JP3208463B2 - Absorption refrigerator - Google Patents

Absorption refrigerator

Info

Publication number
JP3208463B2
JP3208463B2 JP34329292A JP34329292A JP3208463B2 JP 3208463 B2 JP3208463 B2 JP 3208463B2 JP 34329292 A JP34329292 A JP 34329292A JP 34329292 A JP34329292 A JP 34329292A JP 3208463 B2 JP3208463 B2 JP 3208463B2
Authority
JP
Japan
Prior art keywords
temperature
concentration
refrigerant
liquid
absorber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP34329292A
Other languages
Japanese (ja)
Other versions
JPH06159853A (en
Inventor
秀和 中島
雅裕 古川
英一 榎本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Sanyo Electric Co Ltd
Original Assignee
Osaka Gas Co Ltd
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd, Sanyo Electric Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP34329292A priority Critical patent/JP3208463B2/en
Publication of JPH06159853A publication Critical patent/JPH06159853A/en
Application granted granted Critical
Publication of JP3208463B2 publication Critical patent/JP3208463B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、吸収液に臭化リチウム
水溶液、冷媒に水などを用いる吸収式冷凍機に関わり、
特に詳しくは吸収液の結晶を未然に防止する機能を有す
る吸収式冷凍機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an absorption refrigerator using an aqueous solution of lithium bromide as an absorbing liquid and water as a refrigerant.
More particularly, the present invention relates to an absorption refrigerator having a function of preventing crystallization of an absorption liquid.

【0002】[0002]

【従来の技術】吸収冷凍機は、効率を高めて良好な成績
係数を得るため、高温・高濃度の状態で運転が行われて
いる。しかし、何らかの原因で溶液濃度が所定以上に上
昇すると、吸収液が結晶を起こし、溶液が流れなくなっ
て吸収液ポンプがロックしたり、高温再生器における腐
食など、種々の問題を引き起こすことになる。
2. Description of the Related Art Absorption refrigerators are operated at high temperatures and high concentrations in order to increase efficiency and obtain a good coefficient of performance. However, if the solution concentration rises above a predetermined level for some reason, the absorption liquid crystallizes, and the solution stops flowing, causing various problems such as locking of the absorption liquid pump and corrosion in the high-temperature regenerator.

【0003】このため、低温再生器の吸収液出口温度と
凝縮器の冷媒凝縮温度から、吸収器に流入する吸収液の
濃度を算出し、この濃度が所定値(例えば、65%)に
達すると、高温再生器の燃焼量を例えば60%に絞って
セービング運転を行い、所定時間(例えば、10分)後
に所定濃度(例えば、65%)以下になっておれば通常
の制御に戻り、相変わらず前記所定濃度(65%)以上
であれば再生器に異常があるとして異常停止させる制御
を行う装置がある。
For this reason, the concentration of the absorbent flowing into the absorber is calculated from the outlet temperature of the absorbent in the low-temperature regenerator and the refrigerant condensing temperature of the condenser, and when this concentration reaches a predetermined value (for example, 65%). The saving operation is performed by reducing the combustion amount of the high-temperature regenerator to, for example, 60%. If the concentration becomes less than a predetermined concentration (for example, 65%) after a predetermined time (for example, 10 minutes), the control returns to the normal control. There is an apparatus that performs control to determine that the regenerator has an abnormality when the concentration is equal to or higher than a predetermined concentration (65%) and to perform abnormal stop.

【0004】また、低温再生器の圧力および低温再生器
から吸収器に至る濃度の濃い吸収液の温度を検出し、吸
収液の濃度を算出し、この圧力に対する結晶濃度を算出
し、吸収液が結晶へ至る余裕度を得る技術も提案されて
いる。
Further, the pressure of the low-temperature regenerator and the temperature of the absorbent having a high concentration from the low-temperature regenerator to the absorber are detected, the concentration of the absorbent is calculated, and the crystal concentration with respect to this pressure is calculated. A technique for obtaining a margin to a crystal has also been proposed.

【0005】[0005]

【発明が解決しようとする課題】しかし、吸収液の濃度
を求めて吸収液の結晶化傾向を判定する方法は、吸収器
に流入する吸収液の温度が考慮されておらず、単に吸収
液の濃度が所定の濃度を越えると燃焼量を画一的に絞っ
ているだけであるから、冷却水温度が高くて吸収液の温
度も高く、実際には結晶する懸念がない場合にも、結晶
を防止するセービング運転に入ってしまうと云う問題点
があった。また、吸収液の濃度を求めて結晶化傾向を判
定する技術においては、温度に対する濃度の変化量が少
ないため、高精度の制御が困難であると云った問題点が
あり、これら点の解決が課題であった。
However, the method of determining the crystallization tendency of the absorbing solution by determining the concentration of the absorbing solution does not take the temperature of the absorbing solution flowing into the absorber into consideration, but merely measures the absorption solution. If the concentration exceeds the predetermined concentration, the amount of combustion is only reduced uniformly, so even if the cooling water temperature is high and the temperature of the absorbing solution is high, and there is no fear of actually crystallizing, There was a problem that the vehicle would enter a saving operation to prevent it. Further, in the technique of determining the crystallization tendency by obtaining the concentration of the absorbing solution, there is a problem that it is difficult to control with high accuracy because the amount of change in the concentration with respect to the temperature is small. It was an issue.

【0006】[0006]

【課題を解決するための手段】本発明は上記従来技術の
課題を解決するための具体的手段として、再生器・凝縮
器・蒸発器・吸収器・低温熱交換器・高温熱交換器など
を配管接続して構成する吸収式冷凍機であって、吸収器
に流入する吸収液の温度と結晶化温度と濃度とを求め、
前記温度差が予め設定した所定値以下になる共に前記濃
度が予め設定した所定値以上になった時、警報を出力す
る警報手段を備えたことを特徴とする吸収式冷凍機を提
供することにより、前記従来技術の課題を解決するもの
である。
According to the present invention, a regenerator, a condenser, an evaporator, an absorber, a low-temperature heat exchanger, a high-temperature heat exchanger, and the like are provided as specific means for solving the above-mentioned problems of the prior art. An absorption refrigerator configured by connecting pipes, wherein a temperature, a crystallization temperature, and a concentration of an absorbing solution flowing into an absorber are obtained,
When the temperature difference becomes equal to or less than a predetermined value and the concentration becomes equal to or more than a predetermined value, an alarm unit for outputting an alarm is provided. It is intended to solve the problems of the conventional technology.

【0007】[0007]

【作用】吸収液の濃度が最も濃くなる吸収器流入側の濃
度からこの部位における吸収液の結晶化温度を求め、こ
の結晶化温度と吸収器に流入する吸収液の温度とを比較
し、温度差が所定値以下、即ち、吸収液が結晶化を始め
る温度に実際の吸収液が接近したことが確認されると共
に、吸収器流入側の吸収液の濃度が予め設定した所定値
以上になった時、警報手段から警報を発するようにした
ので、警報の確実性が高く、安全性が高い。
The crystallization temperature of the absorbent at this point is determined from the concentration on the inlet side of the absorber where the concentration of the absorbent is highest, and the crystallization temperature is compared with the temperature of the absorbent flowing into the absorber. The difference is equal to or less than a predetermined value, that is, it is confirmed that the actual absorption liquid approaches the temperature at which the absorption liquid starts to crystallize, and the concentration of the absorption liquid on the inflow side of the absorber is equal to or higher than a predetermined value. At this time, since the alarm is issued from the alarm means, the reliability of the alarm is high and the safety is high.

【0008】[0008]

【実施例】以下、本発明の一実施例を図面に基づいて詳
細に説明する。図1は冷媒に例えば水、吸収液(溶液)
に臭化リチウム(LiBr)溶液を用いた吸収式冷凍機
である吸収冷温水機の概略構成図であり、1は蒸発器、
2は吸収器、3は蒸発器1および吸収器2を収納した蒸
発器吸収器胴、4は例えばガスバーナ5などの高温熱源
によって加熱される高温再生器、6は低温再生器、7は
凝縮器、8は低温再生器6および凝縮器7を収納した低
温再生器凝縮器胴、9は吸収器2から高温再生器4に流
れる濃度の薄い吸収液(以下、稀液と云う)と低温再生
器6から吸収器2に流れる濃度の濃い吸収液(以下、濃
液と云う)とを熱交換する溶液熱交換器である低温熱交
換器、10は吸収器2から低温熱交換器9を経て高温再
生器4に流れる稀液と高温再生器4から低温再生器6に
流れる中間濃度の吸収液(以下、中間液と云う)とを熱
交換する溶液熱交換器である高温熱交換器、11〜15
は吸収液配管、16は吸収液ポンプ、17および18は
冷媒配管、19〜23は冷媒循環配管、24は冷媒ポン
プ、25は冷媒タンク、26は途中に蒸発器熱交換器2
7が設けられた冷水配管、28は途中に吸収器熱交換器
29と凝縮器熱交換器30が設けられた冷却水配管、3
1はガスバーナ5に接続されたガス配管、32は加熱量
制御弁であり、それぞれは図1に示したように配管接続
されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below in detail with reference to the drawings. FIG. 1 shows that the refrigerant is, for example, water and an absorbing liquid (solution).
FIG. 1 is a schematic configuration diagram of an absorption chiller / heater, which is an absorption refrigerator using a lithium bromide (LiBr) solution, wherein 1 is an evaporator,
2 is an absorber, 3 is an evaporator absorber body containing the evaporator 1 and the absorber 2, 4 is a high temperature regenerator heated by a high temperature heat source such as a gas burner 5, 6 is a low temperature regenerator, 7 is a condenser Reference numeral 8 denotes a low-temperature regenerator condenser body containing a low-temperature regenerator 6 and a condenser 7, 9 denotes a low-concentration absorbent (hereinafter referred to as a dilute solution) flowing from the absorber 2 to the high-temperature regenerator 4, and a low-temperature regenerator. A low-temperature heat exchanger, which is a solution heat exchanger for exchanging heat with a highly concentrated absorbing liquid (hereinafter referred to as a concentrated liquid) flowing from the absorber 6 to the absorber 2, and a high-temperature heat exchanger 10 through the low-temperature heat exchanger 9 from the absorber 2. High-temperature heat exchangers 11 to 11, which are solution heat exchangers for exchanging heat between a dilute solution flowing in the regenerator 4 and an absorbing solution of intermediate concentration (hereinafter referred to as an intermediate solution) flowing from the high-temperature regenerator 4 to the low-temperature regenerator 6 Fifteen
Is an absorption liquid pipe, 16 is an absorption liquid pump, 17 and 18 are refrigerant pipes, 19 to 23 are refrigerant circulation pipes, 24 is a refrigerant pump, 25 is a refrigerant tank, and 26 is an evaporator heat exchanger 2 in the middle.
7 is a cooling water pipe in which an absorber heat exchanger 29 and a condenser heat exchanger 30 are provided in the middle.
Reference numeral 1 denotes a gas pipe connected to the gas burner 5, and 32 denotes a heating amount control valve, each of which is connected to the pipe as shown in FIG.

【0009】また、33は蒸発器1の冷媒溜り34と吸
収器2の吸収液溜り35とを配管接続する冷媒バイパス
管、36は開閉弁、37は吸収液配管12と吸収器2と
を接続する吸収液バイパス管、38は開閉弁、39は冷
媒配管17と吸収器2とを接続する冷媒蒸気バイパス
管、40は開閉弁であり、各開閉弁36・38・40は
冷水の供給時に閉じ、温水の供給時に開く。
Reference numeral 33 denotes a refrigerant bypass pipe for connecting the refrigerant reservoir 34 of the evaporator 1 to the absorbent reservoir 35 of the absorber 2, reference numeral 36 denotes an on-off valve, and reference numeral 37 denotes a connection between the absorbent reservoir 12 and the absorber 2. Is an on-off valve, 38 is an on-off valve, 39 is a refrigerant vapor bypass tube connecting the refrigerant pipe 17 and the absorber 2, and 40 is an on-off valve, and each of the on-off valves 36, 38, and 40 is closed when cold water is supplied. , Open when hot water is supplied.

【0010】S1は低温熱交換器9で熱交換を終え、吸
収液配管15を通って吸収器2に流入する濃液の温度T
1を検知する温度検出器である。S2は低温再生器6か
ら吸収液配管14に流れ出た濃液の濃度Dを検知する濃
度検出器であり、この濃度検出器は例えば超音波などの
センサから構成されている。
In step S 1, the heat exchange in the low-temperature heat exchanger 9 is completed, and the temperature T of the concentrated liquid flowing into the absorber 2 through the absorbing liquid pipe 15.
1 is a temperature detector for detecting the temperature of the temperature sensor 1. S2 is a concentration detector for detecting the concentration D of the concentrated liquid flowing out from the low-temperature regenerator 6 into the absorbent pipe 14, and the concentration detector is constituted by a sensor such as an ultrasonic wave.

【0011】41は、上記各検出器から信号を入力して
吸収液の結晶化傾向を判定し、警報装置42および加熱
量制御弁32に所要の信号を出力する異常検出装置であ
り、この異常検出装置は例えば吸収冷温水機の制御盤
(図示せず)に設けられ、マイクロコンピュータで構成
されている。また、42は異常検出装置41と同様に制
御盤に設けられ、異常検出装置41からの信号を入力し
て動作する警報装置である。この警報装置42は、例え
ば複数のセグメント素子(図示せず)を備えた表示装置
43とブザー44とから構成されている。表示装置43
は異常検出装置41からの信号に基づいて、例えばAL
ARMの文字を点滅する。
Reference numeral 41 denotes an abnormality detecting device which receives a signal from each of the above-mentioned detectors, determines a crystallization tendency of the absorbing solution, and outputs a required signal to an alarm device 42 and a heating amount control valve 32. The detection device is provided, for example, on a control panel (not shown) of the absorption chiller / heater, and is configured by a microcomputer. An alarm device 42 is provided on the control panel similarly to the abnormality detection device 41, and operates by inputting a signal from the abnormality detection device 41. The alarm device 42 includes, for example, a display device 43 having a plurality of segment elements (not shown) and a buzzer 44. Display device 43
Is based on a signal from the abnormality detection device 41, for example, AL
Flashes the word ARM.

【0012】以下、異常検出装置41の構成を図2に基
づいて説明する。45は検出器S1・S2からの信号を
入力し、信号変換して中央演算処理装置(以下CPUと
いう)46へ出力する入力インターフェイス、47は所
定の演算プログラムなどが記憶されている記憶装置(以
下ROMという)、48はCPU46からの信号を入力
して警報装置42および加熱量制御弁32へ所要の信号
を出力する出力インターフェイス、49は所定時間毎に
信号を出力する信号発生器(以下CLOCKという)、
50は各検出器が検出した温度・濃液濃度を記憶する読
込/消去可能な記憶装置(以下RAMという)である。
Hereinafter, the configuration of the abnormality detecting device 41 will be described with reference to FIG. An input interface 45 receives signals from the detectors S1 and S2, converts the signals, and outputs the converted signals to a central processing unit (hereinafter referred to as a CPU) 46. A storage device 47 stores a predetermined arithmetic program and the like (hereinafter referred to as a CPU). A ROM 48) is an output interface for inputting a signal from the CPU 46 and outputting a required signal to the alarm device 42 and the heating amount control valve 32, and 49 is a signal generator (hereinafter referred to as CLOCK) for outputting a signal every predetermined time. ),
Reference numeral 50 denotes a readable / erasable storage device (hereinafter referred to as a RAM) for storing the temperature and the concentration of the concentrated liquid detected by each detector.

【0013】上記ROM47には、濃度検出器S2が検
出した濃液の濃度Dからその濃液の結晶化温度TCR
求める演算式が記憶されている。具体的には、図3に示
すLiBr水溶液の溶解度曲線(曲線より下側の温度で
吸収液中のLiBrが結晶する)がROM47に記憶さ
れていて、濃度検出器S2により濃液濃度Dが検出され
ると、図3から吸収液中のLiBrが結晶する温度T
CRが求められる。
[0013] the ROM47, the arithmetic expression for obtaining the crystallization temperature T CR of the concentrated liquid from the concentration D of concentrated liquid concentration detector S2 is detected is stored. Specifically, the solubility curve of the aqueous LiBr solution shown in FIG. 3 (LiBr in the absorbing solution crystallizes at a temperature lower than the curve) is stored in the ROM 47, and the concentration detector S2 detects the concentration D of the concentrated solution. Then, the temperature T at which LiBr in the absorbing solution is crystallized is shown in FIG.
CR is required.

【0014】さらに、上記ROM47にはそうして求め
た結晶化温度TCRと温度検出器S1が検出する濃液温
度T1とを比較する演算式と、濃度検出器S2が検出し
た濃液濃度Dを予め定めた所定濃度Dと比較する演算
式と、温度および濃度比較のための基準値、例えば第1
の所定温度15℃、第2の所定温度10℃、第1の所定
濃度D1:65%、第2の所定濃度D2:64、5%
と、さらに所要時に警報装置42および加熱量制御弁3
2に所要の信号を出力する制御プログラムと、が記憶さ
れている。
Furthermore, the crystallization temperature was determined to do so in the ROM 47 T CR and the arithmetic expression temperature detector S1 is compared with the concentrated solution temperature T1 for detecting, concentrated solution concentration D concentration detector S2 detects a calculation formula to be compared with the predetermined concentration D C determined in advance the reference value for the temperature and concentration compared, for example, the first
Predetermined temperature 15 ° C., second predetermined temperature 10 ° C., first predetermined concentration D1: 65%, second predetermined concentration D2: 64, 5%
And an alarm device 42 and a heating amount control valve 3 when necessary.
2, a control program for outputting a required signal.

【0015】上記構成の吸収冷温水機の冷水供給運転時
においては、従来の吸収式冷凍機と同様に高温再生器4
で蒸発した冷媒は低温再生器6を経て凝縮器7へ流れ、
凝縮器熱交換器30を流れる冷却水と熱交換して凝縮し
たのち冷媒配管18を介して蒸発器1へ流れる。
During the chilled water supply operation of the absorption chiller / heater of the above construction, the high temperature regenerator 4 is operated similarly to the conventional absorption chiller.
The refrigerant evaporated in the above flows through the low-temperature regenerator 6 to the condenser 7,
After condensing by exchanging heat with the cooling water flowing through the condenser heat exchanger 30, the refrigerant flows to the evaporator 1 via the refrigerant pipe 18.

【0016】そして、冷媒が蒸発器熱交換器27を流れ
る水と熱交換して蒸発し、気化熱によって蒸発器熱交換
器27を流れる水が冷却され、負荷に循環する。また、
蒸発器1で蒸発した冷媒は吸収器2で吸収液に吸収され
る。
The refrigerant exchanges heat with the water flowing through the evaporator heat exchanger 27 to evaporate, and the water flowing through the evaporator heat exchanger 27 is cooled by the heat of vaporization and circulated to the load. Also,
The refrigerant evaporated in the evaporator 1 is absorbed by the absorbing liquid in the absorber 2.

【0017】冷媒を吸収して濃度の薄くなった稀液が吸
収液ポンプ16の運転によって低温熱交換器9および高
温熱交換器10を経て高温再生器4へ送られる。高温再
生器4へ送られた稀液はバーナ5によって加熱されて冷
媒が蒸発し、こうして作られた中間液が高温熱交換器1
0を経て低温再生器6へ流れる。
The diluted liquid having a reduced concentration after absorbing the refrigerant is sent to the high-temperature regenerator 4 through the low-temperature heat exchanger 9 and the high-temperature heat exchanger 10 by the operation of the absorption liquid pump 16. The diluted liquid sent to the high-temperature regenerator 4 is heated by the burner 5 to evaporate the refrigerant, and the intermediate liquid thus produced is converted into the high-temperature heat exchanger 1.
It flows to the low-temperature regenerator 6 through 0.

【0018】この低温再生器6で中間液は高温再生器1
0から冷媒配管17を流れてきた冷媒蒸気によって加熱
され、さらに冷媒蒸気が分離されて濃度が高くなり、こ
の濃液が低温熱交換器9で吸収液配管11の稀液と熱交
換して温度低下し、吸収器2へ送られて散布される。
In the low-temperature regenerator 6, the intermediate liquid is supplied to the high-temperature regenerator 1
The refrigerant is heated by the refrigerant vapor flowing through the refrigerant pipe 17 from 0, and the refrigerant vapor is further separated to have a high concentration. It falls and is sent to the absorber 2 and is sprayed.

【0019】なお、冷媒ポンプ24から吐出した冷媒液
の一部は冷媒循環配管19を経て冷媒タンク25に入
る。そして、冷媒タンク内で堰を越えた冷媒液は、一部
が冷媒循環配管22を通って冷媒配管18のUシール部
を満たし、他は冷媒循環配管23を通って蒸発器1に流
入する。
A part of the refrigerant liquid discharged from the refrigerant pump 24 enters the refrigerant tank 25 via the refrigerant circulation pipe 19. Then, a part of the refrigerant liquid that has passed through the weir in the refrigerant tank passes through the refrigerant circulation pipe 22 and fills the U seal portion of the refrigerant pipe 18, and the other flows into the evaporator 1 through the refrigerant circulation pipe 23.

【0020】吸収冷温水機が上記のように運転されてい
る時の異常検出について、以下に説明する。
The detection of an abnormality when the absorption chiller / heater is operated as described above will be described below.

【0021】温度検出器S1と濃度検出器S2が検出す
る濃液の温度T1と濃度Dは、入力インターフェイス4
5およびCPU46を介してRAM50に一時記憶され
る。
The temperature T1 and the concentration D of the concentrated liquid detected by the temperature detector S1 and the concentration detector S2 are input to the input interface 4
5 and is temporarily stored in the RAM 50 via the CPU 46.

【0022】そして、CLOCK49からの信号に基づ
いて、所定時間毎にRAM50に記憶されている濃液温
度T1と濃液濃度DがCPU46へ読み込まれると共
に、濃液濃度Dに基づいて結晶化温度TCRを算出する
演算式、結晶化温度TCRと濃液濃度T1とを比較する
演算式、濃液濃度Dと予め定めてある所定濃度Dcとを
比較する演算式、比較のための基準値、所要の制御信号
を適宜出力するためのプログラムがROM47から読み
込まれ、CPU46にて結晶化温度TCR、温度差ΔT
(=T1−TCR)が順次演算により求められ、且つ、
濃度が比較される。
Then, based on the signal from the CLOCK 49, the concentrated liquid temperature T1 and the concentrated liquid concentration D stored in the RAM 50 are read into the CPU 46 at predetermined time intervals, and the crystallization temperature T is stored on the basis of the concentrated liquid concentration D. An arithmetic expression for calculating the CR , an arithmetic expression for comparing the crystallization temperature TCR with the concentrated solution concentration T1, an arithmetic expression for comparing the concentrated solution concentration D with a predetermined concentration Dc, a reference value for comparison, program for outputting appropriate required control signal is read from the ROM 47, the crystallization temperature T CR at CPU 46, the temperature difference ΔT
(= T1− TCR ) is sequentially calculated, and
The concentrations are compared.

【0023】例えば、濃液温度T1と結晶化温度TCR
との温度差ΔT(=T1−TCR)が第1の所定温度1
5℃より高く、且つ、濃液濃度Dが第1の所定濃度D
1、即ち65%より高い場合に、やや異常であるとの信
号をCPU46から出力インターフェイス48を介して
警報装置42と加熱量制御弁32へ出力し、警報装置4
2においては表示装置43にALARMの文字を点滅
し、加熱量制御弁32においては開度が所定開度、例え
ば60%に絞られ、冷媒の蒸発量を抑制して吸収液の濃
度が上昇しないようにセービング運転が開始される。
For example, the concentrated liquid temperature T1 and the crystallization temperature TCR
Temperature difference ΔT (= T1− TCR ) from the first predetermined temperature 1
Higher than 5 ° C. and the concentration D of the concentrated liquid is the first predetermined concentration D
1, that is, if it is higher than 65%, a signal indicating that there is a slight abnormality is output from the CPU 46 to the alarm device 42 and the heating amount control valve 32 via the output interface 48, and the alarm device 4
In 2, the word ALARM blinks on the display device 43, and the opening of the heating amount control valve 32 is reduced to a predetermined opening, for example, 60%, so that the evaporation amount of the refrigerant is suppressed and the concentration of the absorbing liquid does not increase. Is started as described above.

【0024】また、濃液温度T1と結晶化温度TCR
の温度差ΔT(=T1−TCR)が、例えば第1の所定
温度の15℃と第2の所定温度の10℃の間にあって、
濃液濃度Dが第2の所定濃度D2、即ち64.5%より
高い場合に、吸収液(LiBr)が結晶する懸念が強い
として、異常の発生を知らせる信号をCPU46から出
力インターフェイス48を介して警報装置42と加熱量
制御弁32へ出力し、警報装置42の表示装置43にA
LARMの文字を点滅すると共にブザー44を吹鳴し、
加熱量制御弁32においては開度を零にして燃料供給を
停止し、吸収冷温水機の運転が異常停止されるようにな
っている。
Further, it concentrated liquid temperature T1 and the temperature difference ΔT between the crystallization temperature T CR (= T1-T CR ) is, for example, be between the 10 ° C. first 15 ℃ and second predetermined temperature in a predetermined temperature ,
When the concentration D of the concentrated liquid is higher than the second predetermined concentration D2, that is, 64.5%, it is determined that the absorption liquid (LiBr) is highly likely to crystallize, and a signal indicating the occurrence of an abnormality is sent from the CPU 46 via the output interface 48 to the CPU 46. An alarm is output to the alarm device 42 and the heating amount control valve 32, and A is displayed on the display device 43 of the alarm device 42.
LARM flashes and buzzer 44 sounds,
In the heating amount control valve 32, the opening is set to zero to stop the fuel supply, and the operation of the absorption chiller / heater is abnormally stopped.

【0025】なお、本発明は上記実施例に限定されるも
のではないので、特許請求の範囲に記載の趣旨から逸脱
しない範囲で各種の変形実施が可能である。
Since the present invention is not limited to the above-described embodiment, various modifications can be made without departing from the spirit of the appended claims.

【0026】例えば、温度検出器S1が検出する濃液温
度T1と結晶化温度TCRとの温度差ΔTを二領域に区
分し、単に正常/異常として制御することもできる。
[0026] For example, the temperature difference ΔT between the concentrated liquid temperature T1 temperature detector S1 is detected and the crystallization temperature T CR divided into two regions, it may simply be controlled as a normal / abnormal.

【0027】また、濃度検出器S2が検出する濃液濃度
Dの代わりに、吸収液配管14に設けた破線で示す温度
検出器S3が検出する濃液の温度T3と、冷媒配管18
に設けた破線で示す温度検出器S4が検出する冷媒液の
温度T4とに基づいて濃液濃度Dを演算算出し、その濃
液濃度Dを用いて制御することも可能である。
Further, instead of the concentration D of the concentrated liquid detected by the concentration detector S2, the temperature T3 of the concentrated liquid detected by the temperature detector S3 indicated by a broken line provided in the absorbent pipe 14 and the refrigerant pipe 18
It is also possible to calculate and calculate the concentrated liquid concentration D based on the refrigerant liquid temperature T4 detected by the temperature detector S4 indicated by the broken line provided in FIG.

【0028】即ち、高温再生器4から低温再生器6に流
入した中間液は、高温再生器4から冷媒配管17を経由
して凝縮器7に流入する冷媒蒸気により加熱され、冷媒
を蒸発分離して濃縮されるため、温度検出器S3が検出
する濃液温度T3が高い程、吸収液配管14を流れる濃
液の濃度Dは高く、その濃度は低温再生器9で吸収液配
管11を流れる低温の稀液と熱交換して温度が低下して
も変わることがない。
That is, the intermediate liquid flowing from the high-temperature regenerator 4 to the low-temperature regenerator 6 is heated by the refrigerant vapor flowing from the high-temperature regenerator 4 to the condenser 7 via the refrigerant pipe 17 to evaporate and separate the refrigerant. The concentration D of the concentrated liquid flowing through the absorbent pipe 14 is higher as the concentrated liquid temperature T3 detected by the temperature detector S3 is higher. It does not change even if the temperature is lowered by heat exchange with the dilute solution.

【0029】また、温度検出器S4が検出する冷媒液温
度T4が、例えば冷却水配管28を流れる冷却水の温度
低下などにより低下した時には、凝縮器7における冷媒
の蒸気圧が低下し、低温再生器6における冷媒の蒸発が
盛んになり、吸収液配管14に流れ出る濃液の濃度Dは
高くなる。
When the refrigerant liquid temperature T4 detected by the temperature detector S4 decreases due to, for example, a decrease in the temperature of the cooling water flowing through the cooling water pipe 28, the vapor pressure of the refrigerant in the condenser 7 decreases, and low-temperature regeneration is performed. The evaporation of the refrigerant in the vessel 6 becomes active, and the concentration D of the concentrated liquid flowing out to the absorbent pipe 14 increases.

【0030】したがって、吸収液配管14・低温熱交換
器9・吸収液配管15を経て低温再生器6から吸収器2
に流入する濃液の濃度Dは、温度検出器S3が検出する
濃液温度T3と温度検出器S4が検出する冷媒液温度T
4を変数とする関数、 D=F(T3,T4) として書き表すことが可能であり、吸収冷温水機の型式
・定格毎に工場などで実験式を求めておけば、運転時の
濃液濃度Dは濃液温度T3・冷媒液温度T4に基づいて
算出することが可能であるので、こうして求めた濃液濃
度Dを濃度検出器S2が検出する濃液濃度Dに代えて使
用することも可能である。
Accordingly, the low-temperature regenerator 6 passes through the absorbent pipe 14, the low-temperature heat exchanger 9, and the absorbent pipe 15, and
The concentration D of the concentrated liquid flowing into the tank is determined by the concentrated liquid temperature T3 detected by the temperature detector S3 and the refrigerant liquid temperature T detected by the temperature detector S4.
4 can be written as D = F (T3, T4). If an experimental formula is obtained at a factory or the like for each model and rating of the absorption chiller / heater, the concentration of the concentrated liquid during operation can be calculated. Since D can be calculated based on the concentrated liquid temperature T3 and the refrigerant liquid temperature T4, the concentrated liquid concentration D obtained in this way can be used instead of the concentrated liquid concentration D detected by the concentration detector S2. It is.

【0031】[0031]

【発明の効果】以上説明したように本発明は、再生器・
凝縮器・蒸発器・吸収器・低温熱交換器・高温熱交換器
などを配管接続して構成する吸収式冷凍機であって、吸
収器に流入する吸収液の温度と結晶化温度と濃度とを求
め、前記温度差が予め設定した所定値以下になる共に前
記濃度が予め設定した所定値以上になった時に警報を出
力する警報手段を備えた吸収式冷凍機であるので、
As described above, the present invention provides a regenerator
An absorption refrigerating machine constructed by connecting condensers, evaporators, absorbers, low-temperature heat exchangers, high-temperature heat exchangers, etc., with the temperature, crystallization temperature, and concentration of the absorbent flowing into the absorber. It is an absorption refrigerator equipped with alarm means for outputting an alarm when the temperature difference is equal to or less than a predetermined value and the concentration is equal to or more than a predetermined value.

【0032】吸収液の濃度が高くても、吸収液温度が高
い場合には吸収液は結晶することがないと判断して通常
の運転が行われ、最も結晶化し易い吸収器への流入部に
おける吸収液の温度とこの部位の吸収液結晶化温度とが
接近すると共に、前記濃度が予め設定した所定値以上に
なった時に警報手段から警報が発せられることから、警
報の確実性が高く、安全性が高い。
Even when the concentration of the absorbing solution is high, if the absorbing solution temperature is high, it is determined that the absorbing solution does not crystallize, and a normal operation is performed. Since the temperature of the absorbing solution and the crystallization temperature of the absorbing solution at this portion approach each other, and an alarm is issued from the alarming means when the concentration becomes equal to or higher than a predetermined value, the certainty of the alarm is high and the safety is high. High in nature.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1の機器構成を示す説明図である。FIG. 1 is an explanatory diagram illustrating a device configuration according to a first embodiment.

【図2】実施例1の警報手段の構成を示す説明図であ
る。
FIG. 2 is an explanatory diagram illustrating a configuration of an alarm unit according to the first embodiment.

【図3】LiBr水溶液の溶解度曲線を示す説明図であ
る。
FIG. 3 is an explanatory diagram showing a solubility curve of a LiBr aqueous solution.

【符号の説明】[Explanation of symbols]

1 蒸発器 2 吸収器 3 蒸発器吸収器胴 4 高温再生器 5 ガスバーナ 6 低温再生器器 7 凝縮器 8 低温再生器凝縮器胴 9 低温熱交換器 10 高温熱交換器 11・12・13・14・15 吸収液配管 16 吸収液ポンプ 17・18 冷媒配管 19・20・21・22・23 冷媒循環配管 24 冷媒ポンプ 25 冷媒タンク 26 冷水配管 27 蒸発器熱交換器 28 冷却水配管 29 吸収器熱交換器 30 凝縮器熱交換器 31 ガス配管 32 加熱量制御弁 33 冷媒バイパス管 34 冷媒溜り 35 吸収液溜り 36 開閉弁 37 吸収液バイパス管 38 開閉弁 39 冷媒蒸気バイパス管 40 開閉弁 41 異常検出装置 42 警報装置 43 表示装置 44 ブザー 45 入力インターフェイス 46 中央演算処理装置(CPU) 47 記憶装置(ROM) 48 出力インターフェイス 49 信号発生器(CLOCK) 50 記憶装置(RAM) S1・S3・S4 温度検出器 S2 濃度検出器 DESCRIPTION OF SYMBOLS 1 Evaporator 2 Absorber 3 Evaporator absorber body 4 High temperature regenerator 5 Gas burner 6 Low temperature regenerator 7 Condenser 8 Low temperature regenerator condenser body 9 Low temperature heat exchanger 10 High temperature heat exchanger 11 ・ 12 ・ 13 ・ 14・ 15 Absorbent pipe 16 Absorbent pump 17 ・ 18 Refrigerant pipe 19 ・ 20 ・ 21 ・ 22 ・ 23 Refrigerant circulation pipe 24 Refrigerant pump 25 Refrigerant tank 26 Cold water pipe 27 Evaporator heat exchanger 28 Cooling water pipe 29 Absorber heat exchange Device 30 Condenser heat exchanger 31 Gas pipe 32 Heating amount control valve 33 Refrigerant bypass pipe 34 Refrigerant pool 35 Absorbent liquid reservoir 36 Open / close valve 37 Absorbent liquid bypass pipe 38 Open / close valve 39 Refrigerant vapor bypass pipe 40 Open / close valve 41 Abnormality detection device 42 Alarm device 43 Display device 44 Buzzer 45 Input interface 46 Central processing unit (CPU) 47 Storage device (ROM) 48 Output interface 49 signal generator (CLOCK) 50 memory (RAM) S1 · S3 · S4 temperature detector S2 concentration detector

───────────────────────────────────────────────────── フロントページの続き (72)発明者 榎本 英一 大阪府守口市京阪本通2丁目18番地 三 洋電機株式会社内 (56)参考文献 特開 平2−40459(JP,A) 特開 平3−244973(JP,A) 特開 昭58−160783(JP,A) 特開 昭61−32586(JP,A) (58)調査した分野(Int.Cl.7,DB名) F25B 15/00 306 F25B 49/04 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Eiichi Enomoto 2-18-18 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (56) References JP-A-2-40459 (JP, A) Hei 3-244973 (JP, A) JP-A-58-166073 (JP, A) JP-A-61-32586 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) F25B 15 / 00 306 F25B 49/04

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 再生器・凝縮器・蒸発器・吸収器・低温
熱交換器・高温熱交換器などを配管接続して構成する吸
収式冷凍機であって、吸収器に流入する吸収液の温度と
結晶化温度と濃度とを求め、前記温度差が予め設定した
所定値以下になる共に前記濃度が予め設定した所定値以
上になった時、警報を出力する警報手段を備えたことを
特徴とする吸収式冷凍機。
1. An absorption refrigerator comprising a regenerator, a condenser, an evaporator, an absorber, a low-temperature heat exchanger, a high-temperature heat exchanger and the like connected by piping, wherein the absorption liquid flowing into the absorber is removed. A temperature, a crystallization temperature, and a concentration are obtained, and alarm means is provided for outputting an alarm when the temperature difference is equal to or less than a predetermined value and the concentration is equal to or more than a predetermined value. Absorption refrigerator.
JP34329292A 1992-11-30 1992-11-30 Absorption refrigerator Expired - Lifetime JP3208463B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34329292A JP3208463B2 (en) 1992-11-30 1992-11-30 Absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34329292A JP3208463B2 (en) 1992-11-30 1992-11-30 Absorption refrigerator

Publications (2)

Publication Number Publication Date
JPH06159853A JPH06159853A (en) 1994-06-07
JP3208463B2 true JP3208463B2 (en) 2001-09-10

Family

ID=18360391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34329292A Expired - Lifetime JP3208463B2 (en) 1992-11-30 1992-11-30 Absorption refrigerator

Country Status (1)

Country Link
JP (1) JP3208463B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5388660B2 (en) * 2009-04-02 2014-01-15 川重冷熱工業株式会社 Operation method of absorption chiller water heater

Also Published As

Publication number Publication date
JPH06159853A (en) 1994-06-07

Similar Documents

Publication Publication Date Title
JP3208463B2 (en) Absorption refrigerator
JP3599850B2 (en) Absorption refrigerator
JP3195087B2 (en) Absorption refrigerator
JP3195085B2 (en) Absorption refrigerator
JP3081472B2 (en) Control method of absorption refrigerator
JP2785143B2 (en) Operating method of absorption refrigerator
JP3148546B2 (en) Operation control method in absorption refrigerator
JP2708900B2 (en) Absorption refrigerator
JP2654137B2 (en) Control method of absorption refrigerator
JPH01123960A (en) Dilution driving device for absorption refrigerator
JP3258687B2 (en) Abnormality detector for absorption refrigerator
JP3258684B2 (en) Abnormality detector for absorption refrigerator
JP3258692B2 (en) Abnormality detector for absorption refrigerator
JP2664436B2 (en) Control method of absorption refrigerator
JP4090135B2 (en) Control method of absorption refrigerator
JPS6248786B2 (en)
JP3081314B2 (en) Control device for absorption refrigerator
JP3208165B2 (en) Abnormality detector for absorption refrigerator
JP3253211B2 (en) Absorption chiller / heater fault diagnosis system
JP3831427B2 (en) Heat input control method of absorption refrigerator
JP3258686B2 (en) Abnormality detector for absorption refrigerator
JP2708881B2 (en) Absorption refrigerator
JP2771626B2 (en) Absorption refrigerator
JPH0356861Y2 (en)
JP2744034B2 (en) Absorption refrigerator

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080713

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080713

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090713

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090713

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 12