JP3206195B2 - Hydrogen storage measuring device and hydrogen storage device equipped with the same - Google Patents

Hydrogen storage measuring device and hydrogen storage device equipped with the same

Info

Publication number
JP3206195B2
JP3206195B2 JP06288593A JP6288593A JP3206195B2 JP 3206195 B2 JP3206195 B2 JP 3206195B2 JP 06288593 A JP06288593 A JP 06288593A JP 6288593 A JP6288593 A JP 6288593A JP 3206195 B2 JP3206195 B2 JP 3206195B2
Authority
JP
Japan
Prior art keywords
hydrogen storage
amount
optical fiber
storage alloy
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06288593A
Other languages
Japanese (ja)
Other versions
JPH06249777A (en
Inventor
孝利 笹原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Co Ltd
Original Assignee
Suzuki Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Co Ltd filed Critical Suzuki Motor Co Ltd
Priority to JP06288593A priority Critical patent/JP3206195B2/en
Publication of JPH06249777A publication Critical patent/JPH06249777A/en
Application granted granted Critical
Publication of JP3206195B2 publication Critical patent/JP3206195B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、水素貯蔵量測定装置及
びこれを装備した水素貯蔵装置に係り、特に水素貯蔵量
の測定精度を向上させる場合に好適な水素貯蔵量測定装
置及びこれを装備した水素貯蔵装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage amount measuring device and a hydrogen storage device equipped with the same, and more particularly to a hydrogen storage amount measuring device suitable for improving the accuracy of