JP4200512B2 - Power unit for electric vehicle - Google Patents

Power unit for electric vehicle Download PDF

Info

Publication number
JP4200512B2
JP4200512B2 JP31842298A JP31842298A JP4200512B2 JP 4200512 B2 JP4200512 B2 JP 4200512B2 JP 31842298 A JP31842298 A JP 31842298A JP 31842298 A JP31842298 A JP 31842298A JP 4200512 B2 JP4200512 B2 JP 4200512B2
Authority
JP
Japan
Prior art keywords
voltage
power
speed
circuit
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31842298A
Other languages
Japanese (ja)
Other versions
JP2000134717A (en
JP2000134717A5 (en
Inventor
幸雄 大田
Original Assignee
幸雄 大田
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 幸雄 大田 filed Critical 幸雄 大田
Priority to JP31842298A priority Critical patent/JP4200512B2/en
Publication of JP2000134717A publication Critical patent/JP2000134717A/en
Publication of JP2000134717A5 publication Critical patent/JP2000134717A5/en
Application granted granted Critical
Publication of JP4200512B2 publication Critical patent/JP4200512B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/003Dynamic electric braking by short circuiting the motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • B60L9/16Electric propulsion with power supply external to the vehicle using ac induction motors
    • B60L9/18Electric propulsion with power supply external to the vehicle using ac induction motors fed from dc supply lines
    • B60L9/22Electric propulsion with power supply external to the vehicle using ac induction motors fed from dc supply lines polyphase motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/50Structural details of electrical machines
    • B60L2220/56Structural details of electrical machines with switched windings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/50Structural details of electrical machines
    • B60L2220/58Structural details of electrical machines with more than three phases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、電動客車や電気機関車の如き、電動機で走行する車両(以下、電動車両と呼ぶ)の動力装置に関するものである。
【0002】
【従来の技術】
一般に、鉄道の車両の運転は、加速・力行を原動機で、減速・制動を各車輪の摩擦ブレーキ(以下、車輪ブレーキと呼ぶ)で行なっており、運行時間効率を向上するため、走行速度を上げるとともに、加速・減速を速やかに行なうよう、車体の軽量化と原動機の容量及びブレーキの性能が増強され、電動車両は、その性能が最も良いので、幹線や市街・近郊の主要線区に使用されている。
【0003】
電動車両は、電動機の発電機能を利用した発電ブレーキで減速・制動及び降坂・抑速が可能であり、また、その発電電力を架線・変電所に返流する回生ブレーキも採用されるに至っている。
【0004】
【発明が解決しようとする課題】
鉄道の車両は、走行抵抗は小さいが慣性抵抗が大きいので、加速に大半の動力を消費し、その動力で得た車両の運動のエネルギを減速・制動では、車輪ブレーキの摩擦や発電ブレーキの制御抵抗器で熱に変えて放散しており、その慣性抵抗によるエネルギ損失は、各駅停車の運転では特に大きく、各駅間の運転サイクルの消費エネルギの大半に及び、また、登坂力行では勾配抵抗で大きな動力を要し、その動力で得た位置のエネルギを降坂抑速で、車輪ブレーキや発電ブレーキで熱放散しており、そのエネルギ損失は中勾配区間においても消費エネルギの大半に及ぶ。
【0005】
発進・加速時の突入過負荷電流では、架線の導体抵抗及び変電所の機器での電圧降下が大きく、特に高密度運行の区間では定格電圧の20%以上に及ぶことがあり、それが架線の電力損失として上記のエネルギ損失に加わるとともに、車両の運転特性に影響し、回生ブレーキにおいても同様に電力損失となるので、上述の消費エネルギの大半を占める運動・位置のエネルギを効率よく回収するに至っておらず、また、回生ブレーキの返流電力の処理には、変電所に逆変換装置の併設が必要である。
【0006】
強力な定トルク加速は電動機全界磁の中速域(例えば50km/h)までで、高速域(例えば80〜125km/h)へは界磁を弱めて(例えば60〜40%界磁)加速するが、弱め界磁では電機子反作用による電機子の過電流耐量の低下のため、加速トルクは速度の2乗に逆比例の垂下特性となり、速度と共に増加する車両の走行抵抗での減殺もあって加速度が急に小さくなり加速時間・距離が伸びるので、特に各駅停車の車両では運転速度を上げることができず、その加速度を上げるには電動機のみならず架線や変電所の容量増大の必要或いは損失増大に及ぶ。
【0007】
最近開発・採用された可変周波数インバータと交流誘導電動機(以下、誘導機と呼ぶ)より成る直流無整流子電動機においても、電圧・周波数とも可変制御の強力な定トルク域は上記と同様に中速までであり、全電圧(即ち定電圧)・可変周波数制御の高速域では、最大トルク即ち過負荷耐量は周波数即ち速度の2乗に逆比例するため加速トルクは垂下特性となり、上記と同様な問題がある。
【0008】
このような問題に対して、特開昭50‐111516「複数個の直流直巻電動機の回生制動回路」、特開昭50‐119920「直流電動機の回生ブレーキ制御装置」、特公昭50‐39887「電気車のチョッパ制御装置」及び特開昭55‐53101「交流電気車の主回路」により、主に直流直巻電動機での発電制御で高速域まで強化した回生ブレーキが提案されているが、直流線区では近接車両の動力変動及び変電所に併設の逆変換装置が、交流線区では車両内の変電回路の逆変換装置が、突入過負荷を伴う回生電力に充分且つ確実に対応できないため、それらの提案が充分活用されるに至っておらず、未だに発電ブレーキと共に車輪ブレーキ(エヤブレーキ)を補助する電空併用ブレーキが主流であり、また、電動トルクは上述と同様に高速域では垂下特性で頗る小さく、加速・減速(電動・回生)を総合した運転性能の向上と全回生電力の回収に至っていない。
【0009】
一般に車両は、各駅間で、発進−加速−力行−惰行−減速−停止または発進−加速−定常走行−減速−停止の運転サイクルを、運行区間の登・降坂を伴って繰り返すが、車両運転に伴う主な抵抗は、車輪の転がり抵抗と車体の空気抵抗を合わせた走行抵抗Fv (なお、曲線路では車輪のフランジとレールとの摩擦による曲線抵抗が加わる)、加速・減速に伴う慣性抵抗Fi 及び登・降坂に伴う勾配抵抗Fs であり、走行抵抗Fv は常に正(+)の値を取るが、慣性抵抗Fi 及び勾配抵抗Fs は加速時や登坂時に正(+)、減速時や降坂時に負(−)の値を取り、走行距離Sにおいて、駅間の運転サイクル毎の慣性仕事量Wi =Σ(Fi *ΔS)は運動のエネルギとして、運行区間の往復サイクル毎の登・降坂仕事量Ws =Σ(Fs *ΔS)は位置のエネルギとして、それぞれ相殺されてゼロになる無効動力(交流電力の無効成分に比喩)の如く働き、走行抵抗分の仕事量Wv =Σ(Fv *ΔS)が、車両の運転に最低限必須の実効動力(交流電力の有効成分に比喩)として働くことになる。
【0010】
なお登・降坂を伴う運行区間において、途中駅の乗降客や通勤・通学者の朝・夕の一方向移動があり、往復サイクル毎の登・降坂仕事量Ws は、載荷重の不等分として正(+)あるいは負(−)の値が残るが、その値は、車両の自重分に比べ遥かに小さく、全日サイクル(日毎の複数の往復サイクル)では、両方向移動として正・負相殺されると考えてよい。
【0011】
上記の如き無効動力の正(+)側は、実効動力とともに電動機の電動機能による牽引力Fd =Fi +Fv で与えられ、負(−)側は、実効動力を差し引いて電動機の発電機能による制動力Fb =Fi −Fv の回生ブレーキで回収されるが、電動機や制御装置を含む車両の電力回路及び架線や変電所の導体抵抗による電力損失即ち銅損が、平地定常走行の実効動力に比し遥かに大きな加・減速や登・降坂の無効動力において、電力回収効率を損ずる主要因となる。
【0012】
なお、運転サイクルの大半あるいは大部分の時間を占める定常走行で、平坦路や緩勾配路では、電動機や変電所は半負荷や4半負荷の如き著しい軽負荷のため銅損は小さいが、鉄損や励磁電力等の無負荷損失のため、電力効率はかなり低い。
【0013】
本発明は、上述の問題に鑑み、電動車両の動力装置の改善で以て、車両、架線及び変電所の総合効率を向上し電力消費を低減するとともに、車両の運転性能を向上するものである。
【0014】
【課題を解決するための手段】
上述の目的を達成するために、本発明の電動車両の動力装置においては、本願の出願者が発明の特開平9−289703「電動車両の動力・給電装置」及び特開平10−66204「気動・電動車両の動力装置」に記載の、車両内設置の蓄電装置の充・放電回路を改良し、発進・加速の過負荷には主に蓄電電力を、加速終期及び力行の定常負荷には架線電力を当て、減速・制動及び降坂抑速では回生ブレーキによる全回生電力を、受電回路に挿入したダイオードで架線への逆流を阻止して蓄電装置に充電回収する機能と共に、基本定格の全電圧連続定格の電動機に倍電圧短時定格を付加して倍電圧で働かせ、電動・回生とも定トルク域を含む強力なトルク特性を高速側に拡張し、高速域のトルクを強化した動力装置を提供する。
【0015】
上記の機構を実現するために、車両内の動力単位毎に、まず、チョッパ及びそれを挟んで2個のリアクトルを制御主要素として配し、入力リアクトルとチョッパとの接続点と負極線(接地線)との間に還流ダイオードと平滑コンデンサの直列回路を、出力リアクトルの入力側と負極線との間に還流ダイオードを、それぞれ配し、また、入力リアクトル用還流ダイオードに並列及びチョッパと出力リアクトルとの間に、共通のアクチュエータ(Actuator)を持つ接触器(以下、主制御接触器と呼ぶ)を、チョッパの出力側と負極線との間及び入力リアクトル用還流ダイオードと平滑コンデンサとの接続点と出力リアクトルの入力側との間に、共通のアクチュエータを持つ接触器(以下、副制御接触器と呼ぶ)を、それぞれ配して電子制御回路を構成する。
【0016】
この電子制御回路は、要約すれば、主制御接触器により、チョッパ、出力リアクトル及びその還流ダイオードで降圧チョッパ回路と、入力リアクトル及び平滑コンデンサでろ波回路をそれぞれ構成し、副制御接触器により、チョッパ、入力リアクトル及びその還流ダイオードで昇圧チョッパ回路と、平滑コンデンサ及び出力リアクトルでろ波回路をそれぞれ構成したものであり、後述の蓄電側接触器及び電機側接触器を介して蓄電調整及び電動機の電機子制御に供する。
【0017】
チョッパは、高周波数作動において転流損失が極めて小さい制御素子で構成し、入・出力両リアクトルは、突入過負荷電流においても昇・降圧チョッパ制御に充分なリアクタンスを持ち且つ銅損及び鉄損が極めて小さいものとし、なお、電子制御回路の入力側及び出力側と負極線との間に、バリスタの如き過渡サージ電圧吸収素子をそれぞれを配する。
【0018】
次に、電子制御回路の入力側を接触器及びダイオード(以下、それぞれ受電接触器及び受電ダイオードと呼ぶ)を介して架線電力の受電回路に接続し、また、該電子制御回路の入力側及び出力側に各々2個の接触器を配してブリッジ回路を形成し、各対角点(入力・出力側両接触器の接続点)に蓄電回路及び電動機回路をそれぞれ高速回路遮断器を介して接続し(以下、それぞれ1対の両接触器を蓄電側・電機側接触器と呼ぶ)、電力制御回路を構成する。
【0019】
動力単位は、電動機の個数や接触器・チョッパ・ダイオード・リアクトル等の回路要素の単機容量を考慮して構成し、電動客車では、動力車1両を1動力単位とし、電気機関車では、車両毎あるいは特に大出力の場合は台車毎等のように複数の動力単位に分割してもよい。
【0020】
蓄電装置は、突入・重負荷で急速且つ高頻度の充・放電においても、電力損失が極めて小さく劣化しない大容量蓄電器の採用が望ましく、各々蓄電要素にヒューズ付き断路器を配してその複数組を並列接続し、それに断路器を付して1蓄電単位を構成し、回路遮断器を介して1動力単位に給電、なお、単位列車編成の全車両に均圧線と断路器を配して、隣接動力単位の蓄電単位と連結接続する。
【0021】
電動機は、電動・発電とも同一の電圧極性で作動し、励磁制御が容易且つ正・負トルク特性が速度軸についてほぼ対称な直流分巻整流子電動機を、或いは誘導機に還流ダイオードブリッジ併設のインバータ(以下、特記の他、インバータと呼ぶ)を組合わせた直流無整流子電動機を使用し、電機子又は電機子巻線の接続切替回路と界磁の励磁制御及び正・逆転切替え回路を配して、降・昇圧チョッパにより正・負両負荷に対応する電機子制御機能を持つ上述の電子制御回路に接続し、下記のような電動機制御装置を構成する(誘導機使用の直流無整流子電動機の場合は、降・昇圧チョッパとインバータの電圧・周波数とも可変で以って、正・負ほぼ対称の定トルク特性の電機子制御機能を成す)。
【0022】
電力制御回路の蓄電回路側から回路遮断器で分岐して、チョッパ及び還流ダイオードを配して電動機の界磁制御に供し、そのチョッパには、加・減速時の定トルク域の全励磁及び垂下トルク域の直巻特性と、定常走行時の定速の分巻特性の界磁制御機能を併せ持たせる(誘導機使用の直流無整流子電動機の場合は、インバータの定電圧・可変周波数でもって、直流分巻整流子電動機と同様な正・負ほぼ対称な垂下トルク及び定速特性の界磁制御機能を成す )
【0023】
全電圧連続定格の寸法・構造・強度の増大なく電機子絶縁及び整流子の強化により2倍電圧短時定格を付加した直流分巻整流子電動機と、架線などの直流電源の定電圧の下で、電機子の並列接続で該電動機が 2 倍電圧で働き、全界磁の下で降圧・昇圧チョッパによる電機子制御の定トルク域及び界磁制御による垂下トルク域を電動・回生とも2倍速度に拡張したトルク特性で短時で加速・減速を行い、且つ電機子の直列接続で該電動機が全電圧で働き界磁制御の垂下トルク域で定速定常走行するよう構成の電子制御回路とを配して、電動車両の動力装置を構成する。
【0024】
全電圧連続定格の機・電両面の設計を変えずにルート3(3の平方根=1.732、以下特記の他1.732と記す)倍電圧短時定格を付加した、誘導機にインバータを組合わせた直流無整流子電動機と、架線などの直流電源の定電圧の下で電機子巻線のデルタ(以下、Δと記す)接続で該電動機が 1.732 倍電圧で働き降圧・昇圧チョッパによる可変電圧制御とインバータによる可変周波数制御の定トルク域及び該電機子巻線の定電圧の下で可変周波数制御による垂下トルク域を電動・回生とも1.732倍速度に拡張して短時で加速・減速を行い、且つスター(以下、 Y と記す)接続で該電動機が全電圧で働き定電圧・周波数制御の垂下トルク域で定速定常走行するよう構成の電子制御回路及び運転操作装置とを配して、電動車両の動力装置を構成する。
−以上−
【0025】
上述の直流分巻整流子電動機の直列接続電機子の 2 組に、或いは上述の電機子巻線スター接続の直流無整流子電動機の 2 台の直流側に、更に直・並列接続切替回路を配してそれぞれ全直列と直並列接続或いはスター直列(以下、Y直列と記す)とスター並列(以下、Y並列と記す)接続を形成し、直並列或いはスター並列接続で該電動機を全電圧で働かせた定トルク域を含む強トルク域での加速及び減速と、所定の運転速度で全直列或いはスター直列接続に切替えて該電動機を半電圧で働かせた垂下トルク域で中速定常走行も可能に、電動機制御装置を構成する。
【0026】
同期電動機(以下、同期機と呼ぶ)にサイリスタを組合わせた直流無整流子電動機は、誘導機にインバータを組合わせた直流無整流子電動機と同様な電機子巻線接続切替回路と、直流分巻整流子電動機と同様な界磁制御回路を配して、上述[0021]、[0022]と同様に働くものであり、詳細は参考として後述する。
【0027】
運転室に配した、主幹制御器は、操作レバーを横に0、1、2、3の操作ノッチを有し、0ノッチは「切」、1ノッチは低速運転、2ノッチは中速運転、3ノッチは高速運転に使用、1、2、3各速段ノッチとも前に押して加速、後に引いて減速、中立で定常走行の制御機能を、なお、該レバー頭部のボタンに高速短時倍出力機能を、キーレバーは、「前進」、「切」、「後進」の操作ノッチを、それぞれ持ち、また、車輪ブレーキ操作用空気弁は、「制動」、「保持」、「解除」の操作位置を持つ。
【0028】
電動機2台の動力単位で直・並列の場合は、操作レバーは0、1、2として上記の0、2、3の操作段に替え、1段は低・中速運転、2段は高速運転に使用の他、上記と同様とする。
【0029】
蓄電回路から、永久連結の単位列車編成毎に、回路遮断器で分岐してインバータ及び変圧器を配し、補機・照明用低圧交流、更に整流器及び蓄電池を配して前照・信号灯、制御及び非常用低圧直流の車内電源に供する。
【0030】
受電、蓄電、電動機(電機子及び界磁)の各回路に電圧・電流センサを、車軸に速度センサを、それぞれ制御及び表示用として配する。
【0031】
高落差の急勾配区間に運行の車両には、電動機回路と受電回路との間に、回生送出用接触器とダイオードを配することができる。
【0032】
交流または交・直流両用電動車両では、受電回路に配した変圧整流器の直流側を、上述の受電接触器を介して電力制御回路に接続する。
【0033】
動力車に永久連結の付随車の床下や機関車の車室内等に、ディーゼルエンジンやガスタービン等で駆動される発電機(上述の2巻線の無整流子電動機と同様な構成が望ましい)等の電源設備を搭載して受電回路に接続し、非電化区間あるいは電化・非電化両区間を運行の、気電動客車や気電動機関車の動力装置を構成することもできる。
【0034】
【作用】
以上に述べたように構成した本発明の車両の動力装置の作用につき、下記に説明、なお、直流無整流子電動機の Y ・Δ或いは Y 直列・ Y 並列・Δ並列の各々接続並びにルート3倍電圧・ルート3倍速度は、以下の説明においては、特記の他、直流分巻整流子電動機の直列・並列或いは全直列・直並列・全並列の各々接続と同機能と見做し、また、2倍電圧・2倍速度と同機能と見做し倍電圧・倍速度として一括記載する。
【0035】
架線電力は、受電回路及び電力制御回路の電子制御回路を経て蓄電回路及び電動機回路に給電されるが、蓄電電力及び回生電力は、受電用ダイオードの逆流阻止で架線に逆送出されないので、蓄電電圧は、架線電圧変動あっても高めに充電・保持される。
【0036】
蓄電電力は、電力制御回路の接触器ブリッジの出力側隣辺接触器を経て直接に、受電電力とともに対辺接触器と電子制御回路を経て、電動機回路に給電され電動機回路が電動作動して車両を牽引し、また、電動機回路の発電作動で発生の回生電力は、同様に接触器ブリッジを経て、直接及び電子制御回路を経て蓄電回路に充電され車両を制動する。
【0037】
電子制御回路の降圧・昇圧チョッパ制御と界磁の全励磁(以下、全界磁と呼ぶ)で、車両の緩発進及び定トルク加速・減速を行ない、全電圧直接の給電・充電と電動機の界磁制御で、垂下トルク加速・減速及び定速定常走行を行なう。
【0038】
電子制御回路の主制御接触器が閉じて、入力リアクトル、チョッパ及び出力リアクトルの直列回路を形成し、降圧チョッパ制御により全界磁の電動機の電機子電流を緩発進及び加速度に見合う値に制御(以下、電動の電機子制御と呼ぶ)し、また、副制御接触器が閉じて、チョッパの出力側を負極線に落とし、入力リアクトル、還流ダイオード及び出力リアクトルの直列回路を形成し、昇圧チョッパ制御して蓄電回路に充電し、全界磁の電動機の電機子電流を減速度に見合う値に制御(以下、回生の電機子制御と呼ぶ)する。
【0039】
なお、上記の昇圧チョッパ制御作動に先立ち受電接触器を開き、減速に伴い電圧低下する電動機回路及び電子制御回路に受電電力の流入を阻止し、また、電動機回路電圧が電機子を含む主回路の導体抵抗降下値まで低下すると回生ブレーキから発電ブレーキに移行し、停止寸前の微速まで制動し、車輪ブレーキで所定位置に停車する。
【0040】
上述の全電圧界磁制御運転(垂下トルク加・減速及び定常走行)において、副制御用接触器を閉じ昇圧チョッパ不作動即ち全電圧の受電電力を電動給電及び蓄電充電するが、架線電圧の急昇あれば直ちに主制御接触器に切り替わり、限流チョッパ作動で蓄電回路の過大な突入充電を避ける。
【0041】
電子制御回路の主制御または副制御接触器で、降圧または昇圧チョッパ制御の回路を形成して給電・充電調整し、架線電圧変動あっても蓄電電圧を定格値に保持、あるいは勾配路の状況に応じて蓄電電圧を予め低めまたは高めに調整することができる。
【0042】
蓄電装置設置時及び故障蓄電要素の新替えに伴う初期充電や、夜間休止の自己漏洩放電の回復充電においては、電機側接触器で電動機回路を切り離し、主制御接触器を閉じて降圧チョッパ制御で受電充電の突入電流を抑え、蓄電電圧が受電電圧近くに回復した時、副制御接触器に替え全電圧充電に戻す。
【0043】
上述の各項において主・副制御接触器のいずれの場合でも、チョッパの制御作動で断続電流を発生するが、両リアクトルと平滑コンデンサ及び還流ダイオードで受電、蓄電及び電動機の各回路の電流を平滑にし、低波形率の断続電流による各回路の銅損増加を避けるとともに、架線の併接通信線への誘導障害を防ぐ。
【0044】
なお、加速及び定常走行時には、受電電力は電子制御回路を通るので、電動機の整流子(無整流子電動機ではサイリスタ組)から発生のノイズ(Noise)電流は上記の回路でろ波(Filt)され、減速時に は、受電接触器や受電ダイオードで遮断されるので、通信線への誘導障害は出ない。
【0045】
車両の運転に伴う各接触器や回路故障に伴う各回路遮断器の遮断時に、両リアクトルから発生及び架線や電動機回路から来る高電圧の過渡サージエネルギは、それぞれリアクトルに接続のコンデンサ、ダイオード及びバリスタが成す閉回路で吸収され、チョッパやダイオードを保護する。
【0046】
通常の運転サイクルにおいては、前サイクルの減速制動における回生電力での充電で、蓄電電圧が架線電圧より高くなっているので、発進・加速初期には蓄電電力が給電され、放電で蓄電電圧が架線電圧まで下がると受電電力に移行し始めるが、蓄電回路の抵抗が架線回路より著しく低いので、加速時の電動機の突入過負荷は蓄電電力に大きく偏り、加速後期に達し受電電力での給電に緩やかに移行し、定常走行中に蓄電電圧が元の架線電圧に復昇するまで補充電を続ける。
【0047】
受電電力は、加速後期から定常走行への移行時に最大であるが、電動機の突入過負荷により遥かに軽負荷であり、補充電進行に従い減少し補充電終期に定常走行負荷のみとなる。
【0048】
車両の減速制動においては、界磁電流を増し電動機回路電圧が蓄電・架線電圧より高くなって回生ブレーキが働き、受電ダイオードで逆流を阻止されて架線は無負荷になり、続いて前述の全界磁と昇圧チョッパ制御で、回生電力を蓄電回路に返流して蓄電装置に充電回収し、蓄電電圧は架線電圧よりも高くなる。
【0049】
勾配路の登坂では勾配抵抗が加わり、定常走行でも架線負荷は大きくなるが、定常走行負荷は勾配に応じた速度のため電動機の全電圧定格以下であり、それに上述のように加速時の蓄電電力消費の補充電を加えたものが架線負荷となるが、加速時の突入過負荷より遥かに軽い。
【0050】
降坂では勾配抵抗は負(−)のため、加速終期に回生ブレーキに移行し、続いて補充電で蓄電電圧回復し、受電ダイオードで逆送出を阻止されて架線が無負荷になり、定常走行中は回生電力での充電を続けるので、蓄電電圧は架線電圧よりも高くなり、続く平坦路や登坂路では蓄電電力だけで走行し、架線電圧に戻ると受電電力に移行する。
【0051】
登坂力行中は、受電電力を上記の降圧チョッパ制御で絞り、勾配抵抗に応じた蓄電電力を引き出して受電電力に加え、上記の架線負荷を該登坂の半勾配の定常走行抵抗近くまで低減・平準化するとともに蓄電電圧を暫降し、帰途の降坂抑速の回生充電での蓄電電圧上昇を相殺、あるいは、降坂手前の平坦・登坂路で受電接触器を開き、蓄電電力だけの運転で蓄電電圧を予め下げ、高落差急勾配路の降坂終期の過昇圧(過充電)を避けることができる。
【0052】
なお、上述の運転サイクルの定常走行時の補充電あるいは夏季・冬季の冷・暖房負荷で、降坂抑速の回生電力を幾らか消費するので、上記の如き充電調整なく、通常の落差の勾配路に対応することができる。
【0053】
蓄電装置を構成する大容量蓄電器は、架線電圧変動に拘らず有効な浮動充放電機能を持ち、車両の加・減速における突入過負荷や急勾配の登・降坂における重負荷での急速放・充電にも、電圧昇降(充・放電電圧差)やタイムラグ(Time Lag)なく即応し、電力損失は極めて小さく、高頻度の繰り返しにも劣化しない。
【0054】
蓄電要素の万一の絶縁破壊で内部短絡したとき、瞬時短絡電流でヒューズが確実に熔断して故障蓄電要素を速やかに切り離し、短絡エネルギを局限してその破裂・出火を抑え、隣接動力単位の蓄電回路と共働でそのまま運転を再開・継続し、運転休止中に該動力単位の断路器及び該ヒューズ付き断路器を開いて故障蓄電要素及び熔断ヒューズを取り替え、回復充電の上、該ヒューズ付き断路器を閉じて復旧することができる。
【0055】
電子制御回路のチョッパは、1000Hzの如き高周波数での作動においても損失は微小であり、リアクトルは、そのような高周波において、小インダクタンスでも高リアクタンスが得られるため、小形軽量且つその巻線抵抗は極めて小さく、その電力損失(銅損+鉄損)は、電動機のものに比べ遥かに小さくできる。
【0056】
電動機の全界磁と降圧チョッパ制御により、全直列で緩発進し、直並列、全並列に順次切り替えて定トルク加速し、その上限速度で倍電圧界磁制御の垂下トルク加速に移行し、所定の運転速度に達した時に直並列に戻して全電圧界磁制御の定常走行に移行、また、全並列で倍電圧界磁制御の垂下トルク減速し、その下限速度で全界磁・昇圧チョッパ制御に移行し、直並列、全直列に順次に切り替えて定トルク減速を行なう。
【0057】
なお、低・中速走行では、運転速度に応じ、全直列あるいは直並列までの加速・減速とし、全直列のままあるいは全直列に戻して定常走行する。
【0058】
主幹制御器の操作レバーを0ノッチから1、2、3のいずれかの速段ノッチに進めると全直列で微速発進、前に押すと加速し操作ノッチの終段(1ノッチでは全直列のまま、2ノッチでは直並列、3ノッチでは全並列)まで速度に従い自動的に進段し、あるいは、後に引くと減速し速度に従い自動的に戻段し、所定の速度に達したとき該操作レバーを中立(走行)に戻すとその速度を制御装置が記憶し、速度に見合う制御段(低・中速では全直列、高速では直並列)に戻り、その記憶速度に定速制御して定常走行、0ノッチに戻せば電動機回路が切り離され惰行、再び速段ノッチに進めるとその時の速度に定速制御する。
【0059】
操作レバーを引き続けると、全直列まで自動的に戻段しながら減速を続け回生ブレーキから発電ブレーキに移行して停止寸前の微速に至り、中立に戻し微速走行、所定位置で該操作レバーを0ノッチに戻し制動空気弁を操作して車輪ブレーキで停車、なお、定常走行中(低・中・高速)は、軌道勾配に応じ電動力行または回生抑速に自動的に移行する。
【0060】
並列或いは全並列接続での倍電圧(Δ接続或いはΔ並列接続での 1.732 倍電圧)では、高速域において、過負荷の電機子電流(電機子巻線電流)は、直列或いは直並列接続での全電圧の定トルク域と同じで銅損増加なく、倍速度に拡張された定トルク域は勿論、それに続く垂下トルク域での最高運転速度(全電圧での弱め界磁 40% )においても、界磁は2 倍の80%(Δ接続或いはΔ並列接続での界磁磁束は 1.732 倍の70%)でトルクは電動・回生とも強力であり、乗客の加速度感を増すことなく平均加・減速度を著増して、高速運転での加・減速時間・距離を著しく短縮する。
【0061】
全並列の倍電圧加・減速では、その上限速度域で、蓄電回路の放・充電突入電流は直並列での2倍(Δ並列ではY並列の1.732 倍)に達するが、蓄電器の即応性と配線を含む極めて小さい導体抵抗により、大きな架線負荷増加なく車両内で効率よく運動のエネルギを処理する。
【0062】
電機子電圧は速度に比例し鉄損はその2乗に比例するので、全並列の定トルク上限速度では倍電圧(Δ並列では1.732 倍電圧)で鉄損は4倍(Δ並列では3倍)達するが、その平均値は、加速中の突入電流による銅損よりかなり小さく、全損失の増加率は小さく、短時作動(1分以下)のため電機子の昇温はあまりない。
【0063】
定常走行は、高速域では直列接続或いは直並列接続での電機子全電圧で、低・中速域では全直列接続の電機子半電圧で、それぞれの垂下トルク域において、界磁制御での定速運転を行い、無負荷損失を成す鉄損及び励磁電力を低減して軽負荷(平坦・緩勾配での高速運転でほぼ半負荷、中速運転ではほぼ4半負荷)の銅損との損失協調で電動機の効率を稼ぐ。
【0064】
走行速度に応じ電動機の直・並列切り替えで、発進及び減速終期を除き定トルク加・減速中のチョッパ作動の降・昇圧制御率ε=Vm /Vc (Vm は電動機回路電圧、Vc は蓄電回路電圧)を0.5〜1以内に抑え、電子制御回路の電力損失を即ち制御損失を局限し、また、垂下トルク加・減速及び定常走行時には受電電力の通流のみとなり、接触器ブリッジで電動・回生電力を直接授受ととなる。
【0065】
全並列の定トルク上限近くおよび垂下トルク域では、上述の如く電機子鉄損が増大し電動機は超鉄機械状態になるが、全負荷電流では電機子全損失はあまり増加しないため数分程度の短時運転は可能であり、操作レバー頭部のボタンを押し全並列で数km程度の急勾配路も高速走行のまま一気に走り抜けることもできる。
【0066】
前述の特開平9‐289703では、同期機使用の直流無整流子電動機の電機子巻線の各々接続において、回生域は架線など電源電圧以上で働くため、電動機出力の回生電圧は電源電圧の約2倍の如く著しい高電圧まで達し、その高電圧定格の降圧チョッパ制御で電源電圧まで下げて蓄電装置に充電し、なお、倍電圧変換回路を付加して更なる微速の回生を可能とし、然し、電動域は電源電圧且つ該電動機の定格電圧以下で働くため、高速域は従来技術と同様に弱め界磁の垂下トルクであり、前述の特開平50‐111516などと同様に、正(電動)・負(回生)非対称のトルク特性であるが、本発明では、直流分巻整流子電動機又は誘導機使用の直流無整流子電動機において、直流電源電圧の下で、電動・回生とも、電機子又は電機子巻線の接続切替で該電動機が全電圧及び倍電圧を受けて働き、正・負ほぼ対称のトルク特性を、倍電圧により倍速度に拡張したものである。
【0067】
前述の特開平10‐66204では、( A )「同期機使用の直流無整流子電動機又は直流直巻整流子電動機を使用し、基本的には、上記の特開平9‐289703と同様に、回生域は電源電圧を超えた過電圧作動により高速域の回生トルクを強化しているが、電動域は電源電圧且つ該電動機の定格電圧以下で働くため高速域では弱め界磁の垂下トルクで、正・負非対称のトルク特性」であり、且つ( B )該発明の作用として「直流無整流子電動機の電機子巻線の Y 接続での全出力(実施例1の表1では120 KW )を、制御素子を強化してΔ接続で定格のルート3倍の定常出力(実施例1の表1では208 KW に増力)」としているが、それはルート3倍の定格出力(208 KW )の電動機の使用を意味しており、本発明においては、上述のとおり、( A )「誘導機使用の直流無整流子電動機又は直流分巻整流子電動機を使用し、何れも直流電源電圧の下で、該電動機の基本定格電圧のルート3倍電圧(又は倍電圧)作動により正・負ほぼ対称トルク特性をルート3倍速度(又は倍速度)に拡張して、電動・回生とも高速域のトルクを強化し」、且つ( B )「鉄損 3 倍増(又は 4 倍増)による昇温増加を考え、基本定格の全電圧連続定格(例えば定格出力は上例の120 KW )の電動機の寸法、構造及び強度など機・電両面の設計を変えずに(但し絶縁耐圧強化は勿論必要)、加速・減速の短時作動に見合うルート3倍電圧(又は倍電圧)短時定格を付加し」、運転性能を著しく向上したものであり、なお、誘導機使用の直流無整流子電動機のトルク特性は直流分巻整流子電動機と同様であるが、そのトルク特性の形成機構が異なるので下記に述べる。
【0068】
誘導機使用の直流無整流子電動機において、電動機の界磁磁束を成す励磁電流は、電機子電流と共に電機子巻線に流れるため、直流分巻整流子電動機や同期機使用の直流無整流子電動機の界磁電流のように単独には制御できず、インバータの電圧・周波数で制御され、電圧・周波数とも可変制御により励磁電流即ち界磁磁束と電機子電流が一定で以って定トルク特性となり、定電圧・可変周波数により速度(周波数に比例)に反比例の界磁磁束を成し、電機子電流限度は励磁電流即ち界磁磁束に比例するため、該電動機のトルク限度は速度の 2 乗に反比例する垂下トルク特性となり、前述の直流整流子電動機の電機子制御による定トルク特性及び界磁制御による垂下トルク特性と同様になる訳であり、また、抑速・減速では、インバータに併設の還流ダイオードブリッジが電機子起電力を整流し直流電源側に返流の回生制動で以って電動と同様な回生トルクを成し、正・負ほぼ対称のトルク特性を形成する。
【0069】
蓄電容量を超える位置のエネルギを持つ特別高落差の急勾配路に、逆電力処理機能を有する降坂では、定常走行で電機側接触器を開いて電力制御回路を切り離し、回生送出接触器を閉じて抑速回生電力を架線に直接送出できる。
【0070】
交流または交・直流両用の電動車両の受電回路の変圧整流器は、定常走行負荷と補充電が主となり、加速時の突入加負荷は大部分を、減速及び降坂抑速負荷は全電力を蓄電回路で処理するため、前述の架線回路と同様に軽負荷且つ軽債務であり、また、変圧器タップを切り替えを加えて出力電圧を変え、蓄電電圧を定格値に保持あるいは勾配路状況に応じ予め高めまたは低めに調整することもできる。
【0071】
気電動車両では、上記と同様に発電整流器は軽負荷・軽債務であり負荷に応じて電機子接続とエンジン回転数を変え、負荷全域に亘りエンジン・発電機とも効率を稼ぎ、また、界磁制御で発電電圧を変えて、上記と同様に蓄電電圧の保持あるいは調整することもできる。
【0072】
【実施例】
実施例として、電動機4台で全4軸駆動の電動車を1動力単位とする電動客車を挙げ、図面を参照して説明する。
【0073】
[受電回路] 図1において、架線1の電力は、集電器2、車間給電線3及び高速遮断器4より成る受電回路5と、ダイオード6(前欄の受電ダイオード)及び接触器7(前欄の受電接触器)を経て、下記のリアクトル8(前欄の入力リアクトル)に至る。
【0074】
[電子制御回路] チョッパ9を挟んで2個のリアクトル8、10(前欄の入力及び出力リアクトル)を配して制御主要素とし、リアクトル8の出力側と負極線11との間に、ダイオード12(前欄の入力リアクトル用還流ダイオード)とコンデンサ13(前欄の平滑コンデンサ)の直列回路を、リアクトル10の入力側と負極線11との間に逆極性にダイオード14(前欄の出力リアクトル用還流ダイオード)をそれぞれ配し、また、ダイオード12に並列及びチョッパ9とリアクトル10との間に、共通のアクチュエータを持つ接触器15(前欄の主制御接触器)を、チョッパ9の出力側と負極線11との間及びダイオード12とコンデンサ13との接続点とリアクトル10の入力側との間に共通のアクチュエータを持つ接触器16(前欄の副制御接触器)を、それぞれ配して、電子制御回路17を構成する。
【0075】
なお、電子制御回路17の入力側及び出力側と負極線11との間に、それぞれ該回路電圧では漏洩電流が微小且つ充分な過渡サージエネルギ吸収容量を持つバリスタ18、19を配する。
【0076】
[負極回路] 負極線11は車軸集電子20及び車輪21を介して、軌道22に接続・接地する。
【0077】
[電力制御回路] 電子制御回路17の入力側及び出力側に各々2個の接触器23、24及び25、26をブリッジ形に付加して電力制御回路27を構成し、その接触器ブリッジの対角点即ちそれぞれ入力側と出力側の接触器対23・25(前欄の蓄電側接触器)及び接触器対24・26(前欄の電機側接触器)の各接続点に、高速回路遮断器28、30を介して蓄電回路29及び電動機回路31を接続する。
【0078】
[蓄電回路] 蓄電回路29は、断路器32及び蓄電単位33より成り、図2において、蓄電要素34にヒューズ付き断路器35を直列に配し、その複数組を並列接続して蓄電単位33を構成し、なお、単位列車編成の各車両に均圧線36とその両端の断路器37及び車両間のジャンパ線38、39を配し、各蓄電単位33を隣接のもの(点線図示)と接続する。
【0079】
[電動機回路] 図3において、4台の電動機の電機子41(M1、M2、M3、M4)は分巻界磁42(F)及び補極43(AP)を持ち、電機子41は、接触器44、45を閉じて全直列(4台直列)、接触器45、46を閉じて直並列(2台直列の2組を並列)、接触器46、47を閉じて全並列(4台並列)の3段の接続切り替えを行ない、界磁42は全直列接続され、接触器48、49で正・逆転切り替えし、チョッパ50で励磁制御(他励)され、ダイオード51は還流ダイオードとして、界磁巻線42のリアクタンスと共働し界磁電流If を平滑にする。
【0080】
[界磁制御特性] チョッパ50に、加・減速用直巻特性(電機子電流Ia に比例)及び定常走行用分巻特性(定速制御)の励磁制御機能を付加する。
【0081】
[操作機構] 図4において、車両の運転室に配した主幹制御器52の運転操作レバー53は、左右・前後に交叉機構を有し、左から0、1、2、3のノッチで「切」、「低速」、「中速」、「高速」の速段に対応し、各速段ノッチで前に押して「加速」、後に引いて「減速」、中立で「定速」及び該操作レバー53の頭部にボタン54「倍力」の制御機能を持ち、なお、前押し(加速)は自力戻り(Spring-Return )、後引き(減速)は手戻し(Hand-Return )の機構を持たせる。
【0082】
キーレバー55は、「前進」、「切」、「後進」のノッチを、制動空気弁56は「制動」、「保持」、「解放」のレバー位置をそれぞれ有し、なお、速度計57、受電・蓄電電圧計58(2針表示)、受電・蓄電電流計59(2針表示)、電動機電流計60及び制動空気圧力計61を配する。
【0083】
[車内低圧電源] 再び図1において、蓄電回路29より分岐し、インバータ62で3相交流に変換・降圧して車内補機・照明設備に給電するとともに、整流器63で蓄電池64を充電して前照灯・信号灯、非常用・制御用低圧直流電源とする。
【0084】
[諸量センサ] 主要な各回路に制御・表示用として、電圧センサ65(受電Vt )、66(蓄電Vc )、67(電機子群Vm )、電流センサ68(受電It )、69(蓄電Ic )、70(電機子群Im )、71(界磁If )、72(低圧電源Iax)及び車軸21に速度センサ73(走行速度v)を配する。
【0085】
[回生送出回路] 架線回路1に逆電力処理機能(図示省略)または蓄電機能(例えば点線図示の如き蓄電装置74を複数分散配置)を持つ特別高落差急勾配区間を運行の車両では、電力制御回路27の電機側に、点線図示のように、接触器75及びダイオード76(前欄の回生送出接触器・ダイオード)を追設でき、その場合は、電動機の整流子(無整流子電動機では、サイリスタ組)から発生のノイズ電流消去用リアクトル77及びコンデンサ78が必要である。
【0086】
[作動及び特性] 以上の如き構成の実施例において、その作動及び諸特性を、概括した表1を図面とともに参照して説明するに当たり、四則演算(加、減、乗、除)記号は「+、−、*、/」を使用、平方及び平方根はE^2 及び3^1/2 の如く表わす。
【0087】
【表1】

Figure 0004200512
【0088】
[チョッパ制御作動] 図1において、接触器15が閉じてダイオード12を側路及びリアクトル8−チョッパ9−リアクトル10の直列回路に、各接続点と負極線11との間にコンデンサ13とダイオード14が入ったπ形回路を形成し(以下、これを制御C1モードと呼ぶ)、チョッパ9の全通全電圧及び降圧制御(以下、降圧チョッパ制御と呼ぶ)または限流制御(以下、限流チョッパ制御と呼ぶ)、あるいは、接触器16が閉じてリアクトル8−ダイオード12−リアクトル10の直列回路に、各接続点と負極線11との間にチョッパ9とダイオード14が入ったπ形回路を形成し(以下、これを制御C2モードと呼ぶ)、チョッパ9の遮断全電圧及び昇圧制御(以下、昇圧チョッパ制御と呼ぶ)を行なう。
【0089】
[受電・充電] 受電電力Pt は、常に電子制御回路17を通り、通常は制御C2モードでチョッパ遮断全電圧で充電するが、ダイオード6の逆流阻止により蓄電電圧Vc は架線電圧変動の高めに保持され、また、架線電圧が急昇のときは直ちに制御C1モードに切り替わり、限流チョッパ制御で過大な突入充電を避ける。
【0090】
[電動牽引] 接触器ブリッジの対辺の接触器23、26が閉じ(以下、運転Aモードと呼ぶ)、制御C1モードで蓄電電力Pc 及び受電電力Pt を共に降圧チョッパ制御し、続いて出力側の隣辺の接触器25、26が代わって閉じ(以下、運転Mモードと呼ぶ)直接全電圧の蓄電電力Pc に、制御C2モードのチョッパ遮断全電圧の受電電力Pt を重累して、電動機回路31に給電し、電動作動で車両を牽引する。
【0091】
[回生制動] 上記のMモードで定常走行中に、界磁を強めて電動機回路31の電機子群電圧Vm を上げ直接全電圧で、続いて接触器ブリッジの対辺の接触器24、25が閉じ(以下、運転Bモードと呼ぶ)、制御C2モードで、減速に伴い低下する電機子群電圧Vm を昇圧チョッパ制御で上げ、電動機回路31が発電作動して回生ブレーキが働き、回生電力Pm を蓄電回路29に返流・充電し車両を制動する。
【0092】
なお、運転Bモードに替わる時に接触器7を開き受電回路5を、減速に伴い回路電圧Vm が低下する電動機回路29及び電子制御回路17から切り離し、また、減速終期に電動機回路電圧Vm が入力リアクトル8を含む主回路導体の抵抗降下まで下がると発電ブレーキに移行し、停止寸前の微速まで減速する。
【0093】
[運転特性] 運転A・Bモードでは、降・昇圧チョッパ制御による電機子制御とチョッパ50による全励磁の界磁即ち全界磁で定トルク加・減速を行ない、運転Mモードでは、電機子全電圧とチョッパ50による励磁制御即ち界磁制御で直巻特性の垂下トルク加・減速及び分巻特性の定速定常走行を行なう。
【0094】
[平滑・ろ波] 制御C1・C2モードともチョッパ9の制御作動による断続電流は、リアクトル8とコンデンサ13のろ波(Filting )作用及びリアクトル10とダイオード14の還流(Freewheeling)作用により、受電、蓄電及び電動機の各回路5、29及び31の電流It 、Ic 、Im を平滑にして、波形率が小さい断続流による銅損増加を抑えるとともに、架線1に併行の通信線への誘導障害を防ぐ。
【0095】
なお、受電電力Pt は運転A、Mモードとも電子制御回路17を通るが、電動機47の整流子(無整流子電動機ではサイリスタ)から発生のノイズ(Noise )電流に対し、上記と同様にろ波作用が働き、運転モードBでは接触器7で受電回路5を切り離すので、架線1にはノイズ電流は出ない。
【0096】
[制御素子の保護] 運転モード、制御モード及び後述の電機子接続の切り替えにおける接触器の開路並びに短絡等での回路遮断器の作動に伴うリアクトル8、10の過渡サージエネルギは、それぞれに接続のコンデンサ13、ダイオード12、14及びバリスタ18、19が成す閉回路で、架線回路1及び電動機回路31からの外来サージエネルギはバリスタ18、19で、それぞれ吸収し電子制御回路17の制御素子を保護する。
【0097】
[等価回路] 図5において、図1の要部を等価回路に示せば、変電所79には電源電圧Es を持つ変圧整流器のリアクタンスxs 及び巻線抵抗rsがあり、架線1には変電所79からの距離に応じて架 線抵抗rt があって、架線負荷電流It に対しそれぞれ電圧降下es 及びet を生じ、車両の受電点(集電子2)の架線電圧Vt =Es −(es +et )で給電され、給電効率はηt =Vt /Es である。
【0098】
架線1からの受電電流It は、運転制御回路27の電子制御回路17の回路抵抗rL (主にリアクトル8、10の導体抵抗)を通って電圧降下eL を生じ、電圧Vc またはVm で、接触器ブリッジの負荷側隣辺の接触器24、26(Mモード)を経て蓄電回路29に充電及び電動機回路31に給電され、該接触器24、26で直接接続された蓄電回路29と電動機回路31は、走行負荷に応じ受電電流It を重累した充・放電電流Ic 及び電機子群電流Im で以て電力の授受を行ない、それぞれ蓄電電圧Ec 及び導体抵抗rc による電圧降下ec 、電機子群起電力Em 及び電機子群抵抗rm による電圧降下em を持つ。
【0099】
定トルク加・減速時には、運転AモードまたはBモードで、電子制御回路17の抵抗rL を通り、
加速時(Aモード)では、
蓄電回路電圧Vc =Ec −ec =Vt =Vm +eL
電子制御回路電圧降下eL =(Ic +It )*rL (放電・受電)
電動機回路電圧Vm =Em +em (電動)
減速時(Bモード)では、
蓄電回路電圧Vc =Ec +ec =Vm −eL
電子制御回路電圧降下eL =Ic *rL (充電)
電動機回路電圧Vm =Em −em (回生)
の如き電圧勘定となり、車両内電力効率ηp は電動ではηp =Em /Ec 、回生ではηp =Ec /Em であり、突入過負荷を伴う加・減速時の電動・回生電力の処理において、車両内の電力制御回路27、蓄電回路29及び電動機回路31のそれぞれの電圧降下eL 、ec 及びem が車両内の総合電力効率ηp の要因であり(車両内配線は短く導体抵抗は著しく小さいので無視してよい)且つそれらの電圧降下が電動・回生における電力の往復とも存在するため、電力回収効率はηp^2となる。
【0100】
なお、加速終期、定常走行及び減速初期には、運転Mモードで、蓄電回路29と電動機回路31との間で直接に電力授受が行なわれ、それらの電圧降下ec 、em は、加・減速では上記と同様であるが、定常走行では小さく、電子制御回路17では受電電流It のみでありその電圧降下eL も小さいが、電機子41の鉄損pmi、界磁42の励磁電力pf 等の無負荷損失が、車両内電力効率ηp 即ち電力回収効率ηp^2にかなり影響し且つ定常走行は運転サイクルの大半(小駅通過の急行列車では大部分)を占 めるので考慮を要する。
【0101】
[蓄電回路の特性] 図6において、静電容量Cを持つ蓄電回路29の蓄電電気量Q(横軸)は蓄電電圧Ec (縦軸)に比例即ちQ=C*Ec 、蓄電電力量W(横軸)は蓄電電圧Ec の2乗に比例即ちW=C*Ec^2の関係があり、定格電圧Eoの蓄電電力量Wo、蓄電電圧昇降±δEに対し充放電電力量δW=Wo *(2*δE±δE^2 )(絶対値)が利用でき、その平均値は、定格電圧Eo より少し(δE^2 /2)高い蓄電電圧Ecoを中央値としたWc =2*δE*Wo (絶対値)である。
【0102】
なお、蓄電要素34は、その蓄電原理が静電的であるので加・減速時の突入過負荷に即応し且つその対向及び引出し導体を含む回路抵抗rc は極めて小さいので、充・放電電流Ic に対し電圧降下ec 及び電力損失wc は微小である。
【0103】
[運転サイクルでの機械的挙動] 図7(a)において、発車点▲1▼で電機子制御により牽引力Fa を発生し、慣性力Fia=牽引力Fa −走行抵抗Fv で加速度αc の略々直線的に即ち定トルクで加速し、その上限速度vacに達した時▲4▼に界磁制御に替わり、曲線αd の垂下トルク加速、運転速度vに達した時▲4▼d で走行抵抗Fv の定常走行に切り替える。
【0104】
減速開始点▲5▼d で界磁制御による制動力Fb を発生し、慣性力Fib=制動力Fb +走行抵抗Fv で、減速度βd の垂下トルク減速、界磁制御下限速度Vbcに達した時▲5▼に電機子制御に替わり減速度βc の定トルク減速、微速vw に達した時▲8▼に車輪ブレーキに切り替え停車点▲9▼で停止する。
【0105】
走行抵抗Fv は、車両の車輪の転がり抵抗(略々一定)及び電動機を含む回転部の機械抵抗(速度vに略々比例)と、空気抵抗(速度vの2乗に比例)より成り、低・中速では軽少であるが高速ではかなり増加する特性を持つ。
【0106】
[エネルギ勘定] 運転サイクルにおいて、Fa 、Fv 及びFb のそれぞれ距離Sa 、Sv 及びSb について積分値Wa 、Wvv及びWb は加速、定常走行及び減速の仕事量即ちエネルギであり、その内慣性力Fia及びFibのそれぞれ距離Sa 及びSb についての積分値Wia=Wib=Wi が運動のエネルギ(前欄の無効動力)であり、Wv =Wva+Wv +Wvbが走行抵抗Fv に消費する抵抗エネルギ(前欄の有効動力)であり、加速・牽引での消費エネルギWa +Wvvに対する減速・制動エネルギWb の割合即ち制動エネルギ率εbi=Wb /(Wa +Wvv)が、エネルギ回収の目標値となる。
【0107】
なお、停止寸前の微速vw まで回生ブレーキが作動するので、車輪ブレーキの制動エネルギはWi *(vw /v)^2 となって微小であり、なお、加・減速において、電動機41の特性上、牽引力Fa =Fia+Fv と制動力Fb =Fib−Fv とを等しくとるのが普通であり、慣性力はFib=Fia+2*Fv 即ち減速の方が大きいので、減速距離Sb は加速距離Sa より小さい。
【0108】
[運転サイクルでの電気的挙動] 図7(b)において、蓄電回路電圧Vc は、前サイクルの減速・制動の回生電力を充電して架線電圧Vt よりδVだけ高くなっているので、発進及び加速前期では電動負荷Pma=放電電力Pc であり、放電で蓄電回路電圧Vc が架線電圧Vt まで下がった時▲4▼t 架線電力Pt に移行開始し、加速後期では放電電力Pc =Pma−Pt は破線図示のように下がり、定常走行に至って(時点▲4▼d )電動負荷Pmvが軽小になり、架線電力Pt は、破線図示の充電電力Pc =Pt −Pmvを蓄電回路29に返流しながら電動負荷Pmv(=走行抵抗負荷Pv /ηp )を受持ち、蓄電回路電圧Vc が架線電圧Vt に回復すると電動負荷Pmvだけになる。
【0109】
減速では、全回生電力Pmbを蓄電回路29に返流・充電(即ちPc =Pmb)ので、蓄電回路電圧Vm は架線電圧Vt より上がり、減速終期にはδVだけ高くなる。
【0110】
[電力量勘定] 加速電動負荷Pma、放電電力Pc 、受電電力Pt 、定常走行電動負荷Pmv、補充電電力Pc 及び回生充電電力Pmb=Pc の、それぞれの作動時間tについての積分値が加速電力量Wma、放電電力量Wca、受電電力量Wt 、定常走行電電力量Wmv、補充電電力量Wcv、及び回生充電電力量Wmb=Wcbであり、電力量勘定は
Wma+Wmv=Wt +Wmb及びWca=Wcv+Wcb
となり、前述[エネルギ勘定]から、上式はそれぞれ
Wa /ηp +Wvv/ηp =Wt +Wb *ηp
Wi /ηp =Wv /ηp +Wi *ηp
となり、電力回収率εriは回生電力量Wmbの消費電力量Wma+Wmvに対する割合として
εri=Wmb/(Wma+Wmv)=Wcb/(Wca+Wcv)=εbi*ηp^2
架線電力率εv は受電電力量Wt について同様に
εv =Wt /(Wma+Wmv)=1−εri
Wt =Wmv+Wma−Wmb=Wv/ηp+Wi*(1/ηp−ηp)
となり、実効エネルギを為す抵抗エネルギWv 及びその片道処理に伴う損失wv =Wv *(1−ηp )と、無効エネルギを為す慣性エネルギWi の往復処理に伴う損失wi =Wi *(1/ηp −ηp )を受電電力量Wt で賄うことを示している。
【0111】
以上に述べた駅間の運転サイクルにおける諸量の挙動を、表2に示す如く、標準的な列車編成に本発明の動力方式を応用した電動客車について、表3に計算値で示す。
【0112】
【表2】
Figure 0004200512
【0113】
【表3】
Figure 0004200512
【0114】
各駅停車及び小駅通過(急行)の車両の走行速度域50〜120km/hにおいて、[エネルギ勘定]における制動エネルギ率εbiは約80〜57%、消費エネルギの大部分から大半を占め、電力回収率は[電力量勘定]における慣性エネルギの往復処理損失wi を減じ即ちηp^2=0.802^2=0.643を乗じた値で約50〜36%となり、それだけ電力消費量を節減できるが、εbiとεriとの間にはかなりの落差、即ち電動機41の突入過負荷を伴う慣性エネルギWi が往復する電動機、電力制御及び蓄電の各回路31、27及び29の電力損失wi があり、それぞれの回路31、27及び29の効率ηm 、ηL 及びηc の積で成る総合効率(突入)ηp が重要なことを示している。
【0115】
加速後期(▲4▼t 以後)から定常走行終期▲5▼d までのtt 秒間に架線電力Pt を受電し、加速終期▲4▼d に最大値(180〜660KW)となり、補充電終期には定常走行負荷35〜332KWとなるが、電動機の突入過負荷(軸負荷Pa =1200〜2166〜1547KW)より遥かに軽く、架線負荷の著しい軽減・平準化を示している。
【0116】
なお、定常走行では、その時間tv が運転サイクルの走行時間tの略々65〜80%を占め、電動機負荷はPv =32〜300KW(軸負荷)、著しく〜かなり軽負荷であることを示しており、鉄損pmiや励磁電力等の無負荷損失の総合効率ηp への影響が無視できない。
【0117】
[勾配路運行] 図8(a)のように、重量Wの車両80が平坦路81から勾配s(o/oo)の登坂路82及び降坂路83を通り再び平坦路84を走行する場合(実線図示)あるいはその逆方向で降坂路85及び登坂路86を走行するの場合(点線図示)において、図8(b)のように、車両80の牽引力Fd は、平坦路81、84では走行抵抗Fv のみ、登・降坂路82、83では勾配抵抗Fs =s*Wが加わってFd =Fv ±Fs となり、勾配sが大きい即ちFs >Fv では、降坂路83ではFd が負(−)の値即ち制動力Fb =Fs −Fv (絶対値)となり、走行速度vで同一勾配sの登・降坂路82、83を走行した場合の牽引力行負荷をPd =Fd *v、抑速制動負荷をPb =F*vとすれば、その比εbs=Pb /Pd は、勾配sにおける抑速動力率となる。
【0118】
[電力回収率] 図8(c)において、平坦路81、84では、電動機負荷Pm は走行抵抗負荷Pv に電動機損失pv が加わってPmv=Pv +pv 、登坂路80では勾配抵抗負荷Ps 及び電動機損失pd =pv (走行抵抗分)+ps (勾配抵抗分)が加わってPmd=Pd +pd で力行し、降坂路83では電動機損失pb =ps −pv を差し引いて回生電力Pmb=Pb −pb (絶対値)で抑速し、また、登坂路82ではPmd=Pd /ηp 、降坂路83ではPmb=Pb *ηp であり、電力回収率εrs=Pmb/Pmd=Pb /Pd *ηp^2=εbs*ηp^2となる。
【0119】
以上に述べた勾配路運行における諸量の挙動を、前述の表3と同様に、表4に計算値で示す。
【0120】
【表4】
Figure 0004200512
【0121】
[勾配路運行]における抑速動力率εbsは、各速度v(50〜100km/h)での直並列の電動機全負荷限度の勾配s(o/oo)(太線下線)で約86〜28%、電力回収率εrsは約70〜22%、緩勾配(s=10o/oo)でもεbsは約57〜28%、εrsは約42〜22%であり、それだけ電力消費量を節減できるが、電動機41の連続全負荷を伴う登・降坂で、位置のエネルギWs の往復処理において、εbsとεrsとの間にかなりの落差即ち電力損失pb があり、前述の慣性抵抗のものと同様に、総合効率(定常)ηp が重要であることを示している。
【0122】
[充放電] 図8(d)、(e)において、平坦路81及び登坂路82の走行では、電動負荷Pmdは受電電力Pt で賄うので蓄電電圧Vc =Vt は不変であるが、降坂路83で回生電力Pmb=Pc で充電するので蓄電電圧Vc はVt +δVに上昇、平坦路84に入り放電電力Pc だけ(Pt =0)で距離Sc =S*Pmb/Pmvを走行し、δV=0(Vc =Vt )に戻って受電電力Pt に移行、また、点線図示のように、平坦路84から降坂路85に入ったときは、上記と同様に回生電力Pmbで充電し蓄電電圧Vc =Vt +δVに上昇、登坂路86ではVc =Vt に戻るまで放電電力Pc で走行して受電電力Vt に移行し、登坂路82を走行の場合と同様、Vc =Vt で走行する。
【0123】
[蓄電調整]なお、降坂路83の落差Hが大きい場合は、δVが大きく蓄電電圧Vc がかなり上昇するが、降坂路83の手前で受電接触器7を開路して蓄電電力Pc だけで運転し、破線図示のように、Vc を予め例えばδV/2だけ下げておき、降坂終期のVc の過昇(過充電)を回避するのが運転操作及び電力制御が簡単であり、また、受電電力Pt を降圧チョッパ制御で絞り、勾配抵抗負荷Ps に見合う放電電力Pc を消費し、鎖線図示の如く蓄電電圧Vc をδVまで下げながら登坂路82を力行し、降坂路83を充電電力Pc で抑速走行し、受電電力Pt を平準化してもよい。
【0124】
以上述べた[充放電]及び[蓄電調整]における蓄電関係諸量及び運行標高差について、前述の慣性抵抗関係のものとともに、表5に計算値を示す。
【0125】
【表5】
Figure 0004200512
【0126】
駅間運転サイクルの加・減速での充・放電に伴う蓄電電圧の昇降δVi が、上述の降坂直前及び降坂終期での蓄電電圧の昇降δVs に重なるので、それが許容値±20%(電気鉄道基準)以内とするよう蓄電電圧昇降値δVs =0.2 −δVi (絶対値)を採り、運行限度標高差Hmax 及びその走破時間即ち充放電時間tc を求めたもので、各速度vの限度勾配smax (太線下線)ではHmax は約200〜270m、緩勾配s=10o/ooでは約250m以上、通常の標高差の勾配線には充分であるが、その勾配路の走破での充放電時間tc は限度勾配smax では6分前後、倍電圧短時走破ではその半分の如き極めて苛酷な充放電債務を示している。
【0127】
なお、蓄電調整で距離Sの降坂路前後の平坦路での無受電走行の合計距離倍数ΣSc /S=Pb /Pv *ηp^2はかなりの値であり、前述の電力回収率εrsによる電力消費量節減がそれに現われている 訳である。
【0128】
[電動機の特性] 図9及び図10において、それぞれ横軸の上側の電動・放電において、電機子群の全直列、直並列及び全並列ついて、全界磁の電動域即ち速度▲2▼、▲3▼及び▲4▼以下では、運転Aモードでそれぞれ一定の限度電流Im =Ia 、Im =2*Ia 及びIm =4*Ia と一定の限度トルクTm を持つ定トルク域、それ以上の速度▲2▼〜▲2▼d 、▲3▼〜▲3▼d 及び▲4▼〜▲4▼d では、運転Mモードで界磁磁束Φc と共に電機子群電流Im も整流限度のため速度に反比例して低下し、従ってトルクTd が速度の2乗に反比例する直巻形の垂下トルク域となり、また、一定の定格電流Imf(全並列では点線図示の短時定格、)でのトルクTf は、全界磁の電動域即ち速度▲2▼、▲3▼及び以下では定トルク、それ以上▲2▼〜▲2▼f 、▲3▼〜▲3▼f 及び▲4▼〜▲4▼f では速度に反比例する定出力トルクとなる。
【0129】
これらの電機子群電流Im は、速度、及び以下では、電子制御回路17の出力側リアクトル10に負荷されるが、入力側リアクトル8には速度vに比例する電流IL (=放電電流Ic またはそれに受電電流It が加わる)が流入し、速度▲2▼〜▲2▼d 、▲3▼〜▲3▼d 及び▲4▼〜▲4▼d では、放電電流Ic に電子制御回路17を通るIt を重累して給電され、速度に反比例する電機子群電流Im となる。
【0130】
それぞれ横軸の下側の回生・充電においても、上記と同様即ち横軸について略々対称の図表となり、速度、及び以下では限度トルクTm の定トルク域、それ以上の速度▲7▼〜▲7▼d 、▲6▼〜▲6▼d 及び▲5▼〜▲5▼d では速度に反比例の電流Im と速度の2乗に反比例のトルクTd の直巻形垂下トルク域、また、定格電流ImfでのトルクTf は、速度▲7▼、▲6▼及び▲5▼以下では定トルク、それ以上▲7▼〜▲7▼d 、▲6▼〜▲6▼d 及び▲5▼〜▲5▼d では定出力トルクとなり、なお、電機子群電流Im は、速度▲7▼、▲6▼及び▲5▼以下では、入力側リアクトル8に流入するが、出力側リアクトル10には速度vに比例する電流IL =充電電流Ic が流れ、速度▲7▼〜▲7▼d 、▲6▼〜▲6▼d 及び▲5▼〜▲5▼d では、上記と同様に速度に反比例する電機子群電流Im となる。
【0131】
なお、電機子群抵抗rm による電圧降下em =Im *rm のため、図9の速度v−電流I線図及び図10の速度v−トルクT線図は、電動(横軸の上側)では低速側にem %(=em /Vm )、回生側(横軸の下側)では高速側にem %(=em /Em )の、それぞれ速度変動を持ち、発進時▲1▼のリアクトル8の電流は、IL =Im *em /Vm 、回生ブレーキ終点▲8▼から電機子電流Im を減じながら発電ブレーキが働く(実際には、速度変動em (%)には、電子制御回路17等関連回路の電圧降下がそれぞれの負荷に応じて加わるが説明の都合上省略)。
【0132】
[負荷・加速度特性] 図10において、上述の速度v−トルクT特性線図に各軌道勾配s(o/oo)及び平坦路(s=0)における加・減速度α、βを重ねて示せば、全電圧連続定格の直並列では、速度▲3▼(例えばv=約45km/h)から▲3▼f (例えばv=約125km/h)に加速する場合、速度vの2乗に反比例して急に低下する垂下トルクTd では加速度αが急激に低下するが、倍電圧短時定格の全並列で加速すれば、速度▲3▼の倍速▲4▼(v=約95km/h)まで強力なトルクTm で定トルク加速、それ以上は垂下トルクTd でも▲4▼f ではTd =0.8*Tm で強力であり、両者のv−T線図と走行抵抗線図(例えばs=0)が成す面積即ち加速度積分値を比較すると、前者はBo ・B・Df ・Do 、後者はBo ・B・C・D・Do となり、高速域の平均加速度が著しい向上(倍増以上)を示しており、また、回生ブレーキにおいても、平坦路(s=0)の走行抵抗負荷が制動側に働く以外は、横軸について略々対称であり、加速度αと同様な減速度βが得られる。
【0133】
上記の高速運転での加速積分値を発進▲1▼からのもので比較すると、直並列までではAo ・A・B・Df ・Do 、全並列までではAo ・A・C・D・Do 、後者は前者の1.5倍を上回る値になりそれだけ高速運転での平均加速度が増したことになるので、逆に加・減速トルク即ち突入過負荷をそれだけ軽減してもよく、電力制御、蓄電及び電動機の各回路27、29及び31の損失低減による効率ηp の向上、乗客の加速度感の軽減及び加・減速度α、βの余裕を急勾配に利用できる。
【0134】
全並列で所定の速度(例えば v=125km/h)まで加速して直並列に戻せば、界磁は40%Φ(=50km/h/125km/h)となり、平坦路では電動機41は略々半負荷で運転し銅損pmc=0.5^2 =25%、鉄損pmi及び励磁電力Pf はそれぞれ全電圧連続定格の100%及び0.4^2 =16%となり、無負荷損失を負荷損失に協調して低減し軽負荷においても効率ηp を稼ぐ。
【0135】
中速運転(例えば60km/h)では、直並列まで進段して加・減速し全直列に戻し、界磁制御を40%Φ(=25km/h/60km/h)にして定常走行すれば、緩勾配路(s=5o/oo)でも電動機41は略々4半負荷以下、pmc=0.25^2 =6.3%、pmi=0.5^2 =25%及びPf =0.4^2 =16%となり、無負荷損失を更に低減して効率ηp を稼ぐ。
【0136】
上記の如き中・高速運転では、1段上の電機子接続(直並列、全並列)で加・減速を行なうため、その加速終期及び減速初期の垂下トルクTd は充分大きいので、定常走行(全直列及び直並列)では余裕トルクは小さくてもよく、界磁をもっと弱めて(例えば33%)それぞれ全界磁の上限速度の3倍速(全直列で70〜75km/h、直並列で130〜150km/h)まで増速可能である。
【0137】
なお、急勾配路を走行するときは、負荷に従い自動的に界磁を強め速度vを下げて全負荷電流ImfでのトルクTf 以内の負荷で運転するが、後述の操作で1段上の電機子接続(直並列連続、全並列短時)のTf 領域を使用し、あるいはその勾配路が短距離であれば、過負荷トルクTd 領域で短時運転し速度vを下げずに走り抜けることができる。
【0138】
[運転サイクルでの電圧・電流] 図11(a)において、運転サイクルでの電機子群及び単電機子の電圧Vm 、Va 、充放電の電圧Vc 及び電子制御回路27の蓄電回路29側の電圧VL を示せば、運転Aモードの定トルク加速▲1▼〜▲4▼においてVL =Vc (一定)、▲1▼〜▲2▼ではVm =4*Va 、▲2▼〜▲3▼ではVm =2*Va 、▲3▼〜▲4▼ではVm =Va でそれぞれ鋸歯状、運転Mモード▲4▼〜▲5▼ではVc =Vm (一定)、その垂下トルク加速▲4▼〜▲4▼d では全並列でVm =Va 、定常走行▲4▼d 〜▲5▼d では直並列でVm =2*Va 、垂下トルク減速域▲5▼d 〜▲5▼及び定トルク減速域の▲5▼〜▲8▼では、それぞれ▲4▼〜▲4▼d 及び▲1▼〜▲4▼のものと同様であり、また、図11(b)において、各々の電流Im 、Ia 、Ic 及びIL は、前述の図9と同様である。
【0139】
単電機子の電圧Va 、電流Ia 及び起電力Ea については、鎖線図示(但しVa =Vm 及びIa =Im の領域では実線表示)のように、運転Aモードの定トルク加速▲1▼〜▲4▼及び運転Bモードの定トルク減速▲5▼〜▲8▼ではVa は速度vに比例して昇降し、単電機子の連続定格電圧をVao=Vt /2として、全直列、直並列及び全並列のそれぞれ上限▲2▼・▲7▼、▲3▼・▲6▼及び▲4▼・▲5▼でVa =Vao/2(半電圧)=Vc /4、Va =Vao(全電圧)=Vc /2及びVa =2*Vao(倍電圧)=Vc となり、Ia は突入過負荷の一定値をとり、運転Mモード▲4▼〜▲5▼では、垂下トルク加速▲4▼〜▲4▼d 及び減速▲5▼d 〜▲5▼でVa =2*Vao(倍電圧)の一定値、Ia は突入過負荷から速度vに反比例して減少、定常走行▲4▼d 〜▲5▼d ではVa =Vao(全電圧)、Ia は定常走行負荷Pv に見合う値で軽少な値をとる。
【0140】
なお、電機子抵抗降下ea のため電機子起電力Ea は、図11(a)に2点鎖線図示のように加速及び力行(定常走行)即ち電動ではEa =Va −ea 、減速及び抑速(降坂走行、図示省略)即ち回生ではEa =Va +ea となる。
【0141】
[運転サイクルでの電動機損失] 図11(c)において無負荷損失を代表する鉄損pmiは、主に界磁強さΦと回転数Nm (速度v)との積即ち電機子起電力Ea の2乗に比例するので、全電圧定格の鉄損をpriとすれば、定トルク域▲1▼〜▲4▼及び▲8▼〜▲5▼において、発進点▲1▼及び回生下限▲8▼ではpmi=0、全直列上限▲2▼及び▲7▼では半電圧でpmi=pri/4、直並列上限▲3▼及び▲6▼では全電圧でpmi=pri、全並列上限▲4▼及び▲5▼では倍電圧でpmi=4*pri、垂下トルク域▲4▼〜▲4▼d 及び▲5▼〜▲5▼d においては界磁制御でEa が倍電圧一定でpmi=4*pri、定常走行▲4▼d 〜▲5▼d では直並列でΦ、vとも一定の全電圧でpmi=priとなり、また、負荷損失を代表する銅損pmcは電機子電流Ia の2乗に比例するので、全負荷電流での銅損をprc負荷率をλとすればpmc=prc*λ^2 、定トルク▲1▼〜▲4▼では突入過負荷(例えばλ=2.5)でpmcは大きく(6.25*prc)、垂下トルク域▲4▼〜▲4▼d では速度vに反比例のIa の2乗に反比例のpmcとなり、定常走行▲4▼d 〜▲5▼d ではλは小さく(例えば半負荷)でpmcは著しく小さく(pmc=prc/4)なる。
【0142】
電機子損失pm =pmi+pmcは、全直列及び直並列ではpmi=<priのため殆どが銅損pmcであり、全並列においてpmi>pri、定トルク加・減速上限から垂下トルク域▲4▼〜▲4▼d 及び▲5▼d 〜▲5▼において鉄損pmiは最大値pmimax =4*priとなるがその発進▲1▼からの平均値は小さく、また、一般に電動機は、鉄芯材質の向上もあり、過負荷トルクが大きな鉄機械においてもpri<prc(例えばpri=略々prc/2)であり、倍電圧で全電圧定格の2倍の短時出力の割には、電機子損失pm の増加率ε=pm4/pm3は小さく(例えば250%突入過負荷の場合ε=1.22)、加・減速が短時(1分程度)で終わるため電機子温度上昇をあまり増加させない。
【0143】
このように全並列の定トルク上限〜垂下トルク域では、電機子倍電圧のため、鉄損pmiは4*priに増すが、電機子電流Ia を全負荷値にとっても、全損失pms(点線図示)は、pri=prc/2とすれば、定格pr =pri+prcの2倍即ち全電圧定格での軸負荷140%(=2^1/2 )相当の熱負荷のため、数分間の運転継続が可能、図10に点線図示の負荷トルクTf (短時)以内で10km程度の急勾配路を高速のまま走り抜けることができる。
【0144】
[電子制御回路の諸量] 図12(a)において、電子制御回路17の制御C2モードでの降圧チョッパ制御の主要素の回路を示せば、リアクトル8とコンデンサ13はLC平滑回路を形成し入力電圧Vc 、電流IL を受け、チョッパ9のon−off作動で周波数f、周期t=1/f、通流幅ε=ton/tの断続電流Ichを、リアクトル10とダイオード14で平滑な出力電圧Vm =ε*Vc 、電流Im =IL /εに変換するが、リアクトル8、10はそれぞれインダクタンスL1 、L2 及び巻線抵抗rL1、rL2を持ち、電流IL 、Im で損失pL1、pL2を、ダイオード14は通流幅(1−ε)の還流電流Id =Im で損失pd を、チョッパ9は後述の損失pchを、それぞれ生ずる。
【0145】
図12(b)において、制御C2モードでの昇圧チョッパ制御の主要素の回路を示せば、リアクトル8は、入力電圧Vm 、電流Im を受け、チョッパ9のon−off作動で上記と同様に1−ε=ton/tの断続電流Ichで電圧Vc を誘起し、ダイオード12の還流及び逆流阻止作用でコンデンサ13に充電し、リアクトル10を通って平滑な出力電圧Vc =Vm /ε、電流Ic に変換するが、リアクトル8、10はそれぞれ電流Im 、Ic で損失pL1、pL2を、ダイオード12は通流幅εの還流電流Id =Im で損失pd を、チョッパ9は下記の損失pchを、それぞれ生ずる。
【0146】
図12(c)において、チョッパ9の電圧Vch、電流Ichが上記の周波数f、周期t=1/f、通流率ε=ton/tでon−off作動するとき、まず、on状態では正方向電圧降下eon=約3V、電動・回生出力が小さい加速初期及び減速終期を除きε=0.5〜1.0、回路電圧Vc =1500Vとして、通流損失ponは、
降圧チョッパ制御ではVch=Vc
pon%=eon/Vc *ε=0.1〜0.2%
昇圧チョッパ制御ではVch=Vm =Vc *ε
pon%=eon/Vc *(1−ε)/ε=0.2〜0%
次に、on、off転流時(tson 、tsoff)にVch、Ichとも直線的に変化するものと概括すれば、瞬時転流損失ptrはVch*Ich/(4*1.57)=Pch/6.28(近似正弦波であり平均値は波高値の1/1.57)、1周期あたりの転流損失ptrは、転流時間計ts =tson +tsoffとして、
降圧チョッパ制御ではVch=Vc 、Ich=IL /ε
昇圧チョッパ制御ではVch=Vc =Vm /ε、Ich=Im
いずれもptr=Pch/6.28*ts /t*1/ε
となり、作動周波数f=1000Hzとすればt=1ms、GTOサイリスタ(Gate Turn-Off Thirister)の如き高速作動の制御素子では、ts =50μs程度でありいずれもptr/Pch=1.59〜0 .80%
従ってチョッパ9の全損失pch(%)はponを加算し
降圧チョッパ制御ではpch=1.69〜1.00%
昇圧チョッパ制御ではpch=1.79〜0.80%
となり、かなり高い周波数でも、制御素子の選定次第でその損失を充分局限できる。
【0147】
ダイオード12、14の正方向電圧降下eonは1.5V、損失pd %=eon/Vc =0.1%で無視して差し支えなく、リアクトル8、10はf=1000Hzの如き高い周波数では、小さいインダクタンスL1 、L2 で充分なリアクタンスXL1=ω*L1 、XL2=ω*L2 (ω=2*π*f)が得られ、鉄芯材料を適切に選べば巻線抵抗rL1、rL2は極めて小さく製作でるので、チョッパ9に使用する制御素子との損失協調を考えながら、このような高い作動周波数fを選定するのが良い。
【0148】
入力リアクトル8は、昇圧チョッパ制御で充分な誘起電力効率を得るために、充分なXL1と極めて小さいrL1が重要であるが、出力リアクトル10は、降圧チョッパ制御で電機子41の損失増加を来さない範囲において、多少の脈動率を許容できるのでXL2は多少下げてもよく、それだけrL2もより小さくできる。
【0149】
[運転操作] 再び図4において、主幹制御器52の運転操作レバー53を0ノッチからいずれかの速段のノッチに進めると、全直列の微速緩発進し、所定の速段ノッチ(1、2、3)を選択して前に押すとそのノッチの終段(1ノッチでは全直列のまま、2ノッチでは直並列、3ノッチでは全並列)まで自動的に進段加速し、あるいは、後に引くと自動的に戻段減速、所定の速度v(km/h)に達したとき、「中立」に戻すと、直並列(3ノッチ)や全直列(2ノッチ)に自動的に戻り、その時の速度vを制御装置(図示省略)が記憶し、その記憶速度vに合わせ定速制御して定常走行する。
【0150】
走行中に0ノッチに戻すと電動機回路31は電機子41、界磁42とも無電圧、電気的損失(鉄損、銅損、励磁)ゼロ状態で惰行し、再び速段ノッチに進めると上記と同様、その時の速度vを記憶しその速度に定速制御する。
【0151】
操作レバー53を引き続けると、全直列まで自動的に戻段減速し、回生ブレーキから発電ブレーキに移行して停止寸前の微速に至り、所定の位置で該操作レバーを0ノッチに戻しながら制動空気弁56を操作して車輪ブレーキで停止する。
【0152】
制御装置の速度記憶機能は、微速vmin (例えば5km/h)〜最高運転速度vmax とし、停車(v=0)から速段ノッチに進めたとき、確実に且つ緩やかに微速発進させ、定常走行中は、軌道勾配による走行負荷の変動即ち電機子群電流Im の正(+)、負(−)に応じ、定トルク域では運転A、Bモード及び制御C1、C2モードを自動的に切り替え、垂下トルク域では運転Mモードで界磁制御の特性的移行で切り替えなく、電動牽引・回生抑速の定速制御が作動する。
【0153】
なお、数分で走り抜ける距離の急勾配路では、操作レバー53の頭部のボタン54を押し全並列の強力な短時全負荷トルクTf で、高速定常走行できる。
【0154】
図10において、定常走行には、垂下トルク域即ち全直列で低・中速(25〜75km/h)、直並列で中・高速(50〜150km/h)、全並列で短時高速(100〜150km/h)を使用し、連結作業等の微速や危険区域の徐行には、全直列の定トルク域(25km/h以下)を使用し、それぞれ垂下トルク域の下限近く(例えば全直列で30km/h、直並列で60km/h)までの加速やそこからの減速には、進段しても数秒で戻段となり、加・減速距離Sa 、Sb はあまり稼げないので、加速終期・減速初期に自動進・戻段しない速段(1ノッチや2ノッチ)を選ぶのがよい。
【0155】
なお、操作レバー53の3ノッチでは、2ノッチの全直列と直並列と同様に、直並列と全並列の2段の加・減速として制御作動を単純化し、また、2ノッチの全直列で定常走行中に軌道勾配による負荷に応じボタン54を押して直並列で走り抜けるよう関連制御回路を構成してもよい。
【0156】
[蓄電回路保護] 図2において、蓄電要素34は、その蓄電原理からタイムラグなく内部抵抗rc が著しく小さいので、万一絶縁破壊等で内部短絡した場合、その短絡電流が非常に大きく該要素の破裂・出火に至るので、適当な単位容量に分割し、ヒューズ付き断路器35で瞬時に故障蓄電要素34を切り離す。
【0157】
[蓄電均圧] 均圧線36で断路器37を介して隣接の各蓄電単位33を接続し、蓄電単位33の間の容量不同による充・放電及び動力単位間の運転特性不同を防ぎ、上記の蓄電要素34の故障あっても、支障無く運転を継続する
【0158】
[故障復旧] 故障蓄電要素34を持つ蓄電単位33において、断路器32及びヒューズ付き断路器35を全て開き、故障蓄電要素34及び熔断ヒューズ35を無電圧にして新替えし、車両基地備え付けの限流充電器(図示省略)で急速充電し、蓄電回路29全体の蓄電電圧Vc に達したとき、全ヒューズ付き断路器35を閉じ、あるいは、該蓄電単位33の均圧線36の断路器37を開き、断路器32及び新替えのヒューズ付き断路器35を閉じ、電子制御回路17の限流チョッパ制御で充電の上、全断路器32、37及びヒューズ付き断路器35を閉じる。
【0159】
[補充電] 夜間休止時の自己放電による蓄電電圧低下には、電子制御回路17の制御C1モードの限流チョッパ作動で受電し、補充電を行なう。
【0160】
[回生送出] 図1において、特に高落差の急勾配区間では、定常走行時に電力制御回路27の接触器24、26を開き点線図示の接触器75を閉じて「回生送出」に切り替え、降坂抑速の回生電力Pmbを、ダイオード76及び受電回路5を経て、架線回路1に送出でき、その途中の部分的な平坦路で電動牽引に移行したときは、ダイオード76で架線電力Pt の直接逆流入を阻止し、既述のダイオード6、接触器7、電子制御回路17を経て受電・給電される。
【0161】
[過電圧回生] 運転Mモードの垂下トルク減速(▲5▼d 〜▲5▼)で回生直接充電の上、運転Bモードと制御C1モードで、直並列にて▲5▼〜▲6▼を、全直列にて▲6▼〜▲7▼を過電圧回生ブレーキとし、降圧チョッパ制御で定トルク減速が可能であり、その下限▲7▼に至って制御C1モードに替え前述の昇圧チョッパ制御の定トルク減速を行なうこともできる。
【0162】
過電圧回生ブレーキにおいては、入力リアクトル8はコンデンサ12とともに平滑作用を為すのでそのXL1はあまり重要でなく、また、出力リアクトル10が還流ダイオード14とともに最大倍電圧からの降圧変換を司るので脈流電流の平滑度が多少悪くなるが、蓄電回路29の回路抵抗rc は極めて小さく損失pc の増加は殆どなく、リアクトル10は半電流、銅損は4半値となり、制御電力効率ηL が向上する。
【0163】
[電子制御回路別案] 図13において主・副接触器15、16を1個づつ増設し、図1のリアクトル10の還流ダイオード14と、負極線11との間に接触器15を、リアクトル8との間に接触器16をそれぞれ配して制御C2モードでリアクトル8の還流ダイオード12を兼用することができ、その場合は、図1のダイオード12、14と同じ接続でダイオード87、88を配し、バリスタ18、19とともに、制御モードC1、C2切り替え時の接触器15、16の開路においてリアクトル8、10から発生する過渡サージエネルギを吸収する閉回路を形成する。
【0164】
ダイオード87、88は、リアクトル8、10の過渡サージエネルギ吸収のみを司るので小容量のものでよく、還流電流を持つ電力仕様のダイオード12、14を共通1個で済ませるので、動力単位容量が大きい場合には経済的である。
【0165】
[同期機使用の無整流子電動機] 図14(a)において、図1の電動機回路31に無整流子電動機を使用した場合について、2組の静止整流子89をサイリスタの3相ブリッジ形インバータ90、リアクトル91及び還流ダイオードの3相ブリッジ92でそれぞれ構成し、直・並列切り替え接触器93、94を配して他の2組(図示省略)と並列に接続し、それぞれY−Δ切り替え接触器95、96を介して同期電動機97の電機子98に接続、回転界磁99は図3で説明した如く正・逆転切り替え接触器48、49を介してチョッパ50で励磁制御し、軸端に配した分配器100で電機子98の位相を検知し、サイリスタゲート制御装置(図示省略)を介してインバータ90にゲートパルスを与え整流子作用で電動作動し、還流ダイオードブリッジ92で回生電力を電動と同一電圧極性で取り出す。
【0166】
Y直列、Y並列及びΔ並列の3段切り替えを行ない、Y直列で全電圧連続定格、Δ並列で1.732 倍電圧短時定格とし、図3に示した直流整流子電動機4台の全直列、直並列及び全並列と同様な特性と作動で定トルク域を高速側に1.732 倍に拡大して、高速運転での加・減速距離を著しく短縮し、高速運転ではY並列に、中速運転ではY直列に戻し、軽負荷の定常走行において、効率を稼ぐ。
【0167】
なお、Y−Δ切り替えに伴い、電機子98の電気的位相がφ=30度転移するので、分配器100またはゲートパルスの位相を転移し、負荷や界磁強さに応じ電気子反作用を相殺するようゲートパルスの位相を自動的に調整する機構を付加する。
【0168】
図14(b)において、上記と同様の回路を、1電機子に位相差ψ=30度を持つ2組の巻線98に接続し、電動機毎にY直列、Y並列及びΔ並列の3段切り替えを行ない、恰も12相交流から得た直流の如く、脈動が極めて小さい軸トルクが得られるので、車輪の粘着性能を要求される電気機関車に使用するのがよい。
【0169】
[誘導機使用の無整流子電動機] 上述と同様に図14において、静止整流器89のインバータ90を共通の周波数発生回路(図示省略)で制御して可変周波数の3相交流に変換し、電動機97を誘導機に替えて無整流子電動機(界磁99及び分配器100は無し)とし、Y直列で全電圧連続定格、Δ並列で1.732 倍電圧短時定格を与え、界磁制御の代わりに周波数制御で上述と同様なトルク特性が得られ、還流ダイオードブリッジ92で回生電力を電動と同一の電圧極性で取り出すことができる。
【0170】
電動機の各々接続について、電圧Va ・周波数fとも可変の定トルク域とVa 一定でf可変の垂下トルク域を有し、垂下トルク域では、速度vに反比例即ち定出力の全負荷トルクTf 及び速度vの2乗に反比例の過負荷トルクTd の特性であり、前述の直流整流子電動機及び上述の同期機使用の直流無整流子電動機と同様に扱うことができる。
【0171】
なお、この誘導機方式では、電機子位相はインバータ位相とは無関係のため、複数の電動機を共通のインバータと組み合わせてもよく、例えば動力単位毎に電力制御回路27とともに1組のインバータを配し、4台の電動機の各々にY−Δ切り替え回路を付して並列接続するのがよい。
【0172】
[交流または交・直両用車両] 交流架線や交・直流両区間を運行の車両は、図15(a)の如く、変圧整流器101を受電回路に配し、整流器103を平滑リアクトル(架線周波数脈流用)104を配して、直流受電の受電ダイオード6とともに、受電接触器7を介し運転制御回路27に接続し、なお、変圧器102にはタップ105を配し、勾配路運行における蓄電電圧Pc の昇降に協調し、受電電圧Vt (直流側)を調整でき、なお、前述の如く加・減速時の突入過負荷を蓄電回路29が受け持つので、変圧整流器101は軽債務のものでよい。
【0173】
[気電動車両] 図15(b)の如く、付随車の床下や機関車室内にディーゼルエンジンやガスタービン等107を原動機とする発電整流器106を配し、その整流器109(3相ブリッジ形)を平滑リアクトル110を上記と同様に受電接触器7を介し運転制御回路27に接続し、また、発電機108には、電機子巻線のY−Δ切り替えあるいは図14(b)の如き電機子2巻線の整流器の直・並列切り替えを併用(Y直列・Y並列・Δ並列)して、負荷に見合うエンジン回転数と電機子接続と界磁制御により、低速から高速に至る全回転数域において発電効率を稼ぎ、勾配負荷で充放電に伴う蓄電電圧Vc の変動に協調して発電・給電し、勾配路運転においても、発電機負荷を定常走行負荷に近い値により軽減・平準化し、軽債務にすることができる。
【0174】
【発明の効果】
一般に車両は、自重mが走行抵抗Fv より遥かに大きいため(前述の表2及び表3に示す例では、m/Fv =(46+40)/(0.107〜0.786)=803〜109)、慣性抵抗Fi 及び勾配抵抗Fs が牽引・制動力の大部分を占めるので、本発明においては、それ等が為す大きな運動のエネルギWi と位置のエネルギWs を、駅間の加・減速を伴う運転サイクルや運行区間の登・降坂を伴う往復サイクル毎に正・負相殺される無効動力(交流回路のリアクタンスxが為す無効電力に比喩)と考え、エネルギ可逆性を持つ電動機41と充放電機能を持つ蓄電要素34とで処理し、常に正(+)の値をとる走行抵抗Fv が為す負荷Pv を実効動力(交流回路の導体抵抗rが為す有効電力に比喩)と考え、無効動力の処理に伴う電動機、蓄電及び制御回路の電力損失とともに、架線1からの受電電力Pt で賄うことにより、従来の車両が車輪ブレーキや発電ブレーキで熱エネルギに戻して大気中に放散している無効動力の負(−)の部分を回生電力Pm として蓄電要素に充電・回収し、受電電力Pt とともに後続の正(+)の部分に活用し、電力消費量を半減することを可能にするとともに、下記の改善を伴うものである。
【0175】
電動機負荷Pm の大部分を占める慣性抵抗負荷Pi =Pm ±Pv を車両内の蓄電要素34で処理するため、架線回路1の負荷Pt は大幅に軽減・平準化され且つ電力流が一方向となるので、架線回路1の電力損失pt 及び債務が著しく軽減され、変電所79の給電区間の拡大や給電線銅量の節減とともに、直流から交流への逆変換機能が不要となり、関連の電力系統へもその好影響が及ぶ。
【0176】
慣性抵抗負荷Wi を効率良く車両内処理することにより、高加・減速度運転のための動力強化は、車両内設備だけで済み、架線1及び変電所79への影響が軽微のため、電動機の短時倍電圧(倍出力)定格のように、大幅なものが可能となる。
【0177】
電動機の倍電圧短時定格の付加は、寸法、構造及び強度の増大なく、電機子絶縁及び整流子の強化で済み、発電ブレーキ採用に伴い既に実施されており、本発明では、それを電機子群の直列接続で基本定格の全電圧連続定格のものを並列接続で付属定格の倍電圧短時定格としたもので、全界磁で強力且つ効率の良い定トルク域を高速側に倍増(例えば50km/hから100km/hに)し、電動機の機・電両面の設計を変えずに高速域の加・減速度を著しく向上して低・中速域と同等にし、乗客の加速度感を増さずに、加・減速距離を著しく短縮して駅間の運転速度vを高め、運行効率を向上する。
【0178】
上記の倍電圧短時定格を使用しない場合について、運転サイクルでの諸量の挙動を表6に計算値を示し全述の表3と比較すれば、加・減速に倍電圧短時定格の使用により、定トルク域の加・減速度αc βc を増さずに、より短い駅間距離で同じ平均速度vavを得ており、その効果は高速運転で著しい(v=100〜140km/hでS=80〜50%)ので、車両の運行効率向上に留まらず各駅停車と急行との運転協調に頗る好都合である。
【0179】
【表6】
Figure 0004200512
【0180】
全並列倍電圧(高速)あるいは直並列全電圧(中速)の定トルク域、またはそれを幾らか超える垂下トルク域の強力なトルクで加・減速し、所定の速度vで直並列全電圧(高速)あるいは全直列半電圧(中速)に戻段した定常走行で、鉄損、銅損及び励磁電力を低減して軽負荷での効率を稼ぎ、また、進段すれば強力なトルクで確実な加・減速ができるので、定常走行での余裕トルクは小さくてもよく、従来の限度(一般に40%Φ)を超えた弱め界磁で、定常走行速度域を更に高速側に拡大(例えば33%Φで150km/h)できる。
【0181】
倍電圧運転では、無負荷損失を為す電機子鉄損が速度の2乗に比例して増し、その定トルク域上限では基本定格のものの4倍(無整流子電動機では3倍)で全負荷銅損をかなり上回る超鉄機械状態になるが、突入過負荷の銅損に比べると遥かに小さいので、倍出力の割には全損失はあまり増加せず、短時(垂下トルク域含み1分以下)のため熱的には問題なく、また、全負荷電流で数分程度の短時運転も可能のため、通常の標高差の急勾配路ならば高速のまま走り抜けることができ、運行効率上頗る好都合である。
【0182】
架線や変電所等の故障で停電に際しても、蓄電電力で運転継続できるので、長時間の停電復旧を待たず現場状況の視認や故障状況を通信確認の上、低・中速で徐行運転して故障区間を脱出し、健全区間で速やかに受電・補充電して平常運転を再開でき、運行上頗る好都合である。
【0183】
電子制御回路17の主要素を成す1個のチョッパ9、2個のリアクトル8、10、コンデンサ13及びダイオード12、13を接触器で切り替えて降圧・昇圧チョッパ制御の両方に兼用し、接触器ブリッジで定トルク加速(運転Aモード)、減速(運転Bモード)及び垂下トルク加・減速及び定常走行(Mモード)の切り替え、前2者ではチョッパ制御の電機子制御を短時間(15〜30秒)に行ない、後者では蓄電回路29と電動機回路31との間で直接即ち制御損失なく電力の授受を行ない且つ電子制御回路17は平準化された受電電力Pt の無制御通流となるので頗る軽債務である。
【0184】
電子制御回路17の入・出力とも電流は平滑で波形率は1.0であり、架線回路1、蓄電回路29、電動機回路31のいずれにもチョッパ9の断続電流による損失増加を来さず、また、受電電力Pt は常に電子制御回路17を通り、そのろ波作用でチョッパ9の断続電流は勿論、電機子41の整流子(無整流子電動機では静止整流子89)が発生するノイズ電流も抑えられ、通信線誘導障害を防ぐ。
【0185】
上述の無効動力処理において、電力損失は、電動機回路31だけでなく、電力制御及び蓄電の各回路27、29においても不可避であり、それが電動・回生での往復で生ずるので、その低減は重要であり下記の如く実現するものである。
【0186】
電力制御の要部を成す電子制御回路17は、チョッパ9の主要制御素子ののサイリスタ及び還流ダイオード12、14の通流電圧降下は架線電圧に対し極めて小さく、作動周波数f(Hz)を適切(例えばf=1000Hz)に選べばチョッパ9の転流損失、平滑コンデンサの誘電損失及びリアクトル8、10の鉄損・銅損等を含む作動損失を電動機の全損失より遥かに低減且つ車載用として小形軽量に製作が可能である。
【0187】
蓄電要素34は、高頻度に繰り返す突入過負荷電流や数分の急速充放電に対して、即応的且つ損失が極めて小さく劣化しない静電式の蓄電器が最適であり、そのような機能は、短時倍電圧倍出力を含み、基本定格全負荷の数倍の突入過負荷においても、それを蓄電回路29に集中して車両内処理を可能にする、本発明の実現の鍵となるものである。
【0188】
そのような即応的且つ低損失の蓄電要素は、万一の絶縁破壊あると瞬時短絡電流が極めて大きいので、出火・破裂の危険防止として、単位容量を局限し複数の蓄電要素をヒューズ付き断路器を介して並列接続且つ単位編成の全蓄電単位を均圧線と断路器で接続し、故障要素の瞬時切り離しで支障無く運転を継続し、新替え及び充電復旧が簡単且つ安全に実施可能にする。
【0189】
蓄電単位33の蓄電容量Wc は、架線電圧Vt での浮動充電且つ車両の運動・位置のエネルギを許容電圧昇・降値δVの範囲で充・放電処理可能のもの、例えば前述の表5に示す充放電力量(Wci+Wcs)に余裕を見て充放電容量Wcmax=180MJ、これは33AHの小形乗用車用12V鉛蓄電池の125個直列(重量は合計2ton 程度)に相当のものでよく、蓄電池機関車や電気自動車の如き充電毎の走行距離や稼動時間に見合う如き大容量を要しないので、小形・軽量の蓄電要素34の実現は充分可能と考える。
【0190】
なお、超低温の超伝導方式による蓄電装置も可能であるが、蓄電原理が静電的且つ常温で作動する静止機器の大容量蓄電器は、上述の如き高効率の急速充放電及び浮動充電特性を持ち保守容易、車載用として最適であり、低圧のもの(例えば120V、100F級)は既に実現し、電気自動車等の電源に試用されているが、本発明が対象とする架線電圧のもの(1500V、蓄電単位に約100F)についても原理的には実現可能であり、本発明の効果に鑑み関連科学技術の進歩を促し、そのような蓄電要素の速やかな実現を切望する。
【0191】
運転操作は、左右・前後交叉動の操作レバー53をいずれかの運転ノッチ(1、2、3)に進めると微速発進し、前に押せば加速、後に引けば減速、所定の速度vに達した時中立に戻せばその速度vで定速の運転となり、軌道勾配に応じ界磁制御の定速制御機構が働き特性的自動的に電動・回生に対応し、0ノッチに戻せば惰行、停止前の微速まで全てを操作レバー53で電気的に行ない、停車のみ制動空気弁56を使用すればよく、頗る操作簡単である。
【0192】
操作レバー53は、前押し(加速)では自力戻り、後引き(減速)では手戻しの機構を有するので、運転士の睡魔等で手を離せば加速は進まず、減速は微速まで続き、また、その操作時間即ち加・減速時間は前述の表3に示す15〜54秒の如き短時間であり、疲労防止及び安全上誠に好都合である。
【0193】
微速までの減速も操作レバー53で電気的に行なうので、車輪ブレーキの債務及び損耗は極めて軽少、制動空気弁55による車輪ブレーキ系統は動力制御系統とは独立で簡潔である。
【194】
受電回路に変圧整流器を配せば、交流電化区間や交・直流両区間の運行が、あるいはエンジン駆動の発電整流器を配せば、非電化区間の運行が、高加・減速度で以て可能、架線及び変圧整流器あるいは発電整流器は軽債務であり、鉄道全体のエネルギ効率及び運行効率を著しく高めることができる。
【0195】
上述の如く、本発明は、直流整流子電動機の分巻界磁或いは誘導機使用の直流無整流子電動機のインバータ(ダイオードブリッジ併設)で正・負ほぼ対称のトルク特性と電機子又は電機子巻線接続切替での倍電圧により、電動・回生とも定トルク域を含む強力なトルク域を倍速度に拡張し、全速度域で電動加速・回生減速とも強力なトルク且つ同様な制御方法(定トルク域は降・昇圧チョッパ或いは降・昇圧チョッパとインバータによる電機子制御、垂下トルク域は励磁チョッパ或いはインバータ周波数による界磁制御)で簡潔な制御回路と簡易な全電気的運転操作及び高加・減速度の運転性能を実現、なお、回生ブレーキは常用ブレーキとして充分な制動トルクを持ち、車両内に設置の蓄電装置に全回生電力を充電回収可能且つ架線負荷を平準化・軽減した、電動車両の動力装置の電動機制御装置を提供する。
【図面の簡単な説明】
【図1】実施例について、全体の電力系統を示す電気回路図である。
【図2】実施例について、蓄電回路の電気回路図である。
【図3】実施例について、電動機回路の電気回路図である。
【図4】実施例について、運転操作機器を示す姿図である。
【図5】実施例について、全体の電力系統について等価回路を示す。
【図6】蓄電要素の電圧と電気量及び電力量との関係を示す蓄電特性線図である。
【図7】実施例について、車両の駅間の運転サイクルにおいて、横軸に時間及び距離をとって、慣性抵抗に係る諸量の挙動を示す線図であり、(a)は走行速度・抵抗等の如き機械的諸量を示し、(b)は電圧・電流等の電気的諸量を示す。
【図8】実施例について、車両の勾配路の運行において、勾配抵抗に係る諸量の挙動を示す線図であり、(a)は登・降坂サイクルを、(b)は牽引力・制動力等の機械的諸量を、(c)は電動・回生、放・充電等の電気的諸量を、(d)は蓄電電圧を、(e)は受電電力について、それぞれ示す。
【図9】実施例について、走行速度と電気子電流及び界磁磁束との関係を示す電動機の特性線図である。
【図10】実施例について、走行速度と電動機トルク及び各勾配の走行抵抗トルクとの関係を示す電動機及び負荷の特性線図である。
【図11】実施例について、車両の駅間の運転サイクルにおいて、電圧・電流及び損失の挙動を示す線図である。
【図12】実施例について、電子制御回路の主要素及び制御特性を示し、(a)は降圧チョッパ制御の、(b)は昇圧チョッパ制御の、それぞれ主要素回路図、(c)はチョッパ作動の1周期において電圧・電流及び損失の挙動を示す線図である。
【図13】実施例について、電子制御回路の別案を示す回路図である。
【図14】 実施例について、電動機回路に直流無整流子電動機を使用する場合の電気回路図であり、同期機使用の直流無整流子電動機の場合を示し、誘導機使用の直流無整流子電動機の場合は、符号97を誘導機とし符号99、100を除く。
【図15】本発明の、他の電源方式への応用例において、(a)は交流架線の場合で変圧整流器を含む受電回路を示し、(b)は気電動車両の場合で、発電整流器を含む電源回路を示す電気回路図である。
【符号の説明】
1 架線、架線回路
2 集電子
3 車間給電線
4 高速回路遮断器
5 受電回路
6、12、14 ダイオード
7、15、16、23、24、25、26 接触器
8、10 リアクトル
9 チョッパ
11 負極線
13、79 コンデンサ
17 電子制御回路
18、19 バリスタ
20 車軸集電子
21 車輪、車軸
22 軌道
27 運転制御回路
28、30 高速回路遮断器
29 蓄電回路
31 電動機回路
32、37 断路器
33 蓄電単位
34 蓄電要素
35 ヒューズ付き断路器
36 均圧線
38、39 ジャンパ線
40 欠番
41 電機子、電動機
42 界磁
43 補極
44、45、46、47、48、49 接触器
50 チョッパ(励磁制御用)
51 還流ダイオード
52 主幹制御器
53 操作レバー、運転操作レバー
54 ボタン
55 切り替えレバー
56 制動空気弁
57 速度計
58 受電・蓄電電圧計
59 受電・蓄電電流計
60 電動機電流計
61 制動空気圧計
62 インバータ
63 整流器
64 蓄電池
65、66、67 電圧センサ
68、69、70、71、72、 電流センサ
73 速度センサ
74 蓄電装置(架線回路用)
75 接触器(回生送出用)
76 ダイオード(同上用)
77 リアクトル(ノイズ電流消去用)
78 コンデンサ(同上用)
79 変電所
80 車両
81、84 平坦路
82、85 登坂路
83、86 降坂路
87、88 ダイオード(過渡サージエネルギ吸収用)
89 静止整流子
90 インバータ
91 リアクトル
92 コンバータ
93、94、95、96 接触器
97 同期機、誘導機
98 電機子巻線
99 界磁
100 分配器
101 変圧整流器
102 変圧器
103、109 整流器
104、110 平滑リアクトル
105 タップ
106 発電整流器
107 エンジン
108 発電機
[動力関係諸量の符号]
Vt 架線電圧、受電電圧
Vc 蓄電回路電圧、蓄電電圧
Vm 電動機回路電圧、電機子群電圧
Va 単電機子電圧
It 架線電流、受電電流
Ic 充・放電電流
Im 電動機回路電流、電機子群電流
Ia 単電機子電流
Es 変電所無負荷電圧
Ec 蓄電電圧
Em 電機子群起電力
Ea 単電機子起電力
ez 変電所電圧降下
et 架線電圧降下
eL 電子制御回路電圧降下
ec 蓄電回路電圧降下
em 電動機回路電圧降下、電機子群電圧降下
ea 単電機子電圧降下
xs 変電所回路リアクタンス
rs 変電所回路抵抗
rt 架線抵抗
rL 電子制御回路抵抗
rc 蓄電回路抵抗
rm 電動機回路抵抗、電機子群抵抗
ra 単電機子抵抗
Q 電気量
W 電力量
δE 蓄電電圧昇降値、蓄電電圧変動値
Eo 定格蓄電電圧
Eco 蓄電電圧中央値
C 静電容量
Qo 定格電気量
Wo 定格電力量
δW 充放電電力量
Wc 充放電電力量(平均)
t 運転サイクル時間
ta 加速時間、電動・放電時間
tac 定トルク加速時間
tad 垂下トルク加速時間
tv 定常走行時間、補充電時間
tt 架線電力受電時間
tb 減速時間、回生・充電時間
tbd 垂下トルク減速時間
tbc 定トルク減速時間
tw 車輪ブレーキ時間
ts 停車時間
S 駅間距離
Sa 加速距離
Sv 定常走行距離
Sb 減速距離
Sw 車輪ブレーキ距離
αc 定トルク加速度
αd 垂下トルク加速度
βd 垂下トルク減速度
βc 定トルク減速度
v 走行速度、運転速度
vac 定トルク加速上限速度
vbc 垂下トルク減速下限速度
vw 回生ブレーキ下限速度
Fa 牽引力
Fia 慣性抵抗(加速)
Fv 走行抵抗
Fb 制動力
Fib 慣性抵抗(減速)
Wi 慣性エネルギ、運動のエネルギ
Wia 慣性仕事量(加速)
Wib 慣性仕事量(減速)
Wa 加速仕事量
Wvv 定常走行仕事量
Wb 減速仕事量
Ww 車輪ブレーキ仕事量
Wva 走行抵抗仕事量(加速)
Wvb 走行抵抗仕事量(減速)
Wv 実効動力仕事量
Vt 架線電圧、受電電圧
Vc 蓄電電圧
δV 蓄電電圧昇降値
δVi 蓄電電圧昇降値(慣性抵抗分)
δVs 蓄電電圧昇降値(勾配抵抗分)
Wci 充放電電力量(慣性抵抗分)
Wcs 充放電電力量(勾配抵抗分)
Pm 電動機出力、電動・回生負荷
Pma 電動電力(加速、力行)
Pmv 電動電力(定常走行)
Pmb 回生電力(減速、抑速)
Pc 充・放電電力
Pt 受電電力
Wma 加速電動電力量
Wta 加速受電電力量
Wca 加速放電電力量
Wmv 定常走行電動電力量
Wcv 定常走行補充電電力量
Wtv 定常走行受電電力
Wmb 減速回生電力量
Wcb 減速充電電力量
IL 入力リアクトル電流(加速)、出力リアクトル電流(減速)
Imf 全負荷電機子群電流
Iaf 全負荷単電機子電流
Φf 界磁全磁束
Φc 界磁制御磁束
T 電動機トルク
Tm 最大トルク
Td 垂下トルク
Tf 全負荷トルク、定格トルク
s 軌道勾配(o/oo)
α 加速度
β 減速度
Vao 定格電機子電圧
pri 定格電機子鉄損
prc 定格電機子銅損
λ 負荷率
pmi 電機子鉄損
pmc 電機子銅損
pm 電機子全損失
pm2、pm7 電機子全損失(全直列、加・減速)
pm3、pm6 電機子全損失(直並列、加・減速)
pm4、pm4 電機子全損失(全並列、加・減速)
pm4d 、pm5d 電機子全損失(全並列、加速終期・減速開始)
pmv 電機子全損失(直並列・定常走行)
pms 電機子全損失(全並列・短時定常走行)
Vch チョッパ電圧
Ich チョッパ電流
f 作動周波数
t 作動周期
ton 通流幅
toff 遮断幅
ε 昇・降圧制御率
ts 転流時間
tson オン転流時間
tsoff オフ転流時間
Id 還流ダイオード電流
ptr 転流損失
pon 順電力損失
L1 インダクタンス
L2 インダクタンス
x リアクタンス
rL1 巻線抵抗
rL2 巻線抵抗
pL1 リアクトル損失
pL2 リアクトル損失[0001]
[Industrial application fields]
The present invention relates to a power device for a vehicle (hereinafter referred to as an electric vehicle) that runs on an electric motor such as an electric passenger car or an electric locomotive.
[0002]
[Prior art]
In general, railway vehicles are driven by acceleration / power running with a prime mover and deceleration / braking by friction brakes (hereinafter referred to as wheel brakes) of each wheel. In order to improve operation time efficiency, the traveling speed is increased. At the same time, the weight of the vehicle body and the capacity of the prime mover and the performance of the brakes are enhanced to accelerate and decelerate quickly, and the electric vehicle has the best performance, so it is used in the main lines and main lines in the city and suburbs. ing.
[0003]
Electric vehicles are capable of decelerating, braking, downhill, and slowing down with a power generation brake that uses the power generation function of the motor, and a regenerative brake that returns the generated power to the overhead line / substation has also been adopted. Yes.
[0004]
[Problems to be solved by the invention]
Railway vehicles have low running resistance but high inertial resistance, so most of the power is consumed for acceleration, and the vehicle's kinetic energy obtained from that power is decelerated and braked. The energy loss due to the inertial resistance is particularly large in the operation at each station stop, and most of the energy consumption of the operation cycle between the stations, and the gradient resistance is large in the climbing power running. Power is required, and the energy at the position obtained by the power is dissipated downhill, and heat is dissipated by wheel brakes and power generation brakes. The energy loss reaches most of the consumed energy even in the middle gradient section.
[0005]
Inrush overload current at start-up / acceleration, the conductor resistance of the overhead wire and the voltage drop at the substation equipment are large, especially in the high-density operation section, it may reach 20% or more of the rated voltage. In addition to the above-mentioned energy loss as a power loss, it affects the driving characteristics of the vehicle, and in the regenerative brake as well, it becomes a power loss as well, so that the motion / position energy that occupies most of the above-mentioned energy consumption can be efficiently recovered. In addition, in order to process the return power of the regenerative brake, it is necessary to install an inverse converter at the substation.
[0006]
Powerful constant torque acceleration is up to the middle speed range (for example, 50km / h) of the entire field of the motor, and the field is weakened (for example, 60 to 40% field) to the high speed range (for example, 80 to 125km / h). However, in the field weakening, the overcurrent resistance of the armature decreases due to the armature reaction, so the acceleration torque has a drooping characteristic that is inversely proportional to the square of the speed, and there is also a reduction in the running resistance of the vehicle that increases with the speed. TheAs acceleration suddenly decreases and acceleration time and distance increase,The driving speed cannot be increased for vehicles at each station.accelerationTo increase the capacity, it is necessary to increase the capacity of not only the electric motor but also the overhead line and the substation, or increase the loss.
[0007]
Recently developed and adopted variable frequency inverterEven in a DC non-commutator motor consisting of an AC induction motor (hereinafter referred to as an induction machine), both voltage and frequency are variably controlled.The strong constant torque range is up to medium speed as above, and the total voltage(Ie constant voltage)・ In the high speed range of variable frequency control, the maximum torque, that is, overload capability isFrequencyTo the square of speedAcceleration torque is inversely proportionalIt has drooping characteristics and has the same problem as above.
[0008]
To solve such problems, Japanese Patent Laid-Open No. 50-111516 “Regenerative braking circuit for a plurality of DC series motors”, Japanese Patent Laid-Open No. 50-119920 “Regenerative brake control device for DC motor”, Japanese Patent Publication No. 50-39887 “ The electric car chopper control device "and Japanese Patent Application Laid-Open No. 55-53101" AC electric car main circuit "have proposed a regenerative brake that has been reinforced to a high speed region mainly by power generation control with a DC series motor. In the line section, the power conversion of nearby vehicles and the reverse conversion device attached to the substation, and in the AC line section, the reverse conversion device of the substation circuit in the vehicle cannot sufficiently and reliably cope with the regenerative power with inrush overload. These proposals have not been fully utilized, and electric-pneumatic brakes that assist wheel brakes (air brakes) with power generation brakes are still mainstream, and the electric torque is the same as above. The extremely small in the drooping characteristic in the high speed range, the acceleration and deceleration does not reach the recovery improvements and all regenerative electric power overall the operation performance (electric-regeneration).
[0009]
In general, a vehicle repeats a start-acceleration-powering-coasting-deceleration-stop or start-acceleration-steady travel-deceleration-stop operation cycle between each station with ascending / descending slopes of the operation section. The main resistance is the running resistance Fv that combines the rolling resistance of the wheel and the air resistance of the vehicle body (in addition, the curved resistance due to the friction between the wheel flange and the rail is added on the curved road), and the inertial resistance accompanying acceleration / deceleration Fi and the slope resistance Fs accompanying uphill / downhill, and the running resistance Fv always takes a positive (+) value, but the inertial resistance Fi and the slope resistance Fs are positive (+) during acceleration or climbing, Taking a negative (-) value when going downhill, at the mileage S, the inertial work amount Wi = Σ (Fi * ΔS) for each driving cycle between stations is the energy of movement, and the climb / Downhill work amount Ws = Σ (Fs * ΔS) is energy of position It works like a reactive power (a metaphor for the reactive component of AC power) that cancels each other as a lug, and the work amount Wv = Σ (Fv * ΔS) for the running resistance is the minimum essential effect for driving the vehicle. It will work as power (a metaphor for the active component of AC power).
[0010]
In addition, there are passengers on the way and commuting / commuting to and from the morning / evening direction in the service section with up / down slopes, and the up / down work amount Ws for each round-trip cycle is unequal load A positive (+) or negative (-) value remains as the minute, but the value is much smaller than the vehicle's own weight, and in a full-day cycle (multiple reciprocation cycles per day), positive / negative cancellation as bidirectional movement You can think of it.
[0011]
The positive (+) side of the reactive power as described above is given by the traction force Fd = Fi + Fv by the electric function of the motor together with the effective power, and the negative (−) side is the braking force Fb by the power generation function of the motor by subtracting the effective power. Recovered by regenerative braking of Fi = Fv, but the power loss of the power circuit of the vehicle including the motor and the control device and the conductor resistance of the overhead line and substation, that is, the copper loss, is far greater than the effective power of steady travel on flat ground It becomes the main factor that impairs the power recovery efficiency in the case of large acceleration / deceleration and reactive power for climbing and descending slopes.
[0012]
It should be noted that steady running occupies most or most of the operation cycle. On flat roads and gentle slope roads, motors and substations are extremely light loads such as half load and four half loads, so copper loss is small. Power efficiency is considerably low due to no-load loss such as loss and excitation power.
[0013]
In view of the above-described problems, the present invention improves the overall efficiency of the vehicle, the overhead line, and the substation by improving the power device of the electric vehicle, reduces the power consumption, and improves the driving performance of the vehicle. .
[0014]
[Means for Solving the Problems]
  In order to achieve the above-mentioned object, in the power device for an electric vehicle according to the present invention, the applicant of the present application has disclosed Japanese Patent Application Laid-Open No. 9-289703 “Power / Power Supply Device for Electric Vehicle” and Japanese Patent Application Laid-Open No. 10-66204 “Pneumatics”.・ Improves the charging / discharging circuit of the power storage device installed in the vehicle as described in `` Power device of electric vehicle '', and mainly stores stored power for overload during start / acceleration and overhead line for steady state load at the end of acceleration and powering In the case of deceleration, braking and downhill deceleration by applying electric power, all regenerative power generated by regenerative braking is prevented by the diode inserted in the power receiving circuit from backflowing to the overhead line, and charged and recovered in the power storage device. Adding a double voltage short-time rating to a continuously rated electric motor to work at double voltage, expanding the powerful torque characteristics including constant torque range to the high speed side for both electric and regeneration, and strengthening the torque in the high speed rangePower equipmentI will provide a.
[0015]
In order to realize the above mechanism, for each power unit in the vehicle, first, a chopper and two reactors sandwiching it are arranged as main control elements, and a connection point between the input reactor and the chopper and a negative line (grounding) A series circuit of a free-wheeling diode and a smoothing capacitor between them and a free-wheeling diode between the input side of the output reactor and the negative line, respectively, and in parallel with the free-wheeling diode for the input reactor and the chopper and output reactor. Between the output side of the chopper and the negative electrode line, and the connection point between the input reactor free-wheeling diode and the smoothing capacitor. And an input side of the output reactor, a contactor having a common actuator (hereinafter referred to as a sub-control contactor) is arranged to constitute an electronic control circuit. To.
[0016]
In summary, this electronic control circuit comprises a chopper, an output reactor and its free-wheeling diode as a step-down chopper circuit, and a filter circuit as an input reactor and a smoothing capacitor. A boost chopper circuit is composed of an input reactor and its free-wheeling diode, and a filtering circuit is composed of a smoothing capacitor and an output reactor, respectively, and storage adjustment and motor armature via a storage side contactor and an electrical side contactor described later Use for control.
[0017]
The chopper is composed of control elements with extremely low commutation loss at high frequency operation, and both the input and output reactors have sufficient reactance to control up and down choppers even in inrush overload current, and copper loss and iron loss are low. In addition, a transient surge voltage absorbing element such as a varistor is disposed between the input side and output side of the electronic control circuit and the negative electrode line.
[0018]
Next, the input side of the electronic control circuit is connected to a power receiving circuit for overhead power via a contactor and a diode (hereinafter referred to as a power receiving contactor and a power receiving diode, respectively). Two contactors are arranged on each side to form a bridge circuit, and the storage circuit and motor circuit are connected to each diagonal point (connection point of both input and output side contactors) via a high-speed circuit breaker. (Hereinafter, a pair of both contactors will be referred to as a power storage side / electrical machine side contactor) to constitute a power control circuit.
[0019]
The power unit is configured taking into account the number of motors and the single unit capacity of circuit elements such as contactors, choppers, diodes, reactors, etc. In an electric passenger car, one motor vehicle is one power unit, and in an electric locomotive, the vehicle In the case of every or particularly high output, it may be divided into a plurality of power units, such as every carriage.
[0020]
For power storage devices, it is desirable to use large-capacity capacitors that do not deteriorate due to extremely low power loss even during rapid and frequent charging / discharging due to inrush / heavy loads. Are connected in parallel, and a disconnector is attached to form one power storage unit. One power unit is supplied via a circuit breaker, and a pressure equalizing line and a disconnector are arranged for all vehicles in the unit train organization. And connected to the power storage unit of the adjacent power unit.
[0021]
The electric motorBoth electric and power generation operate with the same voltage polarity, making excitation control easyAnd the positive and negative torque characteristics are almost symmetrical about the speed axis.DC shunt commutator motorAlternatively, use a DC non-commutator motor that combines an induction motor with an inverter equipped with a freewheeling diode bridge (hereinafter referred to as “inverter”).ArmatureOr armature windingArrange the connection switching circuit, field excitation control and forward / reverse switching circuit,Connected to the above-mentioned electronic control circuit having the armature control function corresponding to both positive and negative loads by the step-down / boost chopper, and the following motor control device is configured (in the case of a DC non-commutator motor using an induction machine) The voltage and frequency of the step-down / step-up chopper and inverter are variable, and the armature control function has a constant torque characteristic that is almost symmetrical between positive and negative).
[0022]
Branch from the storage circuit side of the power control circuit by a circuit breaker, and a chopper and a free wheel diode are provided for field control of the electric motor. The chopper has all excitation and droop torque ranges in the constant torque range during acceleration / deceleration The field control function is combined with the direct winding characteristics of the motor and the constant speed splitting characteristics during steady driving (in the case of a DC non-commutator motor using an induction machine, the inverter's constant voltage and variable frequency can be The field control function of drooping torque and constant speed characteristics, which are almost symmetric with respect to positive and negative, is the same as that of a commutator motor. ) .
[0023]
  All voltage continuous ratingBy strengthening armature insulation and commutator without increasing size, structure and strengthUnder the constant voltage of DC shunt commutator motor with double voltage short-time rating and DC power supply such as overhead wire,The motor is connected in parallel with the armature. 2 Working with voltage doubler, under constant magnetic field, the constant torque range of armature control by step-down / boost chopper and drooping torque range by field control are both electric and regenerative.Accelerate and decelerate in a short time with the torque characteristics extended to double speed,And the motor works at full voltage with the series connection of armaturesTo run at a constant speed in the field control droop torque rangeAn electronic control circuit having the configuration is arranged to constitute a power device for an electric vehicle.
[0024]
  All voltage continuous ratingWithout changing the design of both sidesRoute 3 (square root of 3 = 1.732; hereinafter referred to as 1.732 in addition to the special note) double voltage short-time rating, a DC non-commutator motor combining an inverter with an inverter, and a constant voltage of a DC power source such as an overhead wire UnderWith the delta (hereinafter referred to as Δ) connection of the armature winding, the motor 1.732 The electric motor and the regenerative torque range are controlled by the variable voltage control using the step-down / boost chopper and the variable frequency control by the inverter and the variable frequency control by the constant voltage of the armature winding.Accelerate and decelerate in a short time by expanding to 1.732 times speed,And star (hereinafter, Y The motor works at full voltage when connectedTo run at constant speed and constant speed in the droop torque range of constant voltage / frequency controlThe electronic control circuit and the driving operation device having the configuration are arranged to constitute a power device for the electric vehicle.
                            -Or more-
[0025]
The series-connected armature of the DC shunt commutator motor described above 2 Of the above-mentioned armature winding star connected DC non-commutator motor 2 Further, a direct / parallel connection switching circuit is arranged on the DC side of the base to form an all-series and series-parallel connection or a star series (hereinafter referred to as Y series) and star parallel (hereinafter referred to as Y parallel) connection. Accelerating and decelerating in a strong torque range including a constant torque range where the motor is operated at full voltage in series-parallel or star-parallel connection, and switching to full-series or star-series connection at a predetermined operating speed to make the motor half voltage The motor control device is configured so that medium speed steady running is possible in the drooping torque range operated by the motor.
[0026]
A DC non-commutator motor in which a thyristor is combined with a synchronous motor (hereinafter referred to as a synchronous machine) includes an armature winding connection switching circuit similar to a DC non-commutator motor in which an inverter is combined with an induction motor, A field control circuit similar to that of the wound commutator motor is provided and operates in the same manner as the above [0021] and [0022]. Details will be described later for reference.
[0027]
The master controller arranged in the cab has operation notches of 0, 1, 2, and 3 on the side of the operation lever. 0 notch is “off”, 1 notch is low speed operation, 2 notch is medium speed operation, 3 notches are used for high-speed operation, and each of the 1st, 2nd and 3rd speed notches is pushed forward to accelerate, later pulled to decelerate, and neutral and steady running control function. The output function, the key lever has operation notches of “forward”, “off”, and “reverse”, respectively, and the air valve for wheel brake operation has the operation positions of “braking”, “hold”, “release” have.
[0028]
In the case of direct / parallel power units of two motors, the operation levers are changed to 0, 1, 2 and the operation steps 0, 2, and 3 above, 1 step is low / medium speed operation, 2 step is high speed operation Other than the above, the same as above.
[0029]
For each unit train formation of permanent connection from the storage circuit, it is branched by a circuit breaker, an inverter and a transformer are arranged, a low-voltage AC for auxiliary equipment and lighting, a rectifier and a storage battery are arranged, and a headlight / signal lamp and control Used for in-vehicle power supply for emergency low-voltage direct current.
[0030]
A voltage / current sensor is arranged in each circuit of the power reception, storage, and motor (armature and field), and a speed sensor is arranged on the axle for control and display.
[0031]
A vehicle operating in a steep slope section with a high head can be provided with a regenerative delivery contactor and a diode between the motor circuit and the power receiving circuit.
[0032]
In an AC or AC / DC electric vehicle, the DC side of the transformer rectifier arranged in the power receiving circuit is connected to the power control circuit via the power receiving contactor described above.
[0033]
A generator driven by a diesel engine, gas turbine, or the like under the floor of an accompanying vehicle permanently connected to a motor vehicle or in a locomotive cabin (a configuration similar to the above-described two-winding non-commutator motor) is desirable. It is also possible to configure a power device for an electric powered passenger car or an electric powered locomotive that is connected to a power receiving circuit and is operated in a non-electrified section or both electrified and non-electrified sections.
[0034]
[Action]
  Regarding the operation of the vehicle power unit of the present invention configured as described above,Explained below, the DC commutator motor Y Δ or Y series· Y In the following explanation, each of the parallel and Δ parallel connections and the root triple voltage and the root triple speed are each of the series / parallel or all series / series parallel / all parallel of the DC shunt commutator motor, in addition to the special note. It is considered as the same function as the connection, and it is described as a double voltage / double speed as the same function as the double voltage / double speed.
[0035]
The overhead line power is supplied to the storage circuit and the motor circuit through the electronic control circuit of the power receiving circuit and the power control circuit, but the stored power and regenerative power are not sent back to the overhead line by blocking the backflow of the power receiving diode. Is charged and held at a high level even when the overhead wire voltage fluctuates.
[0036]
The stored power is fed directly to the motor circuit via the opposite side contactor and the electronic control circuit together with the received power through the contactor bridge on the output side of the contactor bridge of the power control circuit, and the motor circuit is electrically operated to drive the vehicle. In addition, the regenerative electric power generated by the electric power generation operation of the electric motor circuit is similarly charged via the contactor bridge, directly and through the electronic control circuit, and charged in the storage circuit to brake the vehicle.
[0037]
Electronic control circuit step-down / step-up chopper control and full field excitation (hereinafter referred to as full field magnet) perform slow start of the vehicle and constant torque acceleration / deceleration, direct power supply / charging of all voltage and field control of the motor. Then, drooping torque acceleration / deceleration and constant speed steady running are performed.
[0038]
The main control contactor of the electronic control circuit is closed to form a series circuit of the input reactor, chopper and output reactor, and the armature current of the all-field motor is controlled to a value commensurate with the slow start and acceleration by the step-down chopper control ( (Hereinafter referred to as electric armature control), and the sub-control contactor is closed and the output side of the chopper is dropped to the negative line to form a series circuit of the input reactor, the freewheeling diode and the output reactor, and the boost chopper control Then, the power storage circuit is charged, and the armature current of the all-field motor is controlled to a value commensurate with the deceleration (hereinafter referred to as regenerative armature control).
[0039]
Prior to the above step-up chopper control operation, the power receiving contactor is opened to prevent the incoming power from flowing into the motor circuit and the electronic control circuit whose voltage decreases with deceleration, and the motor circuit voltage of the main circuit including the armature. When it drops to the conductor resistance drop value, the regenerative brake shifts to the power generation brake, brakes to a very low speed just before the stop, and stops at a predetermined position by the wheel brake.
[0040]
In the above-described full-voltage field control operation (acceleration / deceleration of drooping torque and steady running), the sub-control contactor is closed, the boost chopper is inoperative, that is, the received power of all voltages is electrically fed and charged, but the overhead line voltage increases rapidly. Immediately switch to the main control contactor and avoid excessive inrush charging of the storage circuit by operating the current limiting chopper.
[0041]
The main control or sub-control contactor of the electronic control circuit forms a step-down or step-up chopper control circuit to adjust power supply and charging, so that the stored voltage remains at the rated value even when the overhead line voltage fluctuates, or the condition of the ramp path Accordingly, the stored voltage can be adjusted to be lower or higher in advance.
[0042]
For initial charging when the power storage device is installed and when a faulty power storage element is newly replaced, or for recovery charging of self-leakage discharge during nighttime pauses, the motor circuit is disconnected by the electrical contactor, the main control contactor is closed, and the step-down chopper control is performed. Suppress the inrush current of the power receiving charge, and when the stored voltage recovers close to the power receiving voltage, switch to the sub-control contactor and return to full voltage charging.
[0043]
In each of the above-mentioned items, in both cases of the main and sub-control contactors, intermittent current is generated by the chopper control operation, but the current of each circuit of the power receiving, power storage and motor is smoothed by both the reactor, smoothing capacitor and freewheeling diode. In addition, the copper loss of each circuit due to the intermittent current having a low waveform rate is avoided, and the inductive failure of the overhead wire to the joint communication line is prevented.
[0044]
During acceleration and steady running, the received power passes through the electronic control circuit, so the noise current generated from the motor commutator (thyristor set in a non-commutator motor) is filtered by the above circuit (Filt), During deceleration, it is interrupted by the power receiving contactor and the power receiving diode, so there is no inductive interference to the communication line.
[0045]
When each contactor associated with the operation of the vehicle and each circuit breaker associated with a circuit failure are shut off, high voltage transient surge energy generated from both reactors and coming from the overhead line or the motor circuit is connected to the reactor by a capacitor, diode and varistor, respectively. Protects choppers and diodes by being absorbed in a closed circuit.
[0046]
In a normal operation cycle, the stored voltage is higher than the overhead line voltage due to charging with regenerative power in the deceleration braking of the previous cycle. When the voltage drops to the voltage, it starts to shift to the received power, but the resistance of the storage circuit is significantly lower than that of the overhead circuit, so the inrush overload of the motor during acceleration is greatly biased to the stored power and reaches the latter half of the acceleration, and the supply power with the received power is moderate The auxiliary charging is continued until the stored voltage returns to the original overhead line voltage during steady running.
[0047]
The received power is maximum at the time of transition from the late stage of acceleration to steady running, but is much lighter due to the inrush overload of the motor, decreases as the auxiliary charging progresses, and becomes only the steady running load at the end of auxiliary charging.
[0048]
In vehicle deceleration braking, the field current is increased, the motor circuit voltage becomes higher than the storage / overhead voltage, the regenerative brake works, the backflow is blocked by the power receiving diode, the overhead line becomes unloaded, With the magnetism and the boost chopper control, the regenerative power is returned to the power storage circuit and is charged and recovered in the power storage device, and the power storage voltage becomes higher than the overhead line voltage.
[0049]
When climbing on a slope road, gradient resistance is added, and the overhead load increases even during steady running, but the steady running load is below the full voltage rating of the motor because of the speed according to the gradient, and as described above, the stored power during acceleration An overhead charge is added to the consumption supplementary charge, but it is much lighter than the rush overload during acceleration.
[0050]
On the downhill, the slope resistance is negative (-), so it shifts to regenerative braking at the end of acceleration, and then the stored voltage is restored by supplementary charging. Since the battery is continuously charged with regenerative power, the stored voltage becomes higher than the overhead line voltage, and on the following flat road or uphill road, the vehicle runs only with the stored power, and when it returns to the overhead line voltage, it shifts to the received power.
[0051]
During uphill power running, the received power is throttled by the step-down chopper control, and the stored power corresponding to the gradient resistance is extracted to add to the received power, and the overhead line load is reduced to near the steady running resistance of the uphill semi-gradient. The storage voltage is lowered for a while to offset the increase in the storage voltage due to the regenerative charging of the downhill deceleration on the way home, or the power receiving contactor is opened on the flat and uphill road before the downhill, and only the stored power can be operated. The stored voltage can be lowered in advance to avoid over-boosting (overcharge) at the end of the downhill on a high-fall steep slope.
[0052]
In addition, because of the supplementary charging during steady running of the above operation cycle or the summer / winter cooling / heating load, some regenerative power for downhill suppression is consumed, so there is no charge adjustment as described above, and the normal slope of the head Can correspond to the road.
[0053]
The large-capacity capacitors that make up the power storage device have an effective floating charge / discharge function regardless of fluctuations in the overhead line voltage. Responding quickly to voltage increases / decreases (charging / discharging voltage difference) and time lag (Time Lag), power loss is extremely small, and it does not deteriorate even with frequent repetition.
[0054]
In the event of an internal short circuit due to an electrical breakdown of the storage element, the fuse is surely blown by an instantaneous short-circuit current and the failed storage element is quickly disconnected, and the short-circuit energy is localized to suppress its bursting / fire, Resume and continue operation in cooperation with the storage circuit, open the disconnector of the power unit and the disconnector with fuse while the operation is stopped, replace the failed storage element and fuse, and restore the charge, then with the fuse The disconnector can be closed and restored.
[0055]
The loss of the electronic control circuit chopper is very small even when operated at a high frequency such as 1000 Hz, and the reactor can achieve high reactance even at a small inductance at such a high frequency. Its power loss (copper loss + iron loss) can be made much smaller than that of an electric motor.
[0056]
Starts slowly in all series by controlling all fields of the motor and step-down chopper, then switches to series-parallel and all-parallel in order to accelerate constant torque, then shifts to drooping torque acceleration of double voltage field control at its upper limit speed, and performs predetermined operation When the speed is reached, return to series-parallel to shift to steady running of all-voltage field control.Also, slow down the drooping torque of double-voltage field control in all-parallel, and shift to full-field / boost chopper control at the lower limit speed. Then, constant torque deceleration is performed by sequentially switching to all series.
[0057]
Note that in low / medium speed running, acceleration / deceleration is performed in all series or series-parallel depending on the driving speed, and steady running is performed while remaining in series or returned to all series.
[0058]
If the master controller's control lever is advanced from 0 notch to any one of 1, 2, or 3 fast notch, it starts in slow speed in all series, and if pushed forward, it accelerates and the last stage of the operation notch (1 notch remains in all series) (2 notches are in series parallel, 3 notches are all in parallel) automatically advance according to the speed, or if pulled later, decelerate and automatically return according to the speed. When returning to neutral (running), the control device memorizes the speed, returns to the control stage corresponding to the speed (all series at low / medium speed, series parallel at high speed), constant speed control to the memorized speed, steady running, If the notch is returned to 0 notch, the motor circuit is disconnected and coasts, and if it is advanced to the notch again, the speed is controlled at a constant speed.
[0059]
If you continue to pull the control lever, it will continue to decelerate automatically while moving back to the whole series, and will switch from the regenerative brake to the power generation brake. Returning to the notch, the brake air valve is operated to stop at the wheel brake, and during steady running (low / medium / high speed), it automatically shifts to electric power running or regenerative deceleration according to the track gradient.
[0060]
Double voltage in parallel or all-parallel connection (Δ connection or Δ parallel connection 1.732 In the high voltage range, the overload armature current (armature winding current) is expanded to the double speed without increasing copper loss in the same way as the constant torque range of all voltages in series or series-parallel connection. In addition to the constant torque range, the maximum operating speed in the subsequent droop torque range (weakening field at all voltages) 40% )The field is2 Double80% (The field flux in Δ connection or Δ parallel connection is 1.732 Double70%)Torque is powerful both for electric and regenerative operation, and significantly increases the average acceleration / deceleration without increasing the passenger's acceleration feeling., Acceleration / deceleration time and distance in high-speed operation are significantly reduced.
[0061]
In all-parallel voltage doubler acceleration / deceleration, at the upper speed limit, the discharge / charge inrush current of the storage circuit reaches twice that of series-parallel (1.732 times that of Y-parallel in Δ-parallel). The extremely small conductor resistance including the wiring efficiently processes the kinetic energy in the vehicle without increasing the overhead load.
[0062]
Since the armature voltage is proportional to the speed and the iron loss is proportional to its square, the double-voltage (1.732-fold voltage for Δ parallel) and the iron loss is four times (three-fold for Δ parallel) at the constant torque upper limit speed in all parallels. However, the average value is considerably smaller than the copper loss due to the inrush current during acceleration, the increase rate of the total loss is small, and the armature does not heat up very much because of short-time operation (1 minute or less).
[0063]
Steady driving is at high speeds.In series connection or series-parallel connectionArmature full voltage, low and medium speed range with all series connected armature half voltage,In each droop torque range, Constant speed operation with field control, no iron loss and exciting powerReductionIn addition, the efficiency of the motor is gained by coordinating losses with copper loss of light load (almost half load at high speed operation at flat and gentle slope, and almost half load at medium speed operation).
[0064]
By switching the motor in series / parallel according to the running speed, except for start and deceleration end, chopper operation drop / boost control rate during constant torque addition / deceleration ε = Vm / Vc (Vm is motor circuit voltage, Vc is storage circuit voltage) ) Within 0.5 to 1, localizing the power loss of the electronic control circuit, that is, the control loss, and only the flow of the received power during droop torque acceleration / deceleration and steady running. Regenerative power will be exchanged directly.
[0065]
Near the upper limit of the constant torque in the all-parallel and the drooping torque range, the armature iron loss increases and the motor becomes a super iron machine state as described above. However, the armature total loss does not increase so much at full load current, so it is about several minutes. Short-time operation is possible, and a button on the head of the operating lever can be pushed to run through a steep road of several kilometers in full parallel while running at high speed.
[0066]
In the above-mentioned Japanese Patent Laid-Open No. 9-289703, in each connection of the armature windings of a DC non-commutator motor using a synchronous machine, the regenerative region works at a power supply voltage or higher such as an overhead wire, so the regenerative voltage of the motor output is about the power supply voltage. The voltage reaches a remarkably high voltage such as twice, and the power supply voltage is reduced by controlling the high voltage rated step-down chopper to charge the power storage device, and a double voltage conversion circuit is added to enable further slow regeneration. Since the electric range works at the power source voltage and below the rated voltage of the motor, the high speed range is a field-field drooping torque as in the prior art, and is positive (electric) as in the above-mentioned Japanese Patent Laid-Open No. 50-111516. -Although it is a negative (regenerative) asymmetric torque characteristic, in the present invention, in a DC non-commutator motor using a DC shunt commutator motor or an induction machine, both an electric armature or Armature winding Work by receiving the electric motor is the total voltage and voltage doubler connection switch, the positive and negative substantially symmetrical torque characteristics, it is an extension of the double-speed by voltage doubler.
[0067]
In the above-mentioned JP-A-10-66204, ( A ) "Using a DC non-commutator motor or a DC series commutator motor using a synchronous machine. Basically, as in the above Japanese Patent Laid-Open No. 9-289703, the regenerative region is operated at high speed by overvoltage operation exceeding the power supply voltage. The regenerative torque in the region is strengthened, but the electric region operates at a power supply voltage and lower than the rated voltage of the motor, so that the drooping torque of the field weakening in the high speed region is a positive / negative asymmetric torque characteristic ”, and ( B ) As an effect of the invention, “the armature winding of the DC non-commutator motor Y All outputs at connection (120 in Table 1 of Example 1) KW ), The control element is strengthened, and a steady output of 208 times the rated route with Δ connection (208 in Table 1 of Example 1). KW ) ”, But it has a rated output of 3 times the root (208 KW ), And in the present invention, as described above, A ) "DC non-commutator motor using induction machine or DC shunt commutator motor is used, both of which are positive by operating the root triple voltage (or voltage doubler) of the basic rated voltage of the motor under DC power supply voltage.・ Negatively symmetrical torque characteristics are expanded to the root triple speed (or double speed) to enhance the torque in the high speed range for both electric and regenerative operation ”, and ( B ) "Iron loss Three Double (or Four In consideration of the increase in temperature due to the doubling), all voltage continuous ratings of the basic rating (for example, the rated output is 120 in the above example) KW ) The motor's dimensions, structure, and strength, etc. without changing the machine / electrical design (however, it is necessary to increase the dielectric strength), but the route triple voltage (or voltage double) suitable for short-time operation of acceleration / deceleration is short The torque characteristics of the DC non-commutator motor using the induction machine are the same as those of the DC shunt commutator motor, but the mechanism for forming the torque characteristics is the same. Since it is different, it will be described below.
[0068]
In a DC non-commutator motor using an induction machine, the exciting current that forms the field magnetic flux of the motor flows in the armature winding together with the armature current, so a DC shunt commutator motor or a DC non-commutator motor using a synchronous machine It cannot be controlled independently like the field current, and is controlled by the voltage and frequency of the inverter. The variable current and voltage controls both the excitation current, that is, the field magnetic flux and the armature current, resulting in constant torque characteristics. The constant voltage and variable frequency form a field magnetic flux that is inversely proportional to the speed (proportional to the frequency), and the armature current limit is proportional to the excitation current, that is, the field magnetic flux. 2 This is a drooping torque characteristic that is inversely proportional to the power, and is similar to the constant torque characteristic by armature control and the drooping torque characteristic by field control of the DC commutator motor described above. The diode bridge rectifies the armature electromotive force and generates regenerative torque similar to that of electric motor by regenerative braking of the return flow to the DC power supply side, and forms a torque characteristic that is almost symmetrical between positive and negative.
[0069]
On a downhill with a special high-head steep road with energy exceeding the storage capacity and a reverse power processing function, open the electrical side contactor in normal driving, disconnect the power control circuit, and close the regenerative delivery contactor The regenerative power can be sent directly to the overhead line.
[0070]
The transformer / rectifier of the power receiving circuit of an AC or AC / DC electric vehicle is mainly used for steady running load and auxiliary charging, and most of the inrush load during acceleration is stored, and the deceleration and downhill deceleration load stores all power. Since it is processed by the circuit, it is light load and light debt like the above-described overhead circuit, and the output voltage is changed by switching the transformer tap, and the stored voltage is maintained at the rated value or in advance according to the slope condition It can also be adjusted higher or lower.
[0071]
In an electric vehicle, the generator rectifier has a light load and light debt as described above, and the armature connection and the engine speed are changed according to the load, and the engine and generator are made efficient over the entire load. The stored voltage can be held or adjusted in the same manner as described above by changing the generated voltage.
[0072]
【Example】
As an embodiment, an electric passenger car having four motors and a four-axis drive electric car as one power unit will be described and described with reference to the drawings.
[0073]
[Power Receiving Circuit] In FIG. 1, the power of the overhead wire 1 includes a power receiving circuit 5 including a current collector 2, an inter-vehicle feeder 3 and a high-speed circuit breaker 4, a diode 6 (power receiving diode in the previous column), and a contactor 7 (front column). To the following reactor 8 (input reactor in the previous column).
[0074]
[Electronic control circuit] Two reactors 8 and 10 (input and output reactors in the previous column) are arranged with a chopper 9 therebetween as a main control element, and a diode is provided between the output side of the reactor 8 and the negative electrode line 11. 12 (return diode for the input reactor in the previous column) and the capacitor 13 (smoothing capacitor in the previous column) are connected in the reverse polarity between the input side of the reactor 10 and the negative electrode wire 11 with the diode 14 (the output reactor in the previous column). And a contactor 15 (main control contactor in the previous column) having a common actuator in parallel with the diode 12 and between the chopper 9 and the reactor 10, and the output side of the chopper 9. Contactor 16 having a common actuator between the connecting point of the diode 12 and the capacitor 13 and the input side of the reactor 10 (front The sub-control contactors), by disposing respectively, constituting an electronic control circuit 17.
[0075]
It should be noted that varistors 18 and 19 having a transient surge energy absorption capacity with a small leakage current and a sufficient leakage current at the circuit voltage are arranged between the input side and the output side of the electronic control circuit 17 and the negative electrode line 11, respectively.
[0076]
[Negative Electrode Circuit] The negative electrode wire 11 is connected and grounded to the track 22 via the axle current collector 20 and the wheel 21.
[0077]
[Power Control Circuit] A power control circuit 27 is configured by adding two contactors 23, 24, 25, and 26 to the input side and the output side of the electronic control circuit 17 in a bridge shape, and a pair of the contactor bridges. High-speed circuit shut-off at each corner point, that is, each connection point between the input side and output side contactor pair 23/25 (previous column storage side contactor) and contactor pair 24/26 (previous column electrical side contactor) The storage circuit 29 and the motor circuit 31 are connected via the devices 28 and 30.
[0078]
[Storage circuit] The storage circuit 29 includes a disconnector 32 and a storage unit 33. In FIG. 2, a disconnector 35 with a fuse is arranged in series with a storage element 34, and a plurality of sets thereof are connected in parallel to form a storage unit 33. In addition, a pressure equalizing line 36, disconnectors 37 at both ends thereof, and jumper wires 38, 39 between the vehicles are arranged for each vehicle of unit train organization, and each power storage unit 33 is connected to an adjacent one (illustrated dotted line). To do.
[0079]
[Motor Circuit] In FIG. 3, the armatures 41 (M1, M2, M3, and M4) of the four motors have the shunt field 42 (F) and the auxiliary pole 43 (AP), and the armature 41 is in contact with the armature 41. Units 44 and 45 are closed in series (four units in series), contactors 45 and 46 are closed in series-parallel (two sets of two units in series), contactors 46 and 47 are closed in parallel (four units in parallel) 3), the field magnet 42 is connected in series, is switched between forward and reverse by the contactors 48 and 49, is excited and controlled by the chopper 50 (separate excitation), and the diode 51 is used as a freewheeling diode. In cooperation with the reactance of the magnetic winding 42, the field current If is smoothed.
[0080]
[Field Control Characteristics] The chopper 50 is provided with an excitation control function of acceleration / deceleration series winding characteristics (proportional to the armature current Ia) and steady running shunt characteristics (constant speed control).
[0081]
[Operation Mechanism] In FIG. 4, the operation control lever 53 of the master controller 52 arranged in the cab of the vehicle has a crossing mechanism on the left and right and front and rear, and is cut off with 0, 1, 2, 3 notches from the left. ”,“ Low speed ”,“ medium speed ”,“ high speed ”corresponding to the high speed, push forward at each speed notch to“ accelerate ”, pull back to“ decelerate ”, neutral“ constant speed ”and the control lever The head of 53 has the control function of the button 54 “boost”, and the front push (acceleration) has a self-return mechanism (Spring-Return) and the rear pull (deceleration) has a hand-return mechanism. Make it.
[0082]
The key lever 55 has “forward,” “off,” and “reverse” notches, and the brake air valve 56 has “brake,” “hold,” and “release” lever positions. A storage voltmeter 58 (2-needle display), a power reception / storage ammeter 59 (2-needle display), an electric motor ammeter 60 and a brake air pressure gauge 61 are arranged.
[0083]
[Low-voltage power source in vehicle] Referring again to FIG. 1, the battery branches from the storage circuit 29, is converted into a three-phase alternating current by the inverter 62, and is supplied to the in-vehicle auxiliary equipment and lighting equipment, and the storage battery 64 is charged by the rectifier 63. Use low-voltage DC power supplies for lighting and signal lights and emergency / control.
[0084]
[Various Quantity Sensors] Voltage sensors 65 (power reception Vt), 66 (power storage Vc), 67 (armature group Vm), current sensors 68 (power reception It), 69 (power storage Ic) are used for control and display in main circuits. ), 70 (armature group Im), 71 (field If), 72 (low voltage power supply Iax) and axle 21 are provided with a speed sensor 73 (traveling speed v).
[0085]
[Regenerative Sending Circuit] In a vehicle operating in a special high head steep section having a reverse power processing function (not shown) or a power storage function (for example, a plurality of power storage devices 74 as shown by dotted lines) in the overhead circuit 1, power control is performed. A contactor 75 and a diode 76 (regenerative delivery contactor / diode in the previous column) can be additionally provided on the electric side of the circuit 27 as shown by dotted lines. In this case, the commutator of the motor (in a non-commutator motor, The reactor 77 for eliminating the noise current generated from the thyristor set) and the capacitor 78 are required.
[0086]
[Operation and Characteristics] In the embodiment having the above-described configuration, the operation and characteristics will be described with reference to the general table 1 with reference to the drawings. Four arithmetic operation (addition, subtraction, multiplication, division) symbols are represented by “+ ,-, *, / "Are used, and squares and square roots are represented as E ^ 2 and 3 ^ 1/2.
[0087]
[Table 1]
Figure 0004200512
[0088]
[Chopper Control Operation] In FIG. 1, the contactor 15 is closed and the diode 12 is connected to a side circuit and a series circuit of a reactor 8, a chopper 9, and a reactor 10, and a capacitor 13 and a diode 14 between each connection point and the negative electrode line 11. Is formed (hereinafter referred to as the control C1 mode), and the full voltage and step-down control (hereinafter referred to as step-down chopper control) of the chopper 9 or current limiting control (hereinafter referred to as current limiting chopper). Or the contactor 16 is closed to form a π-type circuit in which the chopper 9 and the diode 14 are inserted between each connection point and the negative electrode line 11 in the series circuit of the reactor 8 -the diode 12 -the reactor 10. (Hereinafter, this is referred to as a control C2 mode), and the cut-off total voltage of the chopper 9 and the boost control (hereinafter referred to as boost chopper control) are performed.
[0089]
[Receiving / Charging] The received power Pt always passes through the electronic control circuit 17 and is normally charged with the chopper cutoff full voltage in the control C2 mode. However, the storage voltage Vc is kept high due to the backflow prevention of the diode 6. In addition, when the overhead line voltage rises rapidly, the control mode is immediately switched to the control C1 mode, and excessive inrush charging is avoided by current limiting chopper control.
[0090]
[Electric traction] The contactors 23 and 26 on the opposite sides of the contactor bridge are closed (hereinafter referred to as the operation A mode), and the stored power Pc and the received power Pt are both controlled by the step-down chopper control in the control C1 mode. The contactors 25 and 26 on the adjacent sides are closed instead (hereinafter referred to as “operation M mode”), and the electric power circuit Pc is directly accumulated with the stored power Pc of the full voltage and the received power Pt of the chopper cutoff full voltage in the control C2 mode. Power is supplied to 31, and the vehicle is pulled by electric operation.
[0091]
[Regenerative braking] During steady running in the M mode, the field is strengthened and the armature group voltage Vm of the motor circuit 31 is increased directly at the full voltage, and then the contactors 24 and 25 on the opposite sides of the contactor bridge are closed. In the control C2 mode (hereinafter referred to as operation B mode), the armature group voltage Vm, which decreases with deceleration, is raised by boost chopper control, the motor circuit 31 generates power, the regenerative brake works, and the regenerative power Pm is stored. Returning and charging the circuit 29 to brake the vehicle.
[0092]
When switching to the operation B mode, the contactor 7 is opened, and the power receiving circuit 5 is disconnected from the motor circuit 29 and the electronic control circuit 17 where the circuit voltage Vm decreases with deceleration, and the motor circuit voltage Vm is input reactor at the end of deceleration. When it falls to the resistance drop of the main circuit conductor including 8, it shifts to the power generation brake and decelerates to a very low speed just before the stop.
[0093]
[Operation characteristics] In the operation A / B mode, the armature control by the down / boost chopper control and the constant excitation / deceleration are performed by the full excitation field by the chopper 50, that is, the whole field. The voltage and excitation control by the chopper 50, that is, field control, performs the drooping torque acceleration / deceleration with the direct winding characteristic and constant speed steady running with the split winding characteristic.
[0094]
[Smoothing / Filtering] In both the control C1 and C2 modes, the intermittent current due to the control operation of the chopper 9 is received by the filtering action of the reactor 8 and the capacitor 13 and the freewheeling action of the reactor 10 and the diode 14. Smoothing the currents It, Ic, Im of the circuits 5, 29, and 31 of the storage and motor to suppress an increase in copper loss due to an intermittent flow having a small waveform rate, and to prevent inductive disturbance to the communication line parallel to the overhead line 1 .
[0095]
The received power Pt passes through the electronic control circuit 17 in both the operation A and M modes. However, the received power Pt is filtered in the same manner as described above with respect to noise current generated from the commutator of the motor 47 (a thyristor in the case of a non-commutator motor). In the operation mode B, the power receiving circuit 5 is disconnected by the contactor 7, so that no noise current is generated in the overhead wire 1.
[0096]
[Protection of control element] Transient surge energy of reactors 8 and 10 due to the operation of the circuit breaker due to the opening and short-circuiting of the contactor in the switching of the operation mode, the control mode and the armature connection described later is connected to each. The closed circuit formed by the capacitor 13, the diodes 12 and 14, and the varistors 18 and 19 absorbs external surge energy from the overhead circuit 1 and the motor circuit 31 by the varistors 18 and 19 and protects the control elements of the electronic control circuit 17. .
[0097]
[Equivalent Circuit] In FIG. 5, if the main part of FIG. 1 is shown in an equivalent circuit, the substation 79 has the reactance xs of the transformer rectifier having the power supply voltage Es and the winding resistance rs, and the overhead line 1 has the substation 79. There is an overhead wire resistance rt depending on the distance from the cable, and voltage drops es and et occur with respect to the overhead wire load current It, respectively, and the overhead wire voltage Vt at the power receiving point (current collector 2) of the vehicle Power is supplied and the power supply efficiency is ηt = Vt / Es.
[0098]
The incoming current It from the overhead line 1 causes a voltage drop eL through the circuit resistance rL (mainly the conductor resistance of the reactors 8 and 10) of the electronic control circuit 17 of the operation control circuit 27, and at the voltage Vc or Vm, the contactor The storage circuit 29 and the motor circuit 31 directly connected by the contactors 24 and 26 are connected to the storage circuit 29 through the contactors 24 and 26 (M mode) adjacent to the load side of the bridge. The charging / discharging current Ic and the armature group current Im, which are obtained by accumulating the receiving current It according to the running load, are used to transfer power, and the voltage drop ec and the armature group electromotive force Em due to the storage voltage Ec and the conductor resistance rc, respectively. And a voltage drop em due to the armature group resistance rm.
[0099]
During constant torque acceleration / deceleration, it passes through the resistance rL of the electronic control circuit 17 in the operation A mode or B mode.
During acceleration (A mode)
Storage circuit voltage Vc = Ec-ec = Vt = Vm + eL
Electronic control circuit voltage drop eL = (Ic + It) * rL (discharge / power reception)
Motor circuit voltage Vm = Em + em (Electric)
During deceleration (B mode)
Storage circuit voltage Vc = Ec + ec = Vm-eL
Electronic control circuit voltage drop eL = Ic * rL (charge)
Motor circuit voltage Vm = Em-em (regeneration)
The in-vehicle power efficiency ηp is ηp = Em / Ec for electric drive and ηp = Ec / Em for regenerative operation. In the processing of electric / regenerative electric power during acceleration / deceleration with inrush overload, The voltage drops eL, ec, and em of the power control circuit 27, the storage circuit 29, and the motor circuit 31 are factors of the total power efficiency ηp in the vehicle (ignoring because the wiring in the vehicle is short and the conductor resistance is extremely small). The power recovery efficiency is ηp ^ 2.
[0100]
At the end of acceleration, steady running, and early deceleration, power is directly transferred between the storage circuit 29 and the motor circuit 31 in the operation M mode, and these voltage drops ec and em are not accelerated or decelerated. Although it is the same as the above, it is small in steady running, and in the electronic control circuit 17, only the received current It and its voltage drop eL are small, but no load such as the iron loss pmi of the armature 41, the excitation power pf of the field 42, etc. The loss significantly affects the in-vehicle power efficiency ηp, that is, the power recovery efficiency ηp ^ 2, and steady driving occupies most of the driving cycle (mostly in the case of express trains passing through small stations).
[0101]
[Characteristics of Storage Circuit] In FIG. 6, the stored electricity amount Q (horizontal axis) of the storage circuit 29 having the capacitance C is proportional to the stored voltage Ec (vertical axis), that is, Q = C * Ec, and stored power amount W ( The horizontal axis) is proportional to the square of the storage voltage Ec, that is, W = C * Ec ^ 2, and the charge / discharge power amount δW = Wo * () with respect to the stored power amount Wo of the rated voltage Eo and the storage voltage increase / decrease ± δE. 2 * δE ± δE ^ 2) (absolute value) can be used, and the average value thereof is Wc = 2 * δE * Wo (center value of the storage voltage Eco slightly higher than the rated voltage Eo (δE ^ 2/2). Absolute value).
[0102]
Since the storage element 34 is electrostatic in its storage principle, it quickly responds to an inrush overload during acceleration / deceleration, and the circuit resistance rc including the opposing and leading conductors is extremely small, so that the charge / discharge current Ic On the other hand, the voltage drop ec and the power loss wc are very small.
[0103]
[Mechanical Behavior in Operation Cycle] In FIG. 7A, the traction force Fa is generated by armature control at the departure point {circle around (1)}, and the acceleration force αc is approximately linear with inertia force Fia = traction force Fa−running resistance Fv. In other words, acceleration is performed with a constant torque, and when the upper limit speed vac is reached, the field control is switched to (4), the drooping torque acceleration of the curve αd, and when the operating speed v is reached (4) d, the running resistance Fv is changed to steady running. Switch.
[0104]
When the braking start force Fb by the field control is generated at the deceleration start point {circle over (5)} d, and when the inertial force Fib = braking force Fb + running resistance Fv reaches the drooping torque deceleration of the deceleration βd, the field control lower limit speed Vbc is reached at {circle over (5)}. Instead of armature control, when the constant speed deceleration of deceleration βc is reached and the fine speed vw is reached, the wheel brake is switched to {8} and stopped at the stopping point {9}.
[0105]
The running resistance Fv is composed of rolling resistance of a vehicle wheel (substantially constant), mechanical resistance of a rotating part including an electric motor (substantially proportional to the speed v), and air resistance (proportional to the square of the speed v).・ It is light at medium speed, but increases considerably at high speed.
[0106]
[Energy Account] In the operation cycle, the integrated values Wa, Wvv, and Wb for the distances Sa, Sv, and Sb of Fa, Fv, and Fb, respectively, are the work or energy of acceleration, steady travel, and deceleration, and the inertia force Fia and The integrated values Wia = Wib = Wi for the distances Sa and Sb of Fib are the kinetic energy (reactive power in the previous column), and Wv = Wva + Wv + Wvb is the resistance energy consumed by the running resistance Fv (effective power in the previous column). The ratio of the deceleration / braking energy Wb to the consumed energy Wa + Wvv in acceleration / traction, that is, the braking energy rate εbi = Wb / (Wa + Wvv) is the target value for energy recovery.
[0107]
Since the regenerative brake is operated up to the very low speed vw just before the stop, the braking energy of the wheel brake is very small as Wi * (vw / v) ^ 2, and in acceleration / deceleration, due to the characteristics of the motor 41, Usually, the traction force Fa = Fia + Fv and the braking force Fb = Fib−Fv are made equal, and the inertial force is Fi = Fia + 2 * Fv, that is, the deceleration is larger, so the deceleration distance Sb is smaller than the acceleration distance Sa.
[0108]
[Electrical Behavior in Operation Cycle] In FIG. 7B, the storage circuit voltage Vc is higher than the overhead line voltage Vt by δV by charging the deceleration / braking regenerative power of the previous cycle. In the previous period, the electric load Pma = discharge power Pc, and when the storage circuit voltage Vc drops to the overhead line voltage Vt due to discharge, the transition starts to (4) t overhead line power Pt, and in the latter period, the discharge power Pc = Pma−Pt The electric load Pmv decreases as shown in the figure and reaches steady running (time point (4) d), and the overhead line power Pt returns the charging power Pc = Pt−Pmv shown in the broken line to the power storage circuit 29. When the electric load Pmv (= running resistance load Pv / ηp) is handled and the storage circuit voltage Vc recovers to the overhead line voltage Vt, only the electric load Pmv is obtained.
[0109]
In deceleration, all regenerative power Pmb is returned and charged to the storage circuit 29 (that is, Pc = Pmb), so the storage circuit voltage Vm rises above the overhead line voltage Vt and increases by δV at the end of deceleration.
[0110]
[Electricity account] Acceleration electric load Pma, discharge electric power Pc, received electric power Pt, steady running electric load Pmv, auxiliary charging electric power Pc, and regenerative charging electric power Pmb = Pc are integrated values for each operation time t are acceleration electric energy. Wma, discharge electric energy Wca, received electric energy Wt, steady running electric energy Wmv, supplementary charging electric energy Wcv, and regenerative charging electric energy Wmb = Wcb, and the electric energy account is
Wma + Wmv = Wt + Wmb and Wca = Wcv + Wcb
From the above [Energy Account], the above equations are
Wa / ηp + Wvv / ηp = Wt + Wb * ηp
Wi / ηp = Wv / ηp + Wi * ηp
The power recovery rate εri is the ratio of the regenerative power Wmb to the power consumption Wma + Wmv
εri = Wmb / (Wma + Wmv) = Wcb / (Wca + Wcv) = εbi * ηp ^ 2
The overhead power factor εv is the same for the received power Wt.
εv = Wt / (Wma + Wmv) = 1-εri
Wt = Wmv + Wma−Wmb = Wv / ηp + Wi * (1 / ηp−ηp)
The resistance energy Wv for effective energy and the loss wv = Wv * (1-ηp) associated with the one-way process, and the loss wi = Wi * (1 / ηp−ηp) associated with the reciprocal process of the inertial energy Wi for the reactive energy ) Is covered by the amount of received power Wt.
[0111]
As shown in Table 2, the behavior of various quantities in the operation cycle between stations described above is shown in Table 3 as calculated values for an electric passenger car in which the power system of the present invention is applied to a standard train organization.
[0112]
[Table 2]
Figure 0004200512
[0113]
[Table 3]
Figure 0004200512
[0114]
In the travel speed range of 50 to 120 km / h for vehicles at each station stop and passing through a small station (express), the braking energy rate εbi in the [energy account] is about 80 to 57%, accounting for most of the consumed energy, and power recovery The rate is about 50-36% by reducing the round trip loss wi of inertial energy in [Electricity Account], that is, multiplying by ηp ^ 2 = 0.802 ^ 2 = 0.643, and the power consumption can be reduced by that amount. There is a considerable drop between εri, that is, the power loss w i of each of the motors 31, 27, and 29 of the power control and power storage, in which the inertial energy W i reciprocates with the inrush overload of the motor 41, and each circuit 31 , 27 and 29, the overall efficiency (inrush) ηp, which is the product of ηm, ηL and ηc, is shown to be important.
[0115]
Overhead power Pt is received during tt seconds from the latter half of acceleration (after (4) t) to the end of steady driving (5) d, and reaches the maximum value (180-660KW) at the end of acceleration (4) d. Although the steady running load is 35 to 332 KW, it is much lighter than the inrush overload (shaft load Pa = 1200 to 2166 to 1547 KW) of the electric motor, and the overhead load is significantly reduced and leveled.
[0116]
In steady running, the time tv occupies about 65 to 80% of the running time t of the driving cycle, and the motor load is Pv = 32 to 300 kW (shaft load), indicating that it is extremely light load. Therefore, the effect of no-load loss such as iron loss pmi and excitation power on the overall efficiency ηp cannot be ignored.
[0117]
[Gradient Road Operation] As shown in FIG. 8A, when a vehicle 80 having a weight W travels on a flat road 84 again from a flat road 81 through an uphill road 82 and a downhill road 83 with a slope s (o / oo). When traveling on the downhill road 85 and the uphill road 86 in the opposite direction (shown by a solid line) (dotted line illustration), the traction force Fd of the vehicle 80 is the running resistance on the flat roads 81 and 84 as shown in FIG. For Fv only, the slope resistance Fs = s * W is added to the uphill / downhill roads 82 and 83, so that Fd = Fv ± Fs, and when the slope s is large, that is, Fs> Fv, the downhill road 83 has a negative (−) value of Fd. That is, the braking force Fb = Fs−Fv (absolute value), and when the vehicle travels on the uphill / downhill roads 82 and 83 having the same gradient s at the traveling speed v, the traction power running load is Pd = Fd * v and the deceleration braking load is Pb. = F * v, the ratio εbs = Pb / Pd is the deceleration power factor at the gradient s It becomes.
[0118]
[Power Recovery Rate] In FIG. 8C, on the flat roads 81 and 84, the motor load Pm is obtained by adding the motor loss pv to the running resistance load Pv and Pmv = Pv + pv, and on the uphill road 80, the gradient resistance load Ps and the motor loss. pd = pv (travel resistance) + ps (gradient resistance) is added and powering is performed at Pmd = Pd + pd. On the downhill road 83, the motor loss pb = ps−pv is subtracted and the regenerative power Pmb = Pb−pb (absolute value). In the uphill road 82, Pmd = Pd / ηp, and in the downhill road 83, Pmb = Pb * ηp, and the power recovery rate εrs = Pmb / Pmd = Pb / Pd * ηp ^ 2 = εbs * ηp ^ 2
[0119]
Similar to Table 3 above, the behavior of various quantities in the slope road operation described above is shown in Table 4 as calculated values.
[0120]
[Table 4]
Figure 0004200512
[0121]
The speed reduction power factor εbs in [Slope operation] is approximately 86-28% at the gradient s (o / oo) (thick line underline) of the series-parallel motor full load limit at each speed v (50-100 km / h). The power recovery rate εrs is about 70 to 22%, and εbs is about 57 to 28% and εrs is about 42 to 22% even at a gentle slope (s = 10o / oo). In up and down slopes with 41 continuous full loads, there is a significant drop or power loss pb between εbs and εrs in the reciprocal processing of the position energy Ws, similar to the inertial resistance described above. It shows that efficiency (steady state) ηp is important.
[0122]
[Charging / Discharging] In FIGS. 8D and 8E, when the vehicle travels on the flat road 81 and the uphill road 82, the electric load Pmd is covered by the received power Pt, so the stored voltage Vc = Vt remains unchanged, but the downhill 83 Since the regenerative power Pmb = Pc is charged, the storage voltage Vc rises to Vt + δV, enters the flat road 84 and travels the distance Sc = S * Pmb / Pmv with only the discharge power Pc (Pt = 0), and δV = 0 ( Vc = Vt), the power is transferred to the received power Pt, and as shown by the dotted line, when the vehicle enters the downhill road 85 from the flat road 84, it is charged with the regenerative power Pmb in the same manner as described above, and the storage voltage Vc = Vt + δV. In the uphill road 86, the vehicle travels with the discharge power Pc until it returns to Vc = Vt and shifts to the received power Vt, and travels on the uphill road 82 with Vc = Vt as in the case of traveling on the uphill road 82.
[0123]
[Power storage adjustment] When the head H of the downhill road 83 is large, δV is large and the storage voltage Vc increases considerably. However, the power receiving contactor 7 is opened before the downhill road 83 and the operation is performed only with the stored power Pc. As shown by the broken line, Vc is lowered by, for example, δV / 2 in advance to avoid excessive rise (overcharge) of Vc at the end of the downhill, and the operation and power control are simple. Pt is throttled by step-down chopper control, discharge power Pc commensurate with the gradient resistance load Ps is consumed, and the uphill road 82 is powered down while the storage voltage Vc is lowered to δV as shown by the chain line, and the downhill road 83 is decelerated with the charge power Pc The vehicle may travel and level the received power Pt.
[0124]
Table 5 shows the calculated values of the power storage related quantities and the operation altitude difference in [Charge / Discharge] and [Power Storage Adjustment] described above, together with those related to the inertial resistance described above.
[0125]
[Table 5]
Figure 0004200512
[0126]
The storage voltage increase / decrease δVi associated with charging / discharging during acceleration / deceleration of the inter-station operation cycle overlaps with the storage voltage increase / decrease δVs immediately before and after the downhill, which is an allowable value ± 20% ( Electric storage voltage rise / lower value δVs = 0.2-δVi (absolute value) so that it is within the electric railway standard), and the operation limit altitude difference Hmax and its running time, that is, charge / discharge time tc, are determined. In smax (thick line underline), Hmax is about 200 to 270 m, and when the gentle gradient s = 10 o / oo is about 250 m or more, it is sufficient for the normal gradient line, but the charge / discharge time tc for running on the gradient road is sufficient. Shows extremely severe charge / discharge obligations, such as around 6 minutes for the limit gradient smax and half that for the double voltage short-time running.
[0127]
It should be noted that the total distance multiple ΣSc / S = Pb / Pv * ηp ^ 2 of the unpowered traveling on the flat road before and after the downhill road of the distance S due to the power storage adjustment is a considerable value, and the power consumption due to the power recovery rate εrs described above This is the reason for the savings.
[0128]
[Characteristics of Electric Motor] In FIGS. 9 and 10, in the electric drive / discharge on the upper side of the horizontal axis, the electric field of the entire field, that is, the speed (2), Below 3 ▼ and ▲ 4 ▼, in the operation A mode, constant limit current Im = Ia, Im = 2 * Ia and Im = 4 * Ia, constant torque range with constant limit torque Tm, and speed ▲ In 2 ▼-▲ 2 ▼ d, (3)-(3) d, and (4)-(4) d, the armature group current Im as well as the field magnetic flux Φc is inversely proportional to the speed due to the commutation limit in the operation M mode. Therefore, the torque Td becomes a direct-wound drooping torque range that is inversely proportional to the square of the speed, and the torque Tf at a constant rated current Imf (short-time rating shown by the dotted line in all parallels) Electric field of the field, ie speed (2), (3) and below, constant torque, more (2) At? 2? F,? 3 ?? 3? And? 4 ?? 4 ▼ f, the constant output torque is inversely proportional to the speed.
[0129]
These armature group currents Im are loaded on the speed and, in the following, the output reactor 10 of the electronic control circuit 17, but the input reactor 8 has a current IL proportional to the speed v (= discharge current Ic or it). At the speeds (2) to (2) d, (3) to (3) d, and (4) to (4) d, it passes through the electronic control circuit 17 to the discharge current Ic. Are supplied, and the armature group current Im is inversely proportional to the speed.
[0130]
In the regeneration and charging on the lower side of the horizontal axis, the same chart as above, that is, a graph that is substantially symmetric with respect to the horizontal axis, the speed, and below, the constant torque range of the limit torque Tm, and the speeds above (7) to (7) In ▼ d, (6) to (6) d, and (5) to (5) d, the direct current type droop torque range of the current Im inversely proportional to the speed and the torque Td inversely proportional to the square of the speed, and the rated current Imf Torque Tf is constant torque at speeds of <7>, <6> and <5>, and more than that, <7> to <7> d, <6> to <6> d and <5> to <5> At d, the output torque is constant, and the armature group current Im flows into the input side reactor 8 at speeds {circle over (7)}, {circle around (6)} and {circle around (5)}, but is proportional to the speed v at the output side reactor 10. Current IL = charging current Ic flows, at speeds (7) to (7) d, (6) to (6) d and (5) to (5) d Is the armature group current Im that is inversely proportional to the speed, as described above.
[0131]
Since the voltage drop em = Im * rm due to the armature group resistance rm, the speed v-current I diagram of FIG. 9 and the speed v-torque T diagram of FIG. The current of reactor 8 at the start (1) has a speed fluctuation of em% (= em / Vm) on the side and em% (= em / Em) on the high speed side on the regeneration side (below the horizontal axis). , IL = Im * em / Vm, and the regenerative brake end point (8) reduces the armature current Im and the power generation brake works (in practice, the speed fluctuation em (%) is affected by the electronic control circuit 17 and other related circuits. Voltage drop is applied according to each load, but omitted for convenience of explanation).
[0132]
[Load / Acceleration Characteristics] In FIG. 10, the acceleration / decelerations α and β on each orbital gradient s (o / oo) and flat road (s = 0) are superimposed on the above-described velocity v-torque T characteristic diagram. For example, in the case of serial parallel of all voltage continuous ratings, when accelerating from speed (3) (eg, v = about 45 km / h) to (3) f (eg, v = about 125 km / h), it is inversely proportional to the square of speed v However, if the drooping torque Td suddenly decreases, the acceleration α decreases rapidly. However, if the acceleration is accelerated in all parallels with the rated short-time voltage doubled, the speed is increased to (3) double speed (4) (v = about 95 km / h). Constant torque acceleration with strong torque Tm, and drooping torque Td beyond it, (4) f is strong with Td = 0.8 * Tm, and both v-T diagram and running resistance diagram (for example, s = 0) ), That is, the acceleration integral value is compared, the former is Bo, B, Df, Do and the latter is Bo, B, C, D, Do, The average acceleration in the speed range shows a significant improvement (more than doubling). Also in regenerative braking, the horizontal axis is almost symmetrical except that a running resistance load on a flat road (s = 0) acts on the braking side. Yes, a deceleration β similar to the acceleration α is obtained.
[0133]
Comparing the acceleration integrated values in the above high-speed operation with those from start (1), Ao, A, B, Df, Do up to series-parallel, Ao, A, C, D, Do up to full-parallel, the latter Will be 1.5 times higher than the former, and the average acceleration in high-speed operation will increase accordingly. Conversely, acceleration / deceleration torque, that is, inrush overload, may be reduced accordingly, and power control, power storage and The efficiency ηp can be improved by reducing the loss of each circuit 27, 29, and 31 of the motor, the passenger's acceleration feeling can be reduced, and the margins of acceleration / deceleration α, β can be utilized steeply.
[0134]
If it is accelerated to a predetermined speed (for example, v = 125 km / h) in full parallel and returned to serial parallel, the field will be 40% Φ (= 50 km / h / 125 km / h), and the motor 41 will be approximately on a flat road. Operating at half load, copper loss pmc = 0.5 ^ 2 = 25%, iron loss pmi and excitation power Pf are 100% and 0.4 ^ 2 = 16% of full voltage continuous rating, respectively. It reduces in coordination with losses and gains efficiency ηp even at light loads.
[0135]
In medium speed operation (for example, 60km / h), advance to series parallel, accelerate / decelerate, return to all series, and if the field control is 40% Φ (= 25km / h / 60km / h) Even on the slope road (s = 5o / oo), the motor 41 is about 4 half load or less, pmc = 0.25 ^ 2 = 6.3%, pmi = 0.5 ^ 2 = 25% and Pf = 0.4 ^ 2 = 16%, further reducing no-load loss and increasing efficiency ηp.
[0136]
In the middle / high speed operation as described above, since acceleration / deceleration is performed by the armature connection (series-parallel, all-parallel) one stage higher, the drooping torque Td at the end of acceleration and the initial stage of deceleration is sufficiently large. In series and series-parallel, the marginal torque may be small, and the field is further weakened (eg 33%), respectively, 3 times the upper limit speed of all the fields (all series 70-75km / h, series-parallel 130- The speed can be increased up to 150km / h).
[0137]
When traveling on a steep road, the field is automatically increased according to the load and the speed v is decreased to operate with a load within the torque Tf at the full load current Imf. If the Tf region of the slave connection (series-parallel continuous, all-parallel short) is used, or if the gradient path is short distance, it can run in the overload torque Td region for a short time and run through without reducing the speed v. .
[0138]
[Voltage / Current in Operation Cycle] In FIG. 11A, armature group and single armature voltages Vm, Va, charge / discharge voltage Vc and voltage on the storage circuit 29 side of the electronic control circuit 27 in the operation cycle. If VL is shown, VL = Vc (constant) in constant torque acceleration (1) to (4) in operation A mode, Vm = 4 * Va in (1) to (2), and Vm in (2) to (3). = 2 * Va, (3) to (4), Vm = Va, sawtooth, respectively, and in operation M mode (4) to (5), Vc = Vm (constant), droop torque acceleration (4) to (4) In d, Vm = Va in full parallel, steady running (4) d- (5) d, in series-parallel, Vm = 2 * Va, drooping torque deceleration region (5) d- (5) and constant torque deceleration region (5) ▼ to ▲ 8 are the same as ④ to ▲ 4 ▼ d and ▲ 1 to ④, respectively, and in FIG. Each of the current Im, Ia, Ic and IL is the same as FIG. 9 described above.
[0139]
As for the voltage Va, current Ia, and electromotive force Ea of the single armature, constant torque acceleration in the operation A mode (1) to (4) as shown in a chain line (however, a solid line is displayed in the region of Va = Vm and Ia = Im). In constant torque deceleration (5) to (8) in ▼ and operation B mode, Va increases and decreases in proportion to the speed v, and the continuous rated voltage of the single armature is set as Vao = Vt / 2. In the respective parallel upper limits (2), (7), (3), (6) and (4), (5), Va = Vao / 2 (half voltage) = Vc / 4, Va = Vao (full voltage) = Vc / 2 and Va = 2 * Vao (voltage doubler) = Vc, and Ia takes a constant value of the inrush overload. In the operation M mode (4) to (5), the drooping torque acceleration (4) to (4) d and deceleration (5) From d to (5), Va = 2 * Vao (double voltage), constant value, Ia decreases from inrush overload in inverse proportion to speed v. Travel ▲ 4 ▼ d ~ ▲ 5 ▼ d In Va = Vao (full voltage), Ia takes a trifling value by a value commensurate with the steady running load Pv.
[0140]
Note that because of the armature resistance drop ea, the armature electromotive force Ea is accelerated and powered (steady running) as shown in FIG. 11 (a), that is, Ea = Va−ea, decelerated and controlled ( In descending slope traveling (not shown), that is, in regeneration, Ea = Va + ea.
[0141]
[Motor Loss in Operation Cycle] In FIG. 11 (c), iron loss pmi representing no-load loss is mainly the product of field strength Φ and rotation speed Nm (speed v), that is, armature electromotive force Ea. Since it is proportional to the square, if the iron loss of all voltage ratings is set to pri, the starting point (1) and the regeneration lower limit (8) in the constant torque range (1) to (4) and (8) to (5) Pmi = 0, full series upper limit (2) and (7) half voltage at pmi = pri / 4, series parallel upper limit (3) and (6) at full voltage, pmi = pri, full parallel upper limit (4) and In (5), pmi = 4 * pri at the double voltage, and in drooping torque ranges (4) to (4) d and (5) to (5) d, Ea is constant by the field control and pmi = 4 * pri, steady. In traveling (4) d to (5) d, pmi = pri at all constant voltages Φ and v in series and parallel, and the copper loss pmc representing load loss is the armature current Ia. Therefore, if the copper loss at the full load current is prc load factor is λ, then pmc = prc * λ ^ 2, and inrush overload (for example, λ = 2) at constant torques (1) to (4) .5) and pmc is large (6.25 * prc), and in the drooping torque range (4) to (4) d, it becomes pmc which is inversely proportional to the square of Ia which is inversely proportional to the speed v, and steady running (4) d to ▲ At 5 ▼ d, λ is small (for example, half load) and pmc is extremely small (pmc = prc / 4).
[0142]
Armature loss pm = pmi + pmc is mostly copper loss pmc because pmi = <pri in all series and series-parallel, and droop torque range from the upper limit of constant torque acceleration / deceleration in the all-parallel (4) to (▲) In 4 ▼ d and (5) d ~ (5), the iron loss pmi is the maximum value pmimax = 4 * pri, but the average value from the start (1) is small, and in general, the motor has improved iron core material. Even in an iron machine with a large overload torque, pri <prc (for example, pri = approximately rc / 2), and the armature loss pm for the short-time output of double voltage and twice the total voltage rating. The increase rate ε = pm4 / pm3 is small (for example, ε = 1.22 in the case of a 250% inrush overload), and the acceleration / deceleration ends in a short time (about 1 minute), so that the armature temperature rise does not increase much.
[0143]
In this way, in the all-parallel constant torque upper limit to the drooping torque range, the iron loss pmi increases to 4 * pri due to the armature voltage doubler, but the total loss pms (shown by the dotted line) even if the armature current Ia is the full load value. ) Is a thermal load equivalent to 140% (= 2 ^ 1/2) of the axial load at the full voltage rating, that is, twice the rated pr = pri + prc, if pr = prc / 2, the operation can continue for several minutes. It is possible to run on a steep road of about 10 km at a high speed within the load torque Tf (short time) shown by the dotted line in FIG.
[0144]
[Various amounts of electronic control circuit] In FIG. 12A, if the circuit of the main element of the step-down chopper control in the control C2 mode of the electronic control circuit 17 is shown, the reactor 8 and the capacitor 13 form an LC smoothing circuit and are input. By receiving the voltage Vc and the current IL, an on-off operation of the chopper 9 generates an intermittent current Ich having a frequency f, a period t = 1 / f, a conduction width ε = ton / t, and a smooth output voltage by the reactor 10 and the diode 14. Vm = ε * Vc and current Im = IL / ε, but the reactors 8 and 10 have inductances L1 and L2 and winding resistances rL1 and rL2, respectively, and currents IL and Im cause losses pL1 and pL2 to be diode 14 Produces a loss pd with a reflux current Id = Im having a flow width (1-ε), and the chopper 9 produces a loss pch described later.
[0145]
In FIG. 12B, if the circuit of the main element of the step-up chopper control in the control C2 mode is shown, the reactor 8 receives the input voltage Vm and the current Im, and the chopper 9 is turned on and off in the same manner as described above. The voltage Vc is induced by the intermittent current Ich of −ε = ton / t, the capacitor 13 is charged by the recirculation and backflow prevention action of the diode 12, and the smooth output voltage Vc = Vm / ε and the current Ic through the reactor 10 The reactors 8 and 10 generate losses pL1 and pL2 with currents Im and Ic, the diode 12 generates a loss pd with a return current Id = Im with a conduction width ε, and the chopper 9 generates the following loss pch, respectively. .
[0146]
In FIG. 12C, when the voltage Vch and current Ich of the chopper 9 is on-off at the frequency f, the period t = 1 / f, and the conduction ratio ε = ton / t, first, the voltage is positive in the on state. Directional voltage drop eon = approx. 3V, ε = 0.5 to 1.0, circuit voltage Vc = 1500V except for the initial stage of acceleration and the end of deceleration when the electric / regenerative output is small.
In step-down chopper control, Vch = Vc
pon% = eon / Vc * ε = 0.1-0.2%
In step-up chopper control, Vch = Vm = Vc * ε
pon% = eon / Vc * (1-ε) /ε=0.2-0%
Next, when summing that Vch and Ich change linearly during on and off commutation (tson, tsoff), the instantaneous commutation loss ptr is Vch * Ich / (4 * 1.57) = Pch / 6.28 ( It is an approximate sine wave and the average value is 1 / 1.57 of the peak value. The commutation loss ptr per cycle is expressed as commutation time meter ts = tson + tsoff.
In step-down chopper control, Vch = Vc, Ich = IL / ε
In step-up chopper control, Vch = Vc = Vm / ε, Ich = Im
In any case, ptr = Pch / 6.28 * ts / t * 1 / ε
When the operating frequency f = 1000 Hz, t = 1 ms, and in a high-speed operation control element such as a GTO thyristor (Gate Turn-Off Thirister), ts = about 50 μs and both are ptr / Pch = 1.59-0. 80%
Therefore, pon is added to the total loss pch (%) of the chopper 9.
In step-down chopper control, pch = 1.69 to 1.00%
In boost chopper control, pch = 1.79-0.80%
Thus, even at a considerably high frequency, the loss can be sufficiently localized depending on the selection of the control element.
[0147]
The forward voltage drop eon of the diodes 12 and 14 can be ignored at 1.5 V and the loss pd% = eon / Vc = 0.1%. The reactors 8 and 10 have a small inductance at a high frequency such as f = 1000 Hz. Sufficient reactances XL1 = ω * L1 and XL2 = ω * L2 (ω = 2 * π * f) can be obtained with L1 and L2, and winding resistances rL1 and rL2 can be made extremely small by selecting an appropriate iron core material. Therefore, it is preferable to select such a high operating frequency f while considering loss coordination with the control element used for the chopper 9.
[0148]
For the input reactor 8, sufficient XL1 and extremely small rL1 are important in order to obtain sufficient induced power efficiency in the step-up chopper control, but the output reactor 10 causes an increase in the loss of the armature 41 by the step-down chopper control. Since some pulsation rate can be allowed in a range that does not exist, XL2 may be lowered somewhat, and rL2 can be made smaller accordingly.
[0149]
[Driving Operation] Referring again to FIG. 4, when the driving operation lever 53 of the master controller 52 is advanced from 0 notch to any notch of a high speed, the entire series slightly decelerates, and a predetermined speed notch (1, 2 3) Select and press forward to automatically accelerate to the last stage of that notch (with 1 notch remaining in full series, 2 notches in series parallel, 3 notches in full parallel), or pulled backward When returning to "neutral" when it reaches a predetermined speed v (km / h), it automatically returns to series-parallel (3 notches) or all series (2 notches). The speed v is stored in a control device (not shown), and the vehicle travels at a constant speed according to the stored speed v.
[0150]
When the motor circuit 31 is returned to 0 notch during traveling, the armature 41 and the field 42 are coasted with no voltage and no electrical loss (iron loss, copper loss, excitation), and when proceeding again to the quick notch, Similarly, the speed v at that time is stored, and constant speed control is performed to that speed.
[0151]
If the operation lever 53 is continuously pulled, the reverse speed is automatically reduced to the entire series, the regenerative brake is switched to the power generation brake, the speed is just before the stop, and the brake air is returned to the 0 notch at a predetermined position. The valve 56 is operated to stop at the wheel brake.
[0152]
The speed memory function of the control device is set to a fine speed vmin (for example, 5 km / h) to a maximum operation speed vmax. Automatically switches between the operation A, B mode and control C1, C2 mode in the constant torque range according to the fluctuation of the running load due to the track gradient, that is, the positive (+) and negative (-) of the armature group current Im. In the torque range, constant speed control of electric traction / regeneration suppression is activated without switching by the characteristic transition of field control in the operation M mode.
[0153]
Note that, on a steep road with a distance that can run through in a few minutes, the button 54 on the head of the operation lever 53 is pushed, and high-speed steady running can be performed with a powerful full-time torque Tf in short time.
[0154]
In FIG. 10, in the steady running, the drooping torque range, that is, low and medium speed (25 to 75 km / h) in all series, medium and high speed (50 to 150 km / h) in series and parallel, and short and high speed in all parallel (100 ~ 150km / h), use a constant torque range in series (less than 25km / h) for slow speeds such as connecting work and slow down of dangerous areas, each near the lower limit of droop torque range (for example, in all series) 30km / h, acceleration / deceleration up to 60km / h in series / parallel), the acceleration / deceleration distances Sa and Sb cannot be earned much because the acceleration / deceleration distances Sa and Sb cannot be earned. It is recommended to select a gear (1 notch or 2 notch) that does not automatically advance / return in the initial stage.
[0155]
The control lever 53 has three notches that, like the two notches in all series and series, simplify the control operation as two-stage acceleration / deceleration in series and parallel, and is steady in all two notches in series. The associated control circuit may be configured to push the button 54 in accordance with the load due to the orbital gradient during running and run through in series and parallel.
[0156]
[Storage circuit protection] In FIG. 2, the storage element 34 has a remarkably small internal resistance rc without a time lag from its storage principle. Therefore, if an internal short circuit occurs due to dielectric breakdown or the like, the short circuit current is very large and the element bursts. -Since it leads to a fire, it is divided into appropriate unit capacities, and the fault storage element 34 is instantaneously disconnected by the fuse disconnector 35.
[0157]
[Electric power storage pressure equalization] Each adjacent power storage unit 33 is connected via a disconnector 37 with a pressure equalization line 36 to prevent charging / discharging due to capacity non-uniformity between the power storage units 33 and operation characteristic disparity between power units. Even if there is a failure in the storage element 34, the operation is continued without any problem.
[0158]
[Failure Recovery] In the power storage unit 33 having the fault power storage element 34, all of the disconnectors 32 and the fuse-connected disconnectors 35 are opened, the fault power storage elements 34 and the fuses 35 are replaced with no voltage, and the vehicle base is limited. When the battery charger (not shown) is rapidly charged and the storage voltage Vc of the entire storage circuit 29 is reached, the disconnector 35 with all fuses is closed, or the disconnector 37 of the equalizing line 36 of the storage unit 33 is closed. Open, close the disconnector 32 and the new fuse-disconnected disconnector 35, charge the current-controlled chopper control of the electronic control circuit 17, and close all the disconnectors 32 and 37 and the fuse-disconnected disconnector 35.
[0159]
[Auxiliary Charging] To reduce the stored voltage due to self-discharge during the nighttime break, the electronic control circuit 17 receives power by operating the current limiting chopper in the control C1 mode and performs auxiliary charging.
[0160]
[Regenerative Sending] In FIG. 1, particularly in a steep slope section with a high head, the contactors 24 and 26 of the power control circuit 27 are opened during steady running and the contactor 75 shown by the dotted line is closed to switch to “regenerative sending”. Suppressed regenerative power Pmb can be sent to the overhead line circuit 1 via the diode 76 and the power receiving circuit 5, and when the electric traction is shifted to a partial flat road in the middle, direct reverse flow of the overhead line power Pt is performed by the diode 76. Then, the power is received and supplied through the diode 6, the contactor 7 and the electronic control circuit 17 described above.
[0161]
[Overvoltage regeneration] After regenerative direct charging in the drooping torque deceleration (5) to 5) in the operation M mode, in the operation B mode and the control C1 mode, from 5 to 6 in series and parallel, In all series, (6) to (7) are overvoltage regenerative brakes, and constant torque deceleration is possible by step-down chopper control. The lower limit (7) is reached and the control C1 mode is switched to constant torque deceleration of the above-described step-up chopper control. Can also be performed.
[0162]
In the overvoltage regenerative braking, the input reactor 8 performs smoothing action together with the capacitor 12, so that XL1 is not so important, and the output reactor 10 together with the freewheeling diode 14 controls the step-down conversion from the maximum voltage doubler, so that the pulsating current is reduced. Although the smoothness is somewhat deteriorated, the circuit resistance rc of the power storage circuit 29 is extremely small and the loss pc hardly increases, the reactor 10 has a half current, the copper loss has a quarter value, and the control power efficiency ηL is improved.
[0163]
[Another Electronic Control Circuit] In FIG. 13, the main and sub contactors 15 and 16 are added one by one, and the contactor 15 is connected between the reflux diode 14 of the reactor 10 and the negative electrode line 11 in FIG. In this case, the contactor 16 can be used as the free-wheeling diode 12 of the reactor 8 in the control C2 mode. In this case, the diodes 87 and 88 are arranged in the same connection as the diodes 12 and 14 in FIG. Then, together with the varistors 18 and 19, a closed circuit is formed that absorbs transient surge energy generated from the reactors 8 and 10 when the contactors 15 and 16 are opened when the control modes C1 and C2 are switched.
[0164]
Since the diodes 87 and 88 manage only transient energy absorption of the reactors 8 and 10, the diodes 87 and 88 may be of a small capacity, and the power specification diodes 12 and 14 having the return current need only be shared by one, so the power unit capacity is large. In some cases it is economical.
[0165]
[Synchronous-less commutator motor] In FIG. 14A, when a non-commutator motor is used for the motor circuit 31 of FIG. 1, two sets of static commutators 89 are connected to a three-phase bridge inverter 90 of a thyristor. , A reactor 91 and a three-phase bridge 92 of a freewheeling diode, respectively, and series / parallel switching contactors 93 and 94 are arranged and connected in parallel with the other two sets (not shown). 95, 96 is connected to the armature 98 of the synchronous motor 97, and the rotating field 99 is excited and controlled by the chopper 50 via the forward / reverse switching contactors 48, 49 as described in FIG. The distributor 100 detects the phase of the armature 98, applies a gate pulse to the inverter 90 via a thyristor gate control device (not shown), and operates electrically by a commutator action, thereby supplying a freewheeling diode. The regenerative power is taken out by the bridge 92 with the same voltage polarity as that of the motor.
[0166]
Three series switching of Y series, Y parallel and Δ parallel is performed, all voltage continuous rating in Y series, 1.732 times voltage short-time rating in Δ parallel, and all DC series motors shown in Fig. 3 With the same characteristics and operation as in parallel and full parallel, the constant torque range is expanded to 1.732 times on the high speed side, and the acceleration / deceleration distance in high speed operation is remarkably shortened. Return to the series and gain efficiency in steady driving with light load.
[0167]
In addition, since the electrical phase of the armature 98 is shifted by φ = 30 degrees in accordance with the Y-Δ switching, the phase of the distributor 100 or the gate pulse is shifted, and the electron reaction is canceled according to the load and the field strength. A mechanism for automatically adjusting the phase of the gate pulse is added.
[0168]
In FIG. 14B, a circuit similar to the above is connected to two sets of windings 98 having a phase difference ψ = 30 degrees in one armature, and three stages of Y series, Y parallel, and Δ parallel for each motor. Switching is performed, and shaft torque with extremely small pulsation, such as direct current obtained from 12-phase alternating current, can be obtained. Therefore, it is preferable to use it for electric locomotives that require the adhesion performance of wheels.
[0169]
[Noncommutator Motor Using Induction Machine] As in the above, in FIG. 14, the inverter 90 of the static rectifier 89 is controlled by a common frequency generation circuit (not shown) to convert it into a variable-frequency three-phase alternating current. Is replaced with an induction machine and a non-commutator motor (no magnetic field 99 and distributor 100), continuous rating for all voltages in Y series, 1.732 times short voltage rating for Δ parallel, and frequency control instead of field control. Torque characteristics similar to those described above can be obtained, and the regenerative power can be taken out by the return diode bridge 92 with the same voltage polarity as the motor.
[0170]
For each connection of the motor, the voltage Va and the frequency f have a variable constant torque range and a constant and variable drooping torque range Va. In the drooping torque range, the load is inversely proportional to the speed v, that is, the constant load full load torque Tf and the speed. This is a characteristic of the overload torque Td that is inversely proportional to the square of v, and can be handled in the same manner as the DC commutator motor described above and the DC non-commutator motor using the synchronous machine described above.
[0171]
In this induction machine system, since the armature phase is independent of the inverter phase, a plurality of electric motors may be combined with a common inverter. For example, a set of inverters is arranged together with the power control circuit 27 for each power unit. Each of the four motors is preferably connected in parallel with a Y-Δ switching circuit.
[0172]
[AC or AC / DC Vehicle] As shown in FIG. 15 (a), a vehicle operating on an AC overhead line or AC / DC section has a transformer rectifier 101 arranged in a power receiving circuit, and a rectifier 103 as a smoothing reactor (overhead frequency pulse). Diverted) 104 and connected to the operation control circuit 27 through the power receiving contactor 7 together with the DC receiving diode 6, and the transformer 102 is provided with a tap 105, and the storage voltage Pc in the gradient road operation The power receiving voltage Vt (DC side) can be adjusted in cooperation with the up and down movement, and since the storage circuit 29 takes charge of the inrush overload during acceleration / deceleration as described above, the transformer rectifier 101 may have a light debt.
[0173]
[Air-powered vehicle] As shown in FIG. 15B, a power generation rectifier 106 having a diesel engine, a gas turbine, etc. 107 as a prime mover is arranged under the floor of an accompanying vehicle or in a locomotive room, and the rectifier 109 (three-phase bridge type) is provided. The smoothing reactor 110 is connected to the operation control circuit 27 via the power receiving contactor 7 in the same manner as described above, and the generator 108 has Y-Δ switching of the armature winding or the armature 2 as shown in FIG. Power generation efficiency in all speed ranges from low speed to high speed by using combination of series / parallel switching of winding rectifier (Y series / Y parallel / Δ parallel) and engine speed, armature connection and field control suitable for load Power generation and power supply in coordination with fluctuations in the storage voltage Vc due to charging / discharging with a gradient load, and even on gradient road operation, the generator load is reduced / leveled to a value close to the steady running load to make a light debt This Can.
[0174]
【The invention's effect】
Generally, a vehicle has its own weight m far greater than the running resistance Fv (in the examples shown in Tables 2 and 3 above, m / Fv = (46 + 40) / (0.107-0.786) = 803-109) Since the inertial resistance Fi and the gradient resistance Fs occupy most of the traction / braking force, in the present invention, the large movement energy Wi and the position energy Ws are used for driving with acceleration / deceleration between stations. Considered as reactive power (a metaphor for reactive power generated by the reactance x of the AC circuit) that is positive / negative canceled for each round-trip cycle involving climbing or downhill of a cycle or service section, the electric motor 41 having energy reversibility and the charge / discharge function The load Pv generated by the running resistance Fv, which always takes a positive (+) value, is treated as effective power (a metaphor for the effective power generated by the conductor resistance r of the AC circuit), and the reactive power is processed. Motors, power storage and In addition to the power loss of the control circuit and the power received from the overhead line 1, the negative power (negative) of the reactive power that is dissipated into the atmosphere by the conventional vehicle returning to thermal energy with the wheel brake or power generation brake. It is possible to charge / recover the electricity storage element as regenerative power Pm and use it for the subsequent positive (+) part together with the received power Pt, halving the power consumption, and with the following improvements is there.
[0175]
Since the inertial resistance load Pi = Pm ± Pv, which occupies most of the motor load Pm, is processed by the power storage element 34 in the vehicle, the load Pt of the overhead circuit 1 is greatly reduced and leveled and the power flow is in one direction. Therefore, the power loss pt and the debt of the overhead circuit 1 are remarkably reduced, and the reverse conversion function from direct current to alternating current becomes unnecessary with the expansion of the power supply section of the substation 79 and the reduction of the copper amount of the power supply line. Also has a positive effect.
[0176]
By efficiently processing the inertial resistance load Wi in the vehicle, power enhancement for high acceleration / deceleration operation is only required in the vehicle, and the influence on the overhead line 1 and the substation 79 is negligible. As a short-time double voltage (double output) rating, a large thing is possible.
[0177]
The addition of the double voltage short-time rating of the electric motor has already been carried out with the adoption of the power generation brake without the increase in size, structure and strength, and the reinforcement of the armature insulation and the commutator. A series connection of all groups with a continuous voltage rating of the basic rating is a parallel connection with a double voltage short-time rating of the attached rating, and a strong and efficient constant torque range in all fields is doubled to the high speed side (for example, From 50km / h to 100km / h), the acceleration / deceleration in the high speed range is significantly improved without changing the design of both the motor and electric surfaces, making it equivalent to the low / medium speed range, increasing the passenger's acceleration feeling In addition, the acceleration / deceleration distance is remarkably shortened to increase the driving speed v between stations, thereby improving the operation efficiency.
[0178]
When the above double voltage short-time rating is not used, the behavior of various quantities in the operation cycle is shown in Table 6 and compared with Table 3 above. As a result, the same average speed vav is obtained at a shorter distance between stations without increasing the acceleration / deceleration αc βc in the constant torque range, and the effect is remarkable at high speed operation (v = 100 to 140 km / h. = 80 to 50%), it is convenient not only for improving the driving efficiency of the vehicle but also for driving coordination between each station stop and express.
[0179]
[Table 6]
Figure 0004200512
[0180]
Accelerates and decelerates with a strong torque in the constant torque range of full-parallel voltage doubler (high speed) or series-parallel full voltage (medium speed), or a drooping torque range that slightly exceeds it. High-speed) or steady running back to full series half voltage (medium speed) to reduce iron loss, copper loss, and excitation power to increase efficiency at light loads. Since the acceleration / deceleration can be performed, the marginal torque in steady running may be small, and the steady running speed range is further expanded to the higher speed side by a field weakening exceeding the conventional limit (generally 40% Φ) (for example, 33 % Φ 150km / h).
[0181]
In voltage doubler operation, the armature iron loss that causes no-load loss increases in proportion to the square of the speed, and the upper limit of the constant torque range is 4 times that of the basic rating (3 times for non-commutator motors) and fully loaded copper. Although it is in a super iron machine state that greatly exceeds the loss, it is much smaller than the copper loss of the inrush overload, so the total loss does not increase much for double output, short time (less than 1 minute including droop torque range) ) Because there is no problem in terms of heat, and it is possible to operate for a short time of several minutes at full load current, it is possible to run at high speed on a steep road with a normal altitude difference, which increases operating efficiency. Convenient.
[0182]
Even if there is a power failure due to a failure in an overhead line or substation, etc., operation can be continued with stored power. It is convenient to escape from the failure section and resume normal operation by promptly receiving power and supplementary charging in a healthy section.
[0183]
One chopper 9, two reactors 8 and 10, the capacitor 13 and the diodes 12 and 13 constituting the main elements of the electronic control circuit 17 are switched by a contactor to be used for both step-down / boost chopper control, and a contactor bridge Switching between constant torque acceleration (operation A mode), deceleration (operation B mode), droop torque acceleration / deceleration, and steady running (M mode), the former two perform armature control of chopper control for a short time (15-30 seconds) In the latter case, power is exchanged directly between the power storage circuit 29 and the motor circuit 31, that is, without control loss, and the electronic control circuit 17 becomes an uncontrolled flow of the level of received power Pt. It is a debt.
[0184]
The current of both the input and output of the electronic control circuit 17 is smooth and the waveform rate is 1.0, and the loss due to the intermittent current of the chopper 9 does not occur in any of the overhead circuit 1, the storage circuit 29, and the motor circuit 31, In addition, the received power Pt always passes through the electronic control circuit 17, and not only the intermittent current of the chopper 9 but also the noise current generated by the commutator of the armature 41 (static commutator 89 in the case of a non-commutator motor) by the filtering action. It is suppressed and communication line induction trouble is prevented.
[0185]
In the above-described reactive power processing, power loss is unavoidable not only in the motor circuit 31 but also in each of the power control and storage circuits 27 and 29, and is caused by reciprocation in electric and regenerative operation. It is realized as follows.
[0186]
The electronic control circuit 17 constituting the main part of the power control is such that the thyristor of the main control element of the chopper 9 and the circulating voltage drop of the freewheeling diodes 12 and 14 are extremely small with respect to the overhead line voltage, and the operating frequency f (Hz) is appropriately set ( For example, if f = 1000 Hz), the operating loss including the commutation loss of the chopper 9, the dielectric loss of the smoothing capacitor, and the iron loss and copper loss of the reactors 8 and 10 is much smaller than the total loss of the motor and is small for in-vehicle use. Lightweight production is possible.
[0187]
The power storage element 34 is optimally an electrostatic capacitor that is responsive to inrush overload currents and a few minutes of rapid charge and discharge that are frequently repeated and has a very low loss and does not deteriorate. It is a key to the realization of the present invention that includes time-multiplied voltage doubled output and allows in-vehicle processing by concentrating it on the power storage circuit 29 even in inrush overload several times the basic rated full load. .
[0188]
Such prompt and low-loss storage elements have an extremely large instantaneous short-circuit current in the event of dielectric breakdown. Therefore, to prevent the risk of fire and rupture, the unit capacity is localized and multiple storage elements are fused with disconnectors. All storage units in a unit connection and unit organization are connected via a pressure equalizing line and disconnector, and operation is continued without any problems by instantaneous disconnection of faulty elements, enabling new replacements and recharging to be performed easily and safely. .
[0189]
The power storage capacity Wc of the power storage unit 33 can be floated and charged at the overhead line voltage Vt and can be charged / discharged within the range of the allowable voltage rise / fall value δV, for example, as shown in Table 5 above. Charging / discharging capacity (Wci + Wcs) with a margin, charging / discharging capacity Wcmax = 180MJ, which is equivalent to 125 series of 33AH 12V lead acid batteries for small passenger cars (weight is about 2 tons in total) Since a large capacity corresponding to the travel distance and operating time for each charge as in an electric vehicle is not required, it is considered possible to realize a small and lightweight power storage element 34.
[0190]
Although a super-low-temperature superconducting power storage device is also possible, a large-capacity power storage device for static equipment that operates electrostatically at room temperature and has a high-efficiency rapid charge / discharge and floating charge characteristics as described above. Easy maintenance, ideal for in-vehicle use, low-voltage type (for example, 120V, 100F class) has already been realized and used as a power source for electric vehicles, etc., but with overhead voltage (1500V, In principle, the energy storage unit of about 100 F) can be realized. In view of the effects of the present invention, the advancement of related science and technology is promoted, and the rapid realization of such an energy storage element is eagerly desired.
[0191]
When driving the left / right / front / rear crossing operation lever 53 to any one of the operation notches (1, 2, 3), the vehicle starts at a very low speed, accelerates when pushed forward, decelerates when pulled backward, and reaches a predetermined speed v. When it returns to neutral, it operates at a constant speed at that speed v, and the constant speed control mechanism of field control works according to the orbital gradient to automatically respond to electric / regenerative characteristics, and when it returns to 0 notch, coasting and before stopping Everything up to the very low speed is electrically performed by the operation lever 53, and the braking air valve 56 may be used only when the vehicle is stopped.
[0192]
The operation lever 53 has a mechanism for self-returning when it is pushed forward (acceleration) and hand-returning when it is pulled backward (deceleration). Therefore, if the driver's sleep is released, acceleration will not proceed, and deceleration will continue to a very slow speed. The operation time, that is, the acceleration / deceleration time is a short time such as 15 to 54 seconds shown in the above-mentioned Table 3, which is convenient for preventing fatigue and safety.
[0193]
Since the deceleration to the very low speed is electrically performed by the operation lever 53, the duty and wear of the wheel brake are extremely small, and the wheel brake system by the brake air valve 55 is independent of the power control system and is simple.
[194]
If a transformer rectifier is placed in the power receiving circuit, operation in both AC electrification sections and AC / DC sections is possible, or if an engine-driven generator rectifier is placed, operation in non-electrification sections is possible with high acceleration and deceleration. The overhead wire and the transformer rectifier or the power generation rectifier are light debts, and can significantly increase the energy efficiency and operation efficiency of the entire railway.
[0195]
As described above, the present invention provides an armature or an armature winding having a substantially symmetrical positive / negative torque characteristic with a shunt field of a DC commutator motor or an inverter (with a diode bridge) of a DC non-commutator motor using an induction machine. With the double voltage at line connection switching, the powerful torque range including the constant torque range for both electric and regenerative operation is expanded to double speed, and the strong torque and the same control method (constant torque for both electric acceleration and regenerative deceleration in the entire speed range) (Area is the armature control by the descending / boosting chopper or the descending / boosting chopper and the inverter, and the drooping torque area is the field control by the excitation chopper or the inverter frequency) and a simple control circuit, simple all-electric operation and high acceleration / deceleration. Realizes driving performance. The regenerative brake has sufficient braking torque as a regular brake, can recharge and regenerate all regenerative power in the power storage device installed in the vehicle, and can handle overhead loads. Standardization and mitigation was to provide a motor control device for a power system of an electric vehicle.
[Brief description of the drawings]
FIG. 1 is an electric circuit diagram showing an entire power system according to an embodiment.
FIG. 2 is an electric circuit diagram of a power storage circuit in the example.
FIG. 3 is an electric circuit diagram of an electric motor circuit according to an embodiment.
FIG. 4 is a diagram showing a driving operation device according to the embodiment.
FIG. 5 shows an equivalent circuit for the entire power system in the embodiment.
FIG. 6 is a storage characteristic diagram showing the relationship between the voltage of the storage element, the amount of electricity, and the amount of power.
FIG. 7 is a diagram showing behaviors of various quantities related to inertial resistance with time and distance on the horizontal axis in the driving cycle between the stations of the vehicle in the example, where (a) is a traveling speed / resistance. (B) shows various electrical quantities such as voltage and current.
8A and 8B are diagrams showing behaviors of various amounts related to gradient resistance in the operation of a vehicle on a gradient road, where FIG. 8A is an up / downhill cycle, and FIG. 8B is a traction force / braking force. (C) shows electrical quantities such as electric / regenerative and discharge / charge, (d) shows stored voltage, and (e) shows received power.
FIG. 9 is a characteristic diagram of the electric motor showing the relationship between the running speed, the electric current, and the field magnetic flux in the example.
FIG. 10 is a characteristic diagram of a motor and a load showing a relationship between a traveling speed, a motor torque, and a traveling resistance torque of each gradient in the example.
FIG. 11 is a diagram showing voltage / current and loss behavior in an operation cycle between stations of a vehicle in the example.
12A and 12B show main elements and control characteristics of an electronic control circuit according to an embodiment. FIG. 12A is a main element circuit diagram of a step-down chopper control, FIG. 12B is a step-up chopper control, and FIG. It is a diagram which shows the behavior of a voltage, an electric current, and a loss in 1 period of.
FIG. 13 is a circuit diagram showing another plan of the electronic control circuit according to the embodiment.
FIG. 14 is an electric circuit diagram in the case of using a DC non-commutator motor for the motor circuit in the embodiment,The case of a DC non-commutator motor using a synchronous machine is shown. In the case of a DC non-commutator motor using an induction machine, reference numeral 97 is an induction machine, and reference numerals 99 and 100 are omitted.
15A shows a power receiving circuit including a transformer rectifier in the case of an AC overhead line, and FIG. 15B shows a case of an air-powered vehicle in which the power generation rectifier is installed in another application example of the power supply system of the present invention. It is an electric circuit diagram which shows the power supply circuit containing.
[Explanation of symbols]
1 Overhead wire, overhead wire circuit
2 current collector
3 Inter-vehicle power supply line
4 High-speed circuit breaker
5 Power receiving circuit
6, 12, 14 Diode
7, 15, 16, 23, 24, 25, 26 Contactor
8, 10 reactor
9 Chopper
11 Negative wire
13, 79 capacitors
17 Electronic control circuit
18, 19 Varistor
20 Axle collection electronics
21 wheels, axle
22 orbit
27 Operation control circuit
28, 30 High-speed circuit breaker
29 Power storage circuit
31 Electric motor circuit
32, 37 Disconnector
33 Power storage unit
34 Power storage elements
35 Disconnector with fuse
36 equal pressure line
38, 39 Jumper line
40 missing number
41 Armature, electric motor
42 Field
43 Complementary pole
44, 45, 46, 47, 48, 49 Contactor
50 Chopper (for excitation control)
51 Reflux diode
52 Master controller
53 Operation lever, operation control lever
54 buttons
55 Switching lever
56 Braking air valve
57 Speedometer
58 Power reception / storage voltmeter
59 Receiving / Accumulating Ammeter
60 motor ammeter
61 Braking air pressure gauge
62 Inverter
63 Rectifier
64 storage battery
65, 66, 67 Voltage sensor
68, 69, 70, 71, 72, current sensor
73 Speed sensor
74 Power storage device (for overhead circuit)
75 Contactor (for regenerative delivery)
76 Diode (same as above)
77 Reactor (for eliminating noise current)
78 capacitors (same as above)
79 Substation
80 vehicles
81, 84 Flat road
82, 85 Uphill Road
83, 86 Downhill road
87, 88 Diode (for absorbing transient surge energy)
89 Static commutator
90 inverter
91 Reactor
92 Converter
93, 94, 95, 96 Contactor
97 Synchronous machines, induction machines
98 Armature winding
99 Field
100 distributor
101 Transformer rectifier
102 transformer
103, 109 Rectifier
104, 110 Smooth reactor
105 taps
106 Power generation rectifier
107 engine
108 Generator
[Signs of power-related quantities]
Vt Overhead voltage, receiving voltage
Vc Storage circuit voltage, storage voltage
Vm Motor circuit voltage, armature group voltage
Va single armature voltage
It overhead current, incoming current
Ic charge / discharge current
Im motor circuit current, armature group current
Ia Single armature current
Es Substation no-load voltage
Ec Storage voltage
Em Armature group electromotive force
Ea Single armature electromotive force
ez substation voltage drop
et overhead voltage drop
eL Electronic control circuit voltage drop
ec Storage circuit voltage drop
em Motor circuit voltage drop, armature group voltage drop
ea Single armature voltage drop
xs Substation circuit reactance
rs Substation circuit resistance
rt overhead wire resistance
rL Electronic control circuit resistance
rc Storage circuit resistance
rm Motor circuit resistance, armature group resistance
ra single armature resistance
Q Electricity
W Electricity
δE Storage voltage increase / decrease value, storage voltage fluctuation value
Eo Rated storage voltage
Eco median storage voltage
C capacitance
Qo Rated amount of electricity
Wo Rated power
δW Charge / discharge energy
Wc Charge / discharge energy (average)
t Operation cycle time
ta acceleration time, electric / discharge time
tac Constant torque acceleration time
tad Droop torque acceleration time
tv steady running time, supplementary charging time
tt Overhead power reception time
tb Deceleration time, regeneration / charge time
tbd Droop torque deceleration time
tbc constant torque deceleration time
tw wheel brake time
ts stop time
S Distance between stations
Sa acceleration distance
Sv Steady mileage
Sb Deceleration distance
Sw Wheel brake distance
αc Constant torque acceleration
αd Droop torque acceleration
βd Droop torque deceleration
βc Constant torque deceleration
v Traveling speed, driving speed
vac constant torque acceleration upper limit speed
vbc Droop torque deceleration lower limit speed
vw Regenerative brake lower limit speed
Fa tractive force
Fia Inertial resistance (acceleration)
Fv running resistance
Fb braking force
Fi Inertia resistance (deceleration)
Wi Inertial energy, kinetic energy
Wia inertial work (acceleration)
Wib Inertial work (deceleration)
Wa acceleration work
Wvv steady running work
Wb Decreasing work amount
Ww Wheel brake work load
Wva Driving resistance work (acceleration)
Wvb Travel resistance work (deceleration)
Wv Effective power work
Vt Overhead voltage, receiving voltage
Vc Storage voltage
δV Storage voltage increase / decrease value
δVi Storage voltage rise / fall (inertia resistance)
δVs Storage voltage rise / fall (gradient resistance)
Wci Charge / discharge energy (inertia resistance)
Wcs Charge / discharge energy (gradient resistance)
Pm motor output, electric / regenerative load
Pma Electric power (acceleration, power running)
Pmv Electric power (steady running)
Pmb regenerative power (deceleration, deceleration)
Pc charge / discharge power
Pt received power
Wma Acceleration electric energy
Wta Accelerated received power
Wca Accelerated discharge energy
Wmv steady running electric energy
Wcv steady running supplementary charge energy
Wtv steady running power
Wmb Deceleration regenerative energy
Wcb Deceleration charge energy
IL input reactor current (acceleration), output reactor current (deceleration)
Imf full load armature group current
Iaf full load single armature current
Φf field total magnetic flux
Φc Field control magnetic flux
T motor torque
Tm Maximum torque
Td Droop torque
Tf Full load torque, rated torque
s orbital gradient (o / oo)
α acceleration
β Deceleration
Vao rated armature voltage
pri rated armature iron loss
prc rated armature copper loss
λ Load factor
pmi armature iron loss
pmc armature copper loss
pm Armature total loss
pm2, pm7 Total armature loss (all series, acceleration / deceleration)
pm3, pm6 Total loss of armature (series-parallel, acceleration / deceleration)
pm4, pm4 Armature total loss (all parallel, acceleration / deceleration)
pm4d, pm5d Armature total loss (all parallel, acceleration end, deceleration start)
pmv Total loss of armature (series parallel / steady running)
pms Total loss of armature (all parallel, short time steady running)
Vch chopper voltage
Ich chopper current
f Operating frequency
t Operating cycle
ton flow width
toff cutoff width
ε Ascent / Buck control rate
ts commutation time
tson on-commutation time
tsoff off commutation time
Id freewheeling diode current
ptr commutation loss
pon forward power loss
L1 inductance
L2 inductance
x reactance
rL1 Winding resistance
rL2 Winding resistance
pL1 reactor loss
pL2 reactor loss

Claims (2)

全電圧連続定格の寸法、構造、強度の増大なく電機子絶縁及び整流子の強化により2倍電圧短時定格を付加した直流分巻整流子電動機と、直流電源の定電圧の下で電機子の並列接続で該電動機が2倍電圧で働き、全界磁の下で降圧・昇圧チョッパによる電機子制御の定トルク域及び界磁制御による垂下トルク域を、電動・回生とも同様に2倍速度に拡張して短時で加速・減速を行い、且つ電機子の直列接続で該電動機が全電圧で働き、界磁制御の垂下トルク域で定速定常走行するよう構成の電子制御回路及び運転操作装置とを配して構成した、電動車両の動力装置。 A DC shunt commutator motor with a double voltage short-time rating by strengthening the armature insulation and commutator without increasing the size, structure and strength of all voltage continuous rating, and the armature under the constant voltage of the DC power supply In parallel connection, the motor operates at double voltage, and under constant magnetic field, the constant torque range of armature control by step-down / step-up chopper and drooping torque range by field control are extended to double speed in the same way for both electric and regeneration. An electronic control circuit and a driving operation device configured to perform acceleration / deceleration in a short time and operate at full voltage in a series connection of armatures so that the motor operates at a constant speed in the field control droop torque range. A power device for an electric vehicle configured as described above. 全電圧連続定格の機・電両面の設計を変えずにルート3倍電圧短時定格を付加した誘導機にインバータを組合せた直流無整流子電動機と、直流電源の定電圧の下で電機子巻線のデルタ接続で該電動機がルート3倍電圧で働き、降圧・昇圧チョッパによる可変電圧制御とインバータの可変周波数制御による定トルク域及び電機子巻線の定電圧・可変周波数制御による垂下トルク域を電動・回生とも同様にルート3倍速度に拡張して短時で加速・減速を行い、且つ電機子巻線のスター接続で該電動機が全電圧で働き定電圧・可変周波数制御の垂下トルク域で定速定常走行するよう構成の電子制御回路及び運転操作装置とを配して構成した、電動車両の動力装置。 A DC non-commutator motor in which an inverter is combined with an induction machine added with a triple voltage short-time rating without changing the design of all-voltage continuous-rated machines and electric double sides, and armature winding under a constant voltage of the DC power supply With the delta connection of the wire, the motor works with the voltage triple the route, and the constant torque range by the variable voltage control by the step-down / boost chopper and the variable frequency control of the inverter and the droop torque range by the constant voltage / variable frequency control of the armature winding In the same way for both electric and regenerative operation, the speed is increased to triple the speed to accelerate and decelerate in a short time, and the motor operates at full voltage with the star connection of the armature winding , and in the droop torque range of constant voltage and variable frequency control A power device for an electric vehicle, comprising an electronic control circuit and a driving operation device configured to perform constant speed steady running .
JP31842298A 1998-10-20 1998-10-20 Power unit for electric vehicle Expired - Fee Related JP4200512B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31842298A JP4200512B2 (en) 1998-10-20 1998-10-20 Power unit for electric vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31842298A JP4200512B2 (en) 1998-10-20 1998-10-20 Power unit for electric vehicle

Publications (3)

Publication Number Publication Date
JP2000134717A JP2000134717A (en) 2000-05-12
JP2000134717A5 JP2000134717A5 (en) 2005-12-02
JP4200512B2 true JP4200512B2 (en) 2008-12-24

Family

ID=18098985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31842298A Expired - Fee Related JP4200512B2 (en) 1998-10-20 1998-10-20 Power unit for electric vehicle

Country Status (1)

Country Link
JP (1) JP4200512B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2639097A3 (en) * 2012-03-16 2015-08-12 Kabushiki Kaisha Toshiba Control device, control method and electric motor car

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5721256B2 (en) 2011-01-24 2015-05-20 本田技研工業株式会社 Control device for electric vehicle
EP2705972A1 (en) * 2012-09-10 2014-03-12 Sandvik Mining and Construction Oy Mining vehicle
JP6216529B2 (en) * 2013-03-28 2017-10-18 株式会社日立産機システム Railway vehicle
CN104808607B (en) * 2015-02-10 2017-07-11 王为希 A kind of Intelligent Energy distribution in multi-energy source, simulation transmission system
CN106740139B (en) * 2016-12-21 2023-05-02 湘电重型装备有限公司 Electric braking control device of large-sized dump truck
CN111756303B (en) * 2019-03-29 2022-06-17 安川电机(中国)有限公司 Frequency converter, control method of output voltage of frequency converter and control method of vacuum system
CN112350419B (en) * 2019-08-09 2023-03-24 株洲中车时代电气股份有限公司 Traction main circuit charging control method for passing power-off region and traction main circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2639097A3 (en) * 2012-03-16 2015-08-12 Kabushiki Kaisha Toshiba Control device, control method and electric motor car

Also Published As

Publication number Publication date
JP2000134717A (en) 2000-05-12

Similar Documents

Publication Publication Date Title
JP5558022B2 (en) Electric vehicle storage control device and storage control method
AU2011284036B2 (en) Electric vehicle propulsion control device, and railway vehicle system
JP4841441B2 (en) Battery charger for railway vehicles
JP5048384B2 (en) Battery charger for railway vehicles
US9013135B2 (en) Power converting apparatus for electric motor vehicle propulsion
CN113302079B (en) Electric multi-mode drive system, method of operating the same, and track and vehicle using the same
JP2008263741A5 (en)
JP2009072003A (en) Electric railroad system
JP2008172857A5 (en)
JP5902534B2 (en) Railway vehicle drive system
CN103427680A (en) Transformer tap-changing circuit and method of making same
JP5437572B2 (en) Electric vehicle drive device
JP4200512B2 (en) Power unit for electric vehicle
JPH1066204A (en) Power device for air-and motor-driven car
JP4178728B2 (en) Power supply equipment for electric vehicles
JP4304827B2 (en) Power supply facilities and electric vehicles
JP2001231112A (en) Power device of motor vehicle and power feeding apparatus
JP5777669B2 (en) Electric vehicle control device
JPH09289703A (en) Motive power/feeder plant for electric motor car
Ogasa et al. Development of contact-wire/battery hybrid LRV
JP5995470B2 (en) Electric vehicle power supply system and power supply control method
JP3178536U (en) Electric vehicle power control device
JP2011030345A (en) Power control device of electric vehicle
CN100389030C (en) Super capacitor energy accumulating and frequency varying driving electric control system for trolleybus
JP2000134717A5 (en) Motor control device for the power unit of an electric vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050922

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080909

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080926

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141017

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees