JP3212751B2 - Imaging device using MRI device - Google Patents
Imaging device using MRI deviceInfo
- Publication number
- JP3212751B2 JP3212751B2 JP09592793A JP9592793A JP3212751B2 JP 3212751 B2 JP3212751 B2 JP 3212751B2 JP 09592793 A JP09592793 A JP 09592793A JP 9592793 A JP9592793 A JP 9592793A JP 3212751 B2 JP3212751 B2 JP 3212751B2
- Authority
- JP
- Japan
- Prior art keywords
- imaging
- moving
- mri apparatus
- mri
- subject
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Magnetic Resonance Imaging Apparatus (AREA)
Description
【0001】[0001]
【産業上の利用分野】この発明は、MRI装置を用いた
撮像装置に関し、さらに詳しくは、被検体を連続的に移
動させつつMRI装置で撮像することが出来る撮像装置
に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an imaging apparatus using an MRI apparatus, and more particularly, to an imaging apparatus capable of imaging an MRI apparatus while continuously moving a subject.
【0002】[0002]
【従来の技術】MRI装置とそのMRI装置のボア内を
通過させるべく被検体を移動させる移動装置とからなる
撮像装置は、例えば特開昭63−272335号公報に
開示されている。この従来の撮像装置は、撮像面が移動
方向に平行な場合に、まず、被検体Gの移動を停止して
撮像し、移動方向の長さTの第1の画像を得る。次に、
距離Tだけ移動してから再び停止して撮像し、移動方向
の長さTの第2の画像を得る。これをn回繰り返し、得
られた第1から第nまでのn枚の画像を継ぎ合せて、長
さnTの画像を得るものである。図11に上記従来の撮
像装置の構成概念図を示す。Gは被検体(患者)、60
は被検体Gを移動させるクレードル、50はMRI装
置、50aはボアである。51は、撮像時にクレードル
60を停止させる移動停止制御部であり、MRI装置5
0の一部である。2. Description of the Related Art An imaging apparatus comprising an MRI apparatus and a moving apparatus for moving a subject to pass through the bore of the MRI apparatus is disclosed in, for example, Japanese Patent Application Laid-Open No. 63-272335. When the imaging surface is parallel to the movement direction, the conventional imaging apparatus first stops the movement of the subject G to capture an image, and obtains a first image having a length T in the movement direction. next,
After moving by the distance T, stop again and take an image to obtain a second image having a length T in the moving direction. This is repeated n times, and the obtained first to n-th images are joined to obtain an image of length nT. FIG. 11 shows a conceptual diagram of the configuration of the conventional imaging apparatus. G is the subject (patient), 60
Is a cradle for moving the subject G, 50 is an MRI apparatus, and 50a is a bore. Reference numeral 51 denotes a movement stop control unit that stops the cradle 60 during imaging, and the MRI apparatus 5
Part of zero.
【0003】[0003]
【発明が解決しようとする課題】上記従来の撮像装置で
は、MRI装置と移動装置とは同時には作動しない。す
なわち、MRI装置により撮像する時は移動装置は停止
し、移動装置により移動する時はMRI装置は停止して
いる。従って、撮像効率がよくないという問題点があ
る。そこで、この発明の目的は、被検体を連続的に移動
させつつMRI装置で撮像することが出来る撮像装置を
提供することにある。In the above-mentioned conventional imaging apparatus, the MRI apparatus and the moving apparatus do not operate at the same time. That is, when imaging is performed by the MRI apparatus, the mobile apparatus is stopped, and when the mobile apparatus is moved, the MRI apparatus is stopped. Therefore, there is a problem that imaging efficiency is not good. Therefore, an object of the present invention is to provide an imaging apparatus capable of imaging an MRI apparatus while continuously moving a subject.
【0004】[0004]
【課題を解決するための手段】この発明のMRI装置を
用いた撮像装置は、MRI装置とそのMRI装置のボア
内を通過させるべく被検体とMRI装置とを相対移動さ
せる移動装置とからなる撮像装置において、前記MRI
装置の撮像可能領域の移動方向の長さをMwとし、撮像
対象範囲の移動方向の長さをGwとしたとき、両者の差
(Mw−Gw)を1画像分のデータを収集する時間Mt
で除算した商(Mw−Gw)/Mtより小さいか等しい
速度Gvで移動するように前記移動装置を制御し且つ前
記MRI装置による撮像を前記移動と同時に実行させる
移動・撮像同時実行手段を備えたことを構成上の特徴と
するものである。上記構成の撮像装置において、撮像面
が相対移動方向に直交するとき、ビュー毎の励起領域の
位置を相対移動量に追従させて移動する励起領域追従移
動手段を備えるのが好ましい。また、上記構成の撮像装
置において、撮像面が相対移動方向に平行なとき、ビュ
ー毎のデータに相対移動量に対応した位相補正を施す位
相補正手段を備えるのが好ましい。An imaging apparatus using an MRI apparatus according to the present invention is an imaging apparatus comprising an MRI apparatus and a moving apparatus for relatively moving a subject and the MRI apparatus so as to pass through the bore of the MRI apparatus. In the apparatus, the MRI
Assuming that the length of the image capturing area of the apparatus in the moving direction is Mw and the length of the imaging target range in the moving direction is Gw, the difference (Mw−Gw) between the two is the time Mt for collecting data for one image.
Moving / imaging simultaneous execution means for controlling the moving device to move at a speed Gv smaller than or equal to the quotient (Mw-Gw) / Mt divided by, and executing imaging by the MRI device simultaneously with the moving. This is a feature of the configuration. In the imaging apparatus having the above-described configuration, it is preferable that the imaging apparatus further includes an excitation area following movement unit that moves the position of the excitation area for each view by following the relative movement amount when the imaging plane is orthogonal to the relative movement direction. In the imaging apparatus having the above-described configuration, it is preferable that the imaging apparatus further includes a phase correction unit that performs a phase correction corresponding to the relative movement amount on the data for each view when the imaging surface is parallel to the relative movement direction.
【0005】[0005]
【作用】この発明のMRI装置を用いた撮像装置では、
移動・撮像同時実行手段が、MRI装置の撮像可能領域
の移動方向の長さをMwとし、撮像対象範囲の移動方向
の長さをGwとしたとき、両者の差(Mw−Gw)を1
画像分のデータを収集する時間Mtで除算した商(Mw
−Gw)/Mtより小さいか等しい速度Gvで移動する
ように移動装置を制御する。また、移動装置による移動
とMRI装置による撮像とを同時実行させる。上記条件
の速度Gvであれば、被検体が撮像可能領域にある間に
1画像分のデータを収集できる。また、MRI装置で例
えばMt=数100ms以内の超高速撮像を行えば、速
度Gvが実用的な速度でも被検体の移動は小さいので、
モーションアーチファクトと呼ばれる虚像やぼけが少な
く、画質はそれほど劣化しない。従って、特別の補正を
することなく、被検体を連続的に移動しながら撮像でき
ることとなり、撮像効率を向上することが出来る。According to the imaging apparatus using the MRI apparatus of the present invention,
The moving / imaging simultaneous execution means sets the difference (Mw-Gw) between the two as 1 when the length of the MRI apparatus in the moving direction of the imageable area is Mw and the length of the MRI apparatus in the moving direction is Gw.
The quotient (Mw) divided by the time Mt for collecting the image data
-Control the mobile device to move at a speed Gv less than or equal to (Gw) / Mt. In addition, the movement by the moving device and the imaging by the MRI device are simultaneously executed. With the speed Gv under the above conditions, data for one image can be collected while the subject is in the imageable area. Also, if ultrahigh-speed imaging of, for example, Mt = several hundreds of ms or less is performed by the MRI apparatus, the movement of the subject is small even if the speed Gv is a practical speed.
There are few virtual images and blurs called motion artifacts, and the image quality does not deteriorate so much. Therefore, it is possible to perform imaging while moving the subject continuously without performing special correction, and it is possible to improve imaging efficiency.
【0006】また、励起領域追従移動手段を備え、撮像
面が相対移動方向に直交するとき、その励起領域追従移
動手段により、ビュー毎の励起領域の位置を相対移動量
に追従させて移動すれば、被検体が静止しているのと等
価となって、モーションアーチファクトを生じない。従
って、被検体を連続的に移動しながら高画質で撮像でき
ることとなる。In addition, when an excitation area following movement means is provided and the imaging plane is orthogonal to the relative movement direction, the excitation area following movement means moves the position of the excitation area for each view so as to follow the relative movement amount. This is equivalent to that the subject is stationary, and does not cause motion artifacts. Therefore, high-quality imaging can be performed while continuously moving the subject.
【0007】また、位相補正手段を備え、撮像面が相対
移動方向に平行なとき、その位相補正手段により、ビュ
ー毎のデータに相対移動量に対応した位相補正を施せ
ば、被検体が静止しているのと等価となって、モーショ
ンアーチファクトを生じない。従って、被検体を連続的
に移動しながら高画質で撮像できることとなる。[0007] When the imaging plane is parallel to the relative movement direction and the phase correction means performs a phase correction corresponding to the relative movement amount on the data for each view, the subject becomes stationary. And no motion artifact is generated. Therefore, high-quality imaging can be performed while continuously moving the subject.
【0008】[0008]
【実施例】以下、図に示す実施例に基づいてこの発明を
さらに詳細に説明する。なお、これによりこの発明が限
定されるものではない。図1は、この発明の一実施例の
MRI装置を用いた撮像装置1の構成概念図である。G
は被検体(患者に限らない)、20はベルトコンベアの
ように被検体Gを連続的に移動させる移動装置、10は
MRI装置、10aはボアである。MRI装置10は、
移動・撮像同時実行部11と、補正要否判定部12と、
アキシャル時ビュー連動スライス移動部13と、サジタ
ル/コロナル時SAT印加部14と、サジタル/コロナ
ル時位相補正部15と、オブリーク/3次元時統合制御
部16とを備えている。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in more detail with reference to the embodiment shown in the drawings. It should be noted that the present invention is not limited by this. FIG. 1 is a conceptual diagram of a configuration of an imaging apparatus 1 using an MRI apparatus according to one embodiment of the present invention. G
Is a subject (not limited to a patient), 20 is a moving device for continuously moving the subject G like a belt conveyor, 10 is an MRI device, and 10a is a bore. The MRI apparatus 10
A movement / imaging simultaneous execution unit 11, a correction necessity determination unit 12,
It includes an axial view-linked slice moving unit 13, a sagittal / coronal SAT application unit 14, a sagittal / coronal phase correction unit 15, and an oblique / three-dimensional integrated control unit 16.
【0009】図2に示すように、移動・撮像同時実行部
11は、ベルトコンベア20を制御し、移動速度Gvで
被検体Gを移動させる。同時に、繰り返し時間TRで撮
像をスタートする(11A)。MRI装置10の撮像可
能領域の移動方向の長さをMwとし、撮像対象範囲の移
動方向の長さをGwとし、1画像分のデータを収集する
時間をMtとするとき、 Gv≦(Mw−Gw)/Mt である。これにより、被検体Gが撮像可能領域Mwにあ
る間に1画像分のデータを収集できる。図3に、最大条
件Gv=(Mw−Gw)/Mtの場合の概念図を示す。
なお、一般的には、1画像分のデータがMビューからな
るとき、 TR=Mt/M である。As shown in FIG. 2, the simultaneous movement / imaging unit 11 controls the belt conveyor 20 to move the subject G at the moving speed Gv. At the same time, imaging is started at the repetition time TR (11A). When the length of the MRI apparatus 10 in the moving direction of the imageable area is Mw, the length of the imaging target range in the moving direction is Gw, and the time for collecting data for one image is Mt, Gv ≦ (Mw− Gw) / Mt. Thus, data for one image can be collected while the subject G is in the imageable area Mw. FIG. 3 shows a conceptual diagram when the maximum condition Gv = (Mw−Gw) / Mt.
In general, when data for one image is composed of M views, TR = Mt / M.
【0010】図4に示すように、補正要否判定部12
は、まず、1画像分のデータを収集する間の移動距離G
v・Mtが十分小さいか判定する(12A)。モーショ
ンアーチファクトを無視できる程度に十分小さいなら
ば、補正不要と判定し、アキシャル時ビュー連動スライ
ス移動部13とサジタル/コロナル時SAT印加部14
とサジタル/コロナル時位相補正部15とオブリーク/
3次元時統合制御部16とを起動しないで、システムに
制御を返す(EXIT1)。EXIT1で制御が返され
ると、システムは、収集したデータから画像を再構成す
る。十分小さくなければ、撮像面が相対移動方向に直交
するアキシャル像の撮像か判定する(12B)。アキシ
ャルなら、アキシャル時ビュー連動スライス移動部13
を起動する(12C)。アキシャルでなければ、撮像面
が相対移動方向に平行なサジタル像またはコロナル像の
撮像か判定する(12D)。サジタルまたはコロナルな
ら、サジタル/コロナル時SAT印加部14とサジタル
/コロナル時位相補正部15とを起動する(12E)。
サジタルでもコロナルでもなければ、撮像面が相対移動
方向に対し傾斜しているオブリークか3次元撮像か判定
する(12F)。オブリークまたは3次元なら、オブリ
ーク/3次元時統合制御部16を起動する(12G)。
オブリークでも3次元でもなければ、アキシャル時ビュ
ー連動スライス移動部13とサジタル/コロナル時SA
T印加部14とサジタル/コロナル時位相補正部15と
オブリーク/3次元時統合制御部16とを起動せずに、
システムに制御を返す(EXIT2)。EXIT2で制
御が返されると、システムは、エラー処理を行う。[0010] As shown in FIG.
Is the moving distance G during the collection of data for one image.
It is determined whether v · Mt is sufficiently small (12A). If the motion artifact is sufficiently small to be negligible, it is determined that no correction is necessary, and the axial-time view-linked slice moving unit 13 and the sagittal / coronal-time SAT applying unit 14 are determined.
And sagittal / coronal phase correction unit 15 and oblique /
Control is returned to the system without activating the three-dimensional integrated control unit 16 (EXIT1). When control returns in EXIT1, the system reconstructs an image from the collected data. If it is not sufficiently small, it is determined whether or not the imaging surface is an axial image orthogonal to the relative movement direction (12B). If axial, the view-linked slice moving unit 13 in the axial direction
Is started (12C). If it is not axial, it is determined whether the imaging surface is to capture a sagittal image or a coronal image parallel to the relative movement direction (12D). If it is sagittal or coronal, the sagittal / coronal SAT application section 14 and the sagittal / coronal phase correction section 15 are activated (12E).
If neither sagittal nor coronal, it is determined whether oblique or three-dimensional imaging is performed on the imaging surface with respect to the relative movement direction (12F). If it is oblique or three-dimensional, the oblique / three-dimensional integrated control unit 16 is started (12G).
If neither oblique nor three-dimensional, the view-linked slice moving unit 13 in the axial direction and the SA in the sagittal / coronal state
Without activating the T application unit 14, the sagittal / coronal phase correction unit 15, and the oblique / three-dimensional time integrated control unit 16,
Control is returned to the system (EXIT2). When control is returned in EXIT2, the system performs error processing.
【0011】図5に示すように、アキシャル時ビュー連
動スライス移動部13は、RF励起/反転の位置を、ビ
ュー毎の被検体Gの移動に追従させて移動し、各ビュー
のデータを収集する(13A)。このアキシャル時ビュ
ー連動スライス移動部13が、励起領域追従移動手段に
相当する。図6に示すように、被検体Gがビュー間にG
v・TRだけ移動するから、RF励起領域MsもGv・
TRだけ移動すれば、被検体Gが静止しているのと等価
となる。従って、モーションアーチファクトを生じず、
被検体Gを連続的に移動しながら高画質で撮像できるこ
ととなる。なお、RF励起領域Msの移動は、具体的に
は、例えばRF周波数をビュー毎に変えることで実現で
きる。As shown in FIG. 5, the axial-time view-linked slice moving unit 13 moves the position of RF excitation / inversion so as to follow the movement of the subject G for each view, and collects data of each view. (13A). The axial-time view-linked slice moving unit 13 corresponds to an excitation area tracking moving unit. As shown in FIG. 6, the subject G is G between the views.
Since it moves by v · TR, the RF excitation region Ms is also Gv · TR
Moving by TR is equivalent to the subject G being stationary. Therefore, no motion artifacts occur,
The subject G can be imaged with high image quality while continuously moving. The movement of the RF excitation region Ms can be specifically realized by, for example, changing the RF frequency for each view.
【0012】図7に示すように、サジタル/コロナル時
SAT印加部14は、必要に応じて空間的飽和パルス
(spatial SAT pulse)を通常のパルスシーケンスの
前に付加し、ビュー毎の被検体Gの位置に合わせてMR
信号の発生領域を制限する。そして、各ビューのデータ
を収集する(14A)。図8に示すように、RF励起領
域Ms中を被検体Gが移動している。このため、周波数
軸方向または位相軸方向のうちの移動方向に合った軸に
ついては、被検体Gの同じ部位からのMR信号でもビュ
ー毎に位相がずれている。そこで、サジタル/コロナル
時位相補正部15は、各ビューのデータD’(f,p)
に対し、 exp{−j2πfΔx/Fw} f:周波数軸方向のデータ番号で、“(−N/2)+
1”から“N/2”までの整数である。 Δx:勾配中心からの位置ずれ量 Fw:周波数軸方向の撮像可能領域 または、 exp{−j2πpΔy/Pw} p:位相軸方向のデータ番号で、“(−M/2)+1”
から“M/2”までの整数である。 Δy:勾配中心からの位置ずれ量 Pw:位相軸方向の撮像可能領域 を乗算し、そのビューのデータD(f,p)とする(15
A)。As shown in FIG. 7, the sagittal / coronal SAT applying section 14 adds a spatial SAT pulse before a normal pulse sequence as necessary, and subjects the subject G to each view. MR according to the position of
Restrict the signal generation area. Then, data of each view is collected (14A). As shown in FIG. 8, the subject G is moving in the RF excitation region Ms. For this reason, the phase of the MR signal from the same part of the subject G is shifted from one view to another in the frequency axis direction or the phase axis direction in the moving direction. Therefore, the sagittal / coronal phase correction unit 15 sets the data D ′ (f, p) of each view.
Exp {-j2πfΔx / Fw} f: data number in the frequency axis direction, “(−N / 2) +
It is an integer from 1 ”to“ N / 2. ”Δx: Amount of displacement from the center of gradient Fw: Image-capable area in frequency axis direction or exp {−j2πpΔy / Pw} p: Data number in phase axis direction , “(−M / 2) +1”
To “M / 2”. Δy: the amount of displacement from the center of gradient Pw: the imageable area in the phase axis direction is multiplied to obtain data D (f, p) of the view (15)
A).
【0013】次に、上記位相補正の原理を説明する。図
9に示すように、周波数軸方向に移動する場合を想定す
ると、実空間の信号源g(x,y)からのMR信号D
(f,p)は、(数1)式のように表せる。Next, the principle of the phase correction will be described. As shown in FIG. 9, assuming a case of moving in the frequency axis direction, the MR signal D (x, y) from the signal source g (x, y) in the real space
(F, p) can be expressed as in (Equation 1).
【0014】[0014]
【数1】 (Equation 1)
【0015】勾配中心のx座標をx’とし、勾配中心か
らの位置ずれをΔxとすれば、x=Δx+x’だから、
(数2)式のようになる。If the x coordinate of the gradient center is x 'and the displacement from the gradient center is Δx, then x = Δx + x',
Equation (2) is obtained.
【0016】[0016]
【数2】 (Equation 2)
【0017】従って、勾配中心からの位置ずれΔxの位
置で測定したエコーデータD’(f,p)に、fΔxに
比例した前記位相補正を行なえばよい。位相軸方向に移
動する場合も同様であり、勾配中心からの位置ずれΔy
の位置で測定したエコーデータD’(f,p)に、pΔ
yに比例した前記位相補正を行なえばよい。なお、位相
エンコードの順が大きさの順になっていなくても、各々
の位置での位置ずれΔx,Δyに応じて補正するので、
支障ない。また、被検体Gが一定距離位置ずれしている
だけなら線形の位相補正でよく、再構成後のシフトでよ
いが、本方式では被検体の位置が位相エンコード毎にず
れていくので2乗の位相補正になり、再構成後の補正は
できない。Therefore, the phase correction proportional to fΔx may be performed on the echo data D ′ (f, p) measured at the position of the positional deviation Δx from the gradient center. The same applies to the case of moving in the phase axis direction, and the positional deviation Δy from the gradient center
The echo data D ′ (f, p) measured at the position
The phase correction may be performed in proportion to y. Even if the order of the phase encoding is not in the order of the magnitude, the phase is corrected according to the positional deviations Δx and Δy at the respective positions.
No problem. In addition, if the subject G is only displaced by a fixed distance, linear phase correction may be performed, and a shift after reconstruction may be performed. However, in this method, since the position of the subject is displaced for each phase encoding, the square is used. Phase correction is performed, and correction after reconstruction cannot be performed.
【0018】図10に示すように、オブリーク/3次元
時統合制御部16は、アキシャル時ビュー連動スライス
移動部13とサジタル/コロナル時SAT印加部14の
各分担を決めて、それぞれを起動し、データD’(f,
p)を収集する(16A)。すなわち、RF励起・反転
はアキシャル時と同様に行い、空間飽和パルスはサジタ
ル/コロナル時と同様に行い、データD’(f,p)を収
集する。次に、オブリーク/3次元時統合制御部16
は、オブリーク時には、被検体Gの移動を周波数軸方向
と位相軸方向の各成分に分けて、各々についてサジタル
/コロナル時位相補正部15により位相補正し、データ
D(f,p)を得る。また、3次元の場合には、被検体G
の移動を1つの周波数軸方向と2つの位相軸方向の各成
分に分けて、サジタル/コロナル時位相補正部15によ
り位相補正し、データD(f,p)を得る。この後、シス
テムに制御を渡す。システムは、オブリーク時には、2
次元フーリエ変換して画像を再構成する。また、3次元
時には、3次元フーリエ変換して画像を再構成する。As shown in FIG. 10, the oblique / three-dimensional integrated control unit 16 determines the sharing between the axial-view-linked slice moving unit 13 and the sagittal / coronal SAT application unit 14 and activates them. Data D ′ (f,
Collect p) (16A). That is, the RF excitation / inversion is performed in the same manner as in the axial case, the spatial saturation pulse is performed in the same manner as in the sagittal / coronal case, and data D ′ (f, p) is collected. Next, the oblique / three-dimensional integrated control unit 16
At the time of oblique, the movement of the subject G is divided into components in the frequency axis direction and the phase axis direction, and the phase is corrected by the sagittal / coronal phase correction unit 15 to obtain data D (f, p). In the three-dimensional case, the subject G
Is divided into one component in one frequency axis direction and two components in the phase axis direction, and the phase is corrected by the sagittal / coronal phase correction unit 15 to obtain data D (f, p). Thereafter, control is passed to the system. The system is 2
An image is reconstructed by performing a four-dimensional Fourier transform. In the case of three dimensions, the image is reconstructed by performing a three-dimensional Fourier transform.
【0019】以上の説明から理解されるように、上記実
施例の撮像装置1によれば、被検体Gを連続的に移動さ
せつつ、MRI装置10で、アキシャル像でも,サジタ
ル像でも,コロナル像でも,オブリーク像でも,3次元
像でも撮像できる。また、アキシャル像のみを撮像する
専用機とすれば、ボア10aが非常に短くてもよくな
る。As will be understood from the above description, according to the imaging apparatus 1 of the above embodiment, the MRI apparatus 10 moves the subject G continuously, and outputs an axial image, a sagittal image, or a coronal image. However, an oblique image or a three-dimensional image can be taken. In addition, if a dedicated machine that captures only an axial image is used, the bore 10a may be very short.
【0020】なお、スパイラルスキャンやフィルタード
バックプロジェクション法のようなフーリエ変換を用い
ない撮像方法に対しては、撮像面はRF周波数をビュー
毎に変え、勾配磁場を使った読出しは、読出し方向(k
空間上の原点からエコーデータ点に引いた直線の方向)
に応じた上記位相補正を各データ点に行うことで対応で
きる。また、移動速度Gvが速い場合やエコー時間TE
が長い場合には、移動方向の成分をもつ軸に対して“G
radient Moment Nulling”などの動き補正を行うのが
好ましい。また、超高速撮像法の場合でも、RF励起を
何回かに分けて行うマルチショットの場合には、各ショ
ット毎にこの発明にかかる補正を行うのが好ましい。For an imaging method that does not use a Fourier transform such as a spiral scan or a filtered back projection method, the imaging surface changes the RF frequency for each view, and the reading using the gradient magnetic field is performed in the reading direction (k
Direction of the line drawn from the origin in space to the echo data point)
By performing the above-described phase correction according to the above for each data point. Also, when the moving speed Gv is high or when the echo time TE
Is longer, "G
It is preferable to perform motion correction such as "radient moment nulling". Even in the case of the ultra-high-speed imaging method, in the case of a multi-shot in which RF excitation is divided into several times, the correction according to the present invention is performed for each shot. Is preferably performed.
【0021】[0021]
【発明の効果】この発明のMRI装置を用いた撮像装置
によれば、被検体を連続的に移動させつつMRI装置で
撮像できるようになる。従って、撮像効率を向上するこ
とが出来る。According to the imaging apparatus using the MRI apparatus of the present invention, it becomes possible to image the MRI apparatus while continuously moving the subject. Therefore, the imaging efficiency can be improved.
【図1】この発明のMRI装置を用いた撮像装置の一実
施例の構成図である。FIG. 1 is a configuration diagram of an embodiment of an imaging apparatus using an MRI apparatus of the present invention.
【図2】移動・撮像同時実行部の動作のフロー図であ
る。FIG. 2 is a flowchart of an operation of a movement / imaging simultaneous execution unit.
【図3】撮像可能領域とデータ収集時間と移動速度の関
係の説明図である。FIG. 3 is an explanatory diagram of a relationship among an imageable area, a data collection time, and a moving speed.
【図4】補正要否判定部の動作のフロー図である。FIG. 4 is a flowchart illustrating the operation of a correction necessity determination unit;
【図5】アキシャル時ビュー連動スライス移動部の動作
のフロー図である。FIG. 5 is a flowchart of the operation of a view-linked slice moving unit at the time of axial.
【図6】アキシャル時のスライスの移動の説明図であ
る。FIG. 6 is an explanatory diagram of slice movement at the time of axial.
【図7】サジタル/コロナル時SA印加部とサジタル/
コロナル時位相補正部の動作のフロー図である。FIG. 7 shows a sagittal / coronal SA applying portion and a sagittal /
It is a flowchart of operation | movement of a phase correction part at the time of a coronal.
【図8】サジタル/コロナル時の被検体の移動の説明図
である。FIG. 8 is an explanatory diagram of movement of a subject during sagittal / coronal.
【図9】サジタル/コロナル時の位相補正の原理説明図
である。FIG. 9 is a diagram illustrating the principle of phase correction at the time of sagittal / coronal.
【図10】オブリーク/3次元時統合制御部の動作のフ
ロー図である。FIG. 10 is a flowchart of the operation of the oblique / three-dimensional integrated control unit.
【図11】従来のMRI装置を用いた撮像装置の一例の
構成図である。FIG. 11 is a configuration diagram of an example of an imaging apparatus using a conventional MRI apparatus.
1 MRI装置を用いた撮像装置 10 MRI装置 10a ボア 11 移動・撮像同時実行部 12 補正要否判定部 13 アキシャル時ビュー連動スライス移動部 14 サジタル/コロナル時SA印加部 15 サジタル/コロナル時位相補正部 16 オブリーク/3次元時統合制御部 20 ベルトコンベア G 被検体 Mw 撮像可能領域 Gw 撮像対象範囲 Mt 1画像分のデータを収集する時間 Gv 移動速度 TR 繰り返し時間 Ms スライス DESCRIPTION OF SYMBOLS 1 Imaging apparatus using MRI apparatus 10 MRI apparatus 10a Bore 11 Simultaneous movement / imaging execution part 12 Correction necessity determination part 13 Axial view interlocking slice movement part 14 Sagittal / coronal SA application part 15 Sagittal / coronal phase correction part 16 Oblique / three-dimensional integrated control unit 20 Belt conveyor G Subject Mw Imageable area Gw Imaging target range Mt Time to collect data for one image Gv Moving speed TR Repetition time Ms Slice
Claims (3)
通過させるべく被検体とMRI装置とを相対移動させる
移動装置とからなる撮像装置において、前記MRI装置
の撮像可能領域の移動方向の長さをMwとし、撮像対象
範囲の移動方向の長さをGwとしたとき、両者の差(M
w−Gw)を1画像分のデータを収集する時間Mtで除
算した商(Mw−Gw)/Mtより小さいか等しい速度
Gvで移動するように前記移動装置を制御し且つ前記M
RI装置による撮像を前記移動と同時に実行させる移動
・撮像同時実行手段を備えたことを特徴とするMRI装
置を用いた撮像装置。1. An imaging apparatus comprising an MRI apparatus and a moving apparatus for relatively moving a subject and an MRI apparatus to pass through a bore of the MRI apparatus, wherein a length of the MRI apparatus in a moving direction of an imageable area of the MRI apparatus. Is defined as Mw, and the length of the imaging target range in the moving direction is defined as Gw.
w-Gw) divided by the time Mt for collecting data for one image, and controlling the moving device to move at a speed Gv smaller than or equal to (Mw-Gw) / Mt, and controlling the M
An imaging apparatus using an MRI apparatus, comprising a movement / imaging simultaneous execution unit for executing imaging by the RI apparatus simultaneously with the movement.
像面が相対移動方向に直交するとき、ビュー毎の励起領
域の位置を相対移動量に追従させて移動する励起領域追
従移動手段を備えたことを特徴とするMRI装置を用い
た撮像装置。2. The imaging apparatus according to claim 1, further comprising: an excitation area tracking moving unit that moves the position of the excitation area for each view by following the relative movement amount when the imaging plane is orthogonal to the relative movement direction. An imaging apparatus using an MRI apparatus.
像面が相対移動方向に平行なとき、ビュー毎のデータに
相対移動量に対応した位相補正を施す位相補正手段を備
えたことを特徴とするMRI装置を用いた撮像装置。3. The imaging apparatus according to claim 1, further comprising a phase correction unit that performs a phase correction corresponding to the relative movement amount on the data for each view when the imaging surface is parallel to the relative movement direction. An imaging apparatus using an MRI apparatus.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP09592793A JP3212751B2 (en) | 1993-04-22 | 1993-04-22 | Imaging device using MRI device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP09592793A JP3212751B2 (en) | 1993-04-22 | 1993-04-22 | Imaging device using MRI device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06304153A JPH06304153A (en) | 1994-11-01 |
JP3212751B2 true JP3212751B2 (en) | 2001-09-25 |
Family
ID=14150912
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP09592793A Expired - Fee Related JP3212751B2 (en) | 1993-04-22 | 1993-04-22 | Imaging device using MRI device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3212751B2 (en) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4515616B2 (en) * | 2000-09-25 | 2010-08-04 | 株式会社東芝 | Magnetic resonance imaging system |
US6445181B1 (en) | 2000-11-09 | 2002-09-03 | The Board Of Trustees Of The Leland Stanford Junior University | MRI method apparatus for imaging a field of view which is larger than a magnetic field |
US6794869B2 (en) | 2001-03-30 | 2004-09-21 | General Electric Company | Moving table MRI with frequency-encoding in the z-direction |
US6897655B2 (en) | 2001-03-30 | 2005-05-24 | General Electric Company | Moving table MRI with frequency-encoding in the z-direction |
US6801034B2 (en) | 2001-03-30 | 2004-10-05 | General Electric Company | Method and apparatus of acquiring large FOV images without slab-boundary artifacts |
US6963768B2 (en) | 2002-05-16 | 2005-11-08 | General Electric Company | Whole body MRI scanning with moving table and interactive control |
US6707300B2 (en) | 2002-05-17 | 2004-03-16 | Ge Medical Systems Global Technology Co., Llc | Gradient non-linearity compensation in moving table MRI |
US7251520B2 (en) * | 2003-07-08 | 2007-07-31 | General Electric Company | Method and apparatus of slice selective magnetization preparation for moving table MRI |
US6975113B1 (en) | 2003-11-25 | 2005-12-13 | General Electric Company | Method and system for moving table MRI with partial fourier imaging |
JP4685456B2 (en) * | 2005-01-11 | 2011-05-18 | 株式会社日立メディコ | Magnetic resonance imaging system |
US20080009710A1 (en) * | 2005-02-16 | 2008-01-10 | Hiroyuki Itagaki | Magnetic Resonance Imaging Method and Apparatus |
US7437188B2 (en) * | 2005-02-18 | 2008-10-14 | Mayo Foundation For Medical Education And Research | Method for reducing artifacts in magnetic resonance images acquired with continuous table motion |
JP2007068796A (en) * | 2005-09-08 | 2007-03-22 | Ge Medical Systems Global Technology Co Llc | Rf pulse applying method and mri apparatus |
JP5281791B2 (en) * | 2007-06-12 | 2013-09-04 | 株式会社日立メディコ | Magnetic resonance imaging system |
JP5060569B2 (en) * | 2010-02-03 | 2012-10-31 | 株式会社東芝 | Magnetic resonance imaging system |
-
1993
- 1993-04-22 JP JP09592793A patent/JP3212751B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH06304153A (en) | 1994-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3212751B2 (en) | Imaging device using MRI device | |
US7756566B2 (en) | Magnetic resonance imaging for a plurality of selective regions set to object continuously moved | |
JP4166068B2 (en) | Table-moving MRI with frequency encoding in the z direction | |
JP4176835B2 (en) | Artifact reduced image generator | |
JP3976684B2 (en) | Method and apparatus for reducing the effects of motion in images | |
JP5177367B2 (en) | Magnetic resonance imaging apparatus and navigator data analysis method | |
EP1024371A2 (en) | Magnetic resonance imaging apparatus | |
US20090003674A1 (en) | Sense Mr Parallel Imaging With Continuously Moving Bed | |
EP1743188A1 (en) | Continuous moving-table mri involving contrast manipulation and/or update of scanning parameters | |
JP3212753B2 (en) | Imaging device using MRI device | |
KR100335833B1 (en) | MR imaging device | |
JPH10137215A (en) | Method for improving resolution of image, method for enlarging a part of projected image, and device for improving resolution of image | |
JP2006223869A (en) | Removal method of artifact in magnetic resonance image acquired by contiguous table transfer | |
JP5127447B2 (en) | Nuclear magnetic resonance imaging apparatus and method | |
JP2003515404A (en) | High-speed 3D magnetic resonance tagging for inspection of material deformation and strain | |
JP3576069B2 (en) | MRI equipment | |
JPH0928689A (en) | Method for collecting mr data and mri apparatus | |
JP2008183021A (en) | Magnetic resonance imaging apparatus | |
JP2891514B2 (en) | Magnetic resonance imaging equipment | |
JP3557286B2 (en) | MR image generation method and MRI apparatus | |
JP2004329269A (en) | Magnetic resonance imaging apparatus | |
JP5202939B2 (en) | Magnetic resonance imaging system | |
JP2006122301A (en) | Mri apparatus | |
JPH0316133B2 (en) | ||
JP5060569B2 (en) | Magnetic resonance imaging system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080719 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090719 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090719 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090719 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100719 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100719 Year of fee payment: 9 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100719 Year of fee payment: 9 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100719 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110719 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110719 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120719 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120719 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120719 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |