JP3419035B2 - Production method of protein hydrolyzate - Google Patents

Production method of protein hydrolyzate

Info

Publication number
JP3419035B2
JP3419035B2 JP19766993A JP19766993A JP3419035B2 JP 3419035 B2 JP3419035 B2 JP 3419035B2 JP 19766993 A JP19766993 A JP 19766993A JP 19766993 A JP19766993 A JP 19766993A JP 3419035 B2 JP3419035 B2 JP 3419035B2
Authority
JP
Japan
Prior art keywords
hydrochloric acid
protein
hours
raw material
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19766993A
Other languages
Japanese (ja)
Other versions
JPH0731379A (en
Inventor
昭吾 丸山
治 池村
敬治 岩崎
学 北澤
浩 伴
哲 公文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Original Assignee
Ajinomoto Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc filed Critical Ajinomoto Co Inc
Priority to JP19766993A priority Critical patent/JP3419035B2/en
Priority to CN94108608A priority patent/CN1052383C/en
Publication of JPH0731379A publication Critical patent/JPH0731379A/en
Application granted granted Critical
Publication of JP3419035B2 publication Critical patent/JP3419035B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Peptides Or Proteins (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は蛋白質加水分解物の製造
方法、さらに詳しくは各種の蛋白質原料を塩酸加水分解
し調味料あるいは調味料の原料として有用な蛋白質加水
分解物の製法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a protein hydrolyzate, and more particularly to a method for producing a protein hydrolyzate which is useful as a seasoning or a raw material for seasonings by hydrolyzing various protein raw materials with hydrochloric acid. .

【0002】[0002]

【従来の技術】従来、各種の蛋白質原料を鉱酸、とくに
塩酸を使用して加水分解して調味料あるいは調味料の原
料として有用な蛋白質加水分解物を製造する方法は多数
知られている。
2. Description of the Related Art Heretofore, many methods have been known for producing a seasoning or a protein hydrolyzate useful as a raw material for seasonings by hydrolyzing various protein raw materials using mineral acids, especially hydrochloric acid.

【0003】各種の蛋白質原料は蛋白質以外の多種類の
成分を含有し、これらの成分が加水分解時に変化して生
ずる副生成物の混在は、調味料あるいは調味料の原料と
して適当でないので、副生成物の生成を最小限に抑止
し、あるいは蛋白質加水分解物より副生成物を精製によ
り除去する必要がある。
[0003] Various protein raw materials contain various kinds of components other than proteins, and the inclusion of by-products produced by the change of these components during hydrolysis is not suitable as a seasoning or a raw material for seasonings. It is necessary to minimize the production of the product or to remove by-products from the protein hydrolyzate by purification.

【0004】特に、微量ながら副生する有機塩素化合物
は健康に及ぼす影響を考慮して、その生成を最小限に抑
止し、あるいは蛋白質加水分解物より副生成物を精製に
より低減させる必要がある。
[0004] In particular, it is necessary to minimize the production of organic chlorine compounds, which are by-produced in a small amount, by considering their effects on health, or to reduce the by-products from protein hydrolysates by purification.

【0005】副生する有機塩素化合物の生成を最小限に
抑止しあるいは除去する方法に関しては、以下の(1)
〜(7)のような数種類の方法が既に知られている。
Regarding the method of suppressing or removing the formation of by-produced organochlorine compounds to a minimum, the following (1)
Several methods such as ~ (7) are already known.

【0006】(1)蛋白質原料を鉱酸で加水分解して得
た分解液をpH4〜9に調整し、120〜145℃で3
〜120分加熱後、減圧下に濃縮または水蒸気蒸留する
か、あるいは吸着剤と接触せしめる方法(特公昭47−
24748号公報)。
(1) The decomposition liquid obtained by hydrolyzing a protein raw material with a mineral acid is adjusted to pH 4 to 9 and then kept at 120 to 145 ° C. for 3 times.
After heating for 120 minutes, the solution is concentrated under reduced pressure or steam-distilled, or brought into contact with an adsorbent (Japanese Examined Patent Publication No.
24748).

【0007】(2)蛋白質原料を塩酸で加水分解して得
た分解液をpH5.5〜8.0に調整し、20〜180
℃で5分〜10日間、モノクロロプロパンジオ−ルおよ
びジクロロプロパノ−ルの加水分解を行う方法(特開平
02−135056号公報)。
(2) The decomposition solution obtained by hydrolyzing the protein raw material with hydrochloric acid is adjusted to pH 5.5 to 8.0 and adjusted to 20 to 180.
A method of hydrolyzing monochloropropanediol and dichloropropanol at 5 ° C. for 5 minutes to 10 days (JP-A-02-135056).

【0008】(3)蛋白質原料を塩酸で加水分解して得
た分解液に0.5〜2.5nmの平均細孔直径を有する
多孔質物質を使用するゲルパ−ミエションクロマトグラ
フィ−を施し、検知可能以上のモノクロロプロパンジオ
−ル類を含有せず、食塩を少なくとも40%保持してい
るフラクションを溶離せしめる方法(特開平02−13
5057号公報)。
(3) The degradation solution obtained by hydrolyzing the protein raw material with hydrochloric acid is subjected to gel permeation chromatography using a porous substance having an average pore diameter of 0.5 to 2.5 nm and detected. A method of eluting a fraction containing at least 40% of sodium chloride without containing more monochloropropanediol than is possible (Japanese Patent Laid-Open No. 02-13
No. 5057).

【0009】(4)蛋白質原料を塩酸で加水分解する際
に、先ず60〜97℃で加水分解を行い、2〜24時間
の反応期間にわたり反応温度を100〜110℃に上昇
せしめ、15分〜2時間、同温度に保持後、冷却、中和
および濾過する方法(特開平02−135058号公
報)。
(4) When the protein raw material is hydrolyzed with hydrochloric acid, it is first hydrolyzed at 60 to 97 ° C., and the reaction temperature is raised to 100 to 110 ° C. over a reaction period of 2 to 24 hours for 15 minutes to A method of holding at the same temperature for 2 hours, cooling, neutralizing and filtering (JP-A-02-135058).

【0010】(5)蛋白質原料を塩酸で加水分解して得
た分解液を中和し、第1不溶物を分離放置後第2不溶物
を分離する方法において、第1不溶物および第2不溶物
を分離後に含有する1、2−ジクロロプロパン−2−オ
−ルを除去するために、分解物の密度を実質的に一定値
に保持しながら、減圧下に水蒸気蒸留する方法(特開昭
62−224256号公報)。
(5) In a method of neutralizing a decomposition solution obtained by hydrolyzing a protein raw material with hydrochloric acid, separating and leaving the first insoluble matter and then separating the second insoluble matter, the first insoluble matter and the second insoluble matter In order to remove the 1,2-dichloropropan-2-ol contained after separation of the product, steam distillation under reduced pressure is carried out while maintaining the density of the decomposed product at a substantially constant value. 62-224256).

【0011】(6)蛋白質原料を塩酸で加水分解して得
たスラリ−を、残留未加水分解物の濾過の前または後に
pH8〜14のアルカリ処理を行い、望ましくない塩素
化化合物量が減少する時間保持し、pH4〜7に再調整
する方法(特開平02−150241号公報)。
(6) A slurry obtained by hydrolyzing a protein raw material with hydrochloric acid is subjected to an alkali treatment at a pH of 8 to 14 before or after filtration of the residual unhydrolyzed product to reduce the amount of undesired chlorinated compounds. A method of holding for a period of time and readjusting the pH to 4 to 7 (JP-A-02-150241).

【0012】(7)蛋白質原料を塩酸で加水分解して得
た分解液を、特定のpH、温度、時間領域に暴露せし
め、加水分解工程中に油脂類より生成されるハロゲン化
合物および2価カチオン化合物を除去する方法(特開平
04−88951号公報)。
(7) A decomposition solution obtained by hydrolyzing a protein raw material with hydrochloric acid is exposed to a specific pH, temperature and time region, and a halogen compound and a divalent cation produced from fats and oils during the hydrolysis step. A method for removing a compound (JP-A-04-88951).

【0013】しかしながら、上記のいずれの方法にあっ
ても、蛋白質加水分解物に混在する有機塩素化合物を皆
無ならしめることは困難であった。また、場合によって
は、蛋白質加水分解物に好ましからざる臭気が発生する
など、品質上の変化がもたらされ、それに対応する精製
工程を別途に必要となるなどの、新たな問題が追加され
た。
However, in any of the above methods, it was difficult to completely eliminate the organochlorine compound mixed in the protein hydrolyzate. In addition, in some cases, a new problem has been added, such as an unpleasant odor is generated in the protein hydrolyzate, which causes a change in quality and a separate purification step is required.

【0014】[0014]

【発明が解決しようとする課題】本発明は、従来の品質
を確保しつつ、蛋白質原料を加水分解時における有機塩
素化合物の副生を抑止し、また、蛋白質加水分解物中に
残存する有機塩素化合物を精製、除去して、蛋白質加水
分解物中の有機塩素化合物の混在量を最小限ならしめた
蛋白質加水分解物を得る方法を提供することを目的とす
る。
DISCLOSURE OF THE INVENTION The present invention, while maintaining the conventional quality, suppresses the by-production of an organic chlorine compound during the hydrolysis of a protein raw material, and the organic chlorine remaining in the protein hydrolyzate. An object of the present invention is to provide a method for purifying and removing a compound to obtain a protein hydrolyzate in which the amount of an organic chlorine compound contained in the protein hydrolyzate is minimized.

【0015】[0015]

【課題を解決するための手段】本発明者等は、上記の問
題に関連する多数の知見を詳細に再検討し、蛋白質加水
分解物中の有機塩素化合物の混在量を最小限ならしめる
ためには、従来知られている個別の方法では有機塩素化
合物の混在量を低下せしめるには限界があり、一段階下
の混在量水準を達成するためには、複数の抑止手段およ
び除去手段を効果的に結合した時に初めて有効な結果を
取得できることを発見した。
Means for Solving the Problems In order to minimize the amount of organochlorine compounds mixed in protein hydrolysates, the present inventors have reexamined many findings relating to the above problems in detail. There is a limit to reducing the amount of organic chlorine compounds mixed by the conventionally known individual methods, and it is effective to use a plurality of deterrence means and removal means in order to achieve the mixed quantity level one step below. I found that I can get valid results only when I combine them with.

【0016】本発明はこの発見に基づいてなされたもの
であり、請求項1に記載の発明は、蛋白質原料を塩酸加
水分解し次いでアルカリ処理を行う方法において、アル
カリ処理を、50〜110℃における解放下での加熱と
90〜150℃における密閉下での加熱との組合せによ
行うことを特徴とする蛋白質加水分解物の製法であ
る。
The present invention has been made based on this discovery. The invention according to claim 1 is a method of hydrolyzing a protein raw material with hydrochloric acid and then subjecting it to alkali treatment, wherein the alkali treatment is carried out at 50 to 110 ° C. Heating under release and
In combination with heating at 90-150 ° C under closed condition
It is a preparation of protein hydrolyzate which is characterized in that Ri.

【0017】また請求項2に記載の発明は、アルカリ処
理におけるアルカリが水酸化アルカリ金属及び/又はア
ンモニアである請求項1に記載の方法である。
The invention according to claim 2 is the method according to claim 1, wherein the alkali in the alkali treatment is alkali metal hydroxide and / or ammonia.

【0018】また請求項3に記載の発明は、アルカリ処
理における解放下での加熱、pH8.5〜11.0、
温度50〜105℃、時間が1分〜24時間で行う請求
項1に記載の方法である。
The invention according to claim 3 is characterized in that the heating under release in the alkaline treatment is carried out at pH 8.5 to 11.0.
Temperature 50 to 105 ° C., a method according to claim 1 which time performed at 1 minute to 24 hours.

【0019】更に請求項4に記載の発明は、アルカリ処
理における密閉下での加熱が、pH8.5〜11.0、
温度90〜105℃、時間が5分〜10時間で行う請求
項1に記載の方法である。
Further, the invention according to claim 4 is such that the heating in the alkali treatment in a sealed state has a pH value of 8.5 to 11.0.
Temperature 90 to 105 ° C., a method according to claim 1 which time carried out in 5 minutes to 10 hours.

【0020】[0020]

【作用】何れの請求項による本発明の方法において共通
に使用される蛋白質原料は、植物性原料、動物性原料、
微生物原料のいずれでもよい。また、これらの各蛋白質
原料は混合しても使用できる。
The protein raw materials commonly used in the method of the present invention according to any of the claims are plant raw materials, animal raw materials,
Any of microbial raw materials may be used. Also, these protein raw materials can be used as a mixture.

【0021】植物性原料としては脱脂大豆、小麦グルテ
ン、コ−ングルテンが、動物性原料としては魚粕、乳製
カゼイン、ホエイ蛋白が、微生物原料としては酵母菌
体、例えばビ−ル酵母、パン酵母あるいは発酵菌体、例
えばアミノ酸発酵菌体が各々の代表として挙げられる。
Defatted soybeans, wheat gluten and corn gluten are used as vegetable raw materials, fish meal, dairy casein and whey protein are used as animal raw materials, and yeast cells such as beer yeast and bread are used as microbial raw materials. Representative examples are yeast or fermentative cells, for example, amino acid-fermenting cells.

【0022】何れの請求項による本発明の方法において
共通に使用される塩酸は、濃塩酸、ガス状塩酸である。
The hydrochloric acid commonly used in the method of the present invention according to any of the claims is concentrated hydrochloric acid or gaseous hydrochloric acid.

【0023】請求項1の発明による方法において、使用
される蛋白質原料は前処理された原料であれば一層好ま
しい。
In the method according to the first aspect of the present invention, the protein raw material used is more preferably a pretreated raw material.

【0024】蛋白質原料の前処理には、蛋白分離処理、
有機溶媒抽出、酵素処理など各種の処理方法が適用され
る。
Pretreatment of the protein raw material includes protein separation treatment,
Various treatment methods such as organic solvent extraction and enzyme treatment are applied.

【0025】蛋白分離処理としてはアルカリ抽出酸沈
澱、等電点沈澱、水抽出および酸沈澱区分除去および等
電点沈澱の方法が適用される。
As the protein separation treatment, alkali extraction acid precipitation, isoelectric point precipitation, water extraction, acid precipitation fraction removal and isoelectric point precipitation are applied.

【0026】有機溶媒抽出処理としては脂質溶解性溶媒
による抽出が適当である。使用する溶媒としては水混和
性溶媒および水貧混和性溶媒のいずれでも良いが、特に
水貧混和性溶媒が使用される。
As the organic solvent extraction treatment, extraction with a lipid-soluble solvent is suitable. The solvent used may be either a water-miscible solvent or a water-poor miscible solvent, but a water-poor miscible solvent is particularly used.

【0027】酵素処理としては蛋白質原料と加水分解酵
素および/または細胞壁分解酵素とを酵素活性条件下に
接触せしめる方法をが採用してもよい。
As the enzyme treatment, a method in which a protein raw material and a hydrolase and / or a cell wall degrading enzyme are brought into contact with each other under an enzymatically active condition may be adopted.

【0028】使用する加水分解酵素としては、リパ−
ゼ、プロテア−ゼ、セルラ−ゼ、ペクチナ−ゼが、細胞
壁分解酵素としてはリゾチ−ムが挙げられる。
The hydrolase used is lipase.
, Protease, cellulase, and pectinase, and the cell wall degrading enzyme includes lysozyme.

【0029】なお、前処理に酵素処理及び有機溶媒抽出
を併用することは効果的であり、特にリパ−ゼ処理およ
びn−ヘキサン抽出の併用は好結果をもたらす。
Incidentally, it is effective to use the enzyme treatment and the organic solvent extraction together in the pretreatment, and particularly the lipase treatment and the n-hexane extraction together bring about a good result.

【0030】請求項1の発明による方法において、実施
する塩酸加水分解は蛋白質原料中の窒素に対する塩酸中
の塩素のモル比が0.3〜2.6になるように調整して
実施する。
In the method according to the first aspect of the invention, the hydrochloric acid hydrolysis is carried out by adjusting the molar ratio of chlorine in hydrochloric acid to nitrogen in the protein raw material to be 0.3 to 2.6.

【0031】なお、この範囲は他の要件、特に蛋白質原
料の種類および性質ならびに加水分解反応条件、すなわ
ち加熱温度、加熱時間によって種々の数値を取り得る。
例えば具体的には0.9〜1.2の範囲を取り得る。
This range can take various values depending on other requirements, in particular, the type and properties of the protein raw material and the hydrolysis reaction conditions, that is, the heating temperature and the heating time.
For example, specifically, the range can be 0.9 to 1.2.

【0032】また、使用する濃塩酸の液量とも関連し、
濃塩酸の液量で表示した場合、蛋白質原料中の蛋白質1
kg当たり濃塩酸を0.7〜5.2L、例えば具体的に
は、1.0〜1.3Lを使用する。
Also, it is related to the amount of concentrated hydrochloric acid used,
Protein 1 in the protein raw material when expressed as the concentration of concentrated hydrochloric acid
0.7 to 5.2 L of concentrated hydrochloric acid, for example, 1.0 to 1.3 L is specifically used per kg.

【0033】さらに、本発明の具体的な実施態様として
は以下のものが提示できる。
Furthermore, the following can be presented as specific embodiments of the present invention.

【0034】塩酸加水分解において、蛋白質原料中の蛋
白質1kg当たり濃塩酸が1.2〜1.4L、かつ、蛋
白質原料中の窒素に対する塩酸中の塩素のモル比が0.
9〜1.2である塩酸を使用し、塩酸加水分解温度が9
5〜110℃で塩酸加水分解時間が30〜70時間であ
る例。
In the hydrochloric acid hydrolysis, concentrated hydrochloric acid is 1.2 to 1.4 L per 1 kg of protein in the protein raw material, and the molar ratio of chlorine in hydrochloric acid to nitrogen in the protein raw material is 0.
Using hydrochloric acid of 9 to 1.2, the hydrolysis temperature of hydrochloric acid is 9
An example in which the hydrochloric acid hydrolysis time is 30 to 70 hours at 5 to 110 ° C.

【0035】塩酸加水分解において、蛋白質原料中の蛋
白質1kg当たり濃塩酸が1.2〜1.4L、かつ、蛋
白質原料中の窒素に対する塩酸中の塩素のモル比が0.
9〜1.2である塩酸を使用し、塩酸加水分解温度が9
5〜110℃で塩酸加水分解時間が30〜50時間であ
る例。
In the hydrochloric acid hydrolysis, concentrated hydrochloric acid is 1.2 to 1.4 L per 1 kg of protein in the protein raw material, and the molar ratio of chlorine in hydrochloric acid to nitrogen in the protein raw material is 0.1.
Using hydrochloric acid of 9 to 1.2, the hydrolysis temperature of hydrochloric acid is 9
An example in which the hydrolysis time of hydrochloric acid at 5 to 110 ° C. is 30 to 50 hours.

【0036】塩酸加水分解において、蛋白質原料中の蛋
白質1kg当たり濃塩酸が1.0〜2.6L、かつ、蛋
白質原料中の窒素に対する塩酸中の塩素のモル比が0.
9〜1.2である塩酸を使用し、塩酸加水分解温度が9
5〜110℃で塩酸加水分解時間が25〜35時間であ
る例。
In hydrochloric acid hydrolysis, concentrated hydrochloric acid was 1.0 to 2.6 L per 1 kg of protein in the protein raw material, and the molar ratio of chlorine in hydrochloric acid to nitrogen in the protein raw material was 0.1.
Using hydrochloric acid of 9 to 1.2, the hydrolysis temperature of hydrochloric acid is 9
Example in which hydrochloric acid hydrolysis time is 5 to 110 ° C. and 25 to 35 hours.

【0037】塩酸加水分解において、蛋白質原料中の蛋
白質1kg当たり濃塩酸が1.0〜1.3L、かつ、蛋
白質原料中の窒素に対する塩酸中の塩素のモル比が0.
9〜1.2である塩酸を使用し、塩酸加水分解温度が9
5〜110℃で塩酸加水分解時間が25〜35時間であ
る例。
In hydrochloric acid hydrolysis, concentrated hydrochloric acid was 1.0 to 1.3 L per 1 kg of protein in the protein raw material, and the molar ratio of chlorine in hydrochloric acid to nitrogen in the protein raw material was 0.1.
Using hydrochloric acid of 9 to 1.2, the hydrolysis temperature of hydrochloric acid is 9
Example in which hydrochloric acid hydrolysis time is 5 to 110 ° C. and 25 to 35 hours.

【0038】塩酸加水分解において、蛋白質原料中の蛋
白質1kg当たり濃塩酸が1.0〜1.3L、かつ、蛋
白質原料中の窒素に対する塩酸中の塩素のモル比が0.
9〜1.2である塩酸を使用し、塩酸加水分解温度が9
0〜145℃で塩酸加水分解時間が25〜35時間であ
る例。
In the hydrochloric acid hydrolysis, concentrated hydrochloric acid was 1.0 to 1.3 L per 1 kg of protein in the protein raw material, and the molar ratio of chlorine in hydrochloric acid to nitrogen in the protein raw material was 0.1.
Using hydrochloric acid of 9 to 1.2, the hydrolysis temperature of hydrochloric acid is 9
An example in which the hydrolysis time of hydrochloric acid at 0 to 145 ° C. is 25 to 35 hours.

【0039】塩酸加水分解において、蛋白質原料中の蛋
白質1kg当たり濃塩酸が1.0〜1.3L、かつ、蛋
白質原料中の窒素に対する塩酸中の塩素のモル比が0.
9〜1.2である塩酸を使用し、塩酸加水分解温度が1
00〜130℃で塩酸加水分解時間が25〜35時間で
ある例。
In hydrochloric acid hydrolysis, concentrated hydrochloric acid was 1.0 to 1.3 L per 1 kg of protein in the protein raw material, and the molar ratio of chlorine in hydrochloric acid to nitrogen in the protein raw material was 0.1.
Hydrochloric acid having a hydrochloric acid hydrolysis temperature of 1 is used.
An example where the hydrochloric acid hydrolysis time is 25 to 35 hours at 00 to 130 ° C.

【0040】塩酸加水分解に当たっては、各種の添加物
の共存下に行うと、有機塩素化合物の生成を抑止するこ
とができる。適当な添加物としては、食品添加物、例え
ばリボフラビン酸エステルナトリウム、パントテン酸ナ
トリウム、低級脂肪族アルコ−ル、例えばメタノ−ル、
エタノ−ル、同混合物、トルエンおよび低級脂肪族アル
コ−ルとトルエンの混合物などが挙げられる。
When the hydrochloric acid hydrolysis is carried out in the coexistence of various additives, the formation of organic chlorine compounds can be suppressed. Suitable additives include food additives such as sodium riboflavinate, sodium pantothenate, lower aliphatic alcohols such as methanol,
Examples thereof include ethanol, the same mixture, toluene, and a mixture of lower aliphatic alcohol and toluene.

【0041】請求項1の発明による方法において、塩酸
加水分解の反応条件は、温度は80〜130℃、時間は
5〜75時間の範囲で、それらの適当な組合わせが採用
される。
In the method according to the first aspect of the present invention, the reaction conditions for hydrochloric acid hydrolysis are a temperature of 80 to 130 ° C. and a time of 5 to 75 hours, and an appropriate combination thereof is adopted.

【0042】特に好ましい反応条件は、温度が90〜1
25℃で時間が10〜75時間の範囲、温度が90〜1
10℃で時間が15〜75時間の範囲、温度が95〜1
25℃で時間が10〜50時間の範囲である。
Particularly preferred reaction conditions are a temperature of 90 to 1
25 ° C, time range of 10 to 75 hours, temperature of 90 to 1
Time range of 15 to 75 hours at 10 ° C, temperature of 95 to 1
The time is in the range of 10 to 50 hours at 25 ° C.

【0043】塩酸加水分解の反応条件が濃塩酸の沸点以
上に及ぶ場合は、密閉下、即ち、加圧下に行われる。好
ましい圧力は1.0〜4.7気圧、特に1.0〜2.3
気圧である。
When the reaction conditions for hydrochloric acid hydrolysis exceed the boiling point of concentrated hydrochloric acid, the reaction is carried out under closed conditions, that is, under pressure. Preferred pressure is 1.0 to 4.7 atm, especially 1.0 to 2.3.
Atmospheric pressure.

【0044】請求項2の発明による方法において、塩酸
加水分解物は水酸化アルカリ金属またはアンモニアの添
加と共に加熱処理される。
In the method according to the second aspect of the invention, the hydrochloric acid hydrolyzate is heat treated with the addition of alkali metal hydroxide or ammonia.

【0045】この際に使用する水酸化アルカリ金属また
はアンモニアとしては、水酸化ナトリウム、アンモニア
ガス、アンモニア水 およびそれらの混合物、特に水酸
化ナトリウムとアンモニア水の混合物が挙げられる。
Examples of the alkali metal hydroxide or ammonia used in this case include sodium hydroxide, ammonia gas, ammonia water and a mixture thereof, particularly a mixture of sodium hydroxide and ammonia water.

【0046】アルカリ処理はpH8〜14、特にpH
8.5〜11.0で行うのがよく、また加熱温度は50
〜150℃、例えば90〜100℃、95〜100℃、
90〜110℃、90〜150℃の範囲が選択される。
The alkali treatment is carried out at pH 8 to 14, especially at pH.
It is good to carry out at 8.5-11.0, and the heating temperature is 50.
~ 150 ° C, for example 90-100 ° C, 95-100 ° C,
The ranges of 90 to 110 ° C and 90 to 150 ° C are selected.

【0047】なお、アルカリ処理は解放下および密閉下
で各処理を一回以上行い、その順序はいずれでもよい。
The alkali treatment is carried out once or more under open and closed conditions, and the order thereof may be any.

【0048】アルカリ処理を密閉下で行う場合には加圧
下に行うことになる。アルカリ処理の圧力範囲は1.0
〜4.7気圧下、特に1.0〜2.7気圧下とするのが
好ましい。
When the alkali treatment is carried out under a closed condition, it is carried out under pressure. Pressure range of alkali treatment is 1.0
It is preferable to set the pressure to ˜4.7 atmospheric pressure, particularly 1.0 to 2.7 atmospheric pressure.

【0049】アルカリ処理は1分〜24時間の間に亙っ
て行う。特に1〜8時間の間に亙って行う方法、30分
〜3時間の間に亙って行う方法が採用される。
The alkali treatment is carried out for 1 minute to 24 hours. In particular, a method carried out for 1 to 8 hours and a method carried out for 30 minutes to 3 hours are adopted.

【0050】アルカリ処理条件は、具体的には上記の温
度、pH、圧力および時間範囲の組合わせで決定する
が、例えば解放下で95〜100℃にて1〜8時間、解
放下で50〜110℃にて1〜10時間、解放下で90
〜105℃にて1〜8時間、密閉下で90〜150℃に
て10分〜24時間、密閉下で100〜130℃にて3
0分〜3時間、密閉下で90〜150℃にて1〜8時
間、95〜105℃でpH8.5〜11.0にて1〜8
時間、95〜105℃でpH8.0〜10.0にて1〜
8時間、95〜130℃でpH8.0〜9.0、1にて
10時間、90〜110℃でpH8.0〜9.0にて1
〜8時間、95〜130℃でpH8.5〜11.0にて
30分〜6時間、95〜125℃でpH8.5〜9.5
にて1.0〜2.0時間の間に亙って行うなど、各種の
組合わせが採用できる。特に、解放下または密閉下の両
方の条件の組合わせは、塩酸加水分解物の品質、特に香
気の改善と向上に好結果をもたらす。同時に工業的には
反応槽の容量を増加することなく、大幅な時間延長もす
ることなく、同様な効果を得ることができる。
The alkaline treatment conditions are specifically determined by a combination of the above temperature, pH, pressure and time range. For example, 95 to 100 ° C. under release for 1 to 8 hours, and 50 to 50 under release. 90 ° C under release for 1-10 hours at 110 ° C
At 105 to 105 ° C for 1 to 8 hours, at 90 to 150 ° C under sealed for 10 minutes to 24 hours, and at 100 to 130 ° C under sealed 3
0 minutes to 3 hours, 1 to 8 hours at 90 to 150 ° C under closed condition, 1 to 8 hours at pH of 8.5 to 11.0 at 95 to 105 ° C.
For 1 hour at 95-105 ° C and pH 8.0-10.0
8 hours, 95-130 ° C., pH 8.0-9.0, 1 for 10 hours, 90-110 ° C., pH 8.0-9.0, 1
-8 hours, pH 8.5-11.0 at 95-130 ° C, 30 minutes-6 hours, pH 8.5-9.5 at 95-125 ° C.
Various combinations can be adopted, such as over 1.0 to 2.0 hours. In particular, the combination of both open and closed conditions has been successful in improving and enhancing the quality, especially the aroma, of the hydrochloric acid hydrolyzate. At the same time, industrially, the same effect can be obtained without increasing the capacity of the reaction tank and without significantly extending the time.

【0051】アルカリ処理は無機イオンの共存下に行う
と好結果を取得する。共存せしめる無機イオンとして
は、水酸化金属コロイド生成性無機イオン、例えばカル
シウムイオン、マグネシウムイオン、アルミニウムイオ
ン、明礬錯イオン、鉄イオンなどが挙げられる。これら
無機イオンの共存下、アルカリ性のまま、懸濁性物質を
濾別すると好結果が得られる。
Good results are obtained when the alkali treatment is carried out in the presence of inorganic ions. Examples of inorganic ions that can coexist include metal hydroxide colloid-forming inorganic ions such as calcium ion, magnesium ion, aluminum ion, alum complex ion, and iron ion. In the presence of these inorganic ions, good results can be obtained by filtering the suspending substance while keeping the alkaline condition.

【0052】アルカリ処理後は、処理液をpH4〜6に
調整する。pHの調整は一段階で行なってもよいが、例
えば、初めpHを4.5に、次いでpHを5.1に調整
すると好結果を取得する。
After the alkali treatment, the treatment liquid is adjusted to pH 4-6. The pH may be adjusted in one step, but good results are obtained, for example, by first adjusting the pH to 4.5 and then adjusting the pH to 5.1.

【0053】請求項1の発明による法において、塩酸加
水分解後の工程、すなわちアルカリ処理前の工程あるい
はアルカリ処理後の工程で塩酸加水分解物の精製を行
う。
In the method according to the first aspect of the present invention, the hydrochloric acid hydrolyzate is purified in the step after the hydrolysis with hydrochloric acid, that is, the step before the alkali treatment or the step after the alkali treatment.

【0054】精製には、不溶物の除去、樹脂処理、吸着
処理など、種々の方法を適用することができる。
For purification, various methods such as removal of insoluble matter, resin treatment, and adsorption treatment can be applied.

【0055】不溶物を除去する際には金属イオンの共存
下におこなってもよい。
The insoluble matter may be removed in the presence of metal ions.

【0056】樹脂処理は、アニオン交換樹脂処理、カチ
オン交換樹脂処理であって、その処理の順序は被処理物
の性質により決定する。
The resin treatment is an anion exchange resin treatment or a cation exchange resin treatment, and the order of the treatments is determined by the properties of the object to be treated.

【0057】吸着処理には天然あるいは合成の吸着剤が
使用され、例えば活性炭、特に椰子殻炭、合成の吸着樹
脂が使用される。また、これらの組合わせも有効であ
る。
For the adsorption treatment, a natural or synthetic adsorbent is used, for example, activated carbon, especially coconut shell charcoal, or synthetic adsorption resin is used. Moreover, the combination of these is also effective.

【0058】尚、上述のとうり、蛋白質原料を塩酸加水
分解すると、蛋白質加水分解物中に有機塩素化合物、ク
ロロプロパノ−ル類が副生する。クロロプロパノ−ル類
のうち、代表的な物質、3−クロロ−1、2−プロパン
ジオ−ルおよび2−クロロ−1、3−プロパンジオ−ル
の分析法は次の通りである。
As described above, when the protein raw material is hydrolyzed with hydrochloric acid, an organic chlorine compound and chloropropanols are by-produced in the protein hydrolyzate. Among the chloropropanols, the typical substances, 3-chloro-1,2-propanediol and 2-chloro-1,3-propanediol, are analyzed by the following methods.

【0059】分取した一定量(1ml)の試料に内部標
準物質として3−ブロモ−1、2−プロパンジオ−ルを
一定濃度(例えば、100ppm)となるように添加・
混合した後、抽出カラムのエクソリュ−ト−1(商品
名:メルク社製品)に吸着し、一定量(10ml)酢酸
エチルで溶離を行い、溶離区分より一定量(1ml)を
分取、これに誘導体生成試薬としての5%フェニル硼酸
メタノ−ル溶液を0.1ml添加して15分放置後、ガ
スクロマトグラフ−質量分析計(商品名:HP5890
/HP5988、ヒュ−レット パッカ−ド社製品、使
用キャピラリ−カラム:HP−1(商品名),12m×
0.2mm,ヒュ−レット パッカ−ド社製品)に注入
して分析した。
3-bromo-1,2-propanediol as an internal standard substance was added to a fixed amount (1 ml) of the sample so as to have a constant concentration (for example, 100 ppm).
After mixing, the product was adsorbed on Exolute-1 (trade name: product of Merck & Co., Inc.) of the extraction column and eluted with a fixed amount (10 ml) of ethyl acetate, and a fixed amount (1 ml) was collected from the elution fraction. After adding 0.1 ml of 5% phenylboronic acid methanol solution as a derivative-forming reagent and leaving it for 15 minutes, a gas chromatograph-mass spectrometer (trade name: HP5890)
/ HP5988, Hewlett-Packard product, Capillary column used: HP-1 (trade name), 12m ×
0.2 mm, manufactured by Hewlett-Packard Co., Ltd.) and analyzed.

【0060】定量分析限界濃度は0.5ppm,分析精
度は±3%以内である。
The quantitative analysis limit concentration is 0.5 ppm, and the analysis accuracy is within ± 3%.

【0061】尚、本分析法は、フォン・ベルグマン等の
報告(C.A. Von Bergmann et al.,J.Chromatogr. vol.5
89, pp.109-119. 1992)に記載の方法を参考にした。
Note that this analysis method was reported by von Bergmann et al. (CA Von Bergmann et al., J. Chromatogr. Vol. 5).
89, pp.109-119. 1992).

【0062】さらに、本発明の方法により取得した蛋白
質原料塩酸加水分解物について、解放下及び密閉下での
アルカリ処理を行わない蛋白質原料塩酸加水分解物試料
を対照に官能評価試験を行った。
Further, a sensory evaluation test was carried out on the protein-based hydrochloric acid hydrolyzate obtained by the method of the present invention, using as a control a protein-based hydrochloric acid hydrolyzate sample which was not subjected to alkali treatment under open and closed conditions.

【0063】官能評価試験は、予め味覚および臭覚が鋭
敏であると認定されて選定された専門のパネリスト5名
により、対照試料と供試試料との差異の有無、異臭の有
無、好ましさの程度を主要評価項目として、3段階方式
(〇、△、×)の基準により行われた。
The sensory evaluation test was carried out by five professional panelists who had been preliminarily certified as sensitive to taste and odor, and whether there was a difference between the control sample and the test sample, whether there was an offensive odor, or whether there was a preference. The degree was used as the main evaluation item, and the evaluation was performed based on a three-stage method (○, △, ×).

【0064】以上のように、蛋白質原料を塩酸加水分解
し、次いで解放下及び密閉下でのアルカリ処理を行う本
発明の方法においては、塩酸加水分解物中に副生しある
いは残存する有機塩素化合物を極小限に抑止した蛋白質
原料の塩酸加水分解物を取得することができる。同時に
工業的には反応槽の容量を増加することなく、また大幅
な時間延長もなく、同様の効果を得ることができる。
As described above, in the method of the present invention in which a protein raw material is hydrolyzed with hydrochloric acid and then subjected to alkali treatment under open and closed conditions, an organic chlorine compound by-produced or remaining in the hydrochloric acid hydrolyzate is used. It is possible to obtain a hydrochloric acid hydrolyzate of a protein raw material in which the above is suppressed to a minimum. At the same time, industrially, the same effect can be obtained without increasing the capacity of the reaction tank and without significantly extending the time.

【0065】[0065]

【実施例】【Example】

(実施例1)リパーゼ(和光純薬製)100mgを水1
5.45mlに溶解し、粉砕した脱脂大豆6.77gと
グルテンミール0.92gを加え、40℃で5日間酵素
反応を行った。酵素反応終了後、濃塩酸4.55mlを
加え、103℃油浴中で30時間加熱還流を行い、蛋白
質加水分解物を得た。この分解液中には、3ークロロ−
1,2−プロパンジオ−ル(以下、3−MCPと略記)
が全窒素含量3g当たり2.3ppm含まれていたが、
含有量は酵素未処理の蛋白質を用いた蛋白質加水分解物
の場合の4.8ppmと比較して減少していた。
(Example 1) 100 mg of lipase (manufactured by Wako Pure Chemical Industries, Ltd.) in water 1
6.77 g of defatted soybeans dissolved in 5.45 ml and pulverized and 0.92 g of gluten meal were added, and the enzyme reaction was carried out at 40 ° C. for 5 days. After the completion of the enzymatic reaction, 4.55 ml of concentrated hydrochloric acid was added, and the mixture was heated under reflux in an oil bath at 103 ° C. for 30 hours to obtain a protein hydrolyzate. 3-chloro-
1,2-Propanediol (hereinafter abbreviated as 3-MCP)
Was contained at 2.3ppm per 3g of total nitrogen content,
The content was decreased as compared with 4.8 ppm in the case of a protein hydrolyzate using a protein not treated with an enzyme.

【0066】(実施例2)塩酸量として、原料全窒素に
対する添加塩酸の塩素モル数の比(以下モル比と称す
る)が1.2、原料タンパクの重量(kg)に対する添
加塩酸量(L)の比(以下液比と称す)が1.3となる
ように、ナスフラスコに脱脂大豆102g、グルテンミ
ール13.9g、濃度16%の塩酸151mlを加え、
103℃の油浴にて30時間加熱を行い、蛋白質加水分
解物を得た。同様にして、表2に示す所定量をナスフラ
スコにいれ、103℃の油浴にて30〜75時間加熱を
行い、モル比、液比および時間を変化させた蛋白質加水
分解物を得た。
Example 2 As the amount of hydrochloric acid, the ratio of the number of moles of chlorine of added hydrochloric acid to the total raw material nitrogen (hereinafter referred to as the molar ratio) is 1.2, and the amount of added hydrochloric acid (L) to the weight (kg) of the raw material protein. Of defatted soybeans (102 g), gluten meal (13.9 g) and hydrochloric acid (151 ml) having a concentration of 16% were added to an eggplant-shaped flask so that the ratio (hereinafter referred to as liquid ratio) was 1.3.
It was heated in an oil bath at 103 ° C. for 30 hours to obtain a protein hydrolyzate. Similarly, the predetermined amount shown in Table 2 was put into a round-bottomed flask and heated in an oil bath at 103 ° C. for 30 to 75 hours to obtain a protein hydrolyzate in which the molar ratio, liquid ratio and time were changed.

【0067】[0067]

【表1】 [Table 1]

【0068】(実施例3)脱脂大豆68gとグルテンミ
ール9.3gに16%塩酸101mlを加え、さらにリ
ボフラビンりん酸エステルナトリウム塩14.3gを加
え、106℃にて30時間加熱した。得られた蛋白質加
水分解物中に含まれる3−MCPは、リボフラビンりん
酸エステルナトリウム塩無添加の場合の40ppmに比
べ、20ppmと減少した。同様に2−クロロ−1,3
−プロパンジオール(以下2−MCPと略記)も5.6
ppmから2.7ppmに減少した。
Example 3 To 68 g of defatted soybeans and 9.3 g of gluten meal, 101 ml of 16% hydrochloric acid was added, and further 14.3 g of riboflavin phosphate sodium salt was added, followed by heating at 106 ° C. for 30 hours. 3-MCP contained in the obtained protein hydrolyzate was reduced to 20 ppm as compared with 40 ppm in the case where riboflavin phosphate sodium salt was not added. Similarly, 2-chloro-1,3
-Propanediol (hereinafter abbreviated as 2-MCP) is also 5.6.
It decreased from ppm to 2.7 ppm.

【0069】(実施例4)脱脂大豆68gとグルテンミ
ール9.3gに16%塩酸101mlを加え、さらにD
−パントテン酸ナトリウム塩7.2gを加え、106℃
にて30時間加熱した。得られた蛋白質加水分解物中に
含まれる3MCPは、D−パントテン酸ナトリウム塩無
添加の場合の43ppmに比べ、20ppmと減少し
た。同様に2−MCPも5.5ppmから3.8ppm
に減少した。
Example 4 To 68 g of defatted soybeans and 9.3 g of gluten meal, 101 ml of 16% hydrochloric acid was added, and further D
-Add 7.2 g of pantothenic acid sodium salt, 106 ° C
It was heated for 30 hours. The amount of 3MCP contained in the obtained protein hydrolyzate was reduced to 20 ppm as compared with 43 ppm in the case where the sodium salt of D-pantothenate was not added. Similarly, 2-MCP is 5.5 ppm to 3.8 ppm.
Decreased to.

【0070】(実施例5)脱脂大豆68gとグルテンミ
ール9.3gに16%塩酸101mlを加え、さらにエ
タノール10mlを加え、103℃にて攪拌しながら3
0時間加熱した。得られた蛋白質加水分解物中に含まれ
る3−MCPは、エタノール無添加の場合の43ppm
に比べ、25ppmと減少した。同様に2−MCPも
6.2ppmから3.1ppmに減少した。
Example 5 To 68 g of defatted soybeans and 9.3 g of gluten meal, 101 ml of 16% hydrochloric acid was added, and further 10 ml of ethanol was added.
Heated for 0 hours. 3-MCP contained in the obtained protein hydrolyzate was 43 ppm when ethanol was not added.
It was reduced to 25 ppm compared to Similarly, 2-MCP also decreased from 6.2 ppm to 3.1 ppm.

【0071】(実施例6)モル比が1.2、液比が1.
3となるように、1Lビーカーに脱脂大豆135g、グ
ルテンミール18.4g、濃度16%の塩酸200ml
を加え、シャーレで蓋をした後、オートクレーブ中に収
容して106℃で30時間加熱を行い、蛋白質加水分解
物を得た。同様にして、表3に示す所定量を1Lのビー
カーにいれてシャーレで蓋をした後、オートクレーブに
て106〜122℃で30時間加熱を行い、蛋白質加水
分解物を得た。
(Example 6) The molar ratio was 1.2 and the liquid ratio was 1.
In a 1L beaker, 135 g of defatted soybeans, 18.4 g of gluten meal, and 200 ml of hydrochloric acid with a concentration of 16%, so that the weight becomes 3.
Was added, and the dish was covered with a petri dish, and then placed in an autoclave and heated at 106 ° C. for 30 hours to obtain a protein hydrolyzate. Similarly, a predetermined amount shown in Table 3 was placed in a 1 L beaker and covered with a petri dish, and then heated at 106 to 122 ° C. for 30 hours in an autoclave to obtain a protein hydrolyzate.

【0072】[0072]

【表2】 [Table 2]

【0073】(実施例7)モル比が1.2、液比が1.
3となるように、ナスフラスコに脱脂大豆136g、グ
ルテンミール18.6g、濃度16%の塩酸201ml
を加え、83℃の油浴にて30時間加熱を行い、蛋白質
加水分解物を得た。同様にして、表4に示す所定量をナ
スフラスコにいれ、83℃の油浴にて75時間加熱を行
い、蛋白質加水分解物を得た。
(Example 7) The molar ratio was 1.2 and the liquid ratio was 1.
In a eggplant-shaped flask, 136 g of defatted soybeans, 18.6 g of gluten meal and 201 ml of hydrochloric acid with a concentration of 16%
Was added and heated in an oil bath at 83 ° C. for 30 hours to obtain a protein hydrolyzate. Similarly, the predetermined amount shown in Table 4 was put in a round-bottomed flask and heated in an oil bath at 83 ° C. for 75 hours to obtain a protein hydrolyzate.

【0074】[0074]

【表3】 [Table 3]

【0075】(実施例8)脱脂大豆とグルテンミールを
塩酸で加水分解して得られた蛋白質加水分解物43.7
gに27%水酸化ナトリウム水溶液30.5gを加え、
pH7の分解液74.2gを得た。この分解液20ml
に27%水酸化ナトリウム水溶液0.65gを加え、p
H8.5の分解液を調製した、さらにpH7の分解液2
0mlに28%アンモニア水を0.14g或いは0.8
6g加え、pH8.5とpH9.5の分解液を調製し
た。これら分解液を密閉式の試験管に入れ、103℃の
油浴中にて2時間加熱処理した。得られた蛋白質加水分
解物に含まれる3−MCPは未処理の場合と比較して減
少した。
Example 8 Protein hydrolyzate 43.7 obtained by hydrolyzing defatted soybean and gluten meal with hydrochloric acid
30.5 g of 27% sodium hydroxide aqueous solution is added to g,
74.2 g of pH 7 decomposition solution was obtained. 20 ml of this decomposition liquid
To the solution, add 0.65 g of 27% aqueous sodium hydroxide solution to p
A decomposition solution of H8.5 was prepared, and a decomposition solution of pH 7 was added.
0.14 g or 0.8% of 28% ammonia water in 0 ml
6 g was added to prepare a decomposition solution having pH 8.5 and pH 9.5. These decomposition solutions were placed in a closed test tube and heat-treated in an oil bath at 103 ° C. for 2 hours. The amount of 3-MCP contained in the obtained protein hydrolyzate was reduced as compared with the untreated case.

【0076】[0076]

【表4】 [Table 4]

【0077】(実施例9)脱脂大豆とグルテンミールを
塩酸で加水分解して得られた蛋白質加水分解物310g
に27%水酸化ナトリウム水溶液144gを加え、pH
8.5の分解液455gを得た。この分解液300ml
を還流器のついたフラスコに入れ、油浴を用いて内温9
8℃にて解放大気圧下で加熱処理を行なった。1時間か
ら24時間の範囲で処理液中の2−MCPおよび3−M
CPを測定したところ、含量は時間と共に減少した。同
様にして、pH9.0,11.0での加熱処理を行な
い、2−MCPおよび3−MCPの減少した蛋白質加水
分解物が得られた。
(Example 9) 310 g of protein hydrolyzate obtained by hydrolyzing defatted soybean and gluten meal with hydrochloric acid
To the mixture, add 144 g of 27% aqueous sodium hydroxide solution to pH
455 g of a decomposition solution of 8.5 was obtained. 300 ml of this decomposition liquid
Was placed in a flask equipped with a reflux condenser, and the internal temperature was adjusted to 9 by using an oil bath.
Heat treatment was performed at 8 ° C. under open atmospheric pressure. 2-MCP and 3-M in the treatment liquid in the range of 1 to 24 hours
When the CP was measured, the content decreased with time. Similarly, heat treatment was performed at pH 9.0 and 11.0 to obtain protein hydrolysates with reduced 2-MCP and 3-MCP.

【0078】[0078]

【表5】 [Table 5]

【0079】(実施例10)脱脂大豆とグルテンミール
を塩酸で加水分解して得られた蛋白質加水分解物310
gに27%水酸化ナトリウム水溶液182gを加え、p
H8.5の分解液495gを得た。この分解液300m
lを三角フラスコに入れ、オートクレーブを用いて内温
130℃にて密閉高温加熱を2時間行った。この加熱処
理した蛋白質加水分解物中に2−MCPおよび3−MC
Pは検出されなかった。同様にしてpH9.0,11.
0における130度密閉系での高温加熱処理を3時間行
ったところ、得られた蛋白質加水分解物に2−MCPお
よび3−MCPは検出されなかった。
Example 10 Protein hydrolyzate 310 obtained by hydrolyzing defatted soybean and gluten meal with hydrochloric acid
182 g of 27% sodium hydroxide aqueous solution was added to g, and p
495 g of a decomposed solution of H8.5 was obtained. 300m of this decomposition liquid
1 was put in an Erlenmeyer flask, and sealed and heated at an internal temperature of 130 ° C. for 2 hours using an autoclave. 2-MCP and 3-MC were added to the heat-treated protein hydrolyzate.
P was not detected. Similarly, pH 9.0, 11.
When high temperature heat treatment in a 130 degree closed system at 0 was performed for 3 hours, 2-MCP and 3-MCP were not detected in the obtained protein hydrolyzate.

【0080】(実施例11)脱脂大豆とグルテンミール
を塩酸で加水分解して得られた蛋白質加水分解物310
gに27%水酸化ナトリウム水溶液144gを加え、p
H8.5の分解液455gを得た。2組の還流器付きフ
ラスコにこの分解液を各々200ml入れ、油浴を用い
て内温98℃にて解放大気圧下で3時間加熱処理を行な
った。1組の分解液については、この加熱処理に加えて
オートクレーブを用いて内温130℃にて密閉高温加熱
を1時間行った。同様にして調製したpH8.5の分解
液200mlを3角フラスコに入れ、オートクレーブを
用いて内温130℃にて密閉高温加熱を3時間行った。
これら3通りの蛋白質加水分解物のMCP含量と官能評
価を比較すると、密閉高温加熱はMCP削減の効果が大
きく、解放下加熱はその官能評価において効果的であっ
た。その効果をまとめて表6に示す。
Example 11 Protein hydrolyzate 310 obtained by hydrolyzing defatted soybean and gluten meal with hydrochloric acid
To the g, 144 g of 27% sodium hydroxide aqueous solution was added, and p
455 g of a decomposition solution of H8.5 was obtained. 200 ml of each of the decomposed solutions was placed in two sets of flasks equipped with a reflux condenser, and heat-treated for 3 hours under an open atmospheric pressure at an internal temperature of 98 ° C. using an oil bath. In addition to this heat treatment, one set of decomposed solutions was subjected to closed high temperature heating for 1 hour at an internal temperature of 130 ° C. using an autoclave. 200 ml of the decomposition solution having a pH of 8.5 prepared in the same manner was placed in a triangular flask, and sealed and heated at an internal temperature of 130 ° C. for 3 hours using an autoclave.
Comparing the MCP contents of these three types of protein hydrolysates with the sensory evaluation, the closed high-temperature heating had a great effect of reducing MCP, and the heating under release was effective in the sensory evaluation. The effects are summarized in Table 6.

【0081】[0081]

【表6】 [Table 6]

【0082】(実施例12)脱脂大豆とグルテンミール
を塩酸で加水分解して得られた蛋白質加水分解物からヒ
ューマスを濾別・除去した液50mlに、水5mlに
0.7gの塩化第2鉄・6水塩を溶解して調製した鉄イ
オンを含む水溶液を加え、十分に攪拌した。次に27%
水酸化ナトリウム水溶液43.3gを滴下し、pHを−
0.5から9.5に調整した。その後しばらく攪拌を続
けた後、共沈物をNo.5Cの濾紙で濾過除去した。得
られた濾過液中に含まれる3−MCP含量は77ppm
となり、処理前の100ppmと比較して減少した。
(Example 12) [0082] In 50 ml of a liquid obtained by hydrolyzing defatted soybean and gluten meal with hydrochloric acid, the protein hydrolyzate was filtered and removed, and 0.7 g of ferric chloride was added to 5 ml of water. An aqueous solution containing iron ions prepared by dissolving hexahydrate was added and sufficiently stirred. 27% next
43.3 g of an aqueous sodium hydroxide solution was added dropwise to adjust the pH to −.
Adjusted from 0.5 to 9.5. After continuing stirring for a while, the coprecipitate was added to No. It was filtered off with 5C filter paper. The content of 3-MCP contained in the obtained filtrate was 77 ppm.
And decreased compared to 100 ppm before treatment.

【0083】[0083]

【発明の効果】以上に述べたように、本発明では蛋白質
原料を塩酸加水分解し、次いでアルカリ処理を行うの
で、従来の品質を確保しつつ、塩酸加水分解物中に副生
或いは残存する有機塩素化合物を極小限に抑止した蛋白
質原料の塩酸加水分解物を、工業的には反応槽の容量を
増加することなく、また大幅な時間延長もなく、同様に
取得することができるという効果が得られるものであ
る。
As described above, in the present invention, the protein raw material is hydrolyzed with hydrochloric acid and then treated with an alkali. Therefore, while maintaining the conventional quality, an organic by-product or remaining in the hydrolyzed hydrochloric acid is obtained. The effect of being able to obtain hydrochloric acid hydrolyzate of a protein raw material in which chlorine compounds are suppressed to a minimum limit in the same way without increasing the capacity of the reaction tank industrially and without significantly extending the time is obtained. It is what is done.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 北澤 学 神奈川県川崎市川崎区鈴木町1ー1 味 の素株式会社中央研究所内 (72)発明者 伴 浩 神奈川県川崎市川崎区鈴木町1ー1 味 の素株式会社中央研究所内 (72)発明者 公文 哲 神奈川県川崎市川崎区鈴木町1ー1 味 の素株式会社中央研究所内 (58)調査した分野(Int.Cl.7,DB名) A23J 3/16 - 3/34 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Manabu Kitazawa 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa Ajinomoto Co., Inc. Central Research Laboratory (72) Inventor Hiroshi Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa Prefecture 1- 1 Ajinomoto Co., Inc. Central Research Laboratory (72) Inventor Satoshi Kumon 1-1, Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa Ajinomoto Co., Inc. Central Research Laboratory (58) Fields investigated (Int.Cl. 7 , DB name) ) A23J 3/16-3/34

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 蛋白質原料を塩酸加水分解し次いでアル
カリ処理を行う方法において、アルカリ処理を、50〜
110℃における解放下での加熱と90〜150℃にお
ける密閉下での加熱との組合せにより行うことを特徴と
する蛋白質加水分解物の製法。
1. A method in which a protein raw material is hydrolyzed with hydrochloric acid and then subjected to an alkali treatment, wherein the alkali treatment is 50 to
Heating under open at 110 ° C and at 90-150 ° C
A method for producing a protein hydrolyzate, which is carried out in combination with heating under a closed atmosphere.
【請求項2】 前記アルカリ処理におけるアルカリが水
酸化アルカリ金属及び/又はアンモニアである請求項1
に記載の方法。
2. The alkali in the alkali treatment is alkali metal hydroxide and / or ammonia.
The method described in.
【請求項3】 前記アルカリ処理における解放下での
、pH8.5〜11.0および温度50〜105℃
にて1分〜24時間に亙って行請求項1に記載の方
法。
3. The heating under liberation in the alkali treatment is performed at a pH of 8.5 to 11.0 and a temperature of 50 to 105 ° C.
The method of claim 1 intends rows over a 1 minute to 24 hours.
【請求項4】 前記アルカリ処理における密閉下での
、pH8.5〜11.0および温度90〜105℃
にて5分〜10時間に亙って行請求項1に記載の方
法。
4. The heating in a sealed condition in the alkali treatment is performed at a pH of 8.5 to 11.0 and a temperature of 90 to 105 ° C.
The method of claim 1 intends line over a 5 minutes to 10 hours.
JP19766993A 1993-07-16 1993-07-16 Production method of protein hydrolyzate Expired - Fee Related JP3419035B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP19766993A JP3419035B2 (en) 1993-07-16 1993-07-16 Production method of protein hydrolyzate
CN94108608A CN1052383C (en) 1993-07-16 1994-07-16 Method for producing protein hydrolysate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19766993A JP3419035B2 (en) 1993-07-16 1993-07-16 Production method of protein hydrolyzate

Publications (2)

Publication Number Publication Date
JPH0731379A JPH0731379A (en) 1995-02-03
JP3419035B2 true JP3419035B2 (en) 2003-06-23

Family

ID=16378367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19766993A Expired - Fee Related JP3419035B2 (en) 1993-07-16 1993-07-16 Production method of protein hydrolyzate

Country Status (2)

Country Link
JP (1) JP3419035B2 (en)
CN (1) CN1052383C (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CL2009000292A1 (en) * 2009-02-09 2009-08-21 Ingenieria Ramfer Ltda Production process of 50% concentrated acidic solution and dry peptide powder, from products and protein residues of animal origin, fish and aquaculture.

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5151503A (en) * 1991-03-28 1992-09-29 Nestec S.A. Process for reducing hydrolysed protein chlorohydrin content

Also Published As

Publication number Publication date
JPH0731379A (en) 1995-02-03
CN1052383C (en) 2000-05-17
CN1105197A (en) 1995-07-19

Similar Documents

Publication Publication Date Title
US5698724A (en) Amino acid metal complexes using hydrolyzed protein as the amino acid source and methods re same
AU666531B2 (en) Processes for the preparation of amylase inhibitor
US5607840A (en) Protein hydrolysate derived from mucosa tissue
KR101189613B1 (en) Method of producing theanine
CN107603894B (en) Yeast small peptide powder and preparation method thereof
JP3419035B2 (en) Production method of protein hydrolyzate
JP4227984B2 (en) Composition for improving flavor and taste of food
JPH04507193A (en) Immobilized lipase preparations and their use for ester synthesis
JP2722600B2 (en) Fat / oil reforming method
TWI230038B (en) Method for producing soy sauce
JP3448344B2 (en) Peptide composition
Trevelyan Chemical methods for the reduction of the purine content of baker's yeast, a form of single‐cell protein
JPH08280394A (en) Production of gamma-aminobutyric acid
US4035234A (en) Process for the preparation of the kallikrein-trypsin inhibitor
JP2631202B2 (en) Peptide production method
JP3671179B2 (en) Fish sauce and its manufacturing method
JP2023518159A (en) Process method for efficient production of carnosine-rich compounds
CN116268174B (en) Low-bitter casein zymolyte and preparation method and application thereof
JP3227893B2 (en) Seasoning and its manufacturing method
JPH025829A (en) Method for removing bitterness from protein hydrolysate and obtained product
KR20070041450A (en) Process for production of 5-ene-3-one or 3,6-dione derivatives of sterols, processes for production of lipid metabolism improvers, foods, drinks, and animal feeds, and analytical method
CN111349112B (en) Preparation method of phospholipid
JP3547834B2 (en) Compound 460A and method for producing the same
JPH0499448A (en) Oil seed-derived protein
JPH06157599A (en) Method for purifying low-molecular protein

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees