JP3211411B2 - Deformation measurement method for metal materials - Google Patents

Deformation measurement method for metal materials

Info

Publication number
JP3211411B2
JP3211411B2 JP27762092A JP27762092A JP3211411B2 JP 3211411 B2 JP3211411 B2 JP 3211411B2 JP 27762092 A JP27762092 A JP 27762092A JP 27762092 A JP27762092 A JP 27762092A JP 3211411 B2 JP3211411 B2 JP 3211411B2
Authority
JP
Japan
Prior art keywords
deformation
noise
noise waveform
metal material
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27762092A
Other languages
Japanese (ja)
Other versions
JPH06130038A (en
Inventor
建四郎 小山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP27762092A priority Critical patent/JP3211411B2/en
Publication of JPH06130038A publication Critical patent/JPH06130038A/en
Application granted granted Critical
Publication of JP3211411B2 publication Critical patent/JP3211411B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、金属材料の変形計測方
に関し、特に強磁性を有する鋼材の変形を非破壊的に
計測する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring deformation of a metal material.
More particularly, the present invention relates to a method for non-destructively measuring deformation of a ferromagnetic steel material.

【0002】[0002]

【従来の技術】機器を構成する鋼材の変質(例えば金属
疲労)による破壊は、機器の機能停止のみならず、場合
によっては重大な社会的影響を及ぼしたり人身事故に至
ることがある。そのため、従来は、機器の定期的検査の
際に、各部鋼材の金属疲労による亀裂発生の有無を調査
していた。
2. Description of the Related Art Destruction of steel materials constituting equipment due to deterioration (for example, metal fatigue) not only causes the equipment to stop functioning but also in some cases has a serious social impact or may result in personal injury. Therefore, conventionally, at the time of the periodic inspection of the equipment, the existence of cracks due to the metal fatigue of each part steel material was investigated.

【0003】また、機器を構成する鋼材に過度の曲げ加
工を施して使用を継続する場合も使用中の負荷によって
鋼材が変形し、破壊に至る危険性がある。そのため、歪
みゲージ等を用いて使用中のこれら鋼材の変形を計測し
ていた。
[0003] Further, even when the steel material constituting the equipment is subjected to excessive bending processing to be continuously used, there is a danger that the steel material is deformed by the load during use and may be broken. Therefore, the deformation of these steel materials in use was measured using a strain gauge or the like.

【0004】[0004]

【発明が解決しようとする課題】ところで、鋼材の亀裂
発生前に金属疲労の進み具合を検知できれば機器の補修
を計画的に実施することができ、重大な損傷を未然に防
止できる。また、使用中の鋼材変形は、歪みゲージで測
定することができるが、部品加工段階で受けた変形量と
を併せて破壊の危険性をみることは困難である。
By the way, if the progress of the metal fatigue can be detected before the crack of the steel material, the repair of the equipment can be carried out systematically, and the serious damage can be prevented beforehand. Further, the deformation of the steel material during use can be measured with a strain gauge, but it is difficult to see the risk of destruction together with the amount of deformation received in the part processing stage.

【0005】しかし、今のところ、金属疲労の度合を早
期段階で検知する方法、あるいは、実機鋼材の変形度合
を現場で計測する適切な方法は確立されていない。
However, a method for detecting the degree of metal fatigue at an early stage or an appropriate method for measuring the degree of deformation of actual steel materials on site has not yet been established.

【0006】そこで、最近は、強磁性を有する各種鋼材
の硬さや熱処理状態等と、その磁気的特性との対応関係
に着目して鋼材の変形量や金属疲労の度合を判定する方
法が検討されている。しかしながら、この方法にも以下
のような問題があった。
Therefore, recently, a method of judging the amount of deformation of a steel material and the degree of metal fatigue has been studied by paying attention to the correspondence between the hardness and heat treatment state of various ferromagnetic steel materials and their magnetic properties. ing. However, this method also has the following problems.

【0007】(1)鋼材(試料)の形状によっては磁気的
特性を計測できないものがある。
(1) Depending on the shape of a steel material (sample), there is a material whose magnetic properties cannot be measured.

【0008】(2)試験対象となる金属材料の保磁力、透
磁率、残留磁気等を計測するための高感度の磁気的特性
検査装置を要するが、この種の測定器は操作手順が複雑
であり、現場レベルでの計測方法としては一般的でな
い。
(2) A highly sensitive magnetic property inspection device for measuring the coercive force, magnetic permeability, residual magnetism, etc. of a metal material to be tested is required. However, this type of measuring device has a complicated operation procedure. Yes, it is not common as a measurement method at the site level.

【0009】(3)金属材料へのセンサの設置状態によっ
ては計測値が変わってしまい、真性値の判別が困難とな
る。
(3) The measured value changes depending on the installation state of the sensor on the metal material, and it is difficult to determine the intrinsic value.

【0010】本発明は、かかる背景の下になされたもの
で、実機鋼材の変形度合を容易且つ非破壊的に計測し得
る金属材料の変形計測方法を提供することを目的とす
る。
The present invention has been made under such a background, and an object of the present invention is to provide a method for measuring the deformation of a metal material which can easily and nondestructively measure the degree of deformation of a steel material of an actual machine .

【0011】[0011]

【課題を解決するための手段及び作用】上記目的を達成
する本発明の金属材料の変形計測方法は、磁性金属材料
のバルクハウゼンノイズを検出してそのノイズ波形の平
均周波数及びピーク基準値に変換する手段を備え、予め
前記磁性金属材料を変形させたときの変形量とノイズ波
形の平均周波数及びピーク基準値との対応データを保存
するとともに、計測時における平均周波数及びピーク基
準値を前記保存された対応データと比較照合して当該磁
性金属材料の変形量を導出するようにしたものである。
Means and actions for solving the problems The above object has been achieved.
The method for measuring deformation of a metal material according to the present invention comprises means for detecting Barkhausen noise of the magnetic metal material and converting the Barkhausen noise into an average frequency and a peak reference value of the noise waveform, when the magnetic metal material is deformed in advance. The corresponding data of the deformation amount and the average frequency and peak reference value of the noise waveform are stored, and the average frequency and peak reference value at the time of measurement are compared with the stored corresponding data to compare and match the deformation amount of the magnetic metal material. Is derived.

【0012】[0012]

【実施例】次に本発明の実施例を図面を参照して詳細に
説明する。
Next, an embodiment of the present invention will be described in detail with reference to the drawings.

【0013】(第一実施例) 図1は第一実施例の計測装置の概要図であり、鋼材の金
属疲労過程中の磁気的特性として、バルクハウゼンノイ
ズの周波数分布の変化量を計測することにより金属疲労
の進行度合を判別するものである。
(First Embodiment) FIG. 1 is a schematic view of a measuring apparatus according to a first embodiment, in which a change in the frequency distribution of Barkhausen noise is measured as a magnetic characteristic during a metal fatigue process of a steel material. Is used to determine the degree of progress of metal fatigue.

【0014】図1中、1は試験金属片、2はセンサ、3
はノイズ計測器本体(ストレススキャン)、4はノイズ
波形分析手段を表す。センサ2は、ノイズ計測器本体3
の発信器31出力により励磁される一対の交流励磁磁極
21とその極間に設けられたノイズ検出磁極22とで構
成される。このセンサ2で検出されたバルクハウゼンノ
イズは、ノイズ計測器本体3に導かれ、増幅器32、フ
ィルタ33、信号処理部34を経て電圧波形としてノイ
ズ波形分析手段4に出力される。フィルタ33からはノ
イズ波形電圧が直接出力され、信号処理部34からはノ
イズ波形のピーク基準値が出力される。このピーク基準
値は、ノイズ波形を所定の閾値でサンプリングした変換
電圧レベル(デジタル値)に対する相対値であり、MP
値で表される。以下、このピーク基準値をMP値と称し
て説明する。
In FIG. 1, 1 is a test piece, 2 is a sensor, 3
Denotes a noise measuring instrument main body (stress scan), and 4 denotes a noise waveform analyzing means. The sensor 2 is a noise measuring instrument main body 3
And a noise detecting magnetic pole 22 provided between the pair of AC exciting magnetic poles 21 excited by the output of the oscillator 31. The Barkhausen noise detected by the sensor 2 is guided to the noise measuring device main body 3, and is output to the noise waveform analysis unit 4 as a voltage waveform via the amplifier 32, the filter 33, and the signal processing unit 34. The noise waveform voltage is directly output from the filter 33, and the peak reference value of the noise waveform is output from the signal processing unit 34. This peak reference value is a relative value to a converted voltage level (digital value) obtained by sampling the noise waveform at a predetermined threshold, and
Expressed by value. Hereinafter, the peak reference value will be described as an MP value.

【0015】ノイズ波形分析手段4には、具体的には、
量子化装置とパーソナルコンピュータ(以下、パソコ
ン)と表示装置とを用いる。
Specifically, the noise waveform analyzing means 4 includes:
A quantization device, a personal computer (hereinafter, a personal computer), and a display device are used.

【0016】図2はこのノイズ波形分析手段4を含む計
測装置の接続構成図であり、量子化装置(ストレージス
コープ)41、パソコン42、表示装置43を図示のよ
うに接続して成る。ノイズ計測器本体3からパソコン4
2へは、前述のMP値が出力される。
FIG. 2 is a connection configuration diagram of a measurement device including the noise waveform analysis means 4, and is constituted by connecting a quantization device (storage scope) 41, a personal computer 42, and a display device 43 as shown in the figure. Noise measuring instrument body 3 to PC 4
2, the aforementioned MP value is output.

【0017】量子化装置41は、ノイズ計測器本体3の
フィルタ33から入力したノイズ波形電圧を一旦蓄積し
た後、これを所定の時間間隔、トリガレベル、閾値電圧
をもって量子化してパソコン42に出力する。
The quantizer 41 once accumulates the noise waveform voltage input from the filter 33 of the noise measuring device main body 3, quantizes the noise waveform voltage at a predetermined time interval, a trigger level and a threshold voltage, and outputs the quantized voltage to the personal computer 42. .

【0018】パソコン42は、他種ハードウエアとのイ
ンターフェースとなるGP−IBボード42aと高速フ
ーリエ変換により周波数解析を行うFFTボード42b
とデータ保存用のFDD42cを内蔵しており、GP−
IBを介して入力したノイズ波形電圧の周波数分布への
変換を行っている。この周波数分布への変換を行うため
に、パソコン42は、ノイズ計測器本体3に対しては測
定の開始/停止、測定深さの設定/変更、励磁電流の変
更を行うための制御信号、量子化装置41に対しては時
間間隔、トリガレベル、閾値電圧の設定/変更、ノイズ
波形電圧の入力制御を行うための制御信号を夫々送出し
ている。
The personal computer 42 has a GP-IB board 42a serving as an interface with other kinds of hardware and an FFT board 42b for performing frequency analysis by fast Fourier transform.
And FDD42c for data storage, GP-
The noise waveform voltage input via the IB is converted into a frequency distribution. In order to perform the conversion to the frequency distribution, the personal computer 42 controls the noise measuring device body 3 to start / stop the measurement, set / change the measurement depth, change the excitation current, and control the quantum signal. Control signals for setting / changing the time interval, the trigger level, the threshold voltage, and controlling the input of the noise waveform voltage are transmitted to the conversion device 41.

【0019】変換された周波数分布はRS−232Cを
介して表示装置43に導かれ、CRTに表示される。な
お、この周波数分布への変換は、多数個の入力ノイズ波
形電圧を取り込んで周波数分布形状がほぼ安定するまで
行う。この機能はパソコン42による量子化装置41等
への制御により実現される。この点、単一の波形に対す
る周波数分布を表示する従来のこの種の計測方法に比べ
て計測精度が格段に向上する。
The converted frequency distribution is guided to the display device 43 via the RS-232C and displayed on the CRT. The conversion into the frequency distribution is performed until a large number of input noise waveform voltages are fetched and the frequency distribution shape becomes substantially stable. This function is realized by controlling the quantization device 41 and the like by the personal computer 42 . In this regard, the measurement accuracy is significantly improved as compared with a conventional measurement method of this type that displays a frequency distribution for a single waveform.

【0020】図3は上記計測装置による計測結果を示す
図で、試験金属片1としてマルテンサイト系ステンレス
鋼板を用い、これを繰り返し曲げたときのバルクハウゼ
ンノイズの周波数分布の変化例を示している。図3中、
Aは当該試験金属片1の初期状態における周波数分布で
あり、Bは金属疲労が進み、亀裂が発生する直前の周波
数分布を示している。このように、金属疲労に伴って周
波数分布のピークレベルが低周波側にずれることがわか
る。この周波数分布の変化は、センサ2の接触状態が極
端にずれていない限り容易にとらえられる。従って、磁
性金属材料のバルクハウゼンノイズの周波数分布を監視
し、その変化を捉えることで当該金属材料の変質量、即
ち、金属疲労の進み具合を早期段階で容易に把握するこ
とができ、計画的な保守により機器の重大損傷を未然に
防止することができる。
FIG. 3 is a graph showing the results of measurement by the above-mentioned measuring apparatus. FIG. 3 shows an example of a change in the frequency distribution of Barkhausen noise when a martensitic stainless steel plate is used as the test metal piece 1 and repeatedly bent. . In FIG.
A shows the frequency distribution of the test metal piece 1 in the initial state, and B shows the frequency distribution immediately before metal fatigue progresses and cracks occur. Thus, it can be seen that the peak level of the frequency distribution shifts to the lower frequency side due to metal fatigue. This change in the frequency distribution can be easily detected unless the contact state of the sensor 2 is extremely shifted. Therefore, by monitoring the frequency distribution of Barkhausen noise of the magnetic metal material and capturing the change, the mass change of the metal material, that is, the progress of the metal fatigue can be easily grasped at an early stage. By careful maintenance, serious damage to the equipment can be prevented.

【0021】(第二実施例) 次に本発明の第二実施例を説明する。ここでは、試験金
属片1として13%クロム−4%ニッケル−0.2%チ
タン−残り鉄のマルテンサイト系ステンレス鋼(0.8
mm薄板材)を用い、この試験金属片1を変形させたと
きのバルクハウゼンノイズ波形の変化を計測した。具体
的には、第一実施例で用いた図2の構成の計測装置を使
用し、試験金属片1の変形量とそのときのバルクハウゼ
ンノイズ波形の平均周波数[kHZ]及び前述のMP値
との関係を求めた。
(Second Embodiment) Next, a second embodiment of the present invention will be described. Here, a martensitic stainless steel of 13% chromium-4% nickel-0.2% titanium-remainder iron (0.8%) was used as test metal piece 1.
mm thin plate material), the change of the Barkhausen noise waveform when the test metal piece 1 was deformed was measured. Specifically, using a measuring device having the structure illustrated in FIG. 2 used in the first embodiment, the average frequency of the Barkhausen noise waveform deformation of the test metal piece 1 and the time [kH Z] and the aforementioned MP value And sought a relationship.

【0022】図4は本実施例により計測したバルクハウ
ゼンノイズ波形の一例であり、図5はこのノイズを多数
個取り込んで周波数分布に変換するとともに各周波数分
布を重ね合わせた例である。周波数分布への変換は、第
一実施例と同様、分布形状が安定するまで繰り返し行
う。この周波数分布からノイズ波形の平均周波数[kH
Z]が求まる。
FIG. 4 shows an example of a Barkhausen noise waveform measured according to the present embodiment. FIG. 5 shows an example in which a large number of such noises are taken, converted into frequency distributions, and each frequency distribution is superimposed. Conversion to a frequency distribution is repeated until the distribution shape is stabilized, as in the first embodiment. From this frequency distribution, the average frequency of the noise waveform [kHz
Z ] is obtained.

【0023】図6は試験金属片1の弾性変形範囲におけ
る変形量とバルクハウゼンノイズ波形の平均周波数及び
MP値との関係図であり、横軸には曲げ弾性ひずみ量ε
E(×10-6)が示されている。また、図7は塑性変形
(永久変形)させたときの変形量とバルクハウゼンノイ
ズ波形の平均周波数[kHZ]及びMP値との関係図で
あり、横軸には曲げ塑性ひずみ量εP(×10-6)が示
されている。
FIG. 6 is a graph showing the relationship between the amount of deformation in the elastic deformation range of the test metal piece 1 and the average frequency and MP value of the Barkhausen noise waveform.
E (× 10 −6 ) is shown. Further, FIG. 7 is a graph showing the relationship between average frequency [kH Z] and MP values of deformation amount and the Barkhausen noise waveform when plastically deformed (permanent deformation), the horizontal axis bending plastic strain amount epsilon P ( × 10 -6 ) is shown.

【0024】図6及び図7を参照すると、MP値及び平
均周波数の変化と各ひずみ量εE,εPの変化との間には
夫々密接な関係があることがわかる。従って、予め試験
金属片1を変形させたときの変形量εE、εPとノイズ波
形の平均周波数及びMP値との対応データをパソコン4
2のFDD42cに保存するとともに、計測時における
平均周波数及びMP値をFDD42cから読み出した対
応データと比較照合することで当該金属片の変形量(ひ
ずみ量εE、εP)を容易に導出することができる。ま
た、曲げ加工を施す場合において、過度の曲げ(破壊寸
前)を防止し、適度な加工条件を求めることもできる。
Referring to FIGS. 6 and 7, it can be seen that there is a close relationship between the change in the MP value and the average frequency and the change in each of the distortion amounts ε E and ε P. Therefore, the correspondence data between the deformation amounts ε E and ε P when the test metal piece 1 is deformed in advance and the average frequency and MP value of the noise waveform are stored in the personal computer 4.
2 in the FDD 42c, and easily derive the deformation amount (strain amount ε E , ε P ) of the metal piece by comparing and comparing the average frequency and the MP value at the time of measurement with the corresponding data read from the FDD 42c. Can be. In the case of performing bending, it is also possible to prevent excessive bending (immediately before destruction) and determine appropriate processing conditions.

【0025】このように、第一及び第二実施例では、汎
用の測定器3,41をパソコン42で制御し、周波数分
布解析や対応データとの比較照合を自動的に行うように
したので、操作が極めて簡略化され、現場レベルでの計
測が容易となる。
As described above, in the first and second embodiments, the general-purpose measuring instruments 3 and 41 are controlled by the personal computer 42 , and the frequency distribution analysis and the comparison with the corresponding data are automatically performed. The operation is extremely simplified and the measurement at the field level becomes easy.

【0026】[0026]

【発明の効果】以上、詳細に説明したように、本発明で
は、磁性金属材料のバルクハウゼンノイズを検出してそ
のノイズ波形の平均周波数及びMP値に変換する手段を
備え、予めこの金属材料を変形させたときの変形量とノ
イズ波形の平均周波数及びMP値との対応データを保存
するとともに、計測時における平均周波数及びMP値を
上記対応データと比較照合することにより当該金属材料
の変形量を導出するようにしたので、実機鋼材の変形度
合を容易且つ非破壊的に計測し得る変形計測方法を実現
することができる。これにより、荷重による変形の計測
や曲げ加工時の適度な加工条件の設定が極めて容易とな
る。
As described above in detail, according to the present invention, Barkhausen noise of a magnetic metal material is detected and detected.
Means for converting the average frequency and MP value of the noise waveform
The amount of deformation when this metal material is deformed in advance and the noise
Saves data corresponding to average frequency and MP value of noise waveform
The average frequency and the MP value at the time of measurement.
By comparing and matching with the above correspondence data,
The amount of deformation of the actual steel is
Measurement method that can easily and non-destructively measure the joint
can do. This allows measurement of deformation due to load
It is extremely easy to set appropriate processing conditions during bending and bending.
You.

【0027】上記計測方法は、汎用の計測装置により実
現でき、しかも操作手順が単純なので、現場レベルでの
計測に適した汎用性の高い変形計測方法を提供すること
ができる。
The above-mentioned measuring method can be realized by a general-purpose measuring device, and the operation procedure is simple, so that a highly versatile deformation measuring method suitable for measurement at the site level can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第一及び第二実施例による試験金属片
のバルクハウゼンノイズの検出系構成図。
FIG. 1 is a configuration diagram of a system for detecting Barkhausen noise of a test metal piece according to first and second embodiments of the present invention.

【図2】第一及び第二実施例で用いる汎用計測装置の構
成図。
FIG. 2 is a configuration diagram of a general-purpose measurement device used in the first and second embodiments.

【図3】第一実施例で検出した試験金属片のバルクハウ
ゼンノイズ波形の周波数分布の変化例を示す図。
FIG. 3 is a diagram showing an example of a change in the frequency distribution of a Barkhausen noise waveform of a test metal piece detected in the first embodiment.

【図4】第二実施例で検出した試験金属片のバルクハウ
ゼンノイズ波形例を示す図。
FIG. 4 is a diagram showing an example of a Barkhausen noise waveform of a test metal piece detected in the second embodiment.

【図5】図4のノイズ波形の周波数分布図の一例を示す
図。
5 is a diagram showing an example of a frequency distribution diagram of the noise waveform in FIG. 4;

【図6】第二実施例で計測した試験金属片の曲げ弾性ひ
ずみ量とバルクハウゼンノイズの平均周波数及びMP値
との対応データ。
FIG. 6 shows correspondence data between the bending elastic strain amount of the test metal piece measured in the second embodiment, the average frequency of Barkhausen noise, and the MP value.

【図7】第二実施例で計測した試験金属片の曲げ塑性ひ
ずみ量とバルクハウゼンノイズの平均周波数及びMP値
との対応データ。
FIG. 7 shows correspondence data between the bending plastic strain amount of the test metal piece measured in the second embodiment, the average frequency of Barkhausen noise, and the MP value.

【符号の説明】[Explanation of symbols]

1…試験金属片(磁性金属材料) 2…センサ 3…ノイズ計測器本体 4…ノイズ波形分析手段 41…量子化装置 42…パソコン 42a…GP−IBボード 42b…FFTボード 42c…FDD 43…表示装置 DESCRIPTION OF SYMBOLS 1 ... Test metal piece (magnetic metal material) 2 ... Sensor 3 ... Noise measuring instrument main body 4 ... Noise waveform analysis means 41 ... Quantizer 42 ... Personal computer 42a ... GP-IB board 42b ... FFT board 42c ... FDD 43 ... Display device

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 磁性金属材料のバルクハウゼンノイズを
検出してそのノイズ波形の平均周波数及びピーク基準値
に変換する手段を備え、予め前記磁性金属材料を変形さ
せたときの変形量とノイズ波形の平均周波数及びピーク
基準値との対応データを保存するとともに、計測時にお
ける平均周波数及びピーク基準値を前記保存された対応
データと比較照合して当該磁性金属材料の変形量を導出
することを特徴とする金属材料の変形計測方法。
(1) Barkhausen noise of a magnetic metal material is reduced.
Average frequency and peak reference value of the detected noise waveform
Means for converting the magnetic metal material into
Amount of deformation and average frequency and peak of noise waveform
Save the data corresponding to the reference value and
The average frequency and the peak reference value in the stored correspondence
Deriving the deformation amount of the magnetic metal material by comparing with the data
A method for measuring deformation of a metal material.
JP27762092A 1992-10-16 1992-10-16 Deformation measurement method for metal materials Expired - Fee Related JP3211411B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27762092A JP3211411B2 (en) 1992-10-16 1992-10-16 Deformation measurement method for metal materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27762092A JP3211411B2 (en) 1992-10-16 1992-10-16 Deformation measurement method for metal materials

Publications (2)

Publication Number Publication Date
JPH06130038A JPH06130038A (en) 1994-05-13
JP3211411B2 true JP3211411B2 (en) 2001-09-25

Family

ID=17585962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27762092A Expired - Fee Related JP3211411B2 (en) 1992-10-16 1992-10-16 Deformation measurement method for metal materials

Country Status (1)

Country Link
JP (1) JP3211411B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5579471B2 (en) * 2010-03-24 2014-08-27 Ntn株式会社 Barkhausen noise inspection system
CN109556958A (en) * 2018-12-07 2019-04-02 武汉科技大学 A kind of test method of simple check line crack starter location and spreading rate at first

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59112257A (en) * 1982-12-20 1984-06-28 Hata Giken:Kk Method and device for nondestructive inspection of ferromagnetic material
JPH01245149A (en) * 1988-03-28 1989-09-29 Hitachi Ltd Deterioration inspection instrument for metallic material

Also Published As

Publication number Publication date
JPH06130038A (en) 1994-05-13

Similar Documents

Publication Publication Date Title
US5425272A (en) Relative resonant frequency shifts to detect cracks
EP2314994B1 (en) System and Method for Handling Wide Dynamic Range Signals Encountered in Vibration Analysis Using a Logarithmic Amplifier
US20210088432A1 (en) Apparatus and method for performing an impact excitation technique
Morales et al. Compressional and torsional wave amplitudes in rods with periodic structures
JP3211411B2 (en) Deformation measurement method for metal materials
JP3910222B2 (en) Fatigue measuring device
Dib et al. In-situ fatigue monitoring procedure using nonlinear ultrasonic surface waves considering the nonlinear effects in the measurement system
KR101999945B1 (en) Apparatus For Measuring Stess of ferromagnetic substance
JPH06109412A (en) Method and apparatus for detecting deformation behavior at inside of metal material
US6343513B1 (en) Non-destructive evaluation method and apparatus for measuring acoustic material nonlinearity
JP3461781B2 (en) Method and apparatus for evaluating creep damage of ferromagnetic structure using alternating current magnetization
JPH03111735A (en) Automatic young's modulus measuring apparatus
JP2001133441A (en) Non-destructive hardness measurement method
RU2245543C2 (en) Product flow control method
Katzmann et al. Characterizing materials in the frequency domain: Validation experiments
WO1983001836A1 (en) Method for measuring fatigue strength of ferromagnetic materials non-destructively
EP0602039B1 (en) Method for measuring mechanical stresses and fatigue conditions in steel
JPH09269268A (en) Method for detecting looseness of bolt by strain wave analysis
EP1564551A1 (en) Non-destructive method for the detection of creep damage in ferromagnetic parts with a device consisting of an eddy current coil and a hall sensor
Donzella et al. Some experimental results about the correlation between Barkhausen noise and the fatigue life of steel specimens
JP7454165B2 (en) Magnetic material measurement probe and magnetic material measurement device
RU2807964C1 (en) Method for monitoring the mechanical properties of rolled metal made of ferromagnetic metal alloys and a device for its implementation
JP2964315B2 (en) Measurement device for nonlinear elastic modulus of viscoelastic material
JPH063436B2 (en) Method and apparatus for diagnosing deterioration of article
Matveev et al. Efficiency of the method of spectral vibrodiagnostics for fatigue damage of structural elements. Part 4. Analysis of distortion of harmonicity of vibration cycle of beams with closing transverse cracks

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080719

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090719

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100719

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100719

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110719

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120719

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees