JP2004329119A - Acid-hydrolyzed seasoning free from microbial mutagen - Google Patents

Acid-hydrolyzed seasoning free from microbial mutagen Download PDF

Info

Publication number
JP2004329119A
JP2004329119A JP2003129964A JP2003129964A JP2004329119A JP 2004329119 A JP2004329119 A JP 2004329119A JP 2003129964 A JP2003129964 A JP 2003129964A JP 2003129964 A JP2003129964 A JP 2003129964A JP 2004329119 A JP2004329119 A JP 2004329119A
Authority
JP
Japan
Prior art keywords
hydrochloric acid
mcp
microbial
acid
mutagen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003129964A
Other languages
Japanese (ja)
Inventor
Hidehiko Inoue
上 英 彦 井
Toyohisa Kuriyama
山 豊 寿 栗
Jiro Kataoka
岡 二 郎 片
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Shoji Co Ltd
Original Assignee
Sanyo Shoji Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Shoji Co Ltd filed Critical Sanyo Shoji Co Ltd
Priority to JP2003129964A priority Critical patent/JP2004329119A/en
Publication of JP2004329119A publication Critical patent/JP2004329119A/en
Pending legal-status Critical Current

Links

Landscapes

  • Seasonings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for completely removing a microbial mutagen caused when hydrolyzing a plant and a yeast protein with hydrochloric acid; and to provide an acid-hydrolyzed seasoning free from the microbial mutagen concerning with the food safety of the hydrochloric acid-hydrolyzed seasoning. <P>SOLUTION: The method for producing the acid-hydrolyzed seasoning free from the microbial mutagen involves endlessly repeating the following steps 1 and 2 including step 1: hydrolyzing a raw material containing a protein to be hydrolyzed with the hydrochloric acid and mixed with ≥20% of the liquid treated at the step 2 expressed in terms of the amount of nitrogen based on the whole amount of the nitrogen at the hydrolysis; and step 2: completely removing the microbial mutagen formed by the hydrochloric acid hydrolysis by heating the liquid of the step 1 at 120°C for ≥30 min and ≤2 hr at pH ≥7.5 and ≤8.3. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は動物、植物及び酵母タンパク質を塩酸で加水分解する時に生じる微生物変異原性物質を完全に除去する方法で塩酸加水分解調味料の食品安全性に関する発明である。
【0002】
動物、植物タンパク質及び酵母タンパク質(以下これらを総称して本特許ではタンパク質とする)を塩酸で加水分解して製造する調味液は19世紀後半からドイツ、スイスを中心に開発された。
【0003】
この方法はタンパクを完全に分解して単体の構成アミノ酸とすることから強いうま味と複雑なこく味と独特の風味が好まれスープ原料等として利用されている。
【0004】
我が国では小麦グルテンや脱脂大豆を塩酸加水分解してグルタミン酸ソーダを製造した残液を中和精製して調味液として利用されていたが、昭和40年ごろにグルタミン酸を微生物により製造する発酵法が導入されて以来、グルタミン酸ソーダを分離せずに精製した調味液を「アミノ酸液」と総称して販売され、醤油原料や各種調味料の原料として今日でも利用されている。
【0005】
これらの塩酸分解調味液は高濃度のタンパク質と高濃度の塩酸を使用して分解されるために分解時に発生する分解臭も強く、この除去のために脱臭精製工程及び濃縮工程を経て製造販売されている。
【0006】
これらの製法のほかに昭和23年に野田醤油株式会社(現キッコーマン株式会社)から発表された比較的低濃度の塩酸を使用してタンパク質をマイルドに塩酸分解した「アミノ酸液」と、醤油麹とを共に仕込む、いわゆる「新式2号速醸法」がある(醤油叢書・永瀬一郎著)。
【0007】
この方式は戦後大手を含めてほとんどの醤油メーカーが採用し、塩酸分解と麹菌の酵素の併用と発酵で精製工程を経ずに比較的簡易な方法で分解する方法で、現在でも独特の風味を持っているために「新式醸造」として醤油醸造家で製造されている。
【0008】
「アミノ酸液」は現在でも一般の醤油メーカーが独自に製造し、分解液を中和するのみで醤油諸味と混合して醤油諸味の発酵、熟成時に分解臭を醇化する方法で醤油化される、この「アミノ酸液」を「自製アミノ酸液」と総称している。
【0009】
本発明はこの「アミノ酸液」の製造に関するものである。
【0010】
【従来の技術】
タンパク質を塩酸分解して製造される「アミノ酸液」については醤油のJAS(日本農林規格)にも醤油原料として認められており、この「アミノ酸液」を使用し製造した醤油を「新式醸造醤油」又は「アミノ酸混合醤油」と呼んでいる。
【0011】
この「アミノ酸液」を使用した醤油は強い呈味と独特の風味から「アミノ酸液」を使用しない「本醸造醤油」に比較して呈味が強く独特の風味から、特に地方の伝統的な嗜好性のある醤油を形作っている。
【0012】
最近、このタンパク質の塩酸分解物に醤油には存在しない微量の微生物変異原性物質の存在が報告された。
【0013】
この物質は原料タンパク質に微量に残存する油脂成分が塩酸で分解される時に発生する油脂を構成するグリセリンの塩素化合物と判明した。
【0014】
この物質は現在では3種類報告されているが、特に3−Chroro−1−2−Propanolは通称MCPと呼ばれ水親和性が強い上に高沸点であり通常の濃縮工程では除去できない。
【0015】
本物質は現在では遺伝子障害発ガン性は認められてはいないがアミノ酸液製造メーカーは自主的に1ppm 以下として除去工程を導入しており、現状では100ppb前後の残存濃度としている。
【0016】
MCPの検出限界は現時点の分析精度から10ppbである。
【0017】
また、MCPを中心としたこれらの変異原性物質の除去に関しては多くの特許が出願されている。
【0018】
例えば最近の出願特許、出願番号:特願平5−197669にはその詳細が引用されているが、この特許を含めて、これらの特許は文章的には広いPH領域と温度領域を規定しているが実際にはMCP濃度が極小化できる領域はpHが9以上、温度も100℃以上で長時間の処理が必要である。
【0019】
またこの領域ではMCP濃度は減少するが、アミノ酸のラセミ化等の品質面の変化についてはほとんど記載されていない。
【0020】
MCPの目標濃度も検出限界がppmレベルであり、ppbレベルでの言及はされていない。
【0021】
【発明が解決しようとする課題】
MCPを除去する技術は現在では塩酸分解液をアルカリでpHが8.5以上のアルカリ性として90〜106℃(沸点)で2時間以上の加熱を行いMCPをアルカリ分解した後、MCP分解時に発生するアルカリ分解臭を脱臭、濃縮等の精製工程での除去を経て製造されている。
【0022】
しかしこの方法ではMCPの完全除去はできず50ppb程度が残存する。
【0023】
これ以上のMCP除去にはこの条件以上の高アルカリと高温、長時間処理が必要であるがこの条件の導入は分解液中の「アミノ酸液」のラセミ化等による呈味の変化と通常の工程では除去できない臭気(焦げ臭等)の付着が起こり「アミノ酸液」の商品価値を著しく低下させる。
【0024】
【問題を解決するための手段】
本発明者等は「アミノ酸液」の独特の風味を残し、かつMCPの完全除去を目的に技術的検討を行った。
【0025】
MCPはタンパク原料中に微量に存在する油脂が分解して生ずるグリセリンの水酸基に塩酸中の塩素が結合した有機塩素化合物である。
【0026】
この塩素残基を外すためには苛性ソーダ等の水酸基をもつアルカリでの反応が必要である。
【0027】
この反応を行うにはpHが8.0〜8.5程度の微アルカリでの処理が必要である。
【0028】
この反応はMCP量とアルカリ量との加水分解反応であり数式としても1次反応で、理論上は過剰のアルカリの存在下で完全に除去が可能であるが現実では10ppb以下には達しない。
【0029】
【表1】

Figure 2004329119
【0030】
微量のMCPの除去の反応については上記の反応式には乗らない反応が進行しており、このMCP残存量を10ppb以下にするための条件検討を行った。
【0031】
MCPの微量の存在下での分解実験を実施した結果、副反応が存在する可能性を示唆する結果を得た。
【0032】
すなわち、MCPはアルカリでの反応で塩素は簡単に外れるが、この時にグリセリンとともに少量の反応性に富むエピクロールヒドリン(−O―)も生成し、このエピクロールヒドリンに中和時に使用する塩酸が反応して再度MCPが生成することが推測される。
【0033】
この反応を阻止するには大過剰のアルカリ(OH)の投入が必要になり、この条件を満足する処理液は大過剰の食塩とともに、グルタミン酸のラセミ化による呈味の低下が起き、結果的には目的とする調味液の品質が維持できなくなる。
【0034】
そこで本発明者等は塩酸分解調味液のMCPを完全に除去してかつ風味を損なわない反応条件の検討を行った。
【0035】
この実験のポイントはMCP除去の条件をできるだけマイルドな条件で行うことが必要でPHが低い程、加熱時間が短い程異臭の付加が少なく脱臭、精製工程の負荷も少ない。
【0036】
このMCP除去工程での条件は塩酸分解液のMCP濃度により決定される。
【0037】
塩酸分解時に生成するMCPは原料タンパク質の種類によって異なるが、基本的には同一タンパク質であれば、酸分解の条件で決まる。
【0038】
酸分解は塩酸濃度と時間で設定されるが、塩酸濃度を低くするとMCP生成量は低下するがタンパク質分解度も低下する。
【0039】
同時にアミノ酸の遊離度も低下し、呈味と収率も低下するために品質とコストの低下を招く。
【0040】
この結果からMCP除去の条件を検討したところ、MCP除去の条件のマイルド化には
【0041】
▲1▼初期分解液のMCP濃度を減少させること。
【0042】
▲2▼MCPの除去をできるだけ短時間に行いアミノ酸のラセミ化等による呈味の損傷に係わる因子を少なくすることが必要であることが実験の結果から判明した。
【0043】
この2者の相関についての実験結果の一例を下記に示した。
【0044】
【表2】
Figure 2004329119
【0045】
上記の結果からMCP濃度をMCP処理液をリサイクルすることにより減少させた液を120℃で処理することによりMCPの理論減少曲線に近い状態でMCPを減少させることが実証された。
【0046】
なおこの方法でのMCPの完全除去はリサイクル製造を行ってから3回以上で目的の数値に達するが、1回目の処理製造液でも従来目標のMCP濃度1ppm以下はもとより、50ppbレベルでの製品の製造は可能である。
【0047】
また反応温度については実験では120℃で実施したが、理論的には塩酸分解液の沸点(106℃付近)以上の温度であればこの反応は完結することができる。
【0048】
以下、この特許の有用性については実施例に示した。
【0049】
【発明の実施の形態】
【実施例1】
グラスライニング製の10,000リッター容量の分解缶(ジャケットタイプで加熱、冷却は間接的に実施できる)に脱脂大豆2,500kgに35%の塩酸、1,500リッターと前回同一方法で製造したアミノ酸液(MCP、10ppb)2,500リッターを混合して106℃(沸点上昇)で40時間分解した。
【0050】
この分解液を冷却後に24%の苛性ソーダ2,550リッターを加えて中和、さらに24%苛性(カセイ)ソーダを加えてpHを8.12とする。
【0051】
ここで1.2気圧(120℃の温度)で60分間加熱する。
【0052】
加熱処理後にジャケットに冷却水を循環し、品温が60℃になった時点で35%塩酸でpHを5.1まで中和する。
【0053】
この分解液をフィルタープレスでろ過し、洗浄液を含めて9,700リッターを得た。
【0054】
この液を再度分解缶に入れて真空減圧下で液量の15%を濃縮する。
【0055】
分解臭も少なく、味も良好で、MCPは10ppb(検出限界10ppb)以下であった。
【0056】
【実施例2】
実施例1のMCP無処理の酸分解液を200リッター容量の耐圧性分解缶(グラスライニング製、ジャケットタイプの加熱、冷却方式)に100リッター入れて苛性(カセイ)ソーダでpHを7.5〜8.43のアルカリ性として120℃、30分〜2時間加熱、反応終了後、塩酸でpHを微酸性とした。
【0057】
この濾液をMCP分析と T−N、L−グルタミン酸含量(酵素法)を測定した。
【0058】
【表3】
Figure 2004329119
【0059】
この結果から実験No,5の条件は香りは良好であるが、味はやや薄く感じられた。
【0060】
L−グルタミン酸が減少しており、強アルカリ条件下での加熱でグルタミン酸のラセミ化が起こったための現象と推定された。
【0061】
しかし品質としては問題はない。
【0062】
【発明の効果】
タンパク質の酸分解液中に含まれる微生物変異原性物質である有機塩素化合物の内で、毒性の強いDCP(Di−chroroPropanol)類は沸点が低く濃縮操作で比較的簡単に除去可能であり、またマイルドなアルカリ条件でも分解可能である。
【0063】
しかし、3−MCPはかなり強いアルカリ処理条件での除去が必要である。
【0064】
本特許は現在一般に行われている方法に比較して、低pH領域で短時間での反応で完全に微生物変異原性物質である3−MCPの除去が可能となった。
【0065】
本特許の方式ではアルカリ処理による酸分解液のダメージも少なく、より良好な品質のアミノ酸液の製造が可能である。
【0066】
タンパク質の酸分解により製造された調味料は多くのアミノ酸が含有されており、このアミノ酸は、醤油に比較して、強い呈味とこく味をもっており、褐変性も少なく、脱色性も良いことから淡口タイプのアミノ酸液も製造可能等、醤油やビーフエキス等に比較して呈味力に優れた加工調味料素材である。
【0067】
このように優れた調味料であるタンパク質分解アミノ酸液はMCP問題で使用が躊躇される傾向にあるが、本特許に示した方法での工業化が可能になり、これまでの有用性に加えて今後さらに使用範囲の拡大が予想される。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to the food safety of a hydrolyzed hydrochloric acid seasoning by a method for completely removing microbial mutagenic substances generated when hydrolyzing animal, plant and yeast proteins with hydrochloric acid.
[0002]
Seasoning liquids produced by hydrolyzing animal, plant proteins and yeast proteins (hereinafter collectively referred to as proteins in this patent) with hydrochloric acid have been developed mainly in Germany and Switzerland since the late 19th century.
[0003]
Since this method completely decomposes a protein to form a single constituent amino acid, it has strong umami, complicated kokumi and a unique flavor, and is used as a soup raw material.
[0004]
In Japan, wheat gluten and defatted soybeans were hydrolyzed with hydrochloric acid to produce sodium glutamate, and the remaining solution was neutralized and purified. Since then, seasonings obtained by purifying sodium glutamate without separation are collectively referred to as "amino acid solutions", and are still used today as soy sauce raw materials and raw materials for various seasonings.
[0005]
Since these hydrochloric acid-decomposed seasonings are decomposed using high-concentration proteins and high-concentration hydrochloric acid, they also have a strong decomposition odor generated during decomposition, and are manufactured and sold through a deodorization purification step and a concentration step for the removal. ing.
[0006]
In addition to these manufacturing methods, "Amino Acid Solution", which was released from Noda Shoyu Co., Ltd. (now Kikkoman Co., Ltd.) in 1948, using a relatively low concentration of hydrochloric acid to hydrolyze proteins mildly, and soy sauce koji There is a so-called "Shinki No. 2 fast brewing method" that prepares both together (Isho Nagase, Ichiro Nagase).
[0007]
This method has been adopted by most soy sauce manufacturers, including major postwar Japanese companies, and is a method that uses a combination of hydrochloric acid degradation and koji mold enzymes and fermentation in a relatively simple manner without going through a refining process. It is manufactured by a soy sauce brewer as a "new style brewer" to have.
[0008]
`` Amino acid liquid '' is still manufactured by ordinary soy sauce manufacturers even today, and it is made into a soy sauce by neutralizing the decomposed liquid, mixing it with soy sauce moromi, fermenting the soy sauce moromi, and enriching the decomposition smell when aging. This “amino acid solution” is collectively referred to as “self-made amino acid solution”.
[0009]
The present invention relates to the production of this “amino acid solution”.
[0010]
[Prior art]
The "amino acid solution" produced by hydrolyzing proteins is also recognized as a soy sauce material in the JAS (Japanese Norin Standard) of soy sauce, and soy sauce produced using this "amino acid solution" is called "Shin-type brewed soy sauce" Or called "amino acid mixed soy sauce".
[0011]
The soy sauce using this "amino acid solution" has a strong taste and unique flavor. Compared to "honjozo soy sauce" which does not use the "amino acid solution", the soy sauce has a strong taste and a unique flavor. It forms sexual soy sauce.
[0012]
Recently, the presence of trace amounts of microbial mutagens, which are not present in soy sauce, was reported in the hydrolyzate of this protein.
[0013]
This substance was found to be a chlorine compound of glycerin constituting oils and fats generated when a small amount of oils and fats components remaining in the raw protein were decomposed with hydrochloric acid.
[0014]
At present, three types of this substance are reported. Particularly, 3-Chro-1-2-propanol is generally called MCP and has a high affinity for water and a high boiling point, and cannot be removed by a usual concentration step.
[0015]
At present, this substance has not been found to be carcinogenic to genetic disorders, but manufacturers of amino acid solutions have voluntarily introduced a removal step at 1 ppm or less, and currently have a residual concentration of around 100 ppb.
[0016]
The detection limit of MCP is 10 ppb based on the current analysis accuracy.
[0017]
In addition, many patents have been filed for the removal of these mutagenic substances centering on MCP.
[0018]
For example, the details are cited in a recent patent application, application number: Japanese Patent Application No. Hei 5-197669, but these patents, including this patent, define a wide PH range and a temperature range in terms of text. However, in practice, the region where the MCP concentration can be minimized requires a long-term treatment at a pH of 9 or more and a temperature of 100 ° C. or more.
[0019]
Further, in this region, although the MCP concentration decreases, almost no change in quality such as racemization of amino acids is described.
[0020]
The target concentration of MCP also has a detection limit of ppm level, and is not mentioned in ppb level.
[0021]
[Problems to be solved by the invention]
Currently, the MCP removal technology is generated at the time of MCP decomposition after the hydrochloric acid decomposition solution is alkalinized to pH 8.5 or more and heated at 90 to 106 ° C. (boiling point) for 2 hours or more to perform alkali decomposition of MCP. It is manufactured through removal of alkali decomposition odor in purification steps such as deodorization and concentration.
[0022]
However, this method cannot completely remove MCP, and about 50 ppb remains.
[0023]
Further removal of MCP requires higher alkali, higher temperature and longer treatment than the above conditions, but introduction of these conditions is necessary to change the taste due to the racemization of the “amino acid solution” in the decomposition solution and the normal process. The odor (burnt odor, etc.) that cannot be removed by the odor adheres, and the commercial value of the “amino acid solution” is significantly reduced.
[0024]
[Means to solve the problem]
The present inventors have conducted technical studies for the purpose of leaving the unique flavor of the “amino acid solution” and completely removing MCP.
[0025]
MCP is an organic chlorine compound in which chlorine in hydrochloric acid is bonded to a hydroxyl group of glycerin generated by decomposing a trace amount of fats and oils present in a protein raw material.
[0026]
To remove the chlorine residue, a reaction with an alkali having a hydroxyl group such as caustic soda is required.
[0027]
To carry out this reaction, a treatment with a slight alkali having a pH of about 8.0 to 8.5 is required.
[0028]
This reaction is a hydrolysis reaction between the amount of MCP and the amount of alkali, and is a first-order reaction as a mathematical formula. Although it can be completely removed theoretically in the presence of excess alkali, it does not actually reach 10 ppb or less.
[0029]
[Table 1]
Figure 2004329119
[0030]
Regarding the reaction for removing a small amount of MCP, a reaction that does not follow the above reaction formula is in progress, and conditions were studied to reduce the residual amount of MCP to 10 ppb or less.
[0031]
As a result of conducting a decomposition experiment in the presence of a very small amount of MCP, a result indicating the possibility of a side reaction was obtained.
[0032]
That is, although MCP easily removes chlorine in a reaction with an alkali, a small amount of reactive epichlorohydrin (—O—) is also generated together with glycerin at this time, and this epichlorohydrin is used for neutralization. It is assumed that hydrochloric acid reacts to form MCP again.
[0033]
To prevent this reaction, it is necessary to add a large excess of alkali (OH), and a treatment solution that satisfies this condition causes a decrease in taste due to racemization of glutamic acid together with a large excess of salt. Means that the quality of the desired seasoning liquid cannot be maintained.
[0034]
Therefore, the present inventors have studied the reaction conditions for completely removing the MCP of the hydrochloric acid-decomposed seasoning solution and not impairing the flavor.
[0035]
The point of this experiment is that it is necessary to remove the MCP under mild conditions as much as possible. The lower the pH and the shorter the heating time, the less the unpleasant odor is added and the less the deodorization and purification steps are performed.
[0036]
The conditions in this MCP removal step are determined by the MCP concentration of the hydrochloric acid decomposition solution.
[0037]
The MCP produced during the hydrochloric acid decomposition varies depending on the type of the starting protein, but basically the same protein is determined by the acid decomposition conditions.
[0038]
The acid decomposition is set by the hydrochloric acid concentration and time. When the hydrochloric acid concentration is reduced, the amount of MCP produced is reduced, but the degree of protein degradation is also reduced.
[0039]
At the same time, the degree of liberation of amino acids is reduced, and the taste and yield are also reduced, leading to a reduction in quality and cost.
[0040]
From the results, the conditions for removing the MCP were examined.
(1) Decrease the MCP concentration of the initial decomposition solution.
[0042]
{Circle around (2)} The results of the experiments revealed that it is necessary to remove MCP in as short a time as possible to reduce the factors related to taste damage due to racemization of amino acids and the like.
[0043]
An example of an experimental result on the correlation between the two is shown below.
[0044]
[Table 2]
Figure 2004329119
[0045]
From the above results, it was demonstrated that the MCP concentration was reduced by recycling the MCP treatment liquid, and the MCP was reduced in a state close to the theoretical decrease curve of the MCP by treating the liquid at 120 ° C.
[0046]
In this method, the target value can be attained in three or more times after performing the recycle manufacturing, although the MCP concentration is not more than the conventionally targeted MCP concentration of 1 ppm or less. Manufacturing is possible.
[0047]
In the experiment, the reaction temperature was 120 ° C., but theoretically the reaction can be completed if the temperature is higher than the boiling point of the hydrochloric acid decomposed liquid (around 106 ° C.).
[0048]
Hereinafter, the usefulness of this patent is shown in Examples.
[0049]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiment 1
A glass-lined 10,000 liter capacity canister (jacket type, heating and cooling can be performed indirectly), 2,500 kg of defatted soybeans, 35% hydrochloric acid, 1,500 liters of amino acid produced by the same method as last time 2,500 liters of the liquid (MCP, 10 ppb) was mixed and decomposed at 106 ° C. (boiling point rise) for 40 hours.
[0050]
After cooling the decomposed liquid, 2,550 liters of 24% caustic soda was added to neutralize the solution, and the pH was adjusted to 8.12 by adding 24% caustic soda.
[0051]
Here, heating is performed at 1.2 atm (temperature of 120 ° C.) for 60 minutes.
[0052]
After the heat treatment, cooling water is circulated through the jacket, and when the product temperature reaches 60 ° C., the pH is neutralized with 35% hydrochloric acid to 5.1.
[0053]
The decomposed liquid was filtered with a filter press to obtain 9,700 liters including the cleaning liquid.
[0054]
This solution is again put into a decomposition vessel, and 15% of the solution amount is concentrated under reduced pressure under vacuum.
[0055]
The decomposition odor was small, the taste was good, and the MCP was 10 ppb (detection limit: 10 ppb) or less.
[0056]
Embodiment 2
100 liters of the MCP-untreated acid decomposition solution of Example 1 was placed in a 200-liter capacity pressure-resistant decomposition vessel (made of glass lining, jacket type heating and cooling system), and the pH was adjusted to 7.5 to 7.5 with caustic soda. After heating at 120 ° C. for 30 minutes to 2 hours to obtain an alkalinity of 8.43, the pH was made slightly acidic with hydrochloric acid after the reaction was completed.
[0057]
The filtrate was subjected to MCP analysis and the TN and L-glutamic acid contents (enzymatic method) were measured.
[0058]
[Table 3]
Figure 2004329119
[0059]
According to the results, under the conditions of Experiment Nos. And 5, the scent was good, but the taste was slightly light.
[0060]
L-glutamic acid was reduced, which was presumed to be a phenomenon due to racemization of glutamic acid caused by heating under strong alkaline conditions.
[0061]
But there is no problem in quality.
[0062]
【The invention's effect】
Among the organochlorine compounds that are microbial mutagenic substances contained in the acid digestion solution of proteins, highly toxic DCPs (Di-chloropropanol) have a low boiling point and can be relatively easily removed by a concentration operation. Degradable under mild alkaline conditions.
[0063]
However, 3-MCP requires removal under fairly strong alkaline processing conditions.
[0064]
The present patent has made it possible to completely remove 3-MCP, which is a microbial mutagenic substance, by performing a reaction in a short time in a low pH region as compared with a method generally used at present.
[0065]
According to the method of the present invention, the acid decomposition solution is less damaged by the alkali treatment, and a better quality amino acid solution can be produced.
[0066]
Seasonings produced by acid digestion of proteins contain many amino acids, which have a strong taste and body taste compared to soy sauce, have less browning, and have good decolorization. It is a processed seasoning material that is superior in taste and taste as compared to soy sauce, beef extract, etc., for example, it can produce a light mouth type amino acid solution.
[0067]
Proteolytic amino acid solutions, which are such excellent seasonings, tend to be hesitant to use due to the MCP problem, but can be industrialized using the method described in this patent, and in addition to their usefulness, Further expansion of the range of use is expected.

Claims (1)

下記に示す「工程1」と「工程2」を無限循環することにより微生物変異原性物質を含有しない酸加水分解調味料を生産する方法。
「工程1」タンパク質を塩酸で加水分解する原料組成として「工程2」の処理液を分解時の全窒素に対して20%以上混合して塩酸分解する。
「工程2」「工程1」の液をPHが7.5以上8.5以下として沸点以上の温度で、30分以上2時間以内の時間、加熱することにより塩酸分解で生成した微生物変異原性物質を完全に除去する。
A method for producing an acid-hydrolyzed seasoning containing no microbial mutagenic substance by infinitely circulating the following "step 1" and "step 2".
"Step 1" As a raw material composition for hydrolyzing proteins with hydrochloric acid, the treatment liquid of "step 2" is mixed with 20% or more of the total nitrogen at the time of decomposition to decompose with hydrochloric acid.
Microbial mutagenicity generated by hydrolysis of hydrochloric acid by heating the solution of “Step 2” and “Step 1” at a temperature not lower than the boiling point and at a temperature not lower than the boiling point for not less than 30 minutes and not more than 2 hours. Remove material completely.
JP2003129964A 2003-05-08 2003-05-08 Acid-hydrolyzed seasoning free from microbial mutagen Pending JP2004329119A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003129964A JP2004329119A (en) 2003-05-08 2003-05-08 Acid-hydrolyzed seasoning free from microbial mutagen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003129964A JP2004329119A (en) 2003-05-08 2003-05-08 Acid-hydrolyzed seasoning free from microbial mutagen

Publications (1)

Publication Number Publication Date
JP2004329119A true JP2004329119A (en) 2004-11-25

Family

ID=33505622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003129964A Pending JP2004329119A (en) 2003-05-08 2003-05-08 Acid-hydrolyzed seasoning free from microbial mutagen

Country Status (1)

Country Link
JP (1) JP2004329119A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009297027A (en) * 2008-06-13 2009-12-24 Maeil Foods Co Ltd Method for producing natural kokumi seasoning, natural kokumi seasoning produced thereby and use thereof
WO2015093063A1 (en) * 2013-12-17 2015-06-25 福井ビオテック株式会社 Method for producing alcohol-free liquid seasoning
US10913208B2 (en) 2015-12-18 2021-02-09 Hewlett-Packard Development Company, L.P. Extraction of digitally printed build material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009297027A (en) * 2008-06-13 2009-12-24 Maeil Foods Co Ltd Method for producing natural kokumi seasoning, natural kokumi seasoning produced thereby and use thereof
WO2015093063A1 (en) * 2013-12-17 2015-06-25 福井ビオテック株式会社 Method for producing alcohol-free liquid seasoning
JP2015116135A (en) * 2013-12-17 2015-06-25 福井ビオテック株式会社 Method for producing alcohol-free liquid seasoning
US10913208B2 (en) 2015-12-18 2021-02-09 Hewlett-Packard Development Company, L.P. Extraction of digitally printed build material

Similar Documents

Publication Publication Date Title
CN107400690B (en) Rice protein preparation method
JPH0556753A (en) Method for preparing plant protein hydrolyzed using hydrochloric acid gas and product obtained by said method
JP2004329119A (en) Acid-hydrolyzed seasoning free from microbial mutagen
JP4227984B2 (en) Composition for improving flavor and taste of food
JP3590225B2 (en) Seasoning manufacturing method
JP3720324B2 (en) Method for producing mild water-soluble collagen
JP5829844B2 (en) Method for producing water-soluble elastin peptide
TWI230038B (en) Method for producing soy sauce
JPH0347051A (en) Preparation of raw solution of seasoning
JP2652763B2 (en) Production method of vegetable protein hydrolyzed seasoning liquid
JP2696642B2 (en) Production method of vegetable protein hydrolyzed seasoning liquid
KR19980075193A (en) Method for preparing acid-decomposed soy sauce with minimum content of 3-chloro-1,2-propanediol (MCPD) in acid-decomposed soy sauce
JP3415154B2 (en) Method for producing low chromium protein hydrolyzate
JPH06125734A (en) Production of protein seasoning solution
JPH11127812A (en) Production of seasoning
TW201740815A (en) Method for preparing rice protein
JP2003189812A (en) New biological material and method for producing the same
JP2002281935A (en) Shark cartilage extract and method for producing the same
JPS60110262A (en) Animal seasoning extract and its preparation
KR100420115B1 (en) Method for preparing extract of yeast using beer yeast
JP3217909B2 (en) Method for producing hydrolyzed seasonings
TWI236346B (en) Method for manufacturing proteolysis seasoning
KR0162065B1 (en) A process for preparing good flavored yeast extract
JPH02135058A (en) Method for manufacturing an improved protein hydrolysate
KR940002938B1 (en) Process for refining for proteins of vegetable