JP3217906U - Charging device provided with thermoelectric temperature difference unit - Google Patents

Charging device provided with thermoelectric temperature difference unit Download PDF

Info

Publication number
JP3217906U
JP3217906U JP2018002428U JP2018002428U JP3217906U JP 3217906 U JP3217906 U JP 3217906U JP 2018002428 U JP2018002428 U JP 2018002428U JP 2018002428 U JP2018002428 U JP 2018002428U JP 3217906 U JP3217906 U JP 3217906U
Authority
JP
Japan
Prior art keywords
temperature difference
battery
difference unit
voltage
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018002428U
Other languages
Japanese (ja)
Inventor
立暉 程
立暉 程
Original Assignee
立暉 程
立暉 程
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 立暉 程, 立暉 程 filed Critical 立暉 程
Priority to JP2018002428U priority Critical patent/JP3217906U/en
Application granted granted Critical
Publication of JP3217906U publication Critical patent/JP3217906U/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

【課題】電池の充電効率の向上と安全性の確保を達成する、熱電温度差ユニットを備える充電装置を提供する。【解決手段】充電装置は、電池11と熱電温度差ユニット12とを含む少なくとも一つの電池モジュール10を含み、熱電温度差ユニットの第1面121が電池の表面114に接触するように電池が熱電温度差ユニットに設置され、熱電温度差ユニットの両電源入力端123が給電電圧を受け取った時に、熱電温度差ユニットの第1面121と第2面122との間に温度差があり、電池状況により電池を冷却または昇温させることで、充電効率を向上するとともに電池の加熱を防止する。【選択図】図2A charging device including a thermoelectric temperature difference unit that achieves improvement of battery charging efficiency and ensuring safety is provided. The charging device includes at least one battery module (10) including a battery (11) and a thermoelectric temperature difference unit (12), and the battery is thermoelectrically connected so that a first surface (121) of the thermoelectric temperature difference unit is in contact with a surface (114) of the battery. There is a temperature difference between the first surface 121 and the second surface 122 of the thermoelectric temperature difference unit when the power supply input terminals 123 of the thermoelectric temperature difference unit receive the power supply voltage and are installed in the temperature difference unit. By cooling or raising the temperature of the battery, charging efficiency is improved and heating of the battery is prevented. [Selection] Figure 2

Description

充電装置に関して、特に熱電温度差ユニットを備える充電装置に関する。   In particular, the present invention relates to a charging device including a thermoelectric temperature difference unit.

環境保護及び省エネは近年、科学技術発展の主な傾向の一つであるので、何回も繰り返して充放電可能な充電電池は、乾電池の規格を満たす充電電池、充電して使用可能な剃刀、集塵機などの小型のものから、電動バイク、電気自動車等の大型のものまで幅広く各種類の生活及び工業分野に用いられ、一般の消費者の使用習慣に合うとともにこの種類の製品の使用便利性を向上させるために、充電電池の充電効率及びセキュリティがこの種類の充電製品に同時に配慮・向上される重要な特徴である。どの種類の材料で作成された充電電池であっても、その適当に作動する電池温度範囲があり、電池温度が当該温度範囲より高いか低くなる場合、いずれも当該充電電池の充放電作動によくない。   In recent years, environmental protection and energy saving are one of the main trends in the development of science and technology, so rechargeable batteries that can be repeatedly charged and discharged are rechargeable batteries that meet dry battery standards, Widely used in various types of daily life and industrial fields, from small ones such as dust collectors to large ones such as electric motorcycles and electric cars. In order to improve, the charging efficiency and security of the rechargeable battery are important features that are considered and improved at the same time for this kind of charging products. Rechargeable batteries made of any kind of material have a battery temperature range that works properly, and if the battery temperature is higher or lower than the temperature range, both are good for charge / discharge operation of the rechargeable battery. Absent.

例を挙げると、充電過程において当然熱エネルギーの放出を伴っているが、充電速度が速ければ、充電電流が大きくなり、充電電池には大量の熱エネルギーが生じて電池温度が上昇するようになる。発生された熱エネルギーはタイムリーに排除されない場合、充電電池の充電時の温度は耐えずに上昇して過熱ほどになり、電池が損壊しひいては爆裂で人に傷付ける危険がある。従来の技術の放熱方式はファンにより電池周囲の空気を流動駆動し、空気流動によって熱伝導方式で電池周囲の熱エネルギーを排除することが普通である。しかし、空気の熱伝導能力に限りがあり、速やかに電池の温度を冷却できないので、充電電流が大きい場合、なお過熱が発生しがちである。一方、当該充電電池は温度が当該適当に作動する環境温度範囲より遥かに低い環境に配置された場合、充電電池における電解液が凝結し、さらに充電電池の充電効率が大幅に低減し、充電電池の貯蔵可能な電力容量が大幅に低減するようになる。   For example, the charging process naturally involves the release of thermal energy, but if the charging speed is high, the charging current increases, and the battery temperature rises due to a large amount of thermal energy generated in the charging battery. . If the generated thermal energy is not eliminated in a timely manner, the temperature at which the rechargeable battery is charged rises unbearably and becomes overheated, and there is a risk that the battery will be damaged and may be damaged by explosion. In the conventional heat dissipation method, the air around the battery is flow-driven by a fan, and the heat energy around the battery is usually eliminated by the air flow. However, since the heat transfer capability of air is limited and the temperature of the battery cannot be quickly cooled, overheating tends to occur when the charging current is large. On the other hand, when the rechargeable battery is placed in an environment where the temperature is much lower than the proper operating environment temperature range, the electrolyte in the rechargeable battery condenses, and the charge efficiency of the rechargeable battery is greatly reduced. The storable power capacity is greatly reduced.

以上のように、充電電池が効率よく充電できるとともに使用安全を確保して過熱を回避するには、充電電池の使用環境は環境温度の制限を受ける。故に、従来の充電電池をさらに改良しなければならない。   As described above, in order to ensure that the rechargeable battery can be charged efficiently and to ensure safety in use and avoid overheating, the use environment of the rechargeable battery is limited by the environmental temperature. Therefore, the conventional rechargeable battery must be further improved.

充電電池がいずれもその適当に作動する温度範囲を備えることに鑑みて、電池温度が当該温度範囲より低いか高くなる場合、いずれも当該充電電池の充放電作動によくなく、ひいては危険が発生する恐れがある。本考案は充電電圧を受け取って充電する正端子及び陰端子を備える電池と、熱電温度差ユニットとを含む少なくとも一つの電池モジュールを含む熱電温度差ユニットを備える充電装置を提供する。当該熱電温度差ユニットは対向する第1面及び第2面を備えるとともに、両電源入力端を備え、当該電池は、当該熱電温度差ユニットの第1面が当該電池の表面に接触するように、当該熱電温度差ユニットの第1面上に設置される。当該熱電温度差ユニットの両電源入力端は給電電圧を受け取った時、当該熱電温度差ユニットの当該第1面と当該第2面との間に温度差がある。   In view of the fact that any rechargeable battery has a temperature range in which the rechargeable battery operates properly, if the battery temperature is lower or higher than the temperature range, any rechargeable battery is not good for the charge / discharge operation, and thus a danger occurs. There is a fear. The present invention provides a charging device including a thermoelectric temperature difference unit including at least one battery module including a battery including a positive terminal and a negative terminal for receiving and charging a charging voltage and a thermoelectric temperature difference unit. The thermoelectric temperature difference unit includes a first surface and a second surface facing each other, and both power input ends, and the battery has a first surface of the thermoelectric temperature difference unit in contact with the surface of the battery. It is installed on the first surface of the thermoelectric temperature difference unit. When both power input terminals of the thermoelectric temperature difference unit receive a supply voltage, there is a temperature difference between the first surface and the second surface of the thermoelectric temperature difference unit.

当該熱電温度差ユニットは熱電クーラーであり、より好ましく、半導体熱電冷却チップである。熱電クーラーは異なる2種類の熱電材料で作成され、熱電効果原理により、電圧が熱電クーラーの異なる熱電材料の両端に印加されている時、当該両端に温度差が生じている。当該熱電クーラーの両端に提供された電圧の極性が反対になる時、当該両端の温度差も反対になる。即ち、当該給電電圧を提供することで、当該熱電温度差ユニットは当該第1面の温度を当該第2面の温度より低いか高くする。これにより、異なる環境状況に対して電池の充電効率及びセキュリティを確保するように、異なる電池温度及び電池の使用状況に基づき、当該電池に降温または昇温させることができる。   The thermoelectric temperature difference unit is a thermoelectric cooler, more preferably a semiconductor thermoelectric cooling chip. The thermoelectric cooler is made of two different types of thermoelectric materials, and due to the thermoelectric effect principle, when a voltage is applied to both ends of different thermoelectric materials of the thermoelectric cooler, there is a temperature difference at both ends. When the polarity of the voltage provided across the thermoelectric cooler is reversed, the temperature difference across the ends is also reversed. That is, by providing the power supply voltage, the thermoelectric temperature difference unit makes the temperature of the first surface lower or higher than the temperature of the second surface. Thereby, the temperature of the battery can be lowered or raised based on different battery temperatures and battery usage conditions so as to ensure battery charging efficiency and security for different environmental conditions.

本考案に係る熱電温度差ユニットを備える充電装置の外観斜視模式図。The external appearance perspective schematic diagram of a charging device provided with the thermoelectric temperature difference unit which concerns on this invention. 本考案に係る熱電温度差ユニットを備える充電装置の分離斜視模式図。The isolation | separation perspective schematic diagram of a charging device provided with the thermoelectric temperature difference unit which concerns on this invention. 本考案に係る熱電温度差ユニットを備える充電装置の回路ブロック模式図。The circuit block schematic diagram of a charging device provided with the thermoelectric temperature difference unit which concerns on this invention. 本考案に係る熱電温度差ユニットを備える充電装置の第5の好適な実施例の透視斜視模式図。FIG. 7 is a perspective schematic view of a fifth preferred embodiment of a charging apparatus including a thermoelectric temperature difference unit according to the present invention. 本考案に係る熱電温度差ユニットを備える充電装置第5の好適な実施例の一部のモジュールの斜視模式図。The perspective view schematic diagram of a part of module of a charging device 5th Example provided with the thermoelectric temperature difference unit which concerns on this invention.

図1及び図2に示すように、本考案は熱電温度差ユニットを備える充電装置であり、少なくとも一つの電池モジュール10を含み、当該少なくとも一つの電池モジュール10はそれぞれ電池11と熱電温度差ユニット12とを含み、当該少なくとも一つの電池11はそれぞれ正端子111と陰端子112とを備え、当該正端子111と当該陰端子112は充電電圧を受け取って充電するためのものである。当該少なくとも一つの熱電温度差ユニット12はぞれぞれ対向する第1面121と第2面122とを備え、かつ両電源入力端123を備えている。その中に、当該電池11は、当該熱電温度差ユニット12の第1面121が当該電池11の表面に接触するように、当該熱電温度差ユニット12の第1面121上に設置され、該熱電温度差ユニット12の両電源入力端123が給電電圧を受け取っている時に、当該熱電温度差ユニット12の第1面121と当該第2面122との間に温度差が生じている。   As shown in FIGS. 1 and 2, the present invention is a charging device including a thermoelectric temperature difference unit, and includes at least one battery module 10. The at least one battery module 10 includes a battery 11 and a thermoelectric temperature difference unit 12, respectively. The at least one battery 11 includes a positive terminal 111 and a negative terminal 112, respectively. The positive terminal 111 and the negative terminal 112 are for receiving and charging a charging voltage. The at least one thermoelectric temperature difference unit 12 includes a first surface 121 and a second surface 122 that face each other, and includes both power input ends 123. In the battery 11, the battery 11 is installed on the first surface 121 of the thermoelectric temperature difference unit 12 such that the first surface 121 of the thermoelectric temperature difference unit 12 contacts the surface of the battery 11. When both power supply input terminals 123 of the temperature difference unit 12 receive a power supply voltage, a temperature difference is generated between the first surface 121 and the second surface 122 of the thermoelectric temperature difference unit 12.

本好適な実施例において、好ましくは、当該熱電温度差ユニット12は熱電クーラーであり、より好ましくは、半導体熱電冷却チップである。熱電クーラーは異なる2種類の熱電材料で作成され、熱電効果原理にもとづき、電圧が熱電クーラーの異なる熱電材料の両端に印加されている時に、当該両端には温度差が生じている。当該熱電クーラーの両端に提供された電圧の極性は反対になる場合、当該両端の温度差も反対になっている。即ち、極性の反対する給電電圧を提供することで、当該熱電温度差ユニット12は当該第1面121の温度を当該第2面122の温度より低いか高くすることができる。これにより、異なる環境状況に対して電池11的充電効率及びセキュリティを確保するように、異なる電池温度及び当該電池11の使用状況に基づき、当該電池11を降温または昇温させることができる。また、熱伝導速力をさらに増加するように、当該熱電温度差ユニット12の第1面121と当該電池11の表面との間に熱伝導性ペースト層を塗布することが好ましい。   In this preferred embodiment, preferably the thermoelectric temperature difference unit 12 is a thermoelectric cooler, more preferably a semiconductor thermoelectric cooling chip. A thermoelectric cooler is made of two different types of thermoelectric materials. Based on the thermoelectric effect principle, when a voltage is applied to both ends of different thermoelectric materials of the thermoelectric cooler, a temperature difference occurs between the two ends. If the polarity of the voltage provided across the thermoelectric cooler is reversed, the temperature difference across the ends is also reversed. That is, the thermoelectric temperature difference unit 12 can make the temperature of the first surface 121 lower or higher than the temperature of the second surface 122 by providing power supply voltages having opposite polarities. Thereby, the battery 11 can be lowered or raised based on different battery temperatures and usage conditions of the battery 11 so as to ensure the charging efficiency and security of the battery 11 for different environmental conditions. Moreover, it is preferable to apply a heat conductive paste layer between the first surface 121 of the thermoelectric temperature difference unit 12 and the surface of the battery 11 so as to further increase the heat conduction speed.

本考案の第1好適な実施例において、当該給電電圧は第1電圧であり、当該熱電温度差ユニット12は当該第1面121の温度を当該第2面122の温度より低くする。当該電池11の表面が当該熱電温度差ユニット12の第1面121上に貼設され、かつ当該熱電温度差ユニット12の作用により、当該第1面121の温度が当該第2面122の温度より低く保持され、当該熱電温度差ユニット12は当該電池11に発生された熱エネルギーを当該第1面121を介して当該第2面122に伝導して放熱させる。これにより、温度差を維持するとともに直接接触方式で熱伝導作用を果たすことで、冷却温度が環境温度より低くなり、効果的に冷却速力を向上させ、当該電池11はさらにより大きい電流で充電され、充電効率が向上されるとともに充電中電池11の温度が高すぎることで過熱または爆裂が発生する危険を防ぐことができる。   In the first preferred embodiment of the present invention, the power supply voltage is the first voltage, and the thermoelectric temperature difference unit 12 makes the temperature of the first surface 121 lower than the temperature of the second surface 122. The surface of the battery 11 is affixed on the first surface 121 of the thermoelectric temperature difference unit 12, and the temperature of the first surface 121 is greater than the temperature of the second surface 122 due to the action of the thermoelectric temperature difference unit 12. The thermoelectric temperature difference unit 12 is held low, and the thermal energy generated in the battery 11 is conducted to the second surface 122 through the first surface 121 to dissipate heat. As a result, the temperature difference is maintained and the heat conduction action is performed in a direct contact manner, so that the cooling temperature is lower than the environmental temperature, effectively improving the cooling speed, and the battery 11 is charged with a larger current. In addition, the charging efficiency is improved and the risk of overheating or explosion due to the temperature of the battery 11 being charged being too high can be prevented.

本考案の第2好適な実施例において、当該給電電圧は第2電圧であり、また、当該第2電圧は当該第1電圧と極性が反対になるので、熱電効果原理により、当該熱電温度差ユニット12は当該第1面121の温度を当該第2面122の温度より高くする。即ち、当該電池11は温度が低すぎ環境にある時に、当該熱電温度差ユニット12の両電源入力端123に当該第2電圧を提供する限り、当該熱電温度差ユニット12は当該第1面121の温度を当該第2面122の温度より高く維持することができ、かつ当該電池11の表面が当該熱電温度差ユニット12の第1面121上に貼設されているので、当該電池11の温度を当該環境温度より高く維持することで、電池温度が低すぎることにより充電効率がよくないことまたは電池11の貯蔵可能な電力容量が低減することを回避する目的を達成する。   In the second preferred embodiment of the present invention, the power supply voltage is the second voltage, and the second voltage is opposite in polarity to the first voltage, so that the thermoelectric temperature difference unit is based on the thermoelectric effect principle. 12 makes the temperature of the first surface 121 higher than the temperature of the second surface 122. That is, when the battery 11 is in an environment where the temperature is too low, as long as the second voltage is provided to the both power input terminals 123 of the thermoelectric temperature difference unit 12, the thermoelectric temperature difference unit 12 is connected to the first surface 121. Since the temperature can be maintained higher than the temperature of the second surface 122 and the surface of the battery 11 is pasted on the first surface 121 of the thermoelectric temperature difference unit 12, the temperature of the battery 11 is By maintaining the temperature higher than the environmental temperature, the object of avoiding that the battery temperature is too low and the charging efficiency is not good or the storable power capacity of the battery 11 is reduced is achieved.

引き続き図2に示すように、本考案の第3の好適な実施例において、好ましくは、当該少なくとも一つの熱電温度差ユニット12の形状が当該電池11の外形に合わせ、大きい面積で直接に接触する方式で、平均且つ効果的な熱エネルギーの伝導効果を達成する。例を挙げると、当該電池11は柱状の電池であり、対向する両端部113と環状の側面114とを備え、当該両端部113はそれぞれ当該環状の側面114の対向する両端に設置され、かつ当該電池11の正端子111及び当該陰端子112はそれぞれ当該電池11の両端部113に設置されている。従って、当該熱電温度差ユニット12は当該電池11を周回して中空環状の柱体に形成され、その中に、当該第1面121が内側に向かうが当該第2面122が外側に向かうことで、当該熱電温度差ユニット12が当該第1面121で当該柱状の電池11の環状の側面114に直接接触するとともに、当該熱電温度差ユニット12が当該給電電圧を受け取っているときに、当該第1面121の温度を当該第2面122の温度より低いか高くし、また当該電池11の当該環状の側面114が当該第1面121に接触して熱伝導を行うので、平均に当該柱状の電池11の内部に降温または昇温の役割を果たす。   As shown in FIG. 2, in the third preferred embodiment of the present invention, preferably, the shape of the at least one thermoelectric temperature difference unit 12 matches the outer shape of the battery 11 and directly contacts with a large area. In a manner, an average and effective thermal energy conduction effect is achieved. For example, the battery 11 is a columnar battery, and includes both opposite end portions 113 and annular side surfaces 114, the both end portions 113 are respectively installed at opposite ends of the annular side surface 114, and The positive terminal 111 and the negative terminal 112 of the battery 11 are respectively installed at both end portions 113 of the battery 11. Therefore, the thermoelectric temperature difference unit 12 circulates around the battery 11 and is formed into a hollow annular column, in which the first surface 121 is directed inward but the second surface 122 is directed outward. When the thermoelectric temperature difference unit 12 is in direct contact with the annular side surface 114 of the columnar battery 11 on the first surface 121 and the thermoelectric temperature difference unit 12 receives the power supply voltage, Since the temperature of the surface 121 is lower or higher than the temperature of the second surface 122 and the annular side surface 114 of the battery 11 is in contact with the first surface 121 and conducts heat, the columnar battery on average 11 serves to lower the temperature or raise the temperature.

図3に示すように、本考案の第4の好適な実施例において、外部電圧を受け取るように外部電源(図示しない)が電気的に接続される電源モジュール21をさらに含み、当該電源モジュール21は当該外部電圧を転換することで当該充電電圧及び当該給電電圧を生じする。従って、当該電池11の正端子111及び当該負極は当該充電電圧を受け取るとともに充電を行うようにそれぞれ当該電源モジュール21に電気的に接続されている。当該熱電温度差ユニット12の当該両電源入力端123は当該給電電圧を受け取るように当該電源モジュール21にそれぞれ電気的に接続されている。   As shown in FIG. 3, in a fourth preferred embodiment of the present invention, the power supply module 21 further includes a power supply module 21 to which an external power supply (not shown) is electrically connected so as to receive an external voltage. The charging voltage and the feeding voltage are generated by converting the external voltage. Therefore, the positive terminal 111 and the negative electrode of the battery 11 are electrically connected to the power supply module 21 so as to receive the charging voltage and perform charging. The both power input terminals 123 of the thermoelectric temperature difference unit 12 are electrically connected to the power supply module 21 so as to receive the power supply voltage.

図4及び図5に示すように、好ましくは、当該少なくとも一つの電池モジュール10の数量が複数であり、これらの電池モジュール10が行列配置され、且つ、各当該電池モジュール10の電池11の正端子111がそれぞれ共同で第1方向Aに向かっている。   As shown in FIG. 4 and FIG. 5, the number of the at least one battery module 10 is preferably plural, the battery modules 10 are arranged in a matrix, and the positive terminal of the battery 11 of each battery module 10 111 are jointly directed in the first direction A.

本考案の第5の好適な実施例において、ハウジング22をさらに含み、当該ハウジング22は収容空間220を備え、その中に、当該少なくとも一つの電池モジュール10及び当該電源モジュール21が当該収容空間220の中に設置されている。   In the fifth preferred embodiment of the present invention, the housing 22 further includes a housing space 220, in which the at least one battery module 10 and the power supply module 21 are included in the housing space 220. It is installed inside.

図5に示すように、本好適な実施例において、好ましくは、正極導電シート23と負極導電シート24とをさらに含み、当該正極導電シート23が各当該電池11の正端子111に電気的に接続されるが、当該負極導電シート24が各当該電池11の陰端子112電気的に接続されるとともに、当該正極導電シート23及び当該負極導電シート24が当該充電電圧を受け取るように当該電源モジュール21に電気的に接続されていることで、各当該電池モジュール10の電池11がそれぞれ当該正極導電シート23及び当該負極導電シート24を介して当該電源モジュール21に電気的に接続され、当該充電電圧を受け取るようになる。   As shown in FIG. 5, in the present preferred embodiment, it preferably further includes a positive electrode conductive sheet 23 and a negative electrode conductive sheet 24, and the positive electrode conductive sheet 23 is electrically connected to the positive terminal 111 of each battery 11. However, the negative electrode conductive sheet 24 is electrically connected to the negative terminal 112 of each battery 11, and the positive electrode conductive sheet 23 and the negative electrode conductive sheet 24 are connected to the power supply module 21 so as to receive the charging voltage. By being electrically connected, the battery 11 of each battery module 10 is electrically connected to the power supply module 21 via the positive electrode conductive sheet 23 and the negative electrode conductive sheet 24, and receives the charging voltage. It becomes like this.

これにより、複数の電池モジュール11を整合することで、大容量を有する充電装置を形成して、ユーザに複数倍の電力容量を提供することができるが、各当該電池モジュール10の熱電温度差ユニット12がそれぞれ当該電池11に降温または加熱させることで、それぞれ各当該電池モジュール10における電池11の個別の充電効率及びセキュリティを確保するので、当該充電装置全体の充電効率及びセキュリティが向上される。   Thereby, by aligning the plurality of battery modules 11, it is possible to form a charging device having a large capacity and provide the user with a plurality of times the power capacity, but the thermoelectric temperature difference unit of each of the battery modules 10 When the temperature of the battery 11 is lowered or heated by the battery 12, the charging efficiency and security of the battery 11 in each battery module 10 are ensured, so that the charging efficiency and security of the entire charging device are improved.

本好適な実施例において、好ましくは、ファン装置25をさらに含み、且つ駆動電圧を生じるように当該電源モジュール21が当該外部電圧を転換する。当該ハウジング22には、ファン開口221と通風口222とがさらに形成され、当該ファン開口221が当該収容空間220に連通している。当該ファン装置25は当該ファン開口221の中に設置されるとともに、当該駆動電圧を受け取るために、当該電源モジュール21に電気的に接続されている。   In this preferred embodiment, the power supply module 21 preferably further includes a fan device 25 and converts the external voltage to generate a drive voltage. The housing 22 is further formed with a fan opening 221 and a ventilation hole 222, and the fan opening 221 communicates with the housing space 220. The fan device 25 is installed in the fan opening 221 and is electrically connected to the power supply module 21 to receive the drive voltage.

本考案の第6の好適な実施例において、当該電源モジュール21は切替スイッチ211をさらに含む。当該切替スイッチ211は第1状態にある場合、即ち、切替スイッチ211が第1レンジに切り替えられた時に、当該電源モジュール21に発生された当該給電電圧が当該第1電圧であり、各当該熱電温度差ユニット12が当該第1面121の温度を当該第2面122の温度より低くする。当該切替スイッチ211が第2状態にある時に、即ち、当該切替スイッチ211が第2レンジに切り替えられた時、当該電源モジュール21に発生された当該給電電圧が当該第2電圧であり、各当該熱電温度差ユニット12が当該第1面121の温度を当該第2面122の温度より高くする。その中に、当該第2電圧は当該第1電圧と極性が反対する。   In the sixth preferred embodiment of the present invention, the power supply module 21 further includes a changeover switch 211. When the changeover switch 211 is in the first state, that is, when the changeover switch 211 is switched to the first range, the power supply voltage generated in the power supply module 21 is the first voltage, and each thermoelectric temperature. The difference unit 12 makes the temperature of the first surface 121 lower than the temperature of the second surface 122. When the changeover switch 211 is in the second state, that is, when the changeover switch 211 is switched to the second range, the power supply voltage generated in the power supply module 21 is the second voltage, and each thermoelectric The temperature difference unit 12 makes the temperature of the first surface 121 higher than the temperature of the second surface 122. Among them, the second voltage is opposite in polarity to the first voltage.

これにより、ユーザは当該充電装置が存在する環境温度の状況に基づき、各当該電池11に降温冷却または昇温させることができる。当該充電装置が比較的高温の環境にあり、各当該電池11が比較的大きな電力による充電中、温度が高すぎるようになる可能性があり、これで冷却させる必要がある場合、使用者は当該切替スイッチ211を当該第1レンジに切替えることで、当該電源モジュール21に発生された当該給電電圧が当該第1電圧になり、従って、各該熱電温度差ユニット12が当該第1面121の温度を当該第2面122の温度より低くすることで、各当該電池11に発生された熱エネルギーが当該熱電温度差ユニット12の第1面121を介して当該第2面122に伝導され、放熱降温が図られる。   Thereby, the user can cool or raise the temperature of each battery 11 based on the state of the environmental temperature where the charging device exists. If the charging device is in a relatively high temperature environment and each of the batteries 11 may become too hot during charging with relatively large power, and the user needs to cool it, By switching the changeover switch 211 to the first range, the power supply voltage generated in the power supply module 21 becomes the first voltage. Accordingly, each thermoelectric temperature difference unit 12 sets the temperature of the first surface 121. By making the temperature lower than the temperature of the second surface 122, the thermal energy generated in each battery 11 is conducted to the second surface 122 via the first surface 121 of the thermoelectric temperature difference unit 12, and the heat radiation temperature drop is reduced. Figured.

さらに言えば、当該収容空間220における各当該電池11に発生された熱エネルギーが空気対流帯を経て当該充電装置を出るように、当該ファン装置25は当該起動電圧を同時に受け取って作動することで当該ハウジング22の当該収容空間220における空気と当該ハウジング22外の空気に加速流動を発生させることができるので、各当該熱電温度差ユニット12による各当該電池11に対する降温効率がさらに向上される。   Furthermore, the fan device 25 is operated by receiving the starting voltage at the same time so that the heat energy generated in each battery 11 in the accommodation space 220 exits the charging device through an air convection zone. Since accelerated flow can be generated in the air in the housing space 220 of the housing 22 and the air outside the housing 22, the temperature lowering efficiency of the batteries 11 by the thermoelectric temperature difference units 12 is further improved.

逆には、当該充電装置は環境温度が各当該電池11の適当に作動する温度より低い環境にある時、使用者は当該切替スイッチ211を当該第2レンジに切り替えて、当該電源モジュール21に発生された当該給電電圧を当該第2電圧にするだけで、この時、各当該熱電温度差ユニット12が当該第1面121の温度を当該第2面122の温度より高くすることで、それぞれ各当該電池11を加熱するので、各当該電池11の充電効率及び蓄電容量が向上される。   Conversely, when the charging device is in an environment where the environmental temperature is lower than the temperature at which each battery 11 operates properly, the user switches the changeover switch 211 to the second range to generate the power supply module 21. In this case, each of the thermoelectric temperature difference units 12 makes the temperature of the first surface 121 higher than the temperature of the second surface 122, so that the power supply voltage is changed to the second voltage. Since the battery 11 is heated, the charging efficiency and the storage capacity of each battery 11 are improved.

上記は本発明の好適な実施例だけであり、本発明にいかなる形式上に制限するわけではない。本発明は好適な実施例により上記どおり掲示されているが、それらに限定されるわけではない。いかなる当業者は本発明技術案を脱出しない範囲において、上記に記載の技術内容を利用して変更または修飾をして同等変化された同等の実施例にすることができるが、本発明の技術案の内容から離れていない限り、本発明の技術の主旨に基づき上記実施例に行ったいかなる簡単な改正、同等変化、修飾はいずれも本発明の技術案の範囲に該当している。   The above are only preferred embodiments of the present invention and are not limited to any form of the present invention. Although the present invention has been posted as described above by means of preferred embodiments, it is not limited thereto. Any person skilled in the art can change or modify the technical contents described above by using the technical contents described above without departing from the technical solution of the present invention, so that equivalently modified embodiments can be obtained. As long as they do not depart from the contents of the above, any simple amendments, equivalent changes, and modifications made to the above embodiments based on the gist of the technology of the present invention fall within the scope of the technical solution of the present invention.

10 電池モジュール
11 電池
111 正端子
112 陰端子
113 端部
114 環状の側面
12 熱電温度差ユニット
121 第1面
122 第2面
123 電源入力端
21 電源モジュール
211 切替スイッチ
22 ハウジング
220 収容空間
221 ファン開口
222 通風口
23 正極導電シート
24 負極導電シート
25 ファン装置
10 Battery module
11 batteries
111 Positive terminal
112 Negative terminal
113 end
114 annular side surface 12 thermoelectric temperature difference unit
121 1st surface 122 2nd surface
123 Power input terminal
21 Power supply module
211 changeover switch 22 housing
220 Housing space 221 Fan opening
222 Ventilator 23 Positive Electrode Conductive Sheet
24 Negative Electrode Conductive Sheet 25 Fan Device

Claims (10)

充電電圧が受け取られる正端子及び陰端子を備える電池と、
対向する第1面及び第2面を備えるとともにそれぞれ両電源入力端を備える熱電温度差ユニットとを、それぞれ含む少なくとも一つの電池モジュールを含む熱電温度差ユニットを備える充電装置であって、
前記電池は、前記熱電温度差ユニットの第1面が前記電池の表面に接触するように、前記熱電温度差ユニットの第1面上に設置され、
前記熱電温度差ユニットの両電源入力端が給電電圧を受け取った時、前記熱電温度差ユニットの第1面と前記第2面との間に温度差があることを特徴とする熱電温度差ユニットを備える充電装置。
A battery having a positive terminal and a negative terminal for receiving a charging voltage;
A charging device comprising a thermoelectric temperature difference unit comprising at least one battery module, each comprising a thermoelectric temperature difference unit comprising a first surface and a second surface facing each other, and each comprising a power supply input terminal,
The battery is installed on the first surface of the thermoelectric temperature difference unit such that the first surface of the thermoelectric temperature difference unit contacts the surface of the battery,
A thermoelectric temperature difference unit having a temperature difference between the first surface and the second surface of the thermoelectric temperature difference unit when both power input terminals of the thermoelectric temperature difference unit receive a supply voltage. A charging device provided.
前記給電電圧が第1電圧である時、前記熱電温度差ユニットの第1面の温度が前記熱電温度差ユニットの第2面の温度より低いことを特徴とする請求項1に記載の熱電温度差ユニットを備える充電装置。   2. The thermoelectric temperature difference according to claim 1, wherein when the power supply voltage is a first voltage, a temperature of the first surface of the thermoelectric temperature difference unit is lower than a temperature of the second surface of the thermoelectric temperature difference unit. A charging device comprising the unit. 前記給電電圧が第2電圧である時、前記熱電温度差ユニットの第1面の温度が前記熱電温度差ユニットの第2面の温度より高く、
前記第2電圧は前記第1電圧と極性が反対することを特徴とする請求項2に記載の熱電温度差ユニットを備える充電装置。
When the power supply voltage is a second voltage, the temperature of the first surface of the thermoelectric temperature difference unit is higher than the temperature of the second surface of the thermoelectric temperature difference unit,
The charging device including a thermoelectric temperature difference unit according to claim 2, wherein the second voltage has a polarity opposite to that of the first voltage.
前記電池は柱状の電池であり、両端部と環状の側面とを含み、前記両端部がそれぞれ前記環状の側面の対向する両端に設置されるとともに、前記正端子と前記陰端子がそれぞれ前記電池の両端部に形成され、
前記熱電温度差ユニットの第1面が前記柱状の電池の環状の側面に貼り付けられることを特徴とする請求項1に記載の熱電温度差ユニットを備える充電装置。
The battery is a columnar battery, and includes both end portions and an annular side surface, the both end portions are respectively installed at opposite ends of the annular side surface, and the positive terminal and the negative terminal are respectively connected to the battery. Formed at both ends,
The charging device including the thermoelectric temperature difference unit according to claim 1, wherein a first surface of the thermoelectric temperature difference unit is attached to an annular side surface of the columnar battery.
外部電圧を受け取るように外部電源に電気的に接続されるとともに前記外部電圧を転換することで前記充電電圧及び前記給電電圧を生じる電源モジュールをさらに含み、
前記電池の正端子及び陰端子は前記充電電圧を受け取るようにそれぞれ電源モジュールに電気的に接続され、
前記熱電温度差ユニットの両電源入力端はそれぞれ前記電源モジュールに電気的に接続されることを特徴とする請求項3に記載の熱電温度差ユニットを備える充電装置。
A power supply module that is electrically connected to an external power source to receive an external voltage and generates the charging voltage and the power supply voltage by converting the external voltage;
A positive terminal and a negative terminal of the battery are each electrically connected to the power supply module to receive the charging voltage,
The charging device having a thermoelectric temperature difference unit according to claim 3, wherein both power input terminals of the thermoelectric temperature difference unit are electrically connected to the power supply module.
前記少なくとも一つの電池モジュールの数量が複数であり、これらの電池モジュールが行列配置されるとともに、これらの電池モジュールの電池の正端子が共同で第1方向に向かい、
正極導電シートは各前記電池モジュールの電池の正端子に電気的に接続され、
負極導電シートは各前記電池モジュールの電池の陰端子に電気的に接続され、
前記正極導電シート及び前記負極導電シートは前記充電電圧を受け取るように前記電源モジュールにさらに電気的に接続されていることを特徴とする請求項5に記載の熱電温度差ユニットを備える充電装置。
The number of the at least one battery module is plural, and these battery modules are arranged in a matrix, and the positive terminals of the batteries of these battery modules are jointly directed in the first direction,
The positive electrode conductive sheet is electrically connected to the positive terminal of the battery of each battery module,
The negative electrode conductive sheet is electrically connected to the negative terminal of the battery of each battery module,
The charging device including a thermoelectric temperature difference unit according to claim 5, wherein the positive electrode conductive sheet and the negative electrode conductive sheet are further electrically connected to the power supply module so as to receive the charging voltage.
収容空間を備えるハウジングをさらに含み、前記電池モジュール及び前記電源モジュールが前記ハウジングの収容空間に設置されていることを特徴とする請求項6に記載の熱電温度差ユニットを備える充電装置。   The charging device including the thermoelectric temperature difference unit according to claim 6, further comprising a housing having a housing space, wherein the battery module and the power supply module are installed in the housing space of the housing. 前記熱電温度差ユニットが半導体熱電冷却チップであることを特徴とする請求項1に記載の熱電温度差ユニットを備える充電装置。   The charging device including the thermoelectric temperature difference unit according to claim 1, wherein the thermoelectric temperature difference unit is a semiconductor thermoelectric cooling chip. 前記ハウジングにファン開口がさらに形成されるとともに前記ファン開口が前記収容空間に連通され、
前記電源モジュールはさらに前記外部電圧を転換して駆動電圧を生じ、
前記ハウジングのファン開口に設置され且つ前記駆動電圧を受け取るように前記電源モジュールに電気的に接続されるファン装置をさらに含むことを特徴とする請求項7に記載の熱電温度差ユニットを備える充電装置。
A fan opening is further formed in the housing and the fan opening is communicated with the housing space.
The power module further converts the external voltage to generate a driving voltage,
The charging device including a thermoelectric temperature difference unit according to claim 7, further comprising a fan device installed in a fan opening of the housing and electrically connected to the power supply module so as to receive the driving voltage. .
前記電源モジュールは切替スイッチを含み、
前記切替スイッチが第1状態にある時に前記電源モジュールに発生された給電電圧が前記第1電圧であり、
前記切替スイッチが第2状態にある時に前記電源モジュールに発生された給電電圧が前記第2電圧であることを特徴とする請求項9に記載の熱電温度差ユニットを備える充電装置。
The power supply module includes a changeover switch,
The power supply voltage generated in the power supply module when the changeover switch is in the first state is the first voltage,
The charging device including a thermoelectric temperature difference unit according to claim 9, wherein a power supply voltage generated in the power supply module when the changeover switch is in the second state is the second voltage.
JP2018002428U 2018-06-28 2018-06-28 Charging device provided with thermoelectric temperature difference unit Active JP3217906U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018002428U JP3217906U (en) 2018-06-28 2018-06-28 Charging device provided with thermoelectric temperature difference unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018002428U JP3217906U (en) 2018-06-28 2018-06-28 Charging device provided with thermoelectric temperature difference unit

Publications (1)

Publication Number Publication Date
JP3217906U true JP3217906U (en) 2018-09-06

Family

ID=63444155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018002428U Active JP3217906U (en) 2018-06-28 2018-06-28 Charging device provided with thermoelectric temperature difference unit

Country Status (1)

Country Link
JP (1) JP3217906U (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111697171A (en) * 2019-03-13 2020-09-22 天津力神电池股份有限公司 Temperature-controlled plug-in type battery module
CN113659646A (en) * 2021-07-07 2021-11-16 金华送变电工程有限公司 Inspection robot

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111697171A (en) * 2019-03-13 2020-09-22 天津力神电池股份有限公司 Temperature-controlled plug-in type battery module
CN111697171B (en) * 2019-03-13 2023-09-22 力神(青岛)新能源有限公司 Temperature-controlled plug-in type battery module
CN113659646A (en) * 2021-07-07 2021-11-16 金华送变电工程有限公司 Inspection robot

Similar Documents

Publication Publication Date Title
KR100658626B1 (en) Secondary battery module
KR100868492B1 (en) Solar cell generating apparatus with peltier circuit
KR101256078B1 (en) Charging appratus
KR100696694B1 (en) Secondary battery module
JPH11354166A (en) Battery temperature controller
CN108886189A (en) Battery pack temperature control, power supply system
JP3217906U (en) Charging device provided with thermoelectric temperature difference unit
CN111463517A (en) Battery pack and floor treatment device having a battery pack
KR102248103B1 (en) Vehicle power module using thermoelectric element
US10873116B2 (en) Charging device having thermoelectric module
CN209329094U (en) A kind of battery radiating subassembly and lithium battery
TWM566912U (en) Charger with thermoelectric temperature difference unit
KR20230039025A (en) Battery assembly with thermal spread and preheating functions and a battery thermal management system including the same
CN208285054U (en) Has the charging unit of thermoelectricity temperature difference unit
CN214203867U (en) Electricity storage equipment, electricity storage device and heat dissipation device
JP3224790U (en) Storage battery and storage battery system
JP2014053126A (en) Battery pack module
CN115668683A (en) Secondary battery charging/discharging system including peltier device and temperature control method of charging/discharging secondary battery using the same
CN206042660U (en) High frequency module of charging
US20240055698A1 (en) Charge-discharge device with active temperature control
JP3239644U (en) Active temperature control charge/discharge device
CN208539621U (en) Active temperature control charging unit
CN111755770A (en) Battery device and carrier
KR102440062B1 (en) Apparatus for controlling temperature of supercapacitor and method thereof
CN109449540A (en) A kind of battery radiating subassembly and lithium battery

Legal Events

Date Code Title Description
R150 Certificate of patent or registration of utility model

Ref document number: 3217906

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250