくない塩素化化合
物が生成することが明らかとなり、食品の安全性の面か
ら近年問題になりつつある。上述のような好ましくない
塩素化化合物を含まない調味料の製造方法として、
(イ)塩酸による加水分解処理の温度を60乃至97℃
の温度から100乃至110℃に徐々に上昇させる方法
(特開平2−135058号公報)、(ロ)塩酸による
加水分解反応物を弱アルカリ性のpHの下で高温で処理
することにより(特開平2−135056号公報)、
(ハ)またはアルカリ性のpHでやや高温で処理するこ
とにより(特開平4−88951号公報)生じた塩素化
化合物をさらに加水分解する方法、および(ニ)ゲルパ
ーミエーションクロマトグラフィーにより生じた塩素化
化合物を除去する方法(特開平2−135057号公
報)が報告されている。しかしながら上記(イ)の方法
を行って製造されたものはDCPが50ppb以下にな
っているもののMCPは分析精度が悪く、10ppm以
下としか記述されていないことから、この方法でMCP
が十分低い値になっているかどうか明らかにされていな
いこと、また温度制御が煩雑である等の問題点が残され
ている。また、(ロ)および(ハ)の方法はアルカリ性
の条件下で加熱を行っているが、アルカリ水溶液中では
MCPが徐々にグリシドール(glycidol)に変
換すること、
When proteins are treated with hydrochloric acid at high temperatures,
Most of the peptide bonds are hydrolyzed to produce a seasoning with a high taste. On the other hand, trace amounts of oils and fats present in the protein raw material react with hydrochloric acid to produce dichloropropanol (hereinafter abbreviated as DCP) or monosaccharide. It has become clear that undesired chlorinated compounds such as chloropropanediol (hereinafter abbreviated as MCP) are produced, and this has recently become a problem from the viewpoint of food safety. As a method for producing a seasoning containing no undesirable chlorinated compounds as described above,
(A) The temperature of the hydrolysis treatment with hydrochloric acid is 60 to 97 ° C.
(Japanese Patent Application Laid-Open No. H2-135058), (b) treating the hydrolysis reaction product with hydrochloric acid at a high temperature under a weak alkaline pH (Japanese Patent Application Laid-Open No. -135056),
(C) a method of further hydrolyzing a chlorinated compound produced by treating at a slightly elevated temperature at an alkaline pH (JP-A-4-88951), and (d) chlorination produced by gel permeation chromatography A method for removing a compound (Japanese Patent Application Laid-Open No. 2-135057) has been reported. However, the one manufactured by the above method (a) has a DCP of 50 ppb or less, but the MCP has poor analytical accuracy and is described only at 10 ppm or less.
Have not been clarified as to whether the temperature is sufficiently low, and the temperature control is complicated. In the methods (b) and (c), heating is performed under alkaline conditions. However, in an alkaline aqueous solution, MCP is gradually converted to glycidol.

【0004】[0004]

【化1】 Embedded image

【0005】またグリシドールもMCPと同様に安全性
が懸念されている(H.Jackson等、Natur
e、第226巻、86頁、(1970))ことが問題点
として残されている。それ故、塩酸による反応生成物を
アルカリで処理することでDCPやMCPが加水分解さ
れたとしても、反応生成物の有害性が減少しているとは
限らないことになる。上記(ニ)のゲルパーミエーショ
ンクロマトグラフィーを用いる方法は工業的に実施した
場合、コスト高となることが問題である。
[0005] Glycidol is also concerned about its safety similarly to MCP (H. Jackson et al., Natur.
e, Vol. 226, p. 86, (1970)) remains as a problem. Therefore, even if DCP or MCP is hydrolyzed by treating a reaction product with hydrochloric acid with an alkali, the harmfulness of the reaction product is not necessarily reduced. The method using the gel permeation chromatography of the above (d) is problematic in that when it is carried out industrially, the cost increases.

【0006】蛋白質の加水分解を蛋白分解酵素により行
う方法もあるが、酵素による反応では加水分解率が低
く、かつ苦味ペプチドが生成しやすく、塩酸で加水分解
したものと同程度の呈味力をもつ調味料を製造すること
は困難である。最近、植物性の蛋白質を塩酸を用いて脱
アミド化し、その後蛋白質分解酵素により加水分解を行
う技術が報告されているが(特開平4−365451号
公報)、動物性蛋白質はプロリン残基が多量に含まれて
おり、塩酸による脱アミド化後に通常の蛋白質分解酵素
で分解してもその加水分解率は低く、呈味性に乏しいも
のしか製造することができない。
[0006] There is also a method in which protein hydrolysis is carried out by using a protease. However, in the reaction by the enzyme, the hydrolysis rate is low, and a bitter peptide is easily produced, and the taste is as good as that hydrolyzed with hydrochloric acid. It is difficult to produce a seasoning that has it. Recently, a technique has been reported in which a vegetable protein is deamidated with hydrochloric acid and then hydrolyzed with a proteolytic enzyme (JP-A-4-365451). Even if it is deamidated with hydrochloric acid and then degraded by ordinary protease, its hydrolysis rate is low and only those having poor taste can be produced.

【0007】[0007]

【発明が解決しようとする課題】本発明の課題は、塩素
化化合物等の好ましくない物質、例えばDCPを50p
pb以下にし、またMCPを1ppm以下、望ましくは
100ppb以下に低減し、かつ加水分解率の高い、即
ち呈味性の高い動物蛋白質由来の加水分解調味料の製造
方法を開発することである。
SUMMARY OF THE INVENTION An object of the present invention is to reduce undesired substances such as chlorinated compounds, for example, DCP by 50 p.
An object of the present invention is to develop a method for producing a hydrolyzed seasoning derived from animal protein having a high hydrolysis rate, that is, a high taste, in which the MCP is reduced to 1 ppm or less and the MCP is reduced to 1 ppm or less, preferably 100 ppb or less.

【0008】[0008]

【課題を解決するための手段】本発明者らは上記課題を
解決すべく鋭意研究を重ねた結果、原料蛋白質中に含ま
れる脂質量がある一定レベル以下であり、かつ塩酸によ
る蛋白質の加水分解率をある一定レベル以下に制御すれ
ばMCPはほとんど生成されないこと、また塩酸による
加水分解率の不足分を蛋白分解酵素による加水分解で補
うことにより、従来通りの加水分解率が達成され、かつ
その呈味力、フレーバーとも塩酸のみで充分に加水分解
を行ったものと比べて遜色ないことを確認し、本発明を
完成させるに至ったものである。以下にその詳細を述べ
る。
Means for Solving the Problems As a result of intensive studies to solve the above problems, the present inventors have found that the amount of lipid contained in the starting protein is less than a certain level and that the protein is hydrolyzed by hydrochloric acid. If the rate is controlled to a certain level or less, almost no MCP is produced, and the shortage of the rate of hydrolysis by hydrochloric acid is compensated for by the hydrolysis by proteolytic enzymes to achieve the conventional rate of hydrolysis, and It was confirmed that both the taste and the flavor were inferior to those obtained by sufficiently hydrolyzing with hydrochloric acid alone, and the present invention was completed. The details are described below.

【0009】原料となる蛋白質としては肉蛋白、獣皮蛋
白質、骨蛋白質等どのようなものでも使用可能である。
但し、原料蛋白質中に含まれる脂質は極力低いことが求
められる。多くとも原料中の蛋白質重量に対する脂質の
量を1%以下にすることが必要である。尚、脂質の含量
はバブコック(Babcock)法により脂質の容量を
求め、この値に脂質の比重(通常0.9)を掛けること
で計算できる。
Any protein such as meat protein, animal skin protein, and bone protein can be used as a raw material protein.
However, the lipid contained in the raw protein is required to be as low as possible. At most, it is necessary to reduce the amount of lipid to 1% or less based on the weight of protein in the raw material. The lipid content can be calculated by obtaining the volume of the lipid by the Babcock method and multiplying this value by the specific gravity of the lipid (usually 0.9).

【0010】塩酸による加水分解と蛋白分解酵素による
加水分解の順序はどちらを先に実施しても良い。原料蛋
白質に対して加える塩酸の量は蛋白質の加水分解に必要
な量であれば特に制限はなく、また加水分解の温度、圧
力、反応時間等に特別な制限はない。但し、塩酸による
加水分解率、すなわち加水分解前のペプチド結合の総数
に対する塩酸により加水分解されたペプチド結合の数の
比が60%以下となるように加水分解条件を制御するこ
とが必要である。図1に加水分解率に対する加水分解後
に生成したMCP量のグラフを示した。尚、原料として
蛋白質重量に対する脂質重量が1%以下であるものを用
いた。図1より、脂質含量の少ない蛋白質を用いた場
合、加水分解率が60%以下となるような条件下では、
MCPの生成反応は進行せず、加水分解反応後のMCP
含量は検出限界である50ppb前後かまたはそれ以下
となる。また、MCPが生成しない条件下ではDCPも
全く検出されない(検出限界50ppb)。尚、反応に
よる加水分解率は
Either the hydrolysis with hydrochloric acid or the hydrolysis with proteolytic enzyme may be performed first. The amount of hydrochloric acid added to the starting protein is not particularly limited as long as it is an amount necessary for hydrolysis of the protein, and there are no particular restrictions on the temperature, pressure, reaction time, and the like of the hydrolysis. However, it is necessary to control the hydrolysis conditions so that the rate of hydrolysis by hydrochloric acid, that is, the ratio of the number of peptide bonds hydrolyzed by hydrochloric acid to the total number of peptide bonds before hydrolysis is 60% or less. FIG. 1 shows a graph of the amount of MCP generated after hydrolysis versus the hydrolysis rate. In addition, a raw material having a lipid weight of 1% or less based on the protein weight was used. As shown in FIG. 1, when a protein having a low lipid content is used, under conditions where the hydrolysis rate is 60% or less,
The MCP formation reaction did not proceed, and the MCP after the hydrolysis reaction
The content is around or below the detection limit of 50 ppb. Under the condition that MCP is not generated, DCP is not detected at all (detection limit: 50 ppb). The hydrolysis rate by the reaction is

