JP3208725U - Clean electric vehicle - Google Patents
Clean electric vehicle Download PDFInfo
- Publication number
- JP3208725U JP3208725U JP2016004035U JP2016004035U JP3208725U JP 3208725 U JP3208725 U JP 3208725U JP 2016004035 U JP2016004035 U JP 2016004035U JP 2016004035 U JP2016004035 U JP 2016004035U JP 3208725 U JP3208725 U JP 3208725U
- Authority
- JP
- Japan
- Prior art keywords
- power storage
- electric vehicle
- storage unit
- vehicle
- clean
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000007599 discharging Methods 0.000 claims abstract description 10
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 12
- 229910052739 hydrogen Inorganic materials 0.000 claims description 12
- 239000001257 hydrogen Substances 0.000 claims description 12
- 230000008929 regeneration Effects 0.000 claims description 9
- 238000011069 regeneration method Methods 0.000 claims description 9
- 230000002457 bidirectional effect Effects 0.000 claims description 5
- 238000006073 displacement reaction Methods 0.000 claims description 5
- 230000005611 electricity Effects 0.000 claims description 3
- 230000001172 regenerating effect Effects 0.000 abstract description 7
- 239000003990 capacitor Substances 0.000 description 19
- 230000009194 climbing Effects 0.000 description 9
- 230000001133 acceleration Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 239000000446 fuel Substances 0.000 description 5
- 239000002184 metal Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 238000013459 approach Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000003749 cleanliness Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L7/00—Electrodynamic brake systems for vehicles in general
- B60L7/10—Dynamic electric regenerative braking
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/30—Constructional details of charging stations
- B60L53/32—Constructional details of charging stations by charging in short intervals along the itinerary, e.g. during short stops
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/50—Charging stations characterised by energy-storage or power-generation means
- B60L53/55—Capacitors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L9/00—Electric propulsion with power supply external to the vehicle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2200/00—Type of vehicles
- B60L2200/12—Bikes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2200/00—Type of vehicles
- B60L2200/18—Buses
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2200/00—Type of vehicles
- B60L2200/36—Vehicles designed to transport cargo, e.g. trucks
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2250/00—Driver interactions
- B60L2250/26—Driver interactions by pedal actuation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2260/00—Operating Modes
- B60L2260/20—Drive modes; Transition between modes
- B60L2260/22—Standstill, e.g. zero speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60Y—INDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
- B60Y2200/00—Type of vehicle
- B60Y2200/10—Road Vehicles
- B60Y2200/13—Bicycles; Tricycles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60Y—INDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
- B60Y2200/00—Type of vehicle
- B60Y2200/10—Road Vehicles
- B60Y2200/14—Trucks; Load vehicles, Busses
- B60Y2200/143—Busses
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60Y—INDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
- B60Y2200/00—Type of vehicle
- B60Y2200/80—Other vehicles not covered by groups B60Y2200/10 - B60Y2200/60
- B60Y2200/86—Carts; Golf carts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60Y—INDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
- B60Y2200/00—Type of vehicle
- B60Y2200/90—Vehicles comprising electric prime movers
- B60Y2200/91—Electric vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/12—Electric charging stations
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
【課題】100%近くクリーンでローコストなクリーン電気車両を提供する。【解決手段】先ず、クリーンで高効率な回生装置を搭載した電気車両を考案する。このために、蓄電体3を多段的に設け、発電機電圧の降下に応じて低い電圧の蓄電体3に切り替えて充・放電をおこなう多段回生装置を考案する。つぎに、外部給電装置よりの100%クリーンな電力で蓄電体31を充電し、走行エネルギーに利用または補助にする。さらに、従来、電気車両22に搭載の電池や発電機を電池車21に移行、連結し、電気車両22の高性能化・ローコスト化を計る。【選択図】図3A clean electric vehicle that is nearly 100% clean and low-cost is provided. First, an electric vehicle equipped with a clean and highly efficient regenerative device is devised. For this purpose, a multistage regenerative device is devised in which the power storage units 3 are provided in multiple stages, and charging / discharging is performed by switching to the low voltage power storage units 3 as the generator voltage drops. Next, the power storage unit 31 is charged with 100% clean power from the external power supply device, and is used or supplemented for travel energy. Furthermore, conventionally, a battery and a generator mounted on the electric vehicle 22 are transferred to and connected to the battery car 21 to improve the performance and cost of the electric vehicle 22. [Selection] Figure 3
Description
路線バス、巡回車、産業用運搬車、路線電車Route bus, patrol car, industrial transporter, route train
従来、電気車両やハイブリッド車において、特に加速・減速回数の多い中・大型車においては、クリーン度や燃費が充分良いとは言えなかった。この原因の1つに回生効率が良くないことがある。ブレーキ用発電機の電圧が回生に伴い低下するためである。電圧が一定の一般的蓄電体(バッテリ)への充電は、トランス昇圧法や倍電圧回路を設けて電圧を上昇させる方法が用いられていた。
しかしトランスの誘導損があり、また細かい昇圧は複雑な構造を要し、高効率の充・放電が容易でない欠点があった。
また、回生にバッテリを使用し、充放電回数が多い一般道での走行の場合、熱損失や化合物生成損失が多くなり、その結果、車体に搭載する重量が大きくなる欠点があった。Conventionally, in an electric vehicle or a hybrid vehicle, particularly in a medium-sized or large-sized vehicle having a large number of accelerations / decelerations, it cannot be said that cleanliness and fuel consumption are sufficiently good. One of the causes is that the regeneration efficiency is not good. This is because the voltage of the brake generator decreases with regeneration. For charging a general power storage unit (battery) with a constant voltage, a transformer boosting method or a method of increasing the voltage by providing a voltage doubler circuit has been used.
However, there is an inductive loss of the transformer, and fine boosting requires a complicated structure, and there is a drawback that high efficiency charge / discharge is not easy.
Further, when a battery is used for regeneration and the vehicle travels on a general road with a large number of charge / discharge cycles, heat loss and compound generation loss increase, and as a result, there is a disadvantage that the weight mounted on the vehicle body increases.
従来より、クリーンでローコストな電気車両を考案する。まず回生について考案する。放電に伴い降下する発電機電圧と蓄電体(バッテリやキャパシター)との間を指定値に従って効率よくかつ円滑に充放電する手段を考案する。
また、バッテリ車載量を減らし、乗車人員や登坂能力が大きいままでも、レアメタルなどの超高性能の高価なモータを使わない手段を考案する。Conventionally, a clean and low-cost electric vehicle is devised. First, devise regeneration. A means for charging and discharging efficiently and smoothly according to a specified value between a generator voltage and a power storage unit (battery or capacitor) that drop with discharge is devised.
In addition, we will devise a means to reduce the amount of on-board battery and not use an ultra-high-performance expensive motor such as rare metal even if the passenger capacity and climbing ability remain large.
図1は、自動車の場合のようにブレーキを掛けるとモータが発電機となり、充電される蓄電体3を4段のキャパシタとした場合の、多段充放電装置の構成図である。
同図に沿って充電が効率よく行われることを説明する。
アクセルを踏むのを止めブレーキを踏むと、直前までモータとして車輪駆動していた発電機1の高い電圧は、双方向スイッチ2aの充電スイッチのみオンにされて、4段のキャパシタ3a,3b,3c,3dを同時に充電する。FIG. 1 is a configuration diagram of a multistage charging / discharging device when a brake is applied as in the case of an automobile, the motor becomes a generator, and the
A description will be given of efficient charging along the same figure.
When the accelerator pedal is stopped and the brake pedal is pressed, the high voltage of the
このとき、いきなり全電圧を加えない。8により検出された電流値がブレーキ信号値に近づくよう、制御装置4はパルス幅を増し、PWM制御信号として4aまたは4eに出力し、結果的にスイッチ2aを通し適正電流を流す。
その結果、図2の10のように発電機電圧が降下し、車輪にはブレーキがかかる。At this time, the entire voltage is not suddenly applied. The
As a result, the generator voltage drops as shown at 10 in FIG. 2, and the wheels are braked.
逆に、同図の11のようにキャパシタ電圧は上昇する。
しかし、同図10のように発電機電圧降下を直線的にするためには、スイッチ2aを、2b、2c、2d、と次々と切り替えて、発電機1からの出力電流を一定にしなければならない。
もし、定格の2倍の電流(2×Iとする)でブレーキを掛けたい場合、図1の3a,3b,3c,3dの4個の蓄電体をまず充電し、図2の時刻t1のタイミングで3b,3c,3dの3個の、t2のタイミングで3c.3dの2個の、t3のタイミングで3dの1個の蓄電体を、それぞれ充電する。
たとえば、流れる電流が一定(2×I)で、t1,t2,t3,t4が(1,2,3、4)Δtの同間隔と仮定し、各端子に間に、200v、100v、50v、25v、合計電圧=375vを得たいとすると、4個の直列容量をそれぞれ、容量素子を1個、4個、12個、16個並列接続したものとすれば良い。(勿論、一定の時間幅Δtや直列の4個の容量を変えて、目的電圧を変更してもよい)Conversely, the capacitor voltage rises as indicated by 11 in FIG.
However, in order to make the generator voltage drop linear as shown in FIG. 10, the switch 2a must be successively switched to 2b, 2c, and 2d to make the output current from the
If the brake is to be applied with a current twice the rated value (2 × I), the four
For example, assuming that the flowing current is constant (2 × I) and t1, t2, t3, and t4 are the same interval of (1, 2, 3, 4) Δt, 200v, 100v, 50v, If it is desired to obtain 25v and the total voltage = 375v, four series capacitors may be respectively connected in parallel with one, four, twelve, and sixteen capacitive elements. (Of course, the target voltage may be changed by changing the fixed time width Δt or four capacities in series.)
ただし、図2でのt4以降の25vからの電圧降下は、機械的ブレーキによるものであり損失となる。この損失を少なくするには、25vを下げるよう、4段目の容量を増やすか5段目を増設すればよい。
蓄電体をキャパシタから電池に変えた場合は、蓄電体の各端子電圧は固定である以外、キャパシタの場合と動作は同じである。However, the voltage drop from 25v after t4 in FIG. 2 is due to the mechanical brake and becomes a loss. In order to reduce this loss, it is sufficient to increase the capacity of the fourth stage or add the fifth stage so as to reduce 25v.
When the power storage unit is changed from a capacitor to a battery, the operation is the same as that of the capacitor except that each terminal voltage of the power storage unit is fixed.
次にアクセル信号値をもとに、蓄電体に蓄えたエネルギーで車輪を駆動する、いわゆる加速について記述する。
停車している電気車両を加速開始するには、まず蓄電体3dの放電から始める。
充電時と同じようにスイッチ2dをオンにして、2×Iの電流をモータ1に流す。次に車輪の回転が増しモータ電圧が高まり2×Iの電流が確保できなくなったら、スイッチを2cに切り替え蓄電体3c+3dから放電し、以下3b+3c+3d、3a+3b+3c+3dの蓄電体放電を行う。
以上で損失を小さくすれば、車両速度はほぼブレーキ直前の走行速度に戻る。Next, based on the accelerator signal value, so-called acceleration in which the wheel is driven by the energy stored in the electric storage body will be described.
In order to start accelerating the stopped electric vehicle, first, the
As in charging, the
If the loss is reduced as described above, the vehicle speed returns to the traveling speed immediately before the brake.
次に走行であるがこのエネルギーは、あらかじめ充電された車載のバッテリ(電池)から得るのが一般的である。そのほか車載されたエンジン発電機から得る場合や水素燃料電池から得る場合もある。
ところで、図3の電気車両22には回生用蓄電体3の他に蓄電体31を搭載し、停留所や車庫18に停車中に外部給電ロッド14経由で充電し、加速後の走行に利用する。この蓄電体31はキャパシターが好ましいが、分割する必要がない。停留時間中に一気に充電し、アクセルにあわせてPWM放電する。Next, although it is driving | running | working, it is common to obtain this energy from the vehicle-mounted battery (battery) charged beforehand. In addition, it may be obtained from an engine generator mounted on a vehicle or from a hydrogen fuel cell.
By the way, the
停留所20が遠いとか、蓄電体31の容量が小さい場合は、別途バッテリなど走行用電源が必要である。これを車両本体22に搭載しても良いが、図3のように電池車21として連結してもよい。こうすると、車両22が軽くなり、駆動モータが小さくなり、積載量だけを中心とした車両本体22の標準化が可能になる。
また、電池車21にも駆動モータと車輪を2つ付ける。すると連結後は4輪以上の駆動となり、航続距離のみならず、登坂能力も増大する。連結は通常の車両22を2両連結でもよい。When the
The
これをさらに記述する。一般的に、大型電気バスのようにタイヤをつけた電気車両は、レアーメタルなどによる高価で重い、大出力モータを使用していた。バッテリーの重量などと、登坂能力のため4輪以上の重いタイヤを付けるのも一因である。このため、車内の平面部分が少なく積載量が少なかった。This is further described. In general, an electric vehicle with tires such as a large electric bus uses an expensive and heavy high-power motor such as a rare metal. Partly because of the weight of the battery and the ability to climb up four or more heavy wheels for climbing ability. For this reason, there were few plane parts in a vehicle and there was little loading capacity.
たとえば、30〜40人乗りの登坂能力のある中型電気バスを2台連結すると、車輪は8輪になり中型モータ2台だけで、60〜80人乗りで登坂能力のある安価な電気バスが実現できる。図3では、2台目の電気バスの代わりに自走型の電池車を連結し、前の車両を押す場合の、大型電気バス構成と見てもよい。For example, when two medium-sized electric buses capable of climbing 30 to 40 people are connected, the number of wheels becomes eight and only two medium-sized motors are used, and an inexpensive electric bus capable of climbing up to 60 to 80 people is realized. it can. In FIG. 3, a self-propelled battery car may be connected instead of the second electric bus, and viewed as a large electric bus configuration when the previous vehicle is pushed.
さて従来、電気車両22は充電する電力が主に火力発電所で作られ、日本では40%ほどしかしかクリーンでない。100%に近いクリ−ン電力を電気車両に取り込もうとするのが、本考案の3つ目である。
図3でまず、ソーラーなど自然エネルギー15を余剰に取り込み、余った分は蓄電体または水素ボンベ17に3〜4日分蓄える。それでも余った場合は電力会社に売電する。足りない場合は蓄電体や、水素ボンベより電気変換して供給する。Conventionally, the
In FIG. 3, first, surplus
以上のことは、エネルギコントローラ15が架線19に、電圧を監視しながら行う。
このことから、架線への電源は電力会社から独立した分散電源であり、火力や原子力への依存を少なくし、電気車両22・21に車載の蓄電池や蓄電体31は、停留所や車庫においてクリーで安定した充電電力を得ることができる。
また、高圧送電線の破損など、天災・人災の備えとなる災害用電源としても使用できる。
以上述べたように本考案によれば、よりクリーンでローコストの電気車両22が実現できる。The above is performed while the
For this reason, the power source for the overhead line is a distributed power source independent of the electric power company, reduces the dependence on thermal power and nuclear power, and the storage battery and the
It can also be used as a disaster power source to prepare for natural and man-made disasters, such as damage to high-voltage power transmission lines.
As described above, according to the present invention, a cleaner and lower cost
1:発電機またはモーター
2:双方向(充・放電)スイッチ
2a=4段目,2b=3段目,2c=2段目,2d=1段目のスイッチ
3:多段蓄電体(バッテリーまたはキャパシター)
3a=4段目,3b=3段目,3c=2段目,3d=1段目の蓄電体
4:制御装置
4a=4段目,4b=3段目,4c=2段目,4d=1段目のスイッチ制御
信号線、 4e=PWM信号線
5:インダクタンスおよびPWM
6:ブレーキ変位の信号入力端 7:アクセル変位の信号入力端
8:電流値検出器
10:発電機1の出力電圧 特性例 11:蓄電体3の電圧 特性例
12:電圧または電力軸 13:時間軸
14:外部給電ロッド 15:エネルギーコントローラー
16:自然エネルギー 17:水素ボンベまたは蓄電体
18、20:停留所または車庫
19:DC架線(共同溝)
21:連結車または電池車
22:クリーン電気車両
31:蓄電体21: Generator or motor 2: Bidirectional (charge / discharge) switch 2a = 4th stage, 2b = 3rd stage, 2c = 2nd stage, 2d = 1st stage switch 3: Multistage power storage unit (battery or capacitor) )
3a = 4th stage, 3b = 3rd stage, 3c = 2nd stage, 3d = 1st stage power storage unit 4:
6: Signal input terminal for brake displacement 7: Signal input terminal for accelerator displacement 8: Current value detector 10: Output voltage of
21: Linked car or battery car 22: Clean electric vehicle 31: Power storage unit 2
回生装置(バス、巡回車、物流車、水素燃料電池車、電車、カート、などに適用)
給電システム(無停電機能を有した、車両へのオンライン給電システム)Regenerative equipment (applicable to buses, patrol cars, logistics vehicles, hydrogen fuel cell vehicles, trains, carts, etc.)
Power supply system (on-line power supply system for vehicles with uninterruptible power function)
従来、電気車両やハイブリッド車において、特に加速・減速回数の多い中・大型車においては、クリーン度や燃費が充分良いとは言えなかった。この原因の1つに回生効率が良くないことがある。ブレーキ用発電機の電圧が回生に伴い低下するためである。電圧が一定の一般的蓄電体(バッテリ)への充電は、トランス昇圧法や倍電圧回路を設けて電圧を上昇させる方法が用いられていた。
しかしトランスの誘導損があり、また細かい昇圧は複雑な構造を要し、高効率の充・放電が容易でない欠点があった。
また、回生にバッテリを使用し、充放電回数が多い一般道での走行の場合、熱損失や化合物生成損失が多くなり、その結果、車体に搭載する重量が大きくなる欠点があった。Conventionally, in an electric vehicle or a hybrid vehicle, particularly in a medium-sized or large-sized vehicle having a large number of accelerations / decelerations, it cannot be said that cleanliness and fuel consumption are sufficiently good. One of the causes is that the regeneration efficiency is not good. This is because the voltage of the brake generator decreases with regeneration. For charging a general power storage unit (battery) with a constant voltage, a transformer boosting method or a method of increasing the voltage by providing a voltage doubler circuit has been used.
However, there is an inductive loss of the transformer, and fine boosting requires a complicated structure, and there is a drawback that high efficiency charge / discharge is not easy.
Further, when a battery is used for regeneration and the vehicle travels on a general road with a large number of charge / discharge cycles, heat loss and compound generation loss increase, and as a result, there is a disadvantage that the weight mounted on the vehicle body increases.
従来よりも、クリーンでローコストな電気車両を考案する。まず回生について考案する。放電に伴い降下する発電機電圧と蓄電体(バッテリやキャパシター)との間を指定値に従って効率よくかつ円滑に充放電する手段を考案する。
また、バッテリ車載量を減らし、乗車人員や登坂能力が大きいままでも、レアメタルなどの超高性能の高価なモータを使わない手段を考案する。We will devise a cleaner and lower-cost electric vehicle than before. First, devise regeneration. A means for charging and discharging efficiently and smoothly according to a specified value between a generator voltage and a power storage unit (battery or capacitor) that drop with discharge is devised.
In addition, we will devise a means to reduce the amount of on-board battery and not use an ultra-high-performance expensive motor such as rare metal even if the passenger capacity and climbing ability remain large.
図1は、自動車の場合のようにブレーキを掛けるとモータが発電機となり、充電される蓄電体3を4段のキャパシタとした場合の、多段充放電装置の構成図である。
同図に沿って充電が効率よく行われることを説明する。
アクセルを踏むのを止めブレーキを踏むと、直前までモータとして車輪駆動していた発電機1の高い電圧は、双方向スイッチ2aの充電スイッチのみオンにされて、4段のキャパシタ3a,3b,3c,3d を同時に充電する。FIG. 1 is a configuration diagram of a multistage charging / discharging device when a brake is applied as in the case of an automobile, the motor becomes a generator, and the
A description will be given of efficient charging along the same figure.
When the accelerator pedal is stopped and the brake pedal is pressed, the high voltage of the
このとき、いきなり全電圧を加えない。電流検出器8により検出された電流値がブレーキ信号値に近づくよう、制御装置4はパルス幅を増し、PWM制御信号として4aまたは4eに出力し、結果的にスイッチ2aを通し適正電流を流す。
その結果、図2の10のように発電機電圧が降下し、車輪にはブレーキがかかる。At this time, the entire voltage is not suddenly applied. The
As a result, the generator voltage drops as shown at 10 in FIG. 2, and the wheels are braked.
逆に、同図の11のようにキャパシタ電圧は上昇する。
しかし、同図10のように発電機電圧降下を直線的にするためには、スイッチ2aを、2b、2c、2d、と次々と切り替えて、発電機1からの出力電流を一定にしなければならない。
もし、定格の2倍の電流(2×Iとする)でブレーキを掛けたい場合、図1の3a,3b,3c,3dの4個の蓄電体をまず充電し、図2の時刻t1のタイミングで3b,3c,3dの3個の、t2のタイミングで3c.3dの2個の、t3のタイミングで3dの1個の蓄電体を、それぞれ充電する。
たとえば、流れる電流が一定(2×I)で、t1,t2,t3,t4が(1,2,3、4)Δtの同間隔と仮定し、各端子の間に、200v、100v、50v、25v、合計電圧=375vを得たいとすると、4個の直列容量をそれぞれ、容量素子を1個、4個、12個、16個並列接続したものとすれば良い。(勿論、一定の時間幅Δtや直列の4個の容量を変えて、目的電圧を変更してもよい)Conversely, the capacitor voltage rises as indicated by 11 in FIG.
However, in order to make the generator voltage drop linear as shown in FIG. 10, the switch 2a must be successively switched to 2b, 2c, and 2d to make the output current from the
If the brake is to be applied with a current twice the rated value (2 × I), the four
For example, assuming that the flowing current is constant (2 × I), and t1, t2, t3, t4 are the same interval of (1, 2, 3, 4) Δt, and 200v, 100v, 50v, If it is desired to obtain 25v and the total voltage = 375v, four series capacitors may be respectively connected in parallel with one, four, twelve, and sixteen capacitive elements. (Of course, the target voltage may be changed by changing the fixed time width Δt or four capacities in series.)
ただし、図2でのt4以降の25vからの電圧降下は、機械的ブレーキによるものであり損失となる。この損失を少なくするには、25vを下げるよう、4段目の容量を増やすか5段目を増設すればよい。
蓄電体をキャパシタから電池に変えた場合は、蓄電体の各端子電圧は固定である以外、キャパシタの場合と動作は同じである。However, the voltage drop from 25v after t4 in FIG. 2 is due to the mechanical brake and becomes a loss. In order to reduce this loss, it is sufficient to increase the capacity of the fourth stage or add the fifth stage so as to reduce 25v.
When the power storage unit is changed from a capacitor to a battery, the operation is the same as that of the capacitor except that each terminal voltage of the power storage unit is fixed.
次にアクセル信号値をもとに、蓄電体に蓄えたエネルギーで車輪を駆動する、いわゆる加速について記述する。
停車している電気車両を加速開始するには、まず蓄電体3dの放電から始める。充電時と同じようにスイッチ2dをオンにして、2×Iの電流をモータ1に流す。次に車輪の回転が増しモータ電圧が高まり2×Iの電流が確保できなくなったら、スイッチを2cに切り替え蓄電体3c+3dから放電し、以下3b+3c+3d、3a+3b+3c+3dの蓄電体放電を行う。
以上で損失を小さいとすれば、車両速度はほぼブレーキ直前の走行速度に戻る。Next, based on the accelerator signal value, so-called acceleration in which the wheel is driven by the energy stored in the electric storage body will be described.
In order to start accelerating the stopped electric vehicle, first, the
If the loss is small as described above, the vehicle speed returns to the traveling speed just before the brake.
次に走行であるが このエネルギーは、あらかじめ充電された車載のバッテリ(電池)から得るのが一般的である。そのほか車載されたエンジン発電機から得る場合や水素燃料電池から得る場合もある。Next, when traveling, this energy is generally obtained from a pre-charged on-board battery (battery). In addition, it may be obtained from an engine generator mounted on a vehicle or from a hydrogen fuel cell.
ところで、図3の電気車両22には回生用蓄電体3の他に蓄電体31を搭載し、停留所や車庫18に停車中に外部給電ロッド14経由で充電し、加速後の走行に利用する。この蓄電体31はキャパシタが好ましいが、前記と違い分割する必要がない。停留時間中に一気に充電し、アクセルにあわせてPWM放電する。By the way, the
停留所20が遠いとか、蓄電体31の容量が小さい場合は、別途バッテリなど走行用電源が必要である。これを車両本体22に搭載しても良いが、図3のように電池車21として連結してもよい。こうすると、車両22が軽くなり、駆動モータが小さくなり、積載量だけを中心とした車両本体22の標準化が可能になる。
また、電池車21にも駆動モータと車輪を2つ付ける。すると連結後は4輪以上の駆動となり、航続距離のみならず、登坂能力も増大する。連結は通常の車両22を2両連結でもよい。When the
The
これをさらに記述する。一般的に、大型電気バスのようにタイヤをつけた電気車両は、レアメタルなどによる高価で重い、大出力モータを使用していた。バッテリの重量などと、登坂能力のため4輪以上の重いタイヤを付けるのも一因である。このため、車内の平面部分が少なく積載容量が少なかった。This is further described. In general, an electric vehicle with tires such as a large electric bus uses an expensive and heavy high-power motor made of rare metal or the like. Partly because of the weight of the battery and the ability to climb four or more heavy wheels for climbing ability. For this reason, there were few plane parts in a vehicle and there was little loading capacity.
これに対し、たとえば30〜40人乗りの登坂能力のある中型電気バスを2台連結すると、車輪は8輪になり中型モータ2台だけで、60〜80人乗りで登坂能力のある安価な電気バスが実現できる。図3では、2台目の電気バスの代わりに自走型の電池車を連結し、前の車両を押す場合の、大型電気バス構成と見てもよい。On the other hand, for example, when two medium-sized electric buses capable of climbing up to 30 to 40 people are connected, the number of wheels becomes 8 and only two medium-sized motors are used. A bus can be realized. In FIG. 3, a self-propelled battery car may be connected instead of the second electric bus, and viewed as a large electric bus configuration when the previous vehicle is pushed.
さて従来、電気車両22は充電する電力が主に火力発電所で作られ、日本では40%ほどしかしかクリーンでない。100%に近いクリーン電力を電気車両に取り込もうとするのが、本考案の3つ目である。
図3でまず、ソーラーなど自然エネルギー15を余剰に取り込み、余った分は蓄電体または水素ボンベ17に3〜4日分蓄える。それでも余った場合は電力会社に売電する。足りない場合は蓄電体や、水素ボンベ17より電気変換して供給する。Conventionally, the
In FIG. 3, first, surplus
以上のことは、エネルギーコントローラー15が架線19の電圧を監視しながら行う。
このことから、架線への電源は電力会社から独立した分散電源であり、火力や原子力への依存を少なくし、電気車両22・21に車載の蓄電池や蓄電体31は、停留所や車庫においてクリーで安定した充電電力を得ることができる。
また、高圧送電線の破損など、天災・人災の備えとなる災害用電源としても使用できる。
以上述べたように本考案によれば、よりクリーンでローコストな電気車両22が実現できる。The above is performed while the
For this reason, the power source for the overhead line is a distributed power source independent of the electric power company, reduces the dependence on thermal power and nuclear power, and the storage battery and the
It can also be used as a disaster power source to prepare for natural and man-made disasters, such as damage to high-voltage power transmission lines.
As described above, according to the present invention, a cleaner and lower-cost
1:発電機またはモータ
2:双方向(充・放電)スイッチ
2a=4段目,2b=3段目,2c=2段目,2d=1段目のスイッチ
3:多段 蓄電体(バッテリーまたはキャパシター)
3a=4段目,3b=3段目,3c=2段目,3d=1段目の蓄電体
4:制御装置
4a=4段目,4b=3段目,4c=2段目,4d=1段目のスイッチ制御信号線、 4e=PWM信号線
5:インダクタンスおよびPWM 6:ブレーキ変位の信号入力端
7:アクセル変位の信号入力端 8:電流値検出器
10:発電機1の出力電圧特性例 11:蓄電体3の電圧特性例
12:電圧または電力軸 13:時間軸
14:外部給電ロッド 15:エネルギーコントローラー
16:自然エネルギー 17:水素ボンベまたは蓄電体
18、20:停留所または車庫
19:DC架線(共同溝)
21:連結車または電池車
22:クリーン電気車両
31:蓄電体21: Generator or motor 2: Bidirectional (charge / discharge) switch 2a = 4th stage, 2b = 3rd stage, 2c = 2nd stage, 2d = 1st stage switch 3: Multi-stage power storage unit (battery or capacitor) )
3a = 4th stage, 3b = 3rd stage, 3c = 2nd stage, 3d = 1st stage power storage unit 4:
21: Linked car or battery car 22: Clean electric vehicle 31: Power storage unit 2
Claims (4)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016004035U JP3208725U (en) | 2016-08-01 | 2016-08-01 | Clean electric vehicle |
KR2020170000531U KR200490168Y1 (en) | 2016-08-01 | 2017-01-31 | Clean Electric Vehicle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016004035U JP3208725U (en) | 2016-08-01 | 2016-08-01 | Clean electric vehicle |
Publications (1)
Publication Number | Publication Date |
---|---|
JP3208725U true JP3208725U (en) | 2017-02-16 |
Family
ID=58043370
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016004035U Active JP3208725U (en) | 2016-08-01 | 2016-08-01 | Clean electric vehicle |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP3208725U (en) |
KR (1) | KR200490168Y1 (en) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003061251A (en) * | 2001-08-08 | 2003-02-28 | Hitachi Ltd | Power supply system |
KR100911537B1 (en) * | 2007-12-03 | 2009-08-10 | 현대자동차주식회사 | Charge control apparatus for high voltage battery |
KR20120095141A (en) * | 2011-02-18 | 2012-08-28 | 주식회사 글로벌스탠다드테크놀로지 | Portable system for charging electric vehicle |
JP2013207976A (en) * | 2012-03-29 | 2013-10-07 | Panasonic Corp | Power regeneration system |
-
2016
- 2016-08-01 JP JP2016004035U patent/JP3208725U/en active Active
-
2017
- 2017-01-31 KR KR2020170000531U patent/KR200490168Y1/en active IP Right Grant
Also Published As
Publication number | Publication date |
---|---|
KR20180000406U (en) | 2018-02-09 |
KR200490168Y1 (en) | 2019-10-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101829173B1 (en) | Apparatus for transferring energy using power electronics and machine inductance and method of manufacturing same | |
JP6717826B2 (en) | Electric power supply and energy harvesting auxiliary system for electric vehicle and method of operating the power supply and energy harvesting auxiliary system | |
CN102196938B (en) | Propulsion control device for electric car | |
CA2845285C (en) | A battery-powered all-electric locomotive and related locomotive and train configurations | |
CN107933326B (en) | Double-source trackless electric vehicle electric coupling control method and power device | |
CN109130880B (en) | Method for designing a machine | |
CN107054091B (en) | System for selectively coupling an energy source to a load and method of making same | |
US10044312B2 (en) | Modular stacked DC architecture traction system and method of making same | |
CN102005789A (en) | Apparatus for transferring energy using onboard power electronics and method of manufacturing same | |
CN103818265B (en) | Cell managing device on powered vehicle | |
CN107813708A (en) | A kind of range extended electric vehicle power system and its control method | |
Shibuya et al. | Designing methods of capacitance and control system for a diesel engine and EDLC hybrid powered railway traction system | |
CN106183875A (en) | A kind of electric automobile high-voltage electrical architecture system of discharge and recharge integration | |
EP2848455A1 (en) | Electric vehicle with an on-board charger | |
CN206202005U (en) | A kind of dynamical system for pure electric vehicle | |
CN203543705U (en) | Power supply system for electric vehicle | |
JP3208725U (en) | Clean electric vehicle | |
JP4200512B2 (en) | Power unit for electric vehicle | |
CN109050544A (en) | A kind of tramcar pure lithium battery driving trailer system | |
JP2002305803A (en) | Electric rolling stock | |
CN203543706U (en) | Power supply system for electric vehicle | |
Del Pizzo et al. | A method for “design to range” energy storage systems in catenary free operations of light railway vehicles | |
JP2006069510A (en) | Large-output electric rolling stock combined with electric power of on-vehicle storage battery | |
CN208813185U (en) | A kind of tramcar pure lithium battery driving trailer system | |
CN103231644B (en) | Without the tandem hybrid electric drive system system of generator inverter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20161028 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3208725 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
A623 | Registrability report |
Free format text: JAPANESE INTERMEDIATE CODE: A623 Effective date: 20241008 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20241008 |