JP2014053126A - Battery pack module - Google Patents

Battery pack module Download PDF

Info

Publication number
JP2014053126A
JP2014053126A JP2012195871A JP2012195871A JP2014053126A JP 2014053126 A JP2014053126 A JP 2014053126A JP 2012195871 A JP2012195871 A JP 2012195871A JP 2012195871 A JP2012195871 A JP 2012195871A JP 2014053126 A JP2014053126 A JP 2014053126A
Authority
JP
Japan
Prior art keywords
battery
case
thermal conductivity
battery module
assembled battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012195871A
Other languages
Japanese (ja)
Inventor
Yasuo Fujioka
靖夫 藤岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2012195871A priority Critical patent/JP2014053126A/en
Publication of JP2014053126A publication Critical patent/JP2014053126A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a battery pack module that can uniformize temperature dispersion of plural battery cells disposed in the battery pack module.SOLUTION: Cylindrical battery cells 206 are disposed in a battery pack module 201, and the temperature problem of the cylindrical battery cells 206 when charging/discharging operations are repeated can be solved by making battery cases 207 and 208 for accommodating the cylindrical battery cells 206 therein different in thermal conductivity. At this time, an air flow port through which cooling air flows is provided in the battery pack module.

Description

本発明は、電池セルを複数接続した組電池モジュールに関するものである。   The present invention relates to an assembled battery module in which a plurality of battery cells are connected.

エネルギー分野において、大容量高出力の電池が求められるようになり、例えば自動車業界では、ハイブリッド車(HEV)、プラグインハイブリッド車(PHEV)、電気自動車(EV)にて多くの電池が使用されており、その用途に使用される電池には、例えば、EV車の発進時や急勾配の登坂時や、急速充電時や急勾配の下り坂にて電池からの放電と充電で100A以上の大きな電流が流れる。   In the energy field, a battery having a large capacity and a high output has been demanded. For example, in the automobile industry, many batteries are used in a hybrid vehicle (HEV), a plug-in hybrid vehicle (PHEV), and an electric vehicle (EV). The battery used for that purpose is, for example, a large current of 100 A or more when discharging and charging from the battery when starting an EV car, when climbing steeply, or when charging quickly or when descending steeply Flows.

大電流が流れた電池は電池自体が発熱して温度が上昇する。合わせて夏期には環境の影響も受けて温度が上奏する。温度が上昇すると電池の電気的な特性が低下するばかりではなく、寿命も短くなる。このために、電池の温度が規定温度より高くならないように冷却する必要があるが、その使用されている電池は、素電池を直列と並列を組み合わせて電気的に接続した組電池となっているので、その素電池を均一に冷却することが極めて重要なことである。組電池内部の素電池間に温度差があると組電池を劣化させる原因となり、寿命を短くしてしまう課題がある。   When a battery with a large current flows, the battery itself generates heat and the temperature rises. At the same time, the temperature rises in summer due to environmental influences. When the temperature rises, not only does the electrical characteristics of the battery deteriorate, but the life is also shortened. For this reason, it is necessary to cool so that the temperature of the battery does not become higher than the specified temperature. However, the battery used is an assembled battery in which unit cells are electrically connected in combination of series and parallel. Therefore, it is very important to cool the unit cell uniformly. If there is a temperature difference between the unit cells inside the assembled battery, it causes deterioration of the assembled battery, and there is a problem of shortening the life.

従来の電池ケースとしては、特許文献1のような電池ケースが知られている。図5は、特許文献1に記載された従来の電池ケースを示す図である。   As a conventional battery case, a battery case as in Patent Document 1 is known. FIG. 5 is a diagram showing a conventional battery case described in Patent Document 1. In FIG.

図5において、複数の電源モジュール1を上下に多段に積層する配列でホルダーケース2に収納している電源装置であって、ホルダーケース2は、プラスチック成形からなる複数のケースユニット2Aを多段に積層してなる複数のケースユニット2Aの積層構造である。各々のケースユニット2Aは、成形材で成形されており、上段に積層している上段ケースユニット2Aを成形している成形材の熱伝導率を、この上段ケースユニット2Aよりも下段に積層している下段ケースユニット2Aの成形材よりも大きくして、上段ケースユニット2Aの熱伝導をその下段ケースユニット2Aの熱伝導よりも大きくしてより効率よく冷却されるようにしてなる電源装置を示している。   In FIG. 5, a power supply device in which a plurality of power supply modules 1 are housed in a holder case 2 in an arrangement in which the power supply modules 1 are vertically stacked in a plurality of stages, and the holder case 2 includes a plurality of case units 2A made of plastic molding. This is a laminated structure of a plurality of case units 2A. Each case unit 2A is formed of a molding material, and the thermal conductivity of the molding material forming the upper case unit 2A laminated on the upper stage is laminated on the lower stage than the upper case unit 2A. This shows a power supply device that is made larger than the molding material of the lower case unit 2A and that the heat conduction of the upper case unit 2A is larger than the heat conduction of the lower case unit 2A so as to be cooled more efficiently. Yes.

特開2004−47361号公報JP 2004-47361 A

しかしながら、これを解決する技術として特許文献1に記載の電池ケースでは、組電池の構造は上下への多段に積層した構造を想定しているが、組電池の構造で上下方向の多段構造と水平方向へ積層構造、そして上下水平に積層構造等あり、上下方向の多段構造以外での組電池に対して課題を有することになる。具体的には冷却を冷却風の導入で行うため、それに必要な空間で外形が大きくなり、また、間接冷却になるため、抜熱が悪く、段差による冷却能も差は検討されているが個々のケース単位では場所による冷却能も差が出やすいと課題を有している。   However, in the battery case described in Patent Document 1 as a technique for solving this problem, the structure of the assembled battery is assumed to be a multi-layered structure in the vertical direction, but the structure of the assembled battery is horizontally different from the vertical multi-stage structure. A laminated structure in the direction and a laminated structure in the upper and lower sides, etc., have a problem with assembled batteries other than the multistage structure in the upper and lower direction. Specifically, since cooling is performed by introducing cooling air, the outer shape becomes large in the necessary space, and because it becomes indirect cooling, heat removal is poor and the cooling performance due to steps is also being investigated, although differences are being investigated. However, there is a problem that the cooling capacity varies depending on the location.

本発明は、前記従来の課題を解決するもので、組電池内部の素電池の温度均一化と温度ばらつきによる組電池の性能劣化を防止する電池ケース備えた組電池モジュールを提供することを目的とする。   An object of the present invention is to solve the above-described conventional problems, and to provide an assembled battery module having a battery case that prevents the deterioration of performance of the assembled battery due to temperature uniformity and temperature variation of the cells inside the assembled battery. To do.

上記目的を達成するために、本発明の異種金属電池ケースで構成される組電池モジュールは、複数の電池ケースにそれぞれ電池セルが挿入されて構成される組電池モジュールであって、前記複数の電池ケースは、熱伝導率の異なる金属ケースの組合せから構成されている。   In order to achieve the above object, an assembled battery module including a dissimilar metal battery case according to the present invention is an assembled battery module configured by inserting battery cells into a plurality of battery cases, respectively. The case is composed of a combination of metal cases having different thermal conductivities.

本構成によって、電池ケース間の熱伝導率の差を利用して熱の移動を利用することで、組電池モジュール内部の電池セルの温度を均一することを特徴とする。   This configuration is characterized in that the temperature of the battery cells inside the assembled battery module is made uniform by using heat transfer utilizing the difference in thermal conductivity between the battery cases.

以上のように、本発明の異種金属電池ケースで構成される組電池モジュールによれば、組電池モジュール内部の電池セルの温度バラつきをなくし組電池モジュールの性能劣化を防止することができる。   As described above, according to the assembled battery module including the dissimilar metal battery case of the present invention, it is possible to eliminate the temperature variation of the battery cells inside the assembled battery module and to prevent the performance deterioration of the assembled battery module.

本発明の実施の形態1における異種金属電池ケースの組電池モジュールの概略断面図Schematic sectional view of the assembled battery module of the dissimilar metal battery case in Embodiment 1 of the present invention 本発明の実施の形態2における異種金属電池ケースの組電池モジュールの概略断面図Schematic sectional view of the assembled battery module of the dissimilar metal battery case in Embodiment 2 of the present invention 本発明の実施の形態3における異種金属電池ケースの組電池モジュールの概略断面図Schematic sectional view of the assembled battery module of the dissimilar metal battery case in Embodiment 3 of the present invention 本発明の実施の形態4における異種金属電池ケースの組電池モジュールの概略断面図Schematic sectional view of the assembled battery module of the dissimilar metal battery case in Embodiment 4 of the present invention 特許文献1に記載された従来の組電池モジュールの図The figure of the conventional assembled battery module described in patent document 1

以下、本発明の実施の形態について、図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(実施の形態1)
図1は、本発明の実施の形態1に係る、異種金属電池ケースの組電池モジュールの概略断面図である。
(Embodiment 1)
FIG. 1 is a schematic cross-sectional view of an assembled battery module of a dissimilar metal battery case according to Embodiment 1 of the present invention.

図1に示すように、組電池モジュール201は、複数の円筒電池セル206をそれぞれの電池ケース207及び208の内部に収納して構成され、電池ケース207及び208は更にモジュールケース202に収納されてなる。また、モジュールケース202は、冷却風の供給口203、冷却風の排出口204、及び、冷却風の送風流路205を備える。更に、隣接する電池ケース207及び208は、溶接等で接合されている。また、図1において、電池ケース207は、熱伝導率がK7の材料で構成され、電池ケース208は熱伝導率がK8の材料で構成されている。   As shown in FIG. 1, the assembled battery module 201 is configured by storing a plurality of cylindrical battery cells 206 in respective battery cases 207 and 208, and the battery cases 207 and 208 are further stored in a module case 202. Become. The module case 202 includes a cooling air supply port 203, a cooling air discharge port 204, and a cooling air blowing passage 205. Further, adjacent battery cases 207 and 208 are joined by welding or the like. In FIG. 1, the battery case 207 is made of a material having a thermal conductivity of K7, and the battery case 208 is made of a material having a thermal conductivity of K8.

以下、上述の電池ケース207と電池ケース208の配置について述べる。   Hereinafter, the arrangement of the battery case 207 and the battery case 208 will be described.

電池ケース207と電池ケース208の配置は、円筒電池セル206の性能により配置される。具体的には、図1に示すように、組電池モジュール201の内部に円筒電池セル206を配置し、充放電動作を繰返した時の円筒電池セル206の温度傾向が冷却風の送風流路205に近い電池セルの温度が高く、組電池モジュール201の中心部の円筒電池セル206の温度が低い場合は、電池ケース207と電池ケース208の熱伝導率の関係がK7>K8となるように構成する。   The battery case 207 and the battery case 208 are arranged depending on the performance of the cylindrical battery cell 206. Specifically, as shown in FIG. 1, the cylindrical battery cell 206 is arranged inside the assembled battery module 201, and the temperature tendency of the cylindrical battery cell 206 when the charge / discharge operation is repeated is a cooling air blowing passage 205. When the temperature of the battery cell close to is high and the temperature of the cylindrical battery cell 206 at the center of the assembled battery module 201 is low, the relationship between the thermal conductivity of the battery case 207 and the battery case 208 is K7> K8. To do.

このような配置により、温度の高かった冷却風の送風流路205付近の円筒電池セル206の温度を、熱伝導率の高い電池ケース207で放熱させることで下げ、温度の低かった組電池モジュール201の中心部の円筒電池セル206も熱伝導率の低い電池ケース207により、温度の放熱を下げて温度を上げることで、円筒電池セル206全ての温度バラつきを低減できる。   With such an arrangement, the temperature of the cylindrical battery cell 206 in the vicinity of the cooling air blowing passage 205 having a high temperature is lowered by dissipating heat in the battery case 207 having a high thermal conductivity, and the assembled battery module 201 having a low temperature is used. The cylindrical battery cell 206 in the central part of the cylindrical battery cell 207 also has a low thermal conductivity, and the temperature variation of all the cylindrical battery cells 206 can be reduced by raising the temperature by reducing the heat radiation.

他方、冷却風の供給口203される冷却風の温度により、円筒電池セル206の温度傾向が冷却風の送風流路205に近い電池セルの温度が低く、組電池モジュール201の中心部の円筒電池セル206の温度が高い場合は、電池ケース207及び電池ケース208の熱伝導率の関係をK7<K8となるように構成する。   On the other hand, due to the temperature of the cooling air supplied to the cooling air supply port 203, the temperature tendency of the cylindrical battery cell 206 is low, and the temperature of the battery cell close to the air flow path 205 of the cooling air is low. When the temperature of the cell 206 is high, the relationship between the thermal conductivity of the battery case 207 and the battery case 208 is configured to satisfy K7 <K8.

このような構成により、温度の低かった冷却風の送風流路205付近の円筒電池セル206の温度を熱伝導率の低い電池ケース207で放熱を下げて円筒電池セル206の温度を上げ、温度の高かった組電池モジュール201の中心部の円筒電池セル206も熱伝導率の高い電池ケース207により温度の放熱を上げて温度を下げることで、円筒電池セル206全ての温度バラつきを低減できる。   With such a configuration, the temperature of the cylindrical battery cell 206 in the vicinity of the cooling air blowing passage 205 of the cooling air having a low temperature is lowered by reducing the heat radiation by the battery case 207 having a low thermal conductivity, and the temperature of the cylindrical battery cell 206 is increased. The cylindrical battery cell 206 at the center of the assembled battery module 201 that is high can also reduce the temperature variation of all the cylindrical battery cells 206 by increasing the heat radiation of the temperature by the battery case 207 having high thermal conductivity and decreasing the temperature.

かかる構成によれば、組電池モジュール201の円筒電池セル206の充放電による発熱状態に合わせて、電池ケース207及び電池ケース208の熱伝導率を変える(すなわち、電池ケース207及び電池ケース208の配置を最適化する)ことで、組電池モジュール201の内部に配置される円筒電池セル206の温度バラつきを抑制でき、組電池モジュールの性能劣化を防止することができる。   According to this configuration, the thermal conductivities of the battery case 207 and the battery case 208 are changed in accordance with the heat generation state due to charging / discharging of the cylindrical battery cell 206 of the assembled battery module 201 (that is, the arrangement of the battery case 207 and the battery case 208). )), The temperature variation of the cylindrical battery cell 206 arranged inside the assembled battery module 201 can be suppressed, and the performance deterioration of the assembled battery module can be prevented.

本実施の形態では、熱伝導率K8の電池ケース208を熱伝導率K7の電池ケース207で囲む構成を示したが、図1のように連続で配置した熱伝導率K8の電池ケース208の回りを熱伝導率K7の電池ケース207で囲む構成でもよい。   In the present embodiment, the configuration in which the battery case 208 having the thermal conductivity K8 is surrounded by the battery case 207 having the thermal conductivity K7 is shown. However, the battery case 208 having the thermal conductivity K8 arranged continuously as shown in FIG. May be surrounded by a battery case 207 having a thermal conductivity of K7.

また、図1のように電池ケースが3段構成であれは、中心列を最初の1番目を熱伝導率K7の電池ケース207として、次順番以降を熱伝導率K8の電池ケース208、熱伝導率K7の電池ケース207を交互で最後に熱伝導率K7の電池ケース207と配置させ、上下段を熱伝導率K7の電池ケース207で挟んだ構成としても良い。   Further, if the battery case has a three-stage structure as shown in FIG. 1, the first one in the center row is the battery case 207 having the thermal conductivity K7, and the subsequent cases are the battery case 208 having the thermal conductivity K8. Alternatively, the battery cases 207 having the rate K7 may be alternately arranged at the end with the battery cases 207 having the thermal conductivity K7, and the upper and lower stages may be sandwiched between the battery cases 207 having the thermal conductivity K7.

なお、本実施の形態において、電池ケースに収納するものを円筒電池セル206としたが、円筒キャパシタンスとしても良い。   In this embodiment, the cylindrical battery cell 206 is stored in the battery case, but a cylindrical capacitance may be used.

(実施の形態2)
図2は、本発明の実施の形態2に係る、異種金属電池ケースの組電池モジュールの概略断面図である。実施の形態1では、円筒電池セル206を収納した電池ケース207及び208を複数段重ねた構成を示したが、本実施の形態では、角型電池セル302を収納した電池ケースを1列に接合して構成する組電池モジュールを示す。なお、図2において、図1と同じ構成要素については同じ符号を用い、説明を省略する。
(Embodiment 2)
FIG. 2 is a schematic cross-sectional view of an assembled battery module of a dissimilar metal battery case according to Embodiment 2 of the present invention. In the first embodiment, a configuration in which the battery cases 207 and 208 containing the cylindrical battery cells 206 are stacked in a plurality of stages is shown. However, in this embodiment, the battery cases containing the square battery cells 302 are joined in one row. The assembled battery module comprised is shown. In FIG. 2, the same components as those in FIG.

図2に示すように、組電池モジュール301は、複数の角型電池セル302が電池ケース303及び304の内部に収納されて構成され、その電池ケースをモジュールケース202で収納している。モジュールケース202には、冷却風の供給口203、冷却風の排出口204、及び。冷却風の送風流路205を備える。また、電池ケース303及び304は、溶接等で接続されている。   As shown in FIG. 2, the assembled battery module 301 includes a plurality of rectangular battery cells 302 housed in battery cases 303 and 304, and the battery case is housed in the module case 202. The module case 202 has a cooling air supply port 203, a cooling air discharge port 204, and the like. A cooling air blowing passage 205 is provided. Battery cases 303 and 304 are connected by welding or the like.

更に、図2において、電池ケース303は、熱伝導率がK3の材料で構成され、電池ケース304は熱伝導率がK4の材料で構成されている。   Further, in FIG. 2, the battery case 303 is made of a material having a thermal conductivity of K3, and the battery case 304 is made of a material having a thermal conductivity of K4.

図3の断面図のように、組電池モジュール301の内部に角型電池セル302を配置させて充放電動作を繰返した時、角型電池セル302の温度上昇により、冷却風の送風流路205に流れる冷却風の温度は、冷却風の供給口203近くの温度が一番低くなる。その結果、冷却風の温度は、角型電池セル302の発熱温度の影響を受けて次第に温度は高くなり、冷却風の排出口204付近の冷却風の温度が一番高くなる。   As shown in the cross-sectional view of FIG. 3, when the prismatic battery cell 302 is arranged inside the assembled battery module 301 and the charge / discharge operation is repeated, the cooling air blowing passage 205 is caused by the temperature rise of the prismatic battery cell 302. The temperature of the cooling air flowing through the cooling air is the lowest near the cooling air supply port 203. As a result, the temperature of the cooling air gradually increases under the influence of the heat generation temperature of the prismatic battery cell 302, and the temperature of the cooling air near the cooling air outlet 204 becomes the highest.

そこで、電池ケース303の材料と電池ケース304の材料との熱伝導率を、K3<K4とすることで、温度の低かった冷却風の供給口203付近の角型電池セル302の温度を、熱伝導率の低い電池ケース303で放熱を下げて円筒電池セル206の温度を上げる。そして、温度の高かった冷却風の排出口204付近にある角型電池セル302を、熱伝導率の高い電池ケース304により温度の放熱を上げて温度を下げることで、組電池モジュール201内部の角型電池セル302全ての温度バラつきを防ぐことができる。   Therefore, by setting the thermal conductivity of the material of the battery case 303 and the material of the battery case 304 to K3 <K4, the temperature of the prismatic battery cell 302 near the cooling air supply port 203 having a low temperature can be increased. The battery case 303 with low conductivity is used to reduce heat dissipation and raise the temperature of the cylindrical battery cell 206. Then, the square battery cell 302 in the vicinity of the cooling air outlet 204 having a high temperature is heated by the battery case 304 having a high thermal conductivity to decrease the temperature, thereby reducing the temperature inside the assembled battery module 201. It is possible to prevent temperature variations of all the battery cells 302.

かかる構成によれば、組電池モジュール201の電池セル302の充放電による発熱状態に合わせて、電池ケース303及び電池ケース304の熱伝導率を変えることにより、組電池モジュール201内部の角型電池セル302の温度バラつきを防ぐことができ、組電池モジュールの性能劣化を防止することができる。   According to this configuration, the prismatic battery cell inside the assembled battery module 201 is changed by changing the thermal conductivity of the battery case 303 and the battery case 304 in accordance with the heat generation state due to charging / discharging of the battery cell 302 of the assembled battery module 201. The temperature variation of 302 can be prevented, and the performance deterioration of the assembled battery module can be prevented.

なお、本実施の形態において、電池ケースに収納するものを角型電池セル302としたが、角型キャパシタンスとしても良い。   In this embodiment, the rectangular battery cell 302 is housed in the battery case, but a square capacitance may be used.

(実施の形態3)
図3は、本発明の実施の形態3に係る、異種金属電池ケースの組電池モジュールの概略断面図である。実施の形態3は、実施の形態1における電池ケース207の外側に、放熱層を配置したものである。図3において、図1と同じ構成要素については同じ符号を用い、説明を省略する。
(Embodiment 3)
FIG. 3 is a schematic cross-sectional view of an assembled battery module of a dissimilar metal battery case according to Embodiment 3 of the present invention. In the third embodiment, a heat dissipation layer is disposed outside the battery case 207 in the first embodiment. In FIG. 3, the same components as those in FIG.

図3は、電池ケース207及び208の表面周辺に放熱層401を配置したものである。放熱層は、グラファイト素材のような金属より熱伝導率高いものであればよい。   FIG. 3 shows a structure in which a heat dissipation layer 401 is arranged around the surfaces of the battery cases 207 and 208. The heat dissipation layer may be any layer having a higher thermal conductivity than a metal such as a graphite material.

また、電池ケース207の熱伝導率をK7、電池ケース208の熱伝導率をK8、放熱層の熱伝導率をK9としたとき、「K9>K7>K8」の関係となるように構成することで、組電池モジュール201内部中心に配置された円筒電池セル206の温度を冷却風の送風流路205に放熱させることができる。その結果、組電池モジュール201内部の円筒電池セル206すべての温度バラつきを防ぐことができる。   Further, when the thermal conductivity of the battery case 207 is K7, the thermal conductivity of the battery case 208 is K8, and the thermal conductivity of the heat radiation layer is K9, the configuration is such that “K9> K7> K8”. Thus, the temperature of the cylindrical battery cell 206 disposed in the center of the assembled battery module 201 can be radiated to the cooling air blowing passage 205. As a result, temperature variation of all the cylindrical battery cells 206 inside the assembled battery module 201 can be prevented.

また、万が一、組電池モジュール201内部の円筒電池セル206の何れか異常発熱した場合においても、その発生した熱を電池ケース全体に熱伝達させて放熱することができるので、周辺の円筒電池セル206への類焼も防ぐことができる。   In addition, even if any of the cylindrical battery cells 206 inside the assembled battery module 201 is abnormally heated, the generated heat can be transferred to the entire battery case and dissipated, so that the peripheral cylindrical battery cells 206 can be dissipated. It can also prevent the roasting.

(実施の形態4)
図4は、本発明の実施の形態4に係る、異種金属電池ケースの組電池モジュールの概略断面図である。実施の形態4は、実施の形態1の冷却風の排出口204に近い電池ケース208の外側に放熱層を配置したものである。図4において、図1及び図2と同じ構成要素については同じ符号を用い、説明を省略する。
(Embodiment 4)
FIG. 4 is a schematic cross-sectional view of an assembled battery module of a dissimilar metal battery case according to Embodiment 4 of the present invention. In the fourth embodiment, a heat dissipation layer is disposed outside the battery case 208 close to the cooling air outlet 204 of the first embodiment. 4, the same components as those in FIGS. 1 and 2 are denoted by the same reference numerals, and the description thereof is omitted.

図4は、電池ケース303及び304の表面周辺に放熱層401を配置したものである。放熱層は、グラファイト素材のような金属より熱伝導率高いものであればよい。   FIG. 4 shows a heat dissipation layer 401 arranged around the surfaces of the battery cases 303 and 304. The heat dissipation layer may be any layer having a higher thermal conductivity than a metal such as a graphite material.

また、電池ケース303の熱伝導率をK3、電池ケース304の熱伝導率をK4、放熱層の熱伝導率をK9としたとき、K3<K4<K9とすることで、上述の実施の形態2に対してさらに、電池ケース304の温度を放熱層401により放熱させて角型電池セル302の温度を下げることができる。なお、本実施の形態の考えは、電池ケース304に収納された角型電池セル302の温度が電池ケース303に収納された角型電池セル302の温度が高い場合に有効である。   Further, when the thermal conductivity of the battery case 303 is K3, the thermal conductivity of the battery case 304 is K4, and the thermal conductivity of the heat dissipation layer is K9, K3 <K4 <K9 so that the above-described second embodiment. In contrast, the temperature of the battery case 304 can be radiated by the heat dissipation layer 401 to reduce the temperature of the prismatic battery cell 302. Note that the idea of this embodiment is effective when the temperature of the prismatic battery cell 302 housed in the battery case 304 is high.

本発明の異種金属電池ケースの組電池モジュールは、組電池の内部の電池セルの温度を均一にする機能を有し、電池セルを組み合わせた組電池やスーパーキャパシタを組み合わせた電源装置など各種電源装置にて内部温度を均一にする用途にも適用できる。   The assembled battery module of the dissimilar metal battery case of the present invention has a function of making the temperature of the battery cells inside the assembled battery uniform, and various power supply devices such as an assembled battery combining battery cells and a power supply device combining super capacitors It can also be used for applications where the internal temperature is uniform.

201,301 組電池モジュール
202 モジュールケース
203 冷却風の供給口
204 冷却風の排出口
205 冷却風の送風流路
206 円筒電池セル
207,208,303,304 電池ケース
201, 301 Battery module 202 Module case 203 Cooling air supply port 204 Cooling air discharge port 205 Cooling air blowing passage 206 Cylindrical battery cell 207, 208, 303, 304 Battery case

Claims (8)

複数の電池ケースにそれぞれ電池セルが挿入されて構成される組電池モジュールであって、前記複数の電池ケースは、熱伝導率の異なる金属ケースの組合せからなること、
を特徴とする組電池モジュール。
A battery module configured by inserting battery cells into a plurality of battery cases, wherein the plurality of battery cases are made of a combination of metal cases having different thermal conductivities,
An assembled battery module.
前記複数の電池ケースのうち、
熱伝導率の高い金属ケースを前記電池ケースの外周部に配置し、熱伝導率の低い金属ケースを前記電池ケースの中心部に配置する、
請求項1記載の組電池モジュール。
Among the plurality of battery cases,
A metal case having a high thermal conductivity is disposed on the outer periphery of the battery case, and a metal case having a low thermal conductivity is disposed at the center of the battery case.
The assembled battery module according to claim 1.
前記複数の電池ケースのうち、
熱伝導率の低い金属ケースを前記電池ケースの外周部に配置し、熱伝導率の高い金属ケースを前記電池ケースの中心部に配置する、
請求項1記載の組電池モジュール。
Among the plurality of battery cases,
A metal case having a low thermal conductivity is disposed at the outer periphery of the battery case, and a metal case having a high thermal conductivity is disposed at the center of the battery case.
The assembled battery module according to claim 1.
アルミニウムで形成された金属ケースの回りをアルミニウムより熱伝導率の高い銅で形成された金属ケースを配置する、
請求項2記載の組電池モジュール。
A metal case made of copper having higher thermal conductivity than aluminum is arranged around the metal case made of aluminum.
The assembled battery module according to claim 2.
銅で形成された金属ケースの回りを銅より熱伝導率の低いアルミニウムで形成された金属ケースを配置する、
請求項3記載の組電池モジュール。
A metal case made of aluminum having a lower thermal conductivity than copper is arranged around a metal case made of copper.
The assembled battery module according to claim 3.
請求項1〜5の何れか一項に記載の組電池ジュールは、
前記組電池モジュールの内部に冷却風を送風する送風口を更に備え、
前記送風口に近い電池ケースの熱伝導率は、前記送風口から遠い電池ケースの熱伝導率に比べ低い、
請求項1〜5の何れか一項に記載の組電池モジュール。
The assembled battery module according to any one of claims 1 to 5,
Further comprising a blower opening for blowing cooling air into the assembled battery module;
The thermal conductivity of the battery case close to the air outlet is lower than the thermal conductivity of the battery case far from the air outlet,
The assembled battery module as described in any one of Claims 1-5.
前記電池ケースの表面に放熱層を設け、
前記放熱層は、前記金属ケースの材料よりも熱伝導率が高い、請求項1〜6の何れか一項に記載の組電池モジュール。
A heat dissipation layer is provided on the surface of the battery case,
The assembled battery module according to any one of claims 1 to 6, wherein the heat dissipation layer has a higher thermal conductivity than a material of the metal case.
前記放熱層は炭素繊維で形成されてなる、請求項7記載の組電池モジュール。 The assembled battery module according to claim 7, wherein the heat dissipation layer is formed of carbon fiber.
JP2012195871A 2012-09-06 2012-09-06 Battery pack module Pending JP2014053126A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012195871A JP2014053126A (en) 2012-09-06 2012-09-06 Battery pack module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012195871A JP2014053126A (en) 2012-09-06 2012-09-06 Battery pack module

Publications (1)

Publication Number Publication Date
JP2014053126A true JP2014053126A (en) 2014-03-20

Family

ID=50611452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012195871A Pending JP2014053126A (en) 2012-09-06 2012-09-06 Battery pack module

Country Status (1)

Country Link
JP (1) JP2014053126A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101766687B1 (en) 2015-10-19 2017-08-09 주식회사 엘지엠 Battery case system having good heating and cooling
WO2022270718A1 (en) * 2021-06-22 2022-12-29 주식회사 엘지에너지솔루션 Battery module and battery pack including same
JP7487686B2 (en) 2021-02-22 2024-05-21 マツダ株式会社 VEHICLE BATTERY UNIT, VEHICLE BATTERY UNIT LAYOUT STRUCTURE, AND VEHICLE BATTERY UNIT CONTROL METHOD

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101766687B1 (en) 2015-10-19 2017-08-09 주식회사 엘지엠 Battery case system having good heating and cooling
JP7487686B2 (en) 2021-02-22 2024-05-21 マツダ株式会社 VEHICLE BATTERY UNIT, VEHICLE BATTERY UNIT LAYOUT STRUCTURE, AND VEHICLE BATTERY UNIT CONTROL METHOD
WO2022270718A1 (en) * 2021-06-22 2022-12-29 주식회사 엘지에너지솔루션 Battery module and battery pack including same

Similar Documents

Publication Publication Date Title
US10381694B2 (en) Cooling device for battery cell and battery module comprising the same
KR102081396B1 (en) Battery module, battery pack comprising the battery module and vehicle comprising the battery pack
EP2400579B1 (en) Battery assembly with cooling
US8795867B2 (en) Wire mounted battery module on vertical support frame
JP4860715B2 (en) Medium or large battery pack case with improved distribution uniformity of refrigerant flux
KR101256078B1 (en) Charging appratus
US10027002B2 (en) Vehicle battery pack with improved cooling efficiency
US8835036B2 (en) Battery pack
JP5774241B2 (en) New air-cooled battery pack
US9105901B2 (en) Battery pack
EP3316340A1 (en) Battery module
KR100696694B1 (en) Secondary battery module
JP2018531492A6 (en) Battery module, battery pack including the battery module, and automobile including the battery pack
KR100658626B1 (en) Secondary battery module
KR20130035192A (en) Battery pack having novel cooling structure
JP2015509278A (en) New air-cooled battery pack
JP2013077432A (en) Battery module
KR101496523B1 (en) Radiant heat plate for battery cell
KR102053963B1 (en) Battery pack and vehicle comprising the same
TW201316591A (en) Battery pack having cooling system
KR102061292B1 (en) Battery module, battery pack comprising the battery module and vehicle comprising the battery pack
US20160336629A1 (en) Battery module
JP2014053126A (en) Battery pack module
KR20160068446A (en) Battery module, and battery pack including the same
KR101232784B1 (en) Secondary battery cooling apparatus and heating system using heat generated from secondary battery operation