【0011】[0011]

【数1】 (Equation 1)

【0012】により、また標品中の総加水分解率はThus, the total hydrolysis rate in the sample is

【0013】[0013]

【数2】 (Equation 2)

【0014】により求めることができる。また、DCP
およびMCPはガスクロマトグラフィー/マスフラグメ
ント法にて分析することができる。従来の加水分解調味
料の加水分解率は70〜80%であり、加水分解率の不
足分(10〜20%)を蛋白分解酵素により補うことが
できる。使用する酵素としては通常食品用途に使用でき
る酵素であればいかなる物でもよいが、塩酸による加水
分解終了液を酵素処理する場合には、塩酸を中和した際
に生じる多量の食塩が存在していることから、塩濃度の
高い条件下でも作用できる様な酵素を使用することが望
ましい。逆に酵素による加水分解を先行させる場合には
このような制限はない。以下実施例により詳細に説明す
るが、本発明はこれに限定されるものではない。
[0014] DCP
And MCP can be analyzed by gas chromatography / mass fragment method. The hydrolysis rate of the conventional hydrolysis seasoning is 70 to 80%, and the shortage of the hydrolysis rate (10 to 20%) can be compensated for by the protease. As the enzyme to be used, any enzyme can be used as long as it is an enzyme that can be generally used for food use.However, when the hydrolysis-finished solution with hydrochloric acid is enzymatically treated, a large amount of salt generated when neutralizing hydrochloric acid is present. Therefore, it is desirable to use an enzyme that can work even under conditions of high salt concentration. Conversely, there is no such limitation when prior to enzymatic hydrolysis. Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited thereto.

【0015】[0015]

【実施例1】5リットル容高圧オートクレーブに豚骨3
600gと水720gを仕込み、密封後に昇温を開始し
た。オートクレーブの内圧が0.5kg/cm2 に達し
たらオートクレーブ内のエア抜きを実施し、再度密封し
てオートクレーブの内圧が5kg/cm2 になるまで加
熱し、1時間煮出しを行った。冷却後、オートクレーブ
内の液を5リットル容分液ロートに移し、上層の油を除
いて下層の豚骨抽出液2400gを回収し、これをエバ
ポレーターで濃縮してT−N7.7%、F−N0.39
%の濃縮液450gを得た。本濃縮液につき、脂質含量
をバブコック法にて測定した結果、0.5%以下であっ
た。本濃縮液の蛋白質はT−N×6.25で計算すると
約50%となり、蛋白質に対する脂質含量は1%以下と
計算された。本濃縮液210gに水を780gを加えて
希釈後、16%水酸化ナトリウム溶液を加えてpHを
8.0に調製した。この溶液にアルカラーゼ0.6L
(ノボ社製)を4g添加し、55℃で6時間反応させ
た。反応中のpHは16%水酸化ナトリウム溶液で常時
8.0となるように調整した。反応終了液を分画分子量
6000の限外濾過膜(旭化成社製SIP−1013)
で濾過して酵素を除去し、その濾液をエバポレーターで
250gまで濃縮した。該濃縮液はT−N=6.4%、
F−N=1.01%であり、加水分解率は11%と算出
された。該濃縮液の全量を耐圧容器に仕込み、濃塩酸9
6gと水140gを加えて100℃で15時間撹拌しな
がら加水分解を行った。冷却後、炭酸ナトリウム(粉
末)の適量を添加してpHを5.5に調整し、東洋N
o.2濾紙で濾過して不溶物を除き、活性炭(武田薬品
社製カルボラフィン)7.5gを添加して75℃で30
分間脱色させた。脱色液を東洋No.2濾紙で濾過して
活性炭を除去した結果、T−N=3.3%、F−N=
2.13%の標品400gが得られた(標品A)。塩酸
による加水分解率は58%、また総加水分解率(標品中
のF−Nに対するT−Nの比率)は65%と算出され
た。
Example 1 Pork bone 3 in a 5-liter high-pressure autoclave
600 g and 720 g of water were charged, and the temperature was raised after sealing. When the internal pressure of the autoclave reached 0.5 kg / cm 2 , the air in the autoclave was evacuated, sealed again, heated until the internal pressure of the autoclave became 5 kg / cm 2 , and the autoclave was boiled for 1 hour. After cooling, the liquid in the autoclave was transferred to a 5-liter separating funnel, and the upper layer oil was removed to recover 2400 g of the lower layer pork bone extract, which was concentrated by an evaporator to obtain TN% 7.7% and F- N0.39
450 g of a 1% concentrate were obtained. The lipid content of this concentrate was measured by the Babcock method and found to be 0.5% or less. The protein content of this concentrate was calculated to be about 50% by TN x 6.25, and the lipid content relative to the protein was calculated to be 1% or less. 780 g of water was added to 210 g of the concentrate to dilute it, and the pH was adjusted to 8.0 by adding a 16% sodium hydroxide solution. 0.6 L of Alcalase in this solution
4 g (manufactured by Novo) was added and reacted at 55 ° C. for 6 hours. The pH during the reaction was adjusted to always be 8.0 with a 16% sodium hydroxide solution. The reaction-terminated liquid is subjected to an ultrafiltration membrane having a molecular weight cutoff of 6000 (SIP-1013 manufactured by Asahi Kasei Corporation).
And the filtrate was concentrated to 250 g with an evaporator. The concentrated liquid has TN = 6.4%,
FN = 1.01%, and the hydrolysis rate was calculated to be 11%. The entire amount of the concentrated solution is charged into a pressure-resistant container, and concentrated hydrochloric acid 9
6 g and 140 g of water were added, and the mixture was hydrolyzed with stirring at 100 ° C. for 15 hours. After cooling, an appropriate amount of sodium carbonate (powder) was added to adjust the pH to 5.5.
o. 2 Filter with filter paper to remove insolubles, add 7.5 g of activated carbon (Carbofin, manufactured by Takeda Pharmaceutical Co., Ltd.) and add 30 g at 75 ° C.
Bleached for minutes. The decolorizing solution was treated with Toyo No. 2 Filtered with filter paper to remove activated carbon, T-N = 3.3%, F-N =
400 g of a 2.13% standard product was obtained (standard A). The hydrolysis rate with hydrochloric acid was calculated to be 58%, and the total hydrolysis rate (the ratio of TN to FN in the sample) was calculated to be 65%.

【0016】該標品中に含まれる塩素化化合物の含量を
以下の方法で分析した。標品8gを50ml容メスフラ
スコに入れ、水を加えて50mlとした。この全量を食
塩14gを含む100ml容ガラスバイアルに移し、ジ
エチルエーテル4mlを加えて5分間激しく撹拌した。
エーテル層を分取し、その1μlを用いてガスクロマト
グラフィー/マスフラグメント法(GC/MS法)によ
りDCPを分析した。尚、使用した機種は島津社製GC
MS QP−1000をスプリットレス導入系で用い、
カラムはSpelcowax10 Fused Sil
ica キャピラリカラム(0.25mmφ×15m)
を使用した。試料注入口温度は250℃に設定し、カラ
ム温度を試料注入後70℃1分間保持した後、毎分15
℃ずつ昇温して220℃まで上昇させた。キャリアガス
は0.68kg/cm2 のヘリウムを使用し、イオン化
法としてEI(Electron Impact)を用
い、イオン源温度を250℃(イオン化電圧:70e
V、イオン化電流:60μA)と設定した。設定質量数
はm/z=79および81とした。得られたピーク面積
を、既知濃度のDCPを含む水溶液につき全く同様に処
理したものについて得られたピーク面積より作成した検
量線と比較することにより標品中のDCP含量を算出し
た。分析の結果、本標品中のDCP含量は検出限界であ
る50ppb以下であった。標品中のMCPもGC/M
S法で分析を行った。即ち、標品20gを50ml容メ
スフラスコに入れ水を加えて50mlにメスアップ後、
メルク社製エキストレルート(Extrelut)カラ
ムに加えた。カラムにジエチルエーテルを200ml流
し、溶出したエーテルをドラフト内で自然蒸発させるこ
とにより濃縮し、エーテルを加えて50mlとした。本
エーテル溶液2mlと内標物質である1,2−ヘキサン
ジオールの1μg/mlのエーテル溶液1mlおよび1
%のフェニルホウ酸を含むエーテル溶液1mlを10m
l容メスフラスコに加え、エーテルを加えて10mlに
定容した。この2μlにつき、GC/MSによる分析を
行うことによりMCPを分析した。尚、装置は島津社製
GCMS QP−1000をスプリットレス導入系で用
い、カラムはFused Silica OV−101
キャピラリーカラム(0.25mmφ×25m)を使用
した。試料注入口温度は240℃に設定し、カラム温度
を試料注入後70℃1分間保持した後毎分15℃ずつ昇
温して240℃まで上昇させた。キャリアガスは1.3
kg/cm2 のヘリウムを使用し、イオン化法としてE
I用い、イオン源温度を250℃(イオン化電圧:70
eV、イオン化電流:60μA)と設定した。MCP分
析の設定質量数はm/z=196でまた内標物質の設定
質量数はm/z=204とした。設定質量数m/z=1
96のピーク面積と設定質量数m/z=204のピーク
面積との比率を既知濃度のMCPを含む水溶液について
全く同様に処理して得たピーク面積の比率より作成した
検量線と対比することにより標品中のMCP含量を算出
した。分析の結果、本標品中のMCP含量は0.08p
pmであった。
The content of the chlorinated compound contained in the sample was analyzed by the following method. 8 g of the sample was placed in a 50 ml volumetric flask, and water was added to make up to 50 ml. The whole amount was transferred to a 100-ml glass vial containing 14 g of sodium chloride, and 4 ml of diethyl ether was added, followed by vigorous stirring for 5 minutes.
The ether layer was separated, and 1 μl thereof was used to analyze DCP by gas chromatography / mass fragment method (GC / MS method). The model used was a GC made by Shimadzu Corporation.
Using MS QP-1000 in a splitless introduction system,
Column is Spelcowax10 Fused Sil
ica capillary column (0.25mmφ × 15m)
It was used. The sample injection port temperature was set at 250 ° C., and the column temperature was maintained at 70 ° C. for 1 minute after the sample injection, and then the column temperature was set at 15 minutes per minute.
The temperature was increased by 220 ° C. to 220 ° C. Helium of 0.68 kg / cm 2 is used as a carrier gas, EI (Electron Impact) is used as an ionization method, and the ion source temperature is set to 250 ° C. (ionization voltage: 70 e).
V, ionization current: 60 μA). The set mass numbers were m / z = 79 and 81. The DCP content in the sample was calculated by comparing the obtained peak area with a calibration curve created from the peak area obtained for an aqueous solution containing DCP of a known concentration and treated in exactly the same manner. As a result of the analysis, the DCP content in this sample was below the detection limit of 50 ppb. MCP in the sample is also GC / M
The analysis was performed by the S method. That is, after putting 20 g of the sample into a 50 ml volumetric flask and adding water to make up to 50 ml,
It was added to a Merck Extrelut column. 200 ml of diethyl ether was passed through the column, and the eluted ether was concentrated by natural evaporation in a fume hood, and ether was added to 50 ml. 2 ml of this ether solution and 1 ml of 1 μg / ml ether solution of 1,2-hexanediol as an internal standard substance and 1 ml
10 ml of an ether solution containing 10% phenylboric acid
The volume was added to a 1-liter volumetric flask, and the volume was adjusted to 10 ml with ether. The MCP was analyzed by analyzing 2 μl by GC / MS. The apparatus used was GCMS QP-1000 manufactured by Shimadzu Corporation in a splitless introduction system, and the column was a fused Silica OV-101.
A capillary column (0.25 mmφ × 25 m) was used. The sample injection port temperature was set to 240 ° C., the column temperature was maintained at 70 ° C. for 1 minute after the sample injection, and then the temperature was raised to 240 ° C. by 15 ° C./min. The carrier gas is 1.3
kg / cm 2 of helium and ionization method E
I, using an ion source temperature of 250 ° C. (ionization voltage: 70
eV, ionization current: 60 μA). The set mass number of the MCP analysis was m / z = 196, and the set mass number of the internal standard substance was m / z = 204. Set mass number m / z = 1
By comparing the ratio of the peak area of 96 to the peak area of the set mass number m / z = 204 with a calibration curve prepared from the ratio of the peak areas obtained by completely treating the aqueous solution containing the known concentration of MCP. The MCP content in the sample was calculated. As a result of the analysis, the MCP content in this sample was 0.08p
pm.

【0017】本標品は良好な呈味およびフレーバーを示
した。
This preparation exhibited good taste and flavor.

【0018】[0018]

【実施例2】前記実施例1と同様に調製した豚骨濃縮液
210g(T−N=7.7%、F−N=0.38%、蛋
白質に対する脂質含量1%以下)に水を780g添加し
た。16%水酸化ナトリウム溶液の適量を加えてpHを
8.0に調整し、4gのアルカラーゼ0.6Lを添加し
て実施例1と全く同様に酵素反応および限外濾過の操作
を行った。この液に濃塩酸を加えてpHを5.0に調整
後プロテアーゼM(天野製薬製)5gを添加し、50℃
で6時間撹拌しながらプロテアーゼ反応を行った。反応
液を前記実施例1と同様に限外濾過処理し、エバポレー
ターで濃縮した結果、T−N=6.3%の濃縮液250
gを得た。該濃縮液のF−Nを分析した結果は1.79
%であり加水分解率は28%と算出された。次にこの濃
縮液全量に濃塩酸96gと水140gを加えて耐圧容器
に仕込み、100℃で15時間撹拌しながら加水分解を
行った。前記実施例1と同様に中和および脱色の操作を
行った結果、T−N=3.2%の標品400gを得た
(標品B)。該標品のF−Nは2.24%であったた
め、塩酸による加水分解率は58%、また総加水分解率
は70%と計算された。本標品からもDCPは全く検出
されず、またMCPも0.1ppmであった。
Example 2 780 g of water was added to 210 g (TN = 7.7%, FN = 0.38%, lipid content of protein is 1% or less) of pork bone concentrate prepared in the same manner as in Example 1 above. Was added. The pH was adjusted to 8.0 by adding an appropriate amount of a 16% sodium hydroxide solution, and 0.6 g of 4 g of alcalase was added, and the enzymatic reaction and ultrafiltration were performed in exactly the same manner as in Example 1. Concentrated hydrochloric acid was added to this solution to adjust the pH to 5.0, and then 5 g of Protease M (manufactured by Amano Pharmaceutical) was added.
To carry out a protease reaction with stirring for 6 hours. The reaction solution was subjected to ultrafiltration in the same manner as in Example 1 and concentrated by an evaporator. As a result, a concentrated solution 250 of TN = 6.3% was obtained.
g was obtained. The result of analyzing the FN of the concentrate was 1.79.
% And the hydrolysis rate was calculated to be 28%. Next, 96 g of concentrated hydrochloric acid and 140 g of water were added to the whole amount of the concentrated solution, and the mixture was charged into a pressure-resistant vessel, and hydrolyzed with stirring at 100 ° C. for 15 hours. As a result of performing the operations of neutralization and decolorization in the same manner as in Example 1, 400 g of a sample having TN = 3.2% was obtained (sample B). Since the FN of the sample was 2.24%, the hydrolysis rate with hydrochloric acid was calculated to be 58%, and the total hydrolysis rate was calculated to be 70%. DCP was not detected at all from this sample, and MCP was also 0.1 ppm.

【0019】[0019]

【実施例3】前記実施例1と同様に調製した豚骨濃縮液
750g(T−N=7.6%、F−N=0.39%、蛋
白質に対する脂質含量1%以下)に濃塩酸300gと水
450gを加えて耐圧容器に仕込み、100℃で15時
間撹拌することにより加水分解を行った。前記実施例1
と実質的に同様の操作により中和、脱色を行い、T−N
=3.3%、F−N=2.06%の加水分解液を120
0g得た。加水分解率は60%と算出された。該塩酸加
水分解液490gに対して水を500g添加し、16%
水酸化ナトリウムでpHを8.0に調整した。アルカラ
ーゼ0.6Lを4g添加し、55℃で6時間反応させ
た。反応中のpHは16%水酸化ナトリウムで常時8.
0になるようにコントロールした。反応終了液を旭化成
社製SIP−1013限外濾過膜で濾過して酵素を除去
し、エバポレーターで濃縮することによりT−N=5.
1%の標品300gを得た(標品C)。本標品のF−N
は3.4%であったことから、総加水分解率は67%と
算出された。本標品中の塩素化化合物はDCP、MCP
とも検出限界(50ppb)以下であった。
Example 3 750 g (TN = 7.6%, FN = 0.39%, lipid content 1% or less of protein) of 750 g of pork bone concentrate prepared in the same manner as in Example 1 and 300 g of concentrated hydrochloric acid And 450 g of water were added, and the mixture was charged into a pressure-resistant container, and stirred at 100 ° C. for 15 hours to perform hydrolysis. Example 1
Neutralization and decolorization are performed in substantially the same manner as in
= 3.3%, FN = 2.06%
0 g was obtained. The hydrolysis rate was calculated to be 60%. 500 g of water was added to 490 g of the hydrolyzed hydrochloric acid solution, and 16%
The pH was adjusted to 8.0 with sodium hydroxide. 4 g of Alcalase (0.6 L) was added and reacted at 55 ° C. for 6 hours. The pH during the reaction is always 8% with 16% sodium hydroxide.
It was controlled to be 0. The reaction-terminated liquid was filtered through a SIP-1013 ultrafiltration membrane manufactured by Asahi Kasei Corporation to remove the enzyme, and concentrated by an evaporator to obtain TN = 5.
300 g of a 1% sample was obtained (sample C). FN of this sample
Was 3.4%, so the total hydrolysis rate was calculated to be 67%. The chlorinated compounds in this sample are DCP, MCP
Both were below the detection limit (50 ppb).

【0020】[0020]

【比較例1】前記実施例1と同様に調製した豚骨濃縮液
500g(T−N=7.7%、F−N=0.35%、蛋
白質に対する脂質含量1%以下)に濃塩酸192gと水
280gを加えて耐圧容器に仕込み、110℃で15時
間撹拌することにより加水分解を行った。前記実施例1
と実質的に同様の操作により中和、脱色を行い、T−N
=3.1%、F−N=1.89%の標品を800g得た
(標品D)。該標品の塩酸による加水分解率は59%で
あり、総加水分解率は61%と計算された。該標品中の
DCPおよびMCPはそれぞれ50ppb以下および5
0ppbであった。
Comparative Example 1 500 g of pork bone concentrate prepared in the same manner as in Example 1 (TN = 7.7%, FN = 0.35%, lipid content of protein 1% or less) and 192 g of concentrated hydrochloric acid And 280 g of water were added, and the mixture was charged into a pressure-resistant container, and stirred at 110 ° C. for 15 hours to perform hydrolysis. Example 1
Neutralization and decolorization are performed in substantially the same manner as in
= 3.1% and FN = 1.89% to obtain 800 g of a standard (standard D). The hydrolysis rate of the sample with hydrochloric acid was 59%, and the total hydrolysis rate was calculated to be 61%. DCP and MCP in the preparation were 50 ppb or less and 5
It was 0 ppb.

【0021】[0021]

【比較例2】豚骨濃縮液500g(T−N=7.8%、
F−N=0.36%、蛋白質に対する脂質含量1%以
下)に濃塩酸を280g加え、耐圧容器中で110℃に
て15時間撹拌することにより加水分解反応を行った。
前記実施例1と同様に中和、脱色を行い、T−N=4.
7%、F−N=3.36%の標品を550g得た(標品
E)。反応による加水分解率は70%、また標品の総加
水分解率は71%と算出された。本標品のDCPおよび
MCPはそれぞれ0.2ppmおよび31ppmであっ
た。
Comparative Example 2 500 g of pork bone concentrate (TN = 7.8%,
(FN = 0.36%, lipid content based on protein: 1% or less), 280 g of concentrated hydrochloric acid was added, and the mixture was stirred at 110 ° C. for 15 hours in a pressure vessel to carry out a hydrolysis reaction.
Neutralization and decolorization were carried out in the same manner as in Example 1, and TN = 4.
550 g of a standard having 7% and FN = 3.36% was obtained (standard E). The hydrolysis rate by the reaction was calculated to be 70%, and the total hydrolysis rate of the sample was calculated to be 71%. The DCP and MCP of this sample were 0.2 ppm and 31 ppm, respectively.

【0022】[0022]

【表1】 [Table 1]

【0023】[0023]

【発明の効果】表1に標品A〜Eについての各種評価結
果をまとめた。表1より明らかなように脂質含量の少な
い原料を用いて、塩酸による60%以下の分解率の加水
分解と蛋白分解酵素による加水分解とを組み合わせるこ
とにより、塩素化化合物の含量が極めて少なくかつ呈味
力の高い調味料を製造することができる。
Table 1 summarizes the results of various evaluations of the samples A to E. As is clear from Table 1, by using a raw material having a low lipid content and combining hydrolysis with a hydrolysis rate of 60% or less with hydrochloric acid and hydrolysis with a protease, the content of the chlorinated compound is extremely low and present. A seasoning with a high taste can be produced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】豚骨濃縮液(蛋白質に対する脂質含量1%以
下)を塩酸により種々の条件下で加水分解した標品の加
水分解率に対するMCP生成量を示すグラフ。尚、加水
分解条件は○が110℃、15時間加熱、△が100
℃、20時間加熱、□が100℃、15時間加熱である
ことを示し、添加する濃塩酸の量を変化させることによ
り加水分解率をコントロールした。
FIG. 1 is a graph showing the amount of MCP produced with respect to the hydrolysis rate of a sample obtained by hydrolyzing a pork bone concentrate (lipid content relative to protein of 1% or less) with hydrochloric acid under various conditions. The hydrolysis conditions were as follows: ○: 110 ° C., heating for 15 hours, Δ: 100
□ indicates heating at 20 ° C., and □ indicates heating at 100 ° C. for 15 hours. The hydrolysis rate was controlled by changing the amount of concentrated hydrochloric acid to be added.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭48−44455(JP,A) 特開 昭50−77568(JP,A) 特公 昭44−10145(JP,B1) 特公 昭48−43637(JP,B1) 特公 昭49−11078(JP,B1) 特公 昭49−25346(JP,B1) 欧州特許出願公開495390(EP,A 1) (58)調査した分野(Int.Cl.7,DB名) A23L 1/22 - 1/237 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-48-44455 (JP, A) JP-A-50-77568 (JP, A) JP-B-44-10145 (JP, B1) JP-B-48-48 43637 (JP, B1) JP-B-49-11078 (JP, B1) JP-B-49-25346 (JP, B1) European Patent Application Publication 495390 (EP, A1) (58) Fields investigated (Int. Cl. 7 , DB name) A23L 1/22-1/237

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 脂質含量が蛋白質重量の1%以下である
動物性蛋白質原料を加水分解するに当たり、加水分解率
60%以下の塩酸加水分解と蛋白質分解酵素による加水
分解を組み合わせて行い、総加水分解率が65%以上
で、ジクロロプロパノール含量が50ppb以下、かつ
モノクロロプロパンジオール含量が100ppb以下の
調味料とすることを特徴とする加水分解調味料の製造方
法。
1. The lipid content is less than 1% of the protein weight.
In hydrolyzing animal protein raw materials, hydrolysis of hydrochloric acid with a hydrolysis rate of 60% or less and hydrolysis with a protease are combined , and the total hydrolysis rate is 65% or more.
Has a dichloropropanol content of 50 ppb or less, and
Monochloropropanediol content of 100 ppb or less
A method for producing a hydrolyzed seasoning, which is used as a seasoning.
JP19132893A 1992-08-12 1993-08-02 Method for producing hydrolyzed seasonings Expired - Lifetime JP3217909B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19132893A JP3217909B2 (en) 1992-08-12 1993-08-02 Method for producing hydrolyzed seasonings

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP21527592 1992-08-12
JP4-215275 1992-08-12
JP19132893A JP3217909B2 (en) 1992-08-12 1993-08-02 Method for producing hydrolyzed seasonings

Publications (2)

Publication Number Publication Date
JPH06105665A JPH06105665A (en) 1994-04-19
JP3217909B2 true JP3217909B2 (en) 2001-10-15

Family

ID=26506633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19132893A Expired - Lifetime JP3217909B2 (en) 1992-08-12 1993-08-02 Method for producing hydrolyzed seasonings

Country Status (1)

Country Link
JP (1) JP3217909B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103245752B (en) * 2013-04-15 2015-08-12 福建省疾病预防控制中心 A kind of method detecting fatty acid chloropropanol ester pH-titration in food

Also Published As

Publication number Publication date
JPH06105665A (en) 1994-04-19

Similar Documents

Publication Publication Date Title
KR101174299B1 (en) Casein hydrolyzate process for producing the same and use thereof
US7615244B2 (en) Glycopeptide and peptide having a kokumi taste imparting function, and method of imparting the kokumi taste to foods
JPH05301898A (en) Method for obtaining amylase-inhibiting substance
JP3217909B2 (en) Method for producing hydrolyzed seasonings
Zhou et al. Mastering the art of taming: Reducing bitterness in fish by-products derived peptides
US5401527A (en) Process for preparing improved hydrolyzed protein
Sakamura et al. Bitter diketopiperazines in roasted malts for beer brewing
EP3459364A1 (en) Composition having salty taste-enhancing effect
JP2696642B2 (en) Production method of vegetable protein hydrolyzed seasoning liquid
CN116268174B (en) Low-bitter casein zymolyte and preparation method and application thereof
JP2007151427A (en) Albumen hydrolyzate richly containing cysteine, and food and drink containing the same
JPH0347051A (en) Preparation of raw solution of seasoning
JPH11225686A (en) Casein hydrolysate and its production
JPH06165654A (en) Production of chicken bone extract
JPH10298199A (en) New peptide and angiotensin i converting enzyme inhibitor containing the peptide
JPH05262790A (en) New peptide
JPH084472B2 (en) Protein hydrolyzate and method for producing the same
Lee et al. Characterization of an antioxidant peptide from katsuobushi (dried bonito) protein hydrolysates
JP2002121199A (en) New peptide and method for producing the same
JP4348066B2 (en) Substrate hydrolysis method using hydrolase
JP2004329119A (en) Acid-hydrolyzed seasoning free from microbial mutagen
JP3419035B2 (en) Production method of protein hydrolyzate
KR19980075193A (en) Method for preparing acid-decomposed soy sauce with minimum content of 3-chloro-1,2-propanediol (MCPD) in acid-decomposed soy sauce
CN116333045A (en) Preserved meat flavor peptide and preparation method and application thereof
JPH0638687A (en) Production of hydrolyzed product of protein

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080803

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080803

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090803

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090803

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 12

EXPY Cancellation because of completion of term