JP3208725U - Clean electric vehicle - Google Patents

Clean electric vehicle Download PDF

Info

Publication number
JP3208725U
JP3208725U JP2016004035U JP2016004035U JP3208725U JP 3208725 U JP3208725 U JP 3208725U JP 2016004035 U JP2016004035 U JP 2016004035U JP 2016004035 U JP2016004035 U JP 2016004035U JP 3208725 U JP3208725 U JP 3208725U
Authority
JP
Japan
Prior art keywords
power storage
electric vehicle
storage unit
vehicle
clean
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016004035U
Other languages
Japanese (ja)
Inventor
藤岡 一路
一路 藤岡
Original Assignee
藤岡 一路
一路 藤岡
藤岡 佐由子
藤岡 佐由子
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 藤岡 一路, 一路 藤岡, 藤岡 佐由子, 藤岡 佐由子 filed Critical 藤岡 一路
Priority to JP2016004035U priority Critical patent/JP3208725U/en
Priority to KR2020170000531U priority patent/KR200490168Y1/en
Application granted granted Critical
Publication of JP3208725U publication Critical patent/JP3208725U/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/32Constructional details of charging stations by charging in short intervals along the itinerary, e.g. during short stops
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/50Charging stations characterised by energy-storage or power-generation means
    • B60L53/55Capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/12Bikes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/18Buses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/36Vehicles designed to transport cargo, e.g. trucks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/26Driver interactions by pedal actuation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/22Standstill, e.g. zero speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/10Road Vehicles
    • B60Y2200/13Bicycles; Tricycles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/10Road Vehicles
    • B60Y2200/14Trucks; Load vehicles, Busses
    • B60Y2200/143Busses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/80Other vehicles not covered by groups B60Y2200/10 - B60Y2200/60
    • B60Y2200/86Carts; Golf carts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations

Abstract

【課題】100%近くクリーンでローコストなクリーン電気車両を提供する。【解決手段】先ず、クリーンで高効率な回生装置を搭載した電気車両を考案する。このために、蓄電体3を多段的に設け、発電機電圧の降下に応じて低い電圧の蓄電体3に切り替えて充・放電をおこなう多段回生装置を考案する。つぎに、外部給電装置よりの100%クリーンな電力で蓄電体31を充電し、走行エネルギーに利用または補助にする。さらに、従来、電気車両22に搭載の電池や発電機を電池車21に移行、連結し、電気車両22の高性能化・ローコスト化を計る。【選択図】図3A clean electric vehicle that is nearly 100% clean and low-cost is provided. First, an electric vehicle equipped with a clean and highly efficient regenerative device is devised. For this purpose, a multistage regenerative device is devised in which the power storage units 3 are provided in multiple stages, and charging / discharging is performed by switching to the low voltage power storage units 3 as the generator voltage drops. Next, the power storage unit 31 is charged with 100% clean power from the external power supply device, and is used or supplemented for travel energy. Furthermore, conventionally, a battery and a generator mounted on the electric vehicle 22 are transferred to and connected to the battery car 21 to improve the performance and cost of the electric vehicle 22. [Selection] Figure 3

Description

考案の詳細な説明Detailed description of the invention

産業上の利用分野Industrial application fields

路線バス、巡回車、産業用運搬車、路線電車Route bus, patrol car, industrial transporter, route train

従来、電気車両やハイブリッド車において、特に加速・減速回数の多い中・大型車においては、クリーン度や燃費が充分良いとは言えなかった。この原因の1つに回生効率が良くないことがある。ブレーキ用発電機の電圧が回生に伴い低下するためである。電圧が一定の一般的蓄電体(バッテリ)への充電は、トランス昇圧法や倍電圧回路を設けて電圧を上昇させる方法が用いられていた。
しかしトランスの誘導損があり、また細かい昇圧は複雑な構造を要し、高効率の充・放電が容易でない欠点があった。
また、回生にバッテリを使用し、充放電回数が多い一般道での走行の場合、熱損失や化合物生成損失が多くなり、その結果、車体に搭載する重量が大きくなる欠点があった。
Conventionally, in an electric vehicle or a hybrid vehicle, particularly in a medium-sized or large-sized vehicle having a large number of accelerations / decelerations, it cannot be said that cleanliness and fuel consumption are sufficiently good. One of the causes is that the regeneration efficiency is not good. This is because the voltage of the brake generator decreases with regeneration. For charging a general power storage unit (battery) with a constant voltage, a transformer boosting method or a method of increasing the voltage by providing a voltage doubler circuit has been used.
However, there is an inductive loss of the transformer, and fine boosting requires a complicated structure, and there is a drawback that high efficiency charge / discharge is not easy.
Further, when a battery is used for regeneration and the vehicle travels on a general road with a large number of charge / discharge cycles, heat loss and compound generation loss increase, and as a result, there is a disadvantage that the weight mounted on the vehicle body increases.

考案を解決しようとする課題Challenges to solve the idea

従来より、クリーンでローコストな電気車両を考案する。まず回生について考案する。放電に伴い降下する発電機電圧と蓄電体(バッテリやキャパシター)との間を指定値に従って効率よくかつ円滑に充放電する手段を考案する。
また、バッテリ車載量を減らし、乗車人員や登坂能力が大きいままでも、レアメタルなどの超高性能の高価なモータを使わない手段を考案する。
Conventionally, a clean and low-cost electric vehicle is devised. First, devise regeneration. A means for charging and discharging efficiently and smoothly according to a specified value between a generator voltage and a power storage unit (battery or capacitor) that drop with discharge is devised.
In addition, we will devise a means to reduce the amount of on-board battery and not use an ultra-high-performance expensive motor such as rare metal even if the passenger capacity and climbing ability remain large.

課題が解決するための手段Means for solving the problem

図1は、自動車の場合のようにブレーキを掛けるとモータが発電機となり、充電される蓄電体3を4段のキャパシタとした場合の、多段充放電装置の構成図である。
同図に沿って充電が効率よく行われることを説明する。
アクセルを踏むのを止めブレーキを踏むと、直前までモータとして車輪駆動していた発電機1の高い電圧は、双方向スイッチ2aの充電スイッチのみオンにされて、4段のキャパシタ3a,3b,3c,3dを同時に充電する。
FIG. 1 is a configuration diagram of a multistage charging / discharging device when a brake is applied as in the case of an automobile, the motor becomes a generator, and the power storage body 3 to be charged is a four-stage capacitor.
A description will be given of efficient charging along the same figure.
When the accelerator pedal is stopped and the brake pedal is pressed, the high voltage of the generator 1 that has been driving the wheel as a motor until just before is turned on only in the charging switch of the bidirectional switch 2a, and the four-stage capacitors 3a, 3b, 3c. , 3d are charged simultaneously.

このとき、いきなり全電圧を加えない。8により検出された電流値がブレーキ信号値に近づくよう、制御装置4はパルス幅を増し、PWM制御信号として4aまたは4eに出力し、結果的にスイッチ2aを通し適正電流を流す。
その結果、図2の10のように発電機電圧が降下し、車輪にはブレーキがかかる。
At this time, the entire voltage is not suddenly applied. The control device 4 increases the pulse width so that the current value detected by 8 approaches the brake signal value, and outputs it as a PWM control signal to 4a or 4e. As a result, the appropriate current flows through the switch 2a.
As a result, the generator voltage drops as shown at 10 in FIG. 2, and the wheels are braked.

逆に、同図の11のようにキャパシタ電圧は上昇する。
しかし、同図10のように発電機電圧降下を直線的にするためには、スイッチ2aを、2b、2c、2d、と次々と切り替えて、発電機1からの出力電流を一定にしなければならない。
もし、定格の2倍の電流(2×Iとする)でブレーキを掛けたい場合、図1の3a,3b,3c,3dの4個の蓄電体をまず充電し、図2の時刻t1のタイミングで3b,3c,3dの3個の、t2のタイミングで3c.3dの2個の、t3のタイミングで3dの1個の蓄電体を、それぞれ充電する。
たとえば、流れる電流が一定(2×I)で、t1,t2,t3,t4が(1,2,3、4)Δtの同間隔と仮定し、各端子に間に、200v、100v、50v、25v、合計電圧=375vを得たいとすると、4個の直列容量をそれぞれ、容量素子を1個、4個、12個、16個並列接続したものとすれば良い。(勿論、一定の時間幅Δtや直列の4個の容量を変えて、目的電圧を変更してもよい)
Conversely, the capacitor voltage rises as indicated by 11 in FIG.
However, in order to make the generator voltage drop linear as shown in FIG. 10, the switch 2a must be successively switched to 2b, 2c, and 2d to make the output current from the generator 1 constant. .
If the brake is to be applied with a current twice the rated value (2 × I), the four power storage units 3a, 3b, 3c, and 3d in FIG. 1 are first charged, and the timing at time t1 in FIG. 3b, 3c and 3d, 3c. Two 3d and one 3d power storage unit are charged at the timing t3.
For example, assuming that the flowing current is constant (2 × I) and t1, t2, t3, and t4 are the same interval of (1, 2, 3, 4) Δt, 200v, 100v, 50v, If it is desired to obtain 25v and the total voltage = 375v, four series capacitors may be respectively connected in parallel with one, four, twelve, and sixteen capacitive elements. (Of course, the target voltage may be changed by changing the fixed time width Δt or four capacities in series.)

ただし、図2でのt4以降の25vからの電圧降下は、機械的ブレーキによるものであり損失となる。この損失を少なくするには、25vを下げるよう、4段目の容量を増やすか5段目を増設すればよい。
蓄電体をキャパシタから電池に変えた場合は、蓄電体の各端子電圧は固定である以外、キャパシタの場合と動作は同じである。
However, the voltage drop from 25v after t4 in FIG. 2 is due to the mechanical brake and becomes a loss. In order to reduce this loss, it is sufficient to increase the capacity of the fourth stage or add the fifth stage so as to reduce 25v.
When the power storage unit is changed from a capacitor to a battery, the operation is the same as that of the capacitor except that each terminal voltage of the power storage unit is fixed.

次にアクセル信号値をもとに、蓄電体に蓄えたエネルギーで車輪を駆動する、いわゆる加速について記述する。
停車している電気車両を加速開始するには、まず蓄電体3dの放電から始める。
充電時と同じようにスイッチ2dをオンにして、2×Iの電流をモータ1に流す。次に車輪の回転が増しモータ電圧が高まり2×Iの電流が確保できなくなったら、スイッチを2cに切り替え蓄電体3c+3dから放電し、以下3b+3c+3d、3a+3b+3c+3dの蓄電体放電を行う。
以上で損失を小さくすれば、車両速度はほぼブレーキ直前の走行速度に戻る。
Next, based on the accelerator signal value, so-called acceleration in which the wheel is driven by the energy stored in the electric storage body will be described.
In order to start accelerating the stopped electric vehicle, first, the electric storage body 3d is started to be discharged.
As in charging, the switch 2d is turned on, and a current of 2 × I flows through the motor 1. Next, when the rotation of the wheel increases and the motor voltage increases and 2 × I current cannot be secured, the switch is switched to 2c to discharge from the power storage unit 3c + 3d, and then the power storage unit discharge of 3b + 3c + 3d, 3a + 3b + 3c + 3d is performed.
If the loss is reduced as described above, the vehicle speed returns to the traveling speed immediately before the brake.

次に走行であるがこのエネルギーは、あらかじめ充電された車載のバッテリ(電池)から得るのが一般的である。そのほか車載されたエンジン発電機から得る場合や水素燃料電池から得る場合もある。
ところで、図3の電気車両22には回生用蓄電体3の他に蓄電体31を搭載し、停留所や車庫18に停車中に外部給電ロッド14経由で充電し、加速後の走行に利用する。この蓄電体31はキャパシターが好ましいが、分割する必要がない。停留時間中に一気に充電し、アクセルにあわせてPWM放電する。
Next, although it is driving | running | working, it is common to obtain this energy from the vehicle-mounted battery (battery) charged beforehand. In addition, it may be obtained from an engine generator mounted on a vehicle or from a hydrogen fuel cell.
By the way, the electric vehicle 22 of FIG. 3 is equipped with a power storage unit 31 in addition to the regenerative power storage unit 3 and is charged via the external power supply rod 14 while stopping at the stop or the garage 18 and used for traveling after acceleration. The power storage unit 31 is preferably a capacitor, but need not be divided. The battery is charged at a stretch during the stopping time, and PWM is discharged in time with the accelerator.

停留所20が遠いとか、蓄電体31の容量が小さい場合は、別途バッテリなど走行用電源が必要である。これを車両本体22に搭載しても良いが、図3のように電池車21として連結してもよい。こうすると、車両22が軽くなり、駆動モータが小さくなり、積載量だけを中心とした車両本体22の標準化が可能になる。
また、電池車21にも駆動モータと車輪を2つ付ける。すると連結後は4輪以上の駆動となり、航続距離のみならず、登坂能力も増大する。連結は通常の車両22を2両連結でもよい。
When the stop 20 is far away or the capacity of the power storage unit 31 is small, a power source for traveling such as a battery is required separately. Although this may be mounted on the vehicle main body 22, it may be connected as a battery car 21 as shown in FIG. If it carries out like this, the vehicle 22 will become light, a drive motor will become small, and the standardization of the vehicle main body 22 centering on only the load will be possible.
The battery car 21 is also provided with two drive motors and wheels. Then, after connecting, it becomes a drive of four or more wheels, and not only the cruising distance but also the climbing ability increases. The connection may be a combination of two ordinary vehicles 22.

これをさらに記述する。一般的に、大型電気バスのようにタイヤをつけた電気車両は、レアーメタルなどによる高価で重い、大出力モータを使用していた。バッテリーの重量などと、登坂能力のため4輪以上の重いタイヤを付けるのも一因である。このため、車内の平面部分が少なく積載量が少なかった。This is further described. In general, an electric vehicle with tires such as a large electric bus uses an expensive and heavy high-power motor such as a rare metal. Partly because of the weight of the battery and the ability to climb up four or more heavy wheels for climbing ability. For this reason, there were few plane parts in a vehicle and there was little loading capacity.

たとえば、30〜40人乗りの登坂能力のある中型電気バスを2台連結すると、車輪は8輪になり中型モータ2台だけで、60〜80人乗りで登坂能力のある安価な電気バスが実現できる。図3では、2台目の電気バスの代わりに自走型の電池車を連結し、前の車両を押す場合の、大型電気バス構成と見てもよい。For example, when two medium-sized electric buses capable of climbing 30 to 40 people are connected, the number of wheels becomes eight and only two medium-sized motors are used, and an inexpensive electric bus capable of climbing up to 60 to 80 people is realized. it can. In FIG. 3, a self-propelled battery car may be connected instead of the second electric bus, and viewed as a large electric bus configuration when the previous vehicle is pushed.

さて従来、電気車両22は充電する電力が主に火力発電所で作られ、日本では40%ほどしかしかクリーンでない。100%に近いクリ−ン電力を電気車両に取り込もうとするのが、本考案の3つ目である。
図3でまず、ソーラーなど自然エネルギー15を余剰に取り込み、余った分は蓄電体または水素ボンベ17に3〜4日分蓄える。それでも余った場合は電力会社に売電する。足りない場合は蓄電体や、水素ボンベより電気変換して供給する。
Conventionally, the electric vehicle 22 is charged mainly by a thermal power plant and is not as clean as 40% in Japan. The third aspect of the present invention is to take near 100% of clean power into an electric vehicle.
In FIG. 3, first, surplus natural energy 15 such as solar power is taken in, and the surplus is stored in a power storage unit or hydrogen cylinder 17 for 3 to 4 days. If there is still a surplus, sell power to the power company. If it is not enough, it will be converted from electricity and supplied from a hydrogen cylinder.

以上のことは、エネルギコントローラ15が架線19に、電圧を監視しながら行う。
このことから、架線への電源は電力会社から独立した分散電源であり、火力や原子力への依存を少なくし、電気車両22・21に車載の蓄電池や蓄電体31は、停留所や車庫においてクリーで安定した充電電力を得ることができる。
また、高圧送電線の破損など、天災・人災の備えとなる災害用電源としても使用できる。
以上述べたように本考案によれば、よりクリーンでローコストの電気車両22が実現できる。
The above is performed while the energy controller 15 monitors the voltage on the overhead wire 19.
For this reason, the power source for the overhead line is a distributed power source independent of the electric power company, reduces the dependence on thermal power and nuclear power, and the storage battery and the power storage unit 31 mounted on the electric vehicles 22 and 21 are clean at the stop or garage. Stable charging power can be obtained.
It can also be used as a disaster power source to prepare for natural and man-made disasters, such as damage to high-voltage power transmission lines.
As described above, according to the present invention, a cleaner and lower cost electric vehicle 22 can be realized.

:発電機1と、4段の蓄電体3、間を充・放電する場合の多段回生式充放電装置の構成概要図: Outline of configuration of multi-stage regenerative charging / discharging device when charging / discharging between generator 1 and four stages of power storage unit 3 :発電機1の電圧、蓄電体3の電圧の特性図例: Example of characteristic diagram of voltage of generator 1 and voltage of power storage unit 3 :クリーン電気車両22とクリーン給電システムの構成概要図: Outline of configuration of clean electric vehicle 22 and clean power supply system

記号の説明Explanation of symbols

1:発電機またはモーター
2:双方向(充・放電)スイッチ
2a=4段目,2b=3段目,2c=2段目,2d=1段目のスイッチ
3:多段蓄電体(バッテリーまたはキャパシター)
3a=4段目,3b=3段目,3c=2段目,3d=1段目の蓄電体
4:制御装置
4a=4段目,4b=3段目,4c=2段目,4d=1段目のスイッチ制御
信号線、 4e=PWM信号線
5:インダクタンスおよびPWM
6:ブレーキ変位の信号入力端 7:アクセル変位の信号入力端
8:電流値検出器
10:発電機1の出力電圧 特性例 11:蓄電体3の電圧 特性例
12:電圧または電力軸 13:時間軸
14:外部給電ロッド 15:エネルギーコントローラー
16:自然エネルギー 17:水素ボンベまたは蓄電体
18、20:停留所または車庫
19:DC架線(共同溝)
21:連結車または電池車
22:クリーン電気車両
31:蓄電体2
1: Generator or motor 2: Bidirectional (charge / discharge) switch 2a = 4th stage, 2b = 3rd stage, 2c = 2nd stage, 2d = 1st stage switch 3: Multistage power storage unit (battery or capacitor) )
3a = 4th stage, 3b = 3rd stage, 3c = 2nd stage, 3d = 1st stage power storage unit 4: Control device 4a = 4th stage, 4b = 3rd stage, 4c = 2nd stage, 4d = Switch control signal line of the first stage, 4e = PWM signal line 5: Inductance and PWM
6: Signal input terminal for brake displacement 7: Signal input terminal for accelerator displacement 8: Current value detector 10: Output voltage of generator 1 Characteristic example 11: Voltage of power storage unit 3 Characteristic example 12: Voltage or power axis 13: Time Axis 14: External feed rod 15: Energy controller 16: Natural energy 17: Hydrogen cylinder or power storage unit 18, 20: Stop or garage 19: DC overhead wire (joint groove)
21: Linked car or battery car 22: Clean electric vehicle 31: Power storage unit 2

回生装置(バス、巡回車、物流車、水素燃料電池車、電車、カート、などに適用)
給電システム(無停電機能を有した、車両へのオンライン給電システム)
Regenerative equipment (applicable to buses, patrol cars, logistics vehicles, hydrogen fuel cell vehicles, trains, carts, etc.)
Power supply system (on-line power supply system for vehicles with uninterruptible power function)

従来、電気車両やハイブリッド車において、特に加速・減速回数の多い中・大型車においては、クリーン度や燃費が充分良いとは言えなかった。この原因の1つに回生効率が良くないことがある。ブレーキ用発電機の電圧が回生に伴い低下するためである。電圧が一定の一般的蓄電体(バッテリ)への充電は、トランス昇圧法や倍電圧回路を設けて電圧を上昇させる方法が用いられていた。
しかしトランスの誘導損があり、また細かい昇圧は複雑な構造を要し、高効率の充・放電が容易でない欠点があった。
また、回生にバッテリを使用し、充放電回数が多い一般道での走行の場合、熱損失や化合物生成損失が多くなり、その結果、車体に搭載する重量が大きくなる欠点があった。
Conventionally, in an electric vehicle or a hybrid vehicle, particularly in a medium-sized or large-sized vehicle having a large number of accelerations / decelerations, it cannot be said that cleanliness and fuel consumption are sufficiently good. One of the causes is that the regeneration efficiency is not good. This is because the voltage of the brake generator decreases with regeneration. For charging a general power storage unit (battery) with a constant voltage, a transformer boosting method or a method of increasing the voltage by providing a voltage doubler circuit has been used.
However, there is an inductive loss of the transformer, and fine boosting requires a complicated structure, and there is a drawback that high efficiency charge / discharge is not easy.
Further, when a battery is used for regeneration and the vehicle travels on a general road with a large number of charge / discharge cycles, heat loss and compound generation loss increase, and as a result, there is a disadvantage that the weight mounted on the vehicle body increases.

考案を解決しようとする課題Challenges to solve the idea

従来よりも、クリーンでローコストな電気車両を考案する。まず回生について考案する。放電に伴い降下する発電機電圧と蓄電体(バッテリやキャパシター)との間を指定値に従って効率よくかつ円滑に充放電する手段を考案する。
また、バッテリ車載量を減らし、乗車人員や登坂能力が大きいままでも、レアメタルなどの超高性能の高価なモータを使わない手段を考案する。
We will devise a cleaner and lower-cost electric vehicle than before. First, devise regeneration. A means for charging and discharging efficiently and smoothly according to a specified value between a generator voltage and a power storage unit (battery or capacitor) that drop with discharge is devised.
In addition, we will devise a means to reduce the amount of on-board battery and not use an ultra-high-performance expensive motor such as rare metal even if the passenger capacity and climbing ability remain large.

課題が解決するための手段Means for solving the problem

図1は、自動車の場合のようにブレーキを掛けるとモータが発電機となり、充電される蓄電体3を4段のキャパシタとした場合の、多段充放電装置の構成図である。
同図に沿って充電が効率よく行われることを説明する。
アクセルを踏むのを止めブレーキを踏むと、直前までモータとして車輪駆動していた発電機1の高い電圧は、双方向スイッチ2aの充電スイッチのみオンにされて、4段のキャパシタ3a,3b,3c,3d を同時に充電する。
FIG. 1 is a configuration diagram of a multistage charging / discharging device when a brake is applied as in the case of an automobile, the motor becomes a generator, and the power storage body 3 to be charged is a four-stage capacitor.
A description will be given of efficient charging along the same figure.
When the accelerator pedal is stopped and the brake pedal is pressed, the high voltage of the generator 1 that has been driving the wheel as a motor until just before is turned on only in the charging switch of the bidirectional switch 2a, and the four-stage capacitors 3a, 3b, 3c. , 3d are charged simultaneously.

このとき、いきなり全電圧を加えない。電流検出器8により検出された電流値がブレーキ信号値に近づくよう、制御装置4はパルス幅を増し、PWM制御信号として4aまたは4eに出力し、結果的にスイッチ2aを通し適正電流を流す。
その結果、図2の10のように発電機電圧が降下し、車輪にはブレーキがかかる。
At this time, the entire voltage is not suddenly applied. The control device 4 increases the pulse width so that the current value detected by the current detector 8 approaches the brake signal value, and outputs it as a PWM control signal to 4a or 4e. As a result, an appropriate current flows through the switch 2a.
As a result, the generator voltage drops as shown at 10 in FIG. 2, and the wheels are braked.

逆に、同図の11のようにキャパシタ電圧は上昇する。
しかし、同図10のように発電機電圧降下を直線的にするためには、スイッチ2aを、2b、2c、2d、と次々と切り替えて、発電機1からの出力電流を一定にしなければならない。
もし、定格の2倍の電流(2×Iとする)でブレーキを掛けたい場合、図1の3a,3b,3c,3dの4個の蓄電体をまず充電し、図2の時刻t1のタイミングで3b,3c,3dの3個の、t2のタイミングで3c.3dの2個の、t3のタイミングで3dの1個の蓄電体を、それぞれ充電する。
たとえば、流れる電流が一定(2×I)で、t1,t2,t3,t4が(1,2,3、4)Δtの同間隔と仮定し、各端子の間に、200v、100v、50v、25v、合計電圧=375vを得たいとすると、4個の直列容量をそれぞれ、容量素子を1個、4個、12個、16個並列接続したものとすれば良い。(勿論、一定の時間幅Δtや直列の4個の容量を変えて、目的電圧を変更してもよい)
Conversely, the capacitor voltage rises as indicated by 11 in FIG.
However, in order to make the generator voltage drop linear as shown in FIG. 10, the switch 2a must be successively switched to 2b, 2c, and 2d to make the output current from the generator 1 constant. .
If the brake is to be applied with a current twice the rated value (2 × I), the four power storage units 3a, 3b, 3c, and 3d in FIG. 1 are first charged, and the timing at time t1 in FIG. 3b, 3c and 3d, 3c. Two 3d and one 3d power storage unit are charged at the timing t3.
For example, assuming that the flowing current is constant (2 × I), and t1, t2, t3, t4 are the same interval of (1, 2, 3, 4) Δt, and 200v, 100v, 50v, If it is desired to obtain 25v and the total voltage = 375v, four series capacitors may be respectively connected in parallel with one, four, twelve, and sixteen capacitive elements. (Of course, the target voltage may be changed by changing the fixed time width Δt or four capacities in series.)

ただし、図2でのt4以降の25vからの電圧降下は、機械的ブレーキによるものであり損失となる。この損失を少なくするには、25vを下げるよう、4段目の容量を増やすか5段目を増設すればよい。
蓄電体をキャパシタから電池に変えた場合は、蓄電体の各端子電圧は固定である以外、キャパシタの場合と動作は同じである。
However, the voltage drop from 25v after t4 in FIG. 2 is due to the mechanical brake and becomes a loss. In order to reduce this loss, it is sufficient to increase the capacity of the fourth stage or add the fifth stage so as to reduce 25v.
When the power storage unit is changed from a capacitor to a battery, the operation is the same as that of the capacitor except that each terminal voltage of the power storage unit is fixed.

次にアクセル信号値をもとに、蓄電体に蓄えたエネルギーで車輪を駆動する、いわゆる加速について記述する。
停車している電気車両を加速開始するには、まず蓄電体3dの放電から始める。充電時と同じようにスイッチ2dをオンにして、2×Iの電流をモータ1に流す。次に車輪の回転が増しモータ電圧が高まり2×Iの電流が確保できなくなったら、スイッチを2cに切り替え蓄電体3c+3dから放電し、以下3b+3c+3d、3a+3b+3c+3dの蓄電体放電を行う。
以上で損失を小さいとすれば、車両速度はほぼブレーキ直前の走行速度に戻る。
Next, based on the accelerator signal value, so-called acceleration in which the wheel is driven by the energy stored in the electric storage body will be described.
In order to start accelerating the stopped electric vehicle, first, the electric storage body 3d is started to be discharged. As in charging, the switch 2d is turned on, and a current of 2 × I flows through the motor 1. Next, when the rotation of the wheel increases and the motor voltage increases and 2 × I current cannot be secured, the switch is switched to 2c to discharge from the power storage unit 3c + 3d, and then the power storage unit discharge of 3b + 3c + 3d, 3a + 3b + 3c + 3d is performed.
If the loss is small as described above, the vehicle speed returns to the traveling speed just before the brake.

次に走行であるが このエネルギーは、あらかじめ充電された車載のバッテリ(電池)から得るのが一般的である。そのほか車載されたエンジン発電機から得る場合や水素燃料電池から得る場合もある。Next, when traveling, this energy is generally obtained from a pre-charged on-board battery (battery). In addition, it may be obtained from an engine generator mounted on a vehicle or from a hydrogen fuel cell.

ところで、図3の電気車両22には回生用蓄電体3の他に蓄電体31を搭載し、停留所や車庫18に停車中に外部給電ロッド14経由で充電し、加速後の走行に利用する。この蓄電体31はキャパシタが好ましいが、前記と違い分割する必要がない。停留時間中に一気に充電し、アクセルにあわせてPWM放電する。By the way, the electric vehicle 22 of FIG. 3 is equipped with a power storage unit 31 in addition to the regenerative power storage unit 3 and is charged via the external power supply rod 14 while stopping at the stop or the garage 18 and used for traveling after acceleration. The capacitor 31 is preferably a capacitor, but unlike the above, it is not necessary to divide it. The battery is charged at a stretch during the stopping time, and PWM is discharged in time with the accelerator.

停留所20が遠いとか、蓄電体31の容量が小さい場合は、別途バッテリなど走行用電源が必要である。これを車両本体22に搭載しても良いが、図3のように電池車21として連結してもよい。こうすると、車両22が軽くなり、駆動モータが小さくなり、積載量だけを中心とした車両本体22の標準化が可能になる。
また、電池車21にも駆動モータと車輪を2つ付ける。すると連結後は4輪以上の駆動となり、航続距離のみならず、登坂能力も増大する。連結は通常の車両22を2両連結でもよい。
When the stop 20 is far away or the capacity of the power storage unit 31 is small, a power source for traveling such as a battery is required separately. Although this may be mounted on the vehicle main body 22, it may be connected as a battery car 21 as shown in FIG. If it carries out like this, the vehicle 22 will become light, a drive motor will become small, and the standardization of the vehicle main body 22 centering on only the load will be possible.
The battery car 21 is also provided with two drive motors and wheels. Then, after connecting, it becomes a drive of four or more wheels, and not only the cruising distance but also the climbing ability increases. The connection may be a combination of two ordinary vehicles 22.

これをさらに記述する。一般的に、大型電気バスのようにタイヤをつけた電気車両は、レアメタルなどによる高価で重い、大出力モータを使用していた。バッテリの重量などと、登坂能力のため4輪以上の重いタイヤを付けるのも一因である。このため、車内の平面部分が少なく積載容量が少なかった。This is further described. In general, an electric vehicle with tires such as a large electric bus uses an expensive and heavy high-power motor made of rare metal or the like. Partly because of the weight of the battery and the ability to climb four or more heavy wheels for climbing ability. For this reason, there were few plane parts in a vehicle and there was little loading capacity.

これに対し、たとえば30〜40人乗りの登坂能力のある中型電気バスを2台連結すると、車輪は8輪になり中型モータ2台だけで、60〜80人乗りで登坂能力のある安価な電気バスが実現できる。図3では、2台目の電気バスの代わりに自走型の電池車を連結し、前の車両を押す場合の、大型電気バス構成と見てもよい。On the other hand, for example, when two medium-sized electric buses capable of climbing up to 30 to 40 people are connected, the number of wheels becomes 8 and only two medium-sized motors are used. A bus can be realized. In FIG. 3, a self-propelled battery car may be connected instead of the second electric bus, and viewed as a large electric bus configuration when the previous vehicle is pushed.

さて従来、電気車両22は充電する電力が主に火力発電所で作られ、日本では40%ほどしかしかクリーンでない。100%に近いクリーン電力を電気車両に取り込もうとするのが、本考案の3つ目である。
図3でまず、ソーラーなど自然エネルギー15を余剰に取り込み、余った分は蓄電体または水素ボンベ17に3〜4日分蓄える。それでも余った場合は電力会社に売電する。足りない場合は蓄電体や、水素ボンベ17より電気変換して供給する。
Conventionally, the electric vehicle 22 is charged mainly by a thermal power plant and is not as clean as 40% in Japan. The third aspect of the present invention is to capture nearly 100% of clean power into an electric vehicle.
In FIG. 3, first, surplus natural energy 15 such as solar power is taken in, and the surplus is stored in a power storage unit or hydrogen cylinder 17 for 3 to 4 days. If there is still a surplus, sell power to the power company. If it is not enough, it is supplied by electrical conversion from a power storage unit or a hydrogen cylinder 17.

以上のことは、エネルギーコントローラー15が架線19の電圧を監視しながら行う。
このことから、架線への電源は電力会社から独立した分散電源であり、火力や原子力への依存を少なくし、電気車両22・21に車載の蓄電池や蓄電体31は、停留所や車庫においてクリーで安定した充電電力を得ることができる。
また、高圧送電線の破損など、天災・人災の備えとなる災害用電源としても使用できる。
以上述べたように本考案によれば、よりクリーンでローコストな電気車両22が実現できる。
The above is performed while the energy controller 15 monitors the voltage of the overhead wire 19.
For this reason, the power source for the overhead line is a distributed power source independent of the electric power company, reduces the dependence on thermal power and nuclear power, and the storage battery and the power storage unit 31 mounted on the electric vehicles 22 and 21 are clean at the stop or garage. Stable charging power can be obtained.
It can also be used as a disaster power source to prepare for natural and man-made disasters, such as damage to high-voltage power transmission lines.
As described above, according to the present invention, a cleaner and lower-cost electric vehicle 22 can be realized.

発電機1と、4段の蓄電体3、間を充・放電する場合の多段回生式充放電装置の構成概要図Configuration schematic diagram of multistage regenerative charging / discharging device when charging / discharging between generator 1 and four stages of power storage unit 3 発電機1の電圧、蓄電体3の電圧の特性図例Example of characteristic diagram of voltage of generator 1 and voltage of power storage unit 3 クリーン電気車両22とクリーン給電システムの構成概要図Configuration diagram of clean electric vehicle 22 and clean power supply system

1:発電機またはモータ
2:双方向(充・放電)スイッチ
2a=4段目,2b=3段目,2c=2段目,2d=1段目のスイッチ
3:多段 蓄電体(バッテリーまたはキャパシター)
3a=4段目,3b=3段目,3c=2段目,3d=1段目の蓄電体
4:制御装置
4a=4段目,4b=3段目,4c=2段目,4d=1段目のスイッチ制御信号線、 4e=PWM信号線
5:インダクタンスおよびPWM 6:ブレーキ変位の信号入力端
7:アクセル変位の信号入力端 8:電流値検出器
10:発電機1の出力電圧特性例 11:蓄電体3の電圧特性例
12:電圧または電力軸 13:時間軸
14:外部給電ロッド 15:エネルギーコントローラー
16:自然エネルギー 17:水素ボンベまたは蓄電体
18、20:停留所または車庫
19:DC架線(共同溝)
21:連結車または電池車
22:クリーン電気車両
31:蓄電体2
1: Generator or motor 2: Bidirectional (charge / discharge) switch 2a = 4th stage, 2b = 3rd stage, 2c = 2nd stage, 2d = 1st stage switch 3: Multi-stage power storage unit (battery or capacitor) )
3a = 4th stage, 3b = 3rd stage, 3c = 2nd stage, 3d = 1st stage power storage unit 4: Control device 4a = 4th stage, 4b = 3rd stage, 4c = 2nd stage, 4d = Switch control signal line of the first stage, 4e = PWM signal line 5: Inductance and PWM 6: Signal input terminal of brake displacement 7: Signal input terminal of accelerator displacement 8: Current value detector 10: Output voltage characteristic of generator 1 Example 11: Voltage characteristic example of power storage unit 12: Voltage or power axis 13: Time axis 14: External feed rod 15: Energy controller 16: Natural energy 17: Hydrogen cylinder or power storage unit 18, 20: Stop or garage 19: DC Overhead wire (joint groove)
21: Linked car or battery car 22: Clean electric vehicle 31: Power storage unit 2

Claims (4)

クリーン電気車両22の回生において、発電機やモーター1と、複数個からなる蓄電体3と、複数個からなる双方向スイッチ2と、制御装置4とからなり、発電機1と蓄電体3の間を流れる充・放電電流がブレーキやアクセルペダルの変位値と一致するよう、制御装置4は複数個の双方子スイッチ2のいずれかを選択しかつPWMオン・オフする、ことを特長としたクリーン電気車両22In the regeneration of the clean electric vehicle 22, the generator and the motor 1, a plurality of power storage bodies 3, a plurality of bidirectional switches 2, and a control device 4 are arranged between the generator 1 and the power storage body 3. Clean electricity characterized in that the control device 4 selects one of a plurality of two-way switches 2 and turns on / off the PWM so that the charging / discharging current flowing through the vehicle matches the displacement value of the brake or accelerator pedal. Vehicle 22 請求項1に記載の蓄電体3とは別の蓄電体31を車載し、図3の外部給電ロッド14により、停留所または車庫18、20に停車または低速走行中のとき前記蓄電体31に充電し、走行中に放電することを特長とした、請求項1に含まれるクリーン電気車両22The power storage unit 31 different from the power storage unit 3 according to claim 1 is mounted on the vehicle, and the power storage unit 31 is charged by the external power supply rod 14 of FIG. The clean electric vehicle 22 according to claim 1, wherein the electric vehicle is discharged during traveling. 自然エネルギー16と、水素ボンベまたは蓄電体17と、エネルギコントローラー15と地下DC架線19とからなり、地下架線19の電圧が上昇しすぎると水素ボンベ17にエネルギーを蓄え、低すぎると水素ボンベ17から電気を取り出して、地下架線19の電圧が一定になるようコントローラー15が動作し、クリーン電力を蓄電体31に供給することを特長とした請求項2に含まれるクリーン電気車両22It consists of a natural energy 16, a hydrogen cylinder or power storage unit 17, an energy controller 15, and an underground DC overhead wire 19. Energy is stored in the hydrogen cylinder 17 if the voltage of the underground overhead line 19 rises too much, and from the hydrogen cylinder 17 if it is too low. The clean electric vehicle 22 included in claim 2, wherein the controller 15 operates so that electricity is taken out and the voltage of the underground overhead line 19 becomes constant, and clean electric power is supplied to the power storage unit 31. 請求項1または請求項2に記載のクリーン電気車両22に、他の電気車両22または電池車21を連結したことを特長とした請求項1に含まれるクリーン電気車両22The clean electric vehicle 22 according to claim 1, wherein another electric vehicle 22 or a battery vehicle 21 is connected to the clean electric vehicle 22 according to claim 1.
JP2016004035U 2016-08-01 2016-08-01 Clean electric vehicle Active JP3208725U (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016004035U JP3208725U (en) 2016-08-01 2016-08-01 Clean electric vehicle
KR2020170000531U KR200490168Y1 (en) 2016-08-01 2017-01-31 Clean Electric Vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016004035U JP3208725U (en) 2016-08-01 2016-08-01 Clean electric vehicle

Publications (1)

Publication Number Publication Date
JP3208725U true JP3208725U (en) 2017-02-16

Family

ID=58043370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016004035U Active JP3208725U (en) 2016-08-01 2016-08-01 Clean electric vehicle

Country Status (2)

Country Link
JP (1) JP3208725U (en)
KR (1) KR200490168Y1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003061251A (en) * 2001-08-08 2003-02-28 Hitachi Ltd Power supply system
KR100911537B1 (en) * 2007-12-03 2009-08-10 현대자동차주식회사 Charge control apparatus for high voltage battery
KR20120095141A (en) * 2011-02-18 2012-08-28 주식회사 글로벌스탠다드테크놀로지 Portable system for charging electric vehicle
JP2013207976A (en) * 2012-03-29 2013-10-07 Panasonic Corp Power regeneration system

Also Published As

Publication number Publication date
KR200490168Y1 (en) 2019-10-07
KR20180000406U (en) 2018-02-09

Similar Documents

Publication Publication Date Title
KR101829173B1 (en) Apparatus for transferring energy using power electronics and machine inductance and method of manufacturing same
JP6717826B2 (en) Electric power supply and energy harvesting auxiliary system for electric vehicle and method of operating the power supply and energy harvesting auxiliary system
CN102196938B (en) Propulsion control device for electric car
CA2845285C (en) A battery-powered all-electric locomotive and related locomotive and train configurations
CN107933326B (en) Double-source trackless electric vehicle electric coupling control method and power device
CN107054091B (en) System for selectively coupling an energy source to a load and method of making same
US10044312B2 (en) Modular stacked DC architecture traction system and method of making same
CN109130880B (en) Method for designing a machine
CN102005789A (en) Apparatus for transferring energy using onboard power electronics and method of manufacturing same
CN107813708A (en) A kind of range extended electric vehicle power system and its control method
CN103818265B (en) Cell managing device on powered vehicle
Shibuya et al. Designing methods of capacitance and control system for a diesel engine and EDLC hybrid powered railway traction system
EP2848455A1 (en) Electric vehicle with an on-board charger
CN106183875A (en) A kind of electric automobile high-voltage electrical architecture system of discharge and recharge integration
CN203543705U (en) Power supply system for electric vehicle
CN206202005U (en) A kind of dynamical system for pure electric vehicle
JP3208725U (en) Clean electric vehicle
JP4200512B2 (en) Power unit for electric vehicle
CN109050544A (en) A kind of tramcar pure lithium battery driving trailer system
KR20090131917A (en) Regeneration energy storage system of electric railway vehicles
JP2002305803A (en) Electric rolling stock
CN203543706U (en) Power supply system for electric vehicle
Del Pizzo et al. A method for “design to range” energy storage systems in catenary free operations of light railway vehicles
JP2006069510A (en) Large-output electric rolling stock combined with electric power of on-vehicle storage battery
CN208813185U (en) A kind of tramcar pure lithium battery driving trailer system

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161028

R150 Certificate of patent or registration of utility model

Ref document number: 3208725

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250