JP3210975B2 - 励起エネルギー繰り返し共鳴付与方法 - Google Patents
励起エネルギー繰り返し共鳴付与方法Info
- Publication number
- JP3210975B2 JP3210975B2 JP29147697A JP29147697A JP3210975B2 JP 3210975 B2 JP3210975 B2 JP 3210975B2 JP 29147697 A JP29147697 A JP 29147697A JP 29147697 A JP29147697 A JP 29147697A JP 3210975 B2 JP3210975 B2 JP 3210975B2
- Authority
- JP
- Japan
- Prior art keywords
- resonance
- reference numeral
- hydrogen compound
- state
- energy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Physical Or Chemical Processes And Apparatus (AREA)
Description
【0001】
【利用分野】本願発明は、水素化合物、即ち、炭化水素
系燃料の燃焼性を改良する技術の利用分野に属する。
系燃料の燃焼性を改良する技術の利用分野に属する。
【0002】
【従来の技術】本願発明に係わる従来の技術は、見当た
らない。マイクロ波、遠赤外、赤外、可視光、紫外、放
射線等の電磁波、及び磁石による共鳴でエネルギーを吸
収せしめ、分子を励起状態にして、電子の引き抜きや、
付加によって、不対電子状態を分子に構成し、遊離基化
して活性化し、燃焼性を改良しようと云う試みがなされ
ているが、共鳴によるエネルギー付与の決定的な欠点
は、励起状態が極めて短く、元のエネルギー基底状態
に、励起と殆ど同程度の時間、10−7〜−8秒(百万
から1千万分の1秒)と云う時間で、一重項励起状態か
ら、共鳴供与エネルギーを、蛍光放出と云う形に変えて
基底状態に戻るか、エネルギーを放射しなくても、元の
基底状態(無放射失格)に戻るか、反応、つまり分子叉
は、原子結合するか解離するか、電子を燐光として放出
し、イオン化するか、活性分子化、つまり遊離基化する
三重項励起状態で留まるのであるが、三重項励起状態
も、殆ど、燐光放出、叉は、無放射失格で基底状態に戻
って仕舞い、短い時間の経過で、共鳴付与エネルギー
は、失効して仕舞うため、今までに、燃焼性改良の安定
した効果は得られていない。
らない。マイクロ波、遠赤外、赤外、可視光、紫外、放
射線等の電磁波、及び磁石による共鳴でエネルギーを吸
収せしめ、分子を励起状態にして、電子の引き抜きや、
付加によって、不対電子状態を分子に構成し、遊離基化
して活性化し、燃焼性を改良しようと云う試みがなされ
ているが、共鳴によるエネルギー付与の決定的な欠点
は、励起状態が極めて短く、元のエネルギー基底状態
に、励起と殆ど同程度の時間、10−7〜−8秒(百万
から1千万分の1秒)と云う時間で、一重項励起状態か
ら、共鳴供与エネルギーを、蛍光放出と云う形に変えて
基底状態に戻るか、エネルギーを放射しなくても、元の
基底状態(無放射失格)に戻るか、反応、つまり分子叉
は、原子結合するか解離するか、電子を燐光として放出
し、イオン化するか、活性分子化、つまり遊離基化する
三重項励起状態で留まるのであるが、三重項励起状態
も、殆ど、燐光放出、叉は、無放射失格で基底状態に戻
って仕舞い、短い時間の経過で、共鳴付与エネルギー
は、失効して仕舞うため、今までに、燃焼性改良の安定
した効果は得られていない。
【0003】
【発明が解決しようとする課題】従来技術では、共鳴に
よるエネルギー吸収の励起状態を、必要な時間、つまり
燃焼室に至るまでの時間を保持する、技術的な手段はな
かった。本願発明が解決しようとする課題は、この従来
技術にはなかった、一重項励起状態、叉は、三重項励起
状態を必要な時間、保持する方法や機構、装置等の技術
手段の提供にある。そして、頭書の目的である、水素化
合物、つまり炭化水素系燃料の燃焼性を改良し、燃費の
向上、二酸化炭素(炭酸ガス)、その他悪性ガスの排出
低減を可能にしようとするものである。
よるエネルギー吸収の励起状態を、必要な時間、つまり
燃焼室に至るまでの時間を保持する、技術的な手段はな
かった。本願発明が解決しようとする課題は、この従来
技術にはなかった、一重項励起状態、叉は、三重項励起
状態を必要な時間、保持する方法や機構、装置等の技術
手段の提供にある。そして、頭書の目的である、水素化
合物、つまり炭化水素系燃料の燃焼性を改良し、燃費の
向上、二酸化炭素(炭酸ガス)、その他悪性ガスの排出
低減を可能にしようとするものである。
【0004】
【課題を解決するための手段】前項の課題を解決するた
めに、特許請求の範囲にも記載の如く、放射線叉は、核
磁気共鳴か電子常磁共鳴ないし、遠赤外を含む赤外線共
鳴による水素化合分子をエネルギー励起させる方法に於
いて、被共鳴体として励起される、その水素化合物(炭
化水素系燃料)が、励起状態から瞬時に基底状態に戻っ
て、不活性な安定分子状態に戻らない様、水素化合物の
流路をその水素化合物の物性と、電子常磁共鳴周波数に
合わせた導波管を構成して、マグネトロンにより高周波
電磁波を管内放射させ、電磁波の伝搬方向に直行する、
その電磁波が誘発構成する磁力線に沿った、水素化合物
の流れの方向に併行する状態で、複数の磁場を構成し、
更に、密閉材とピストンの平行面で構成される、無限連
続往復反射による電子常磁共鳴の共振増幅により、分子
解離された活性子が、容易に基底状態に戻らないよう
な、しきい値を越えるまで、連続してエネルギーが共鳴
付与される、マグネトロンの電磁波エネルギーを効率よ
く照射供与する、レーザー光発生のエネルギーポンピン
グ(励起)と同様の、励起エネルギー共振増幅機能を備
えた、励起エネルギーの繰り返し共鳴付与方法を発明
し、手段に用いた。この電子常磁共鳴エネルギー共振増
幅機構は、炭化水素系燃料の電気的特性が変化すると、
共振平行面の条件が変化し壊れて、定状波が乱れ、反射
波が発生して密閉材を透過し、サーキュレイターか、叉
はアイソレーターより逆流する。その逆流反射波を検出
して、電位差に換算し、増幅して電力量に変換し、電磁
ソレノイドよって、反射ピストンを差動させ、共振増幅
状態が常に高調状態に保たれる様、自動コントロールさ
れる様な装置を構成し、励起エネルギー繰り返し付与を
安定化した。
めに、特許請求の範囲にも記載の如く、放射線叉は、核
磁気共鳴か電子常磁共鳴ないし、遠赤外を含む赤外線共
鳴による水素化合分子をエネルギー励起させる方法に於
いて、被共鳴体として励起される、その水素化合物(炭
化水素系燃料)が、励起状態から瞬時に基底状態に戻っ
て、不活性な安定分子状態に戻らない様、水素化合物の
流路をその水素化合物の物性と、電子常磁共鳴周波数に
合わせた導波管を構成して、マグネトロンにより高周波
電磁波を管内放射させ、電磁波の伝搬方向に直行する、
その電磁波が誘発構成する磁力線に沿った、水素化合物
の流れの方向に併行する状態で、複数の磁場を構成し、
更に、密閉材とピストンの平行面で構成される、無限連
続往復反射による電子常磁共鳴の共振増幅により、分子
解離された活性子が、容易に基底状態に戻らないよう
な、しきい値を越えるまで、連続してエネルギーが共鳴
付与される、マグネトロンの電磁波エネルギーを効率よ
く照射供与する、レーザー光発生のエネルギーポンピン
グ(励起)と同様の、励起エネルギー共振増幅機能を備
えた、励起エネルギーの繰り返し共鳴付与方法を発明
し、手段に用いた。この電子常磁共鳴エネルギー共振増
幅機構は、炭化水素系燃料の電気的特性が変化すると、
共振平行面の条件が変化し壊れて、定状波が乱れ、反射
波が発生して密閉材を透過し、サーキュレイターか、叉
はアイソレーターより逆流する。その逆流反射波を検出
して、電位差に換算し、増幅して電力量に変換し、電磁
ソレノイドよって、反射ピストンを差動させ、共振増幅
状態が常に高調状態に保たれる様、自動コントロールさ
れる様な装置を構成し、励起エネルギー繰り返し付与を
安定化した。
【0005】
【作用、構成及び効果】図面は本願発明の一実施例を示
すものであり、その作用と効果を説明する。図1は、マ
イクロ波発信器を構成した、本発明の導波管型電子常磁
共鳴、並びに共振増幅装置を示す長手方向一部断面図で
ある。マグネトロンより発信された、高周波電磁波は、
空洞部から、逆流防止のサーキュレーター叉はアイソレ
ーターを経て、シール性があり且つ、電磁波の透過性が
良い物質(合成ゴムが最適である)を通過して、水素化
合物(炭化水素系燃料)が流通する導波管に放射する構
成になっている。この導波管は、図2及び図3に詳細を
表示しているが、波動は、短辺面で屈折して管内を折り
返し進行する。そしてこの波動に直行して、フレミング
の左手の法則に従い、磁力線が誘発される。この進行波
の屈折角は、流体の比誘電率によって定まるが、この導
波管に水素化合物の流体を供給するには、電磁波が流体
供給源に逆進行する事は、空気に水素化合物が接する部
分が有れば、自然発火の危険があり、絶対に許容されな
い。従って、波動に関係のない長辺面に、供給口を連結
し、電磁波が逆流しない様に、多孔状、叉は網目状の金
属を介して、電磁波の密閉連結を施す。その構成を図3
に表示している。図4は、本発明の方法の大容量に対応
する一実施例を、簡略に線図化した装置の系統斜視図で
ある。分子は、それぞれ固有の振動があり、その振動波
長領域の電磁波とは共鳴し、エネルギーを吸収して電子
的励起状態へ上がる。つまり分子は興奮状態となるが、
この状態は、前述の如く極めて短時間であり、一重項励
起状態で10−8秒、三重項励起状態で10−4秒位の
うちに、殆ど、反応せず蛍光を発するか、発熱して元の
状態に戻るか、反応して他の分子あるいは電子を放出し
てイオン化してエネルギー基底状態に戻る。特殊な条件
(剛性媒質中)では、数秒程度の寿命を持つ場合もあ
る。なかでも、有機化合物、水素化合物(炭化水素)の
分子は、光とりわけ赤外線の波長3〜4μ(μ=cm
−4)黒体の放射温度換算で700〜500℃叉は、6
〜8μ黒体の放射温度換算で230〜90℃の領域で、
エネルギーを共鳴吸収し、熱分解、光分解し反応中間
体、不対電子を持った活性化した(電気的に壊れた分
子)遊離基、つまり、メチル基、メチレン基、メチン基
と云ったラジカルに変化する事は良く知られている。こ
の現象は、分子に放射線(主としてγ線=ガンマー線)
を、1分子当たり30eV(エネルギーボルト)以上放
射しても、また強力なマグネトロン(磁電管)の極超短
波(9〜10GHz=ギガヘルツ=×109サイクル/
秒)による電磁波の放電で、加速電子を分子に衝突させ
ても、結合に関わる電子を放出せしめて分子を遊離基化
させ、化学結合を切断させることが出来、多数の反応中
間体を得ることができる。水素化合物(炭化水素系燃
料)の燃焼は、熱による反応中間体の進行、つまり自燃
熱による、遊離基の複雑な連鎖反応で炭化水素分子が、
炭素と水素に解離して、酸素と酸化発熱反応を起こし、
二酸化炭素(炭酸ガス)と水に変化する反応現象である
が、このことから燃焼に於ける、分子の分解、原子解離
は不可欠であり、反応中間体が発生する事は重要である
ことが理解される。自己の燃焼熱で反応中間体を発生さ
せる事は、人間が火を使い始めた時からの技術であり、
分子の加熱分解は自然であり、容易であると言えるが、
しかし分解するためには、例えば、エンジンのシリンダ
ールームでの燃焼の場合、分子は加熱したシリンダーの
壁に何回も衝突するので、分解熱を含め、熱エネルギー
の損失が大きく、色々な反応中間体が繰り返し連鎖的に
発生し、寿命の短い反応中間体を、一時に多数生成させ
る事は、自然燃焼の様な、古典的な燃焼方法に於いては
極めて困難である。複雑な反応中間体が次々に発生す
る、連鎖反応の燃焼は燃焼時間を遅くらせることであ
り、従って、燃焼速度は当然の如く遅くなる。しかし、
燃焼を力として利用する場合、速度は速い程、大きな力
が取り出せるのである。ニトログリセリン、TNT火薬
の岩盤破壊の爆轟燃焼と、ガソリンや灯油、軽油、重油
の金属シリンダー内燃焼を比較すれば、この事は明白に
理解される筈である。前者は爆轟火炎で、6800〜9
000m/secと極めて速く、後者は、約0.1m/
secの燃焼速度に、膨張速度の流れが加わっても、1
5〜25m/sec程度で、余程速くても30m/se
cを越える事は珍しい。従って、燃焼に於ける反応中間
体の発生メカニズムを、自己燃焼エネルギーで発生させ
ず、別の手段で行えば、自己燃焼エネルギーの消耗がな
くなるばかりか、燃焼時間を短く出来、燃焼速度が上げ
られるので、より大きな力が取り出せる。しかも反応は
単純になり、燃焼の進行が速いので、反応中間体である
有毒な悪性の活性ガスは、発生する余裕のない状態に抑
制され、完全燃焼が可能となる。この様な考え方に基ず
く、色々な研究が成されてきたが、反応中間体の状態を
一定の時間維持して、燃焼に遷移させる技術がなく、安
定した高速完全燃焼の技術は、未だ完成していない。レ
ーザーの発信は、レーザー物質に対して、励起エネルギ
ーがしきい値を越えてポンピング(励起)されると、光
波の共振放出が盛んに行われ、増幅されていって損失を
上回ると、ついにレーザー発信が起こる。レーザー光
は、同方向、同位相、同振動数、さらに同じ偏光特性を
もった光波が連鎖反応で増幅され、規則正しい光波が発
信されるのである。水素化合物流体が、低レベルの放射
性物体で焼成された、多孔質のセラミックボールを浸責
しながら流通しγ線が1分子当たり30eV以上に照射
されると、結合分子から電子が放出され、更に赤外線や
高周波の電子常磁共鳴波を繰り返し、共鳴吸収される
と、炭化水素分子は、解離されるか解離され易くなり、
基底状態に遷移することなく、励起された儘ラジカル化
する。この励起状態のエネルギーが、レーザー光発信の
如く、ポンピング状態に連続して付加されると、エネル
ギー共鳴吸収分子は、元の基底状態に遷移出来ず、更に
エネルギーがポンピングされると原子間解離にまで進
む。つまり共振増幅共鳴励起されると、反応中間体のメ
チル基、メチレン基、メチン基は、更に進んで、C(炭
素原子)とH(水素原子)の原子間解離が起こり、その
状態で酸素に出逢うと、複雑な連鎖反応が省略されて、
極めて短時間に直接酸素との熱酸化反応が、高温高速度
で起こる。通常、炭化水素系燃料の圧縮室内、つまりエ
ンジンのシリンダー内での燃焼火炎速度は、前述の如
く、15〜25m/secで、燃焼温度は、2300〜
2500℃であるが、共鳴エネルギーが共振増幅された
状態で、燃料分子が励起されると、原子間解離まで進
み、火炎速度は、30〜50m/secに、燃焼温度は
3000〜3500℃と飛躍的に向上し、発熱量も1
0,000kcal/kg前後が、12,000kca
l/kg以上に向上し、火炎色は、殆ど紫外色に近い完
全高温燃焼になり、同時に高速燃焼は従来の燃焼の様
な,外殼表層の水素燃焼から始まり、中核の炭素が燃え
残った黒煙、つまり炭素の燃え残り物質、パーティキュ
ルの排出もなくなる。図面により更に詳細に説明する。
請求項1,2は、予め放射線、紫外線、若しくは可視光
線、叉は赤外線等の電磁波で、共鳴励起された水素化合
分子を、再度、繰り返して共鳴励起する方法に就いて規
定し、図1及び2に於いて、電磁波は、符号2の電源で
駆動される、符号1のマグネトロンより発信する9〜1
0GHZ(ギガヘルツ)のマイクロ波の進行波に直行し
て誘発される符号29の磁力線に沿わして、0.25〜
0.5テスラーの静磁場を、符号28の永久磁石で、符
号9′の流体の比誘電率から定まる符号38の管内波長
のピッチに複数配列して、電子常磁共鳴が繰り返し共鳴
付与される方法及び装置を規程している。又、マイクロ
波が水素化合物流体に連続して放電され、流体が漏洩し
ないで通過するためには、符号4の空気導波管から、符
号5の電磁波透過物質で密閉された符号6の流体導波管
に投射され、符号9′の流体はその侭々、符号32の燃
焼室迄、送られる構造が要求される。符号4の空気導波
管の中間に、反射波をマグネトロンから回避させて破壊
を防止する符号3のサーキュレーターか、アイソレータ
ーを配置し、さらには符号6の流体導波管の先端に、符
号20のシリンダーとマイクロ波を反射する符号19の
ピストンを構成して、共振増幅調整器とし、符号9′の
流体の電気的特性が変化して、符号5の密閉物質と符号
19の反射ピストンが構成する平行条件が変化すると、
共振が崩れ反射波は符号5の密閉物質を透過して、符号
3のサーキュレーターか、アイソレーターに逆流し補足
される。そして符号24で電位差に換算した状態で検波
され、符号25の増幅器で増幅されて、符号26の電力
変換器で変換され、符号22,23の電磁コイルで、符
号27の芯金で、符号19の反射ピストンを差動させ、
常に共振状態が最高調になるよう、符号38の波動を自
動コントロールする仕組みになっているので、安定した
エネルギー共鳴吸収条件が得られる。そして図3に示す
如く、符号9′の流体の供給源、符号7の給油タンクに
電磁波が逆流して、空間部で火災を誘発させないよう
に、符号35の多孔状叉は網目状の金属を構成して、符
号9′の流体は通過するが、共鳴電磁波が通過しない構
造になっている。図3に示す符号10の矩形導波管の四
内面に、放射性物質をセラミック状にして塗布するか、
ライニングすると、分子の解離を更に向上させることが
できる。また図4は、水素化合物流体が大容量の場合の
励起エネルギー共鳴付与方法を構成するものであり、符
号7のタンクから、符号9の入り口パイプ、符号8のバ
ルブを通って、符号9′の水素化合物流体を、符号5の
電磁波透過密閉物質と符号6,16のフランジ、符号1
0の導波管、符号17のオーリングと符号18のフラン
ジ、符号20のシリンダー、符号19の反射ピストン、
符号21のオーリングシールで密閉構成された共振増幅
器、つまり、符号5の密閉物質と、符号19の反射ピス
トンの平行面で、無限連続往復反射により、電子常磁共
鳴を共振増幅させる構成に於いて、符号9′の水素化合
物流体が大量の場合でも、図の如く分岐して複数の励起
エネルギー共鳴付与を行うことで対応出来る。符号11
は励起処理後の出口移送パイプであり、符号30の噴射
ポンプを介して、符号31の分岐パイプより符号32の
燃焼室、此の場合はエンジンへ、符号11′の活性化し
た水素化合物、実施例では、ディーゼル燃料が噴霧供給
され、燃焼して、推進機構符号33を駆動する。符号1
4はバイパス管路であり、分子活性器(符号1〜29の
構成を総称して)の保守点検時、叉はトラブルが発生し
た場合に使用し、符号8及び符号12を閉じて、符号1
3を開けば、バイパスは機能し、分子活性器の修理交換
が可能になる。以上の説明から、本願発明が請求項の構
成にて、頭書の目的を実施可能にする要件を、充分に具
備しており、更に本願発明の技術が、方法及び機構、装
置に於いて新規であり、必要且つ有用である事を理解さ
れる筈であり、速やかに特許されるものと確信する。
すものであり、その作用と効果を説明する。図1は、マ
イクロ波発信器を構成した、本発明の導波管型電子常磁
共鳴、並びに共振増幅装置を示す長手方向一部断面図で
ある。マグネトロンより発信された、高周波電磁波は、
空洞部から、逆流防止のサーキュレーター叉はアイソレ
ーターを経て、シール性があり且つ、電磁波の透過性が
良い物質(合成ゴムが最適である)を通過して、水素化
合物(炭化水素系燃料)が流通する導波管に放射する構
成になっている。この導波管は、図2及び図3に詳細を
表示しているが、波動は、短辺面で屈折して管内を折り
返し進行する。そしてこの波動に直行して、フレミング
の左手の法則に従い、磁力線が誘発される。この進行波
の屈折角は、流体の比誘電率によって定まるが、この導
波管に水素化合物の流体を供給するには、電磁波が流体
供給源に逆進行する事は、空気に水素化合物が接する部
分が有れば、自然発火の危険があり、絶対に許容されな
い。従って、波動に関係のない長辺面に、供給口を連結
し、電磁波が逆流しない様に、多孔状、叉は網目状の金
属を介して、電磁波の密閉連結を施す。その構成を図3
に表示している。図4は、本発明の方法の大容量に対応
する一実施例を、簡略に線図化した装置の系統斜視図で
ある。分子は、それぞれ固有の振動があり、その振動波
長領域の電磁波とは共鳴し、エネルギーを吸収して電子
的励起状態へ上がる。つまり分子は興奮状態となるが、
この状態は、前述の如く極めて短時間であり、一重項励
起状態で10−8秒、三重項励起状態で10−4秒位の
うちに、殆ど、反応せず蛍光を発するか、発熱して元の
状態に戻るか、反応して他の分子あるいは電子を放出し
てイオン化してエネルギー基底状態に戻る。特殊な条件
(剛性媒質中)では、数秒程度の寿命を持つ場合もあ
る。なかでも、有機化合物、水素化合物(炭化水素)の
分子は、光とりわけ赤外線の波長3〜4μ(μ=cm
−4)黒体の放射温度換算で700〜500℃叉は、6
〜8μ黒体の放射温度換算で230〜90℃の領域で、
エネルギーを共鳴吸収し、熱分解、光分解し反応中間
体、不対電子を持った活性化した(電気的に壊れた分
子)遊離基、つまり、メチル基、メチレン基、メチン基
と云ったラジカルに変化する事は良く知られている。こ
の現象は、分子に放射線(主としてγ線=ガンマー線)
を、1分子当たり30eV(エネルギーボルト)以上放
射しても、また強力なマグネトロン(磁電管)の極超短
波(9〜10GHz=ギガヘルツ=×109サイクル/
秒)による電磁波の放電で、加速電子を分子に衝突させ
ても、結合に関わる電子を放出せしめて分子を遊離基化
させ、化学結合を切断させることが出来、多数の反応中
間体を得ることができる。水素化合物(炭化水素系燃
料)の燃焼は、熱による反応中間体の進行、つまり自燃
熱による、遊離基の複雑な連鎖反応で炭化水素分子が、
炭素と水素に解離して、酸素と酸化発熱反応を起こし、
二酸化炭素(炭酸ガス)と水に変化する反応現象である
が、このことから燃焼に於ける、分子の分解、原子解離
は不可欠であり、反応中間体が発生する事は重要である
ことが理解される。自己の燃焼熱で反応中間体を発生さ
せる事は、人間が火を使い始めた時からの技術であり、
分子の加熱分解は自然であり、容易であると言えるが、
しかし分解するためには、例えば、エンジンのシリンダ
ールームでの燃焼の場合、分子は加熱したシリンダーの
壁に何回も衝突するので、分解熱を含め、熱エネルギー
の損失が大きく、色々な反応中間体が繰り返し連鎖的に
発生し、寿命の短い反応中間体を、一時に多数生成させ
る事は、自然燃焼の様な、古典的な燃焼方法に於いては
極めて困難である。複雑な反応中間体が次々に発生す
る、連鎖反応の燃焼は燃焼時間を遅くらせることであ
り、従って、燃焼速度は当然の如く遅くなる。しかし、
燃焼を力として利用する場合、速度は速い程、大きな力
が取り出せるのである。ニトログリセリン、TNT火薬
の岩盤破壊の爆轟燃焼と、ガソリンや灯油、軽油、重油
の金属シリンダー内燃焼を比較すれば、この事は明白に
理解される筈である。前者は爆轟火炎で、6800〜9
000m/secと極めて速く、後者は、約0.1m/
secの燃焼速度に、膨張速度の流れが加わっても、1
5〜25m/sec程度で、余程速くても30m/se
cを越える事は珍しい。従って、燃焼に於ける反応中間
体の発生メカニズムを、自己燃焼エネルギーで発生させ
ず、別の手段で行えば、自己燃焼エネルギーの消耗がな
くなるばかりか、燃焼時間を短く出来、燃焼速度が上げ
られるので、より大きな力が取り出せる。しかも反応は
単純になり、燃焼の進行が速いので、反応中間体である
有毒な悪性の活性ガスは、発生する余裕のない状態に抑
制され、完全燃焼が可能となる。この様な考え方に基ず
く、色々な研究が成されてきたが、反応中間体の状態を
一定の時間維持して、燃焼に遷移させる技術がなく、安
定した高速完全燃焼の技術は、未だ完成していない。レ
ーザーの発信は、レーザー物質に対して、励起エネルギ
ーがしきい値を越えてポンピング(励起)されると、光
波の共振放出が盛んに行われ、増幅されていって損失を
上回ると、ついにレーザー発信が起こる。レーザー光
は、同方向、同位相、同振動数、さらに同じ偏光特性を
もった光波が連鎖反応で増幅され、規則正しい光波が発
信されるのである。水素化合物流体が、低レベルの放射
性物体で焼成された、多孔質のセラミックボールを浸責
しながら流通しγ線が1分子当たり30eV以上に照射
されると、結合分子から電子が放出され、更に赤外線や
高周波の電子常磁共鳴波を繰り返し、共鳴吸収される
と、炭化水素分子は、解離されるか解離され易くなり、
基底状態に遷移することなく、励起された儘ラジカル化
する。この励起状態のエネルギーが、レーザー光発信の
如く、ポンピング状態に連続して付加されると、エネル
ギー共鳴吸収分子は、元の基底状態に遷移出来ず、更に
エネルギーがポンピングされると原子間解離にまで進
む。つまり共振増幅共鳴励起されると、反応中間体のメ
チル基、メチレン基、メチン基は、更に進んで、C(炭
素原子)とH(水素原子)の原子間解離が起こり、その
状態で酸素に出逢うと、複雑な連鎖反応が省略されて、
極めて短時間に直接酸素との熱酸化反応が、高温高速度
で起こる。通常、炭化水素系燃料の圧縮室内、つまりエ
ンジンのシリンダー内での燃焼火炎速度は、前述の如
く、15〜25m/secで、燃焼温度は、2300〜
2500℃であるが、共鳴エネルギーが共振増幅された
状態で、燃料分子が励起されると、原子間解離まで進
み、火炎速度は、30〜50m/secに、燃焼温度は
3000〜3500℃と飛躍的に向上し、発熱量も1
0,000kcal/kg前後が、12,000kca
l/kg以上に向上し、火炎色は、殆ど紫外色に近い完
全高温燃焼になり、同時に高速燃焼は従来の燃焼の様
な,外殼表層の水素燃焼から始まり、中核の炭素が燃え
残った黒煙、つまり炭素の燃え残り物質、パーティキュ
ルの排出もなくなる。図面により更に詳細に説明する。
請求項1,2は、予め放射線、紫外線、若しくは可視光
線、叉は赤外線等の電磁波で、共鳴励起された水素化合
分子を、再度、繰り返して共鳴励起する方法に就いて規
定し、図1及び2に於いて、電磁波は、符号2の電源で
駆動される、符号1のマグネトロンより発信する9〜1
0GHZ(ギガヘルツ)のマイクロ波の進行波に直行し
て誘発される符号29の磁力線に沿わして、0.25〜
0.5テスラーの静磁場を、符号28の永久磁石で、符
号9′の流体の比誘電率から定まる符号38の管内波長
のピッチに複数配列して、電子常磁共鳴が繰り返し共鳴
付与される方法及び装置を規程している。又、マイクロ
波が水素化合物流体に連続して放電され、流体が漏洩し
ないで通過するためには、符号4の空気導波管から、符
号5の電磁波透過物質で密閉された符号6の流体導波管
に投射され、符号9′の流体はその侭々、符号32の燃
焼室迄、送られる構造が要求される。符号4の空気導波
管の中間に、反射波をマグネトロンから回避させて破壊
を防止する符号3のサーキュレーターか、アイソレータ
ーを配置し、さらには符号6の流体導波管の先端に、符
号20のシリンダーとマイクロ波を反射する符号19の
ピストンを構成して、共振増幅調整器とし、符号9′の
流体の電気的特性が変化して、符号5の密閉物質と符号
19の反射ピストンが構成する平行条件が変化すると、
共振が崩れ反射波は符号5の密閉物質を透過して、符号
3のサーキュレーターか、アイソレーターに逆流し補足
される。そして符号24で電位差に換算した状態で検波
され、符号25の増幅器で増幅されて、符号26の電力
変換器で変換され、符号22,23の電磁コイルで、符
号27の芯金で、符号19の反射ピストンを差動させ、
常に共振状態が最高調になるよう、符号38の波動を自
動コントロールする仕組みになっているので、安定した
エネルギー共鳴吸収条件が得られる。そして図3に示す
如く、符号9′の流体の供給源、符号7の給油タンクに
電磁波が逆流して、空間部で火災を誘発させないよう
に、符号35の多孔状叉は網目状の金属を構成して、符
号9′の流体は通過するが、共鳴電磁波が通過しない構
造になっている。図3に示す符号10の矩形導波管の四
内面に、放射性物質をセラミック状にして塗布するか、
ライニングすると、分子の解離を更に向上させることが
できる。また図4は、水素化合物流体が大容量の場合の
励起エネルギー共鳴付与方法を構成するものであり、符
号7のタンクから、符号9の入り口パイプ、符号8のバ
ルブを通って、符号9′の水素化合物流体を、符号5の
電磁波透過密閉物質と符号6,16のフランジ、符号1
0の導波管、符号17のオーリングと符号18のフラン
ジ、符号20のシリンダー、符号19の反射ピストン、
符号21のオーリングシールで密閉構成された共振増幅
器、つまり、符号5の密閉物質と、符号19の反射ピス
トンの平行面で、無限連続往復反射により、電子常磁共
鳴を共振増幅させる構成に於いて、符号9′の水素化合
物流体が大量の場合でも、図の如く分岐して複数の励起
エネルギー共鳴付与を行うことで対応出来る。符号11
は励起処理後の出口移送パイプであり、符号30の噴射
ポンプを介して、符号31の分岐パイプより符号32の
燃焼室、此の場合はエンジンへ、符号11′の活性化し
た水素化合物、実施例では、ディーゼル燃料が噴霧供給
され、燃焼して、推進機構符号33を駆動する。符号1
4はバイパス管路であり、分子活性器(符号1〜29の
構成を総称して)の保守点検時、叉はトラブルが発生し
た場合に使用し、符号8及び符号12を閉じて、符号1
3を開けば、バイパスは機能し、分子活性器の修理交換
が可能になる。以上の説明から、本願発明が請求項の構
成にて、頭書の目的を実施可能にする要件を、充分に具
備しており、更に本願発明の技術が、方法及び機構、装
置に於いて新規であり、必要且つ有用である事を理解さ
れる筈であり、速やかに特許されるものと確信する。
【図 1】は、本願発明の励起エネルギー繰り返し共鳴
付与装置の構成を示す長手方向一部断面の側面図であ。
付与装置の構成を示す長手方向一部断面の側面図であ。
【図 2】は、電子常磁共鳴導波管と共新増幅器の構成
を表す長手断面の側面図である。
を表す長手断面の側面図である。
【図 3】は、図2のA−A断面矢視図で導波管の詳細
形状を示す。
形状を示す。
【図 4】は、大量処理機構を示す、線図に簡略化した
本願発明の一実施例を示す斜視図である
本願発明の一実施例を示す斜視図である
1・・・マグネトロン。2・・・電磁波発信電源。3・
・・サーキュレーター叉は、アイソレーター。4・・・
空気導波管。5・・・電磁波透過性密閉物質。6・・・
連結フランジ。7・・・水素化合物流体供給タンク。8
・・・バルブ。9・・・供給パイプ。9´・・・水素化
合物。10・・・導波管。11・・・出口パイプ。12
・・・バルブ。13・・・バイパスバルブ。14・・・
バイパスパイプ。15・・・逆流防止金網。16・・・
電磁波漏洩防止フランジ。17・・・密閉オーリング。
18・・・電磁波漏洩防止フランジ。19・・・電磁波
反射ピストン。20・・・共振増幅シリンダー。21・
・・密閉オーリング。22、23・・・電磁コイル。2
4・・・反射波検波電位差変換器。25・・・増幅器。
26・・・電力量変換器。27・・・芯金。28・・・
永久磁石。29・・・磁力線。30・・・噴射ポンプ。
31・・・分岐パイプ。32・・・エンジン。33・・
・負荷、船舶推進機構。34・・・管内電磁波波形であ
る。
・・サーキュレーター叉は、アイソレーター。4・・・
空気導波管。5・・・電磁波透過性密閉物質。6・・・
連結フランジ。7・・・水素化合物流体供給タンク。8
・・・バルブ。9・・・供給パイプ。9´・・・水素化
合物。10・・・導波管。11・・・出口パイプ。12
・・・バルブ。13・・・バイパスバルブ。14・・・
バイパスパイプ。15・・・逆流防止金網。16・・・
電磁波漏洩防止フランジ。17・・・密閉オーリング。
18・・・電磁波漏洩防止フランジ。19・・・電磁波
反射ピストン。20・・・共振増幅シリンダー。21・
・・密閉オーリング。22、23・・・電磁コイル。2
4・・・反射波検波電位差変換器。25・・・増幅器。
26・・・電力量変換器。27・・・芯金。28・・・
永久磁石。29・・・磁力線。30・・・噴射ポンプ。
31・・・分岐パイプ。32・・・エンジン。33・・
・負荷、船舶推進機構。34・・・管内電磁波波形であ
る。
───────────────────────────────────────────────────── フロントページの続き (73)特許権者 597150234 野田 大地 福島県東白川郡棚倉町逆川字向原12―2 (72)発明者 藤本 重信 山口県玖珂郡美和町大字百合188番地 (72)発明者 松藤 眞壽 福岡県粕屋郡粕屋町内橋197−1番 (72)発明者 野田 憲一 山口県岩国市山手町2丁目12−29 (72)発明者 藤本 達男 山口県玖珂郡美和町大字百合谷188番地 (72)発明者 松藤 考一 福岡県粕屋郡粕屋町内橋197−1番 (72)発明者 野田 大地 福島県東白川郡棚倉町逆川字向原12−2 審査官 松本 貢 (56)参考文献 特開 平7−238289(JP,A) 特開 平6−2622(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01J 19/12 C10J 32/00
Claims (2)
- 【請求項1】放射線叉は、核磁気共鳴か電子常磁共鳴な
いし、遠赤外を含む赤外線共鳴による水素化合分子をエ
ネルギー励起させる方法に於いて、被共鳴体として励起
される該水素化合物(炭化水素系燃料)が、励起状態か
ら瞬時に基底状態に戻って、元の不活性な安定分子状態
に戻らない様、水素化合物の流路を導波管にして、マグ
ネトロンによる高周波電磁波の管内放射と、その電磁波
の伝搬方向に直交して、誘発される磁力線に沿った、水
素化合物の流れの方向に併行する複数の強磁場の構成に
より、電子常磁共鳴を繰り返し水素化合物に付与する、
励起エネルギー繰り返し共鳴付与方法。 - 【請求項2】請求項1記載の方法を実施するための装置
に於いて、マイクロ波は9GHZ(ギガヘルツ)以上1
0GHZ迄とし、静磁場の構成ガウスは、0.25〜
0.5テスラー(2500〜5000ガウス)として、
電磁波の周波数と流体の比誘電率から定まる、進行波伝
搬方向に直交して誘発される磁力線の、管内波長のピッ
チに合致するよう、磁石を複数配列して、電子常磁共鳴
が繰り返し起こる様にし、水素化合分子の活性状態が継
続する様にした、励起エネルギー繰り返し共鳴付与装
置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29147697A JP3210975B2 (ja) | 1997-09-16 | 1997-09-16 | 励起エネルギー繰り返し共鳴付与方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29147697A JP3210975B2 (ja) | 1997-09-16 | 1997-09-16 | 励起エネルギー繰り返し共鳴付与方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1190216A JPH1190216A (ja) | 1999-04-06 |
JP3210975B2 true JP3210975B2 (ja) | 2001-09-25 |
Family
ID=17769376
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29147697A Expired - Fee Related JP3210975B2 (ja) | 1997-09-16 | 1997-09-16 | 励起エネルギー繰り返し共鳴付与方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3210975B2 (ja) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2407312A1 (en) | 2001-04-02 | 2002-10-17 | Nakashima, Shigeto | Small ion-decomposing melting furnace |
JP2005519742A (ja) * | 2002-03-13 | 2005-07-07 | スリニバサン,ゴパラクリスナン | 物質の分子工学および合成のためのプロセスおよび合成装置 |
JP2007277503A (ja) * | 2006-04-10 | 2007-10-25 | Shigenobu Fujimoto | アルコール、植物油、動物油の燃料化方法 |
DE102006061188A1 (de) * | 2006-12-22 | 2008-06-26 | J. Eberspächer GmbH & Co. KG | Verfahren zur Herstellung von Wasserstoff aus Wasserstoffverbindungen der Elemente der 4. bis 6. Hauptgruppe |
GB2533820A (en) | 2015-01-05 | 2016-07-06 | Arcs Energy Ltd | A fuel activation and energy release apparatus, system and method thereof |
GB2553752A (en) | 2016-07-01 | 2018-03-21 | Arcs Energy Ltd | Fluid treatment apparatus and method |
GB201722035D0 (en) * | 2017-12-28 | 2018-02-14 | Arcs Energy Ltd | Fluid traetment apparatus for an exhaust system and method thereof |
-
1997
- 1997-09-16 JP JP29147697A patent/JP3210975B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH1190216A (ja) | 1999-04-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104763572B (zh) | 等离子设备 | |
ES2272962T3 (es) | Dispositivo para la combustion de combustibles. | |
Brederlow et al. | The high-power iodine laser | |
US20070240660A1 (en) | Method for Igniting Combustion of Fuel in a Combustion Chamber of an Engine, Associated Device and Engine | |
US20070280304A1 (en) | Hollow Core Fiber Laser | |
JP3210975B2 (ja) | 励起エネルギー繰り返し共鳴付与方法 | |
WO2001033073A1 (en) | Ignition system for an internal combustion engine | |
JP2005519742A (ja) | 物質の分子工学および合成のためのプロセスおよび合成装置 | |
US5829419A (en) | Ionization combustion energizer | |
Sehgal et al. | Sonoluminescence of nitric oxide-and nitrogen dioxide-saturated water as a probe of acoustic cavitation | |
Apollonov et al. | High-frequency repetitively pulsed operating regime in high-power wide-aperture lasers | |
JP2008101596A (ja) | 炭化水素燃料分子の共鳴エネルギー付与方法 | |
JP2007138915A (ja) | 共鳴分子のエネルギー励起状態維持方法 | |
AU664674B2 (en) | Combustion method for hydrocarbon fuels and fuel modifying apparatus | |
Key | XUV lasers | |
Berezhetskaya et al. | Microwave discharge as a method for igniting combustion in gas mixtures | |
JPH07238289A (ja) | 炭化水素系燃料の赤外線共鳴吸収装置 | |
US6749726B2 (en) | Apparatus and method for initiating a combustion reaction with slurry fuel | |
Wieder | Flame pumping and infrared maser action in CO2 | |
US6474315B1 (en) | Electron stimulation via photon emitting radiation | |
RU2675732C2 (ru) | Способ сжигания углеводородного топлива и устройство для его реализации | |
EP0661424A1 (en) | Hydrocarbon fuel treatment method | |
RU2481484C2 (ru) | Гиперзвуковой прямоточный воздушно-реактивный двигатель | |
CN103061925B (zh) | 利用磁和光触媒及光作用提高内燃机燃料燃烧率的方法及其装置 | |
Kossyi et al. | APO AE 09421 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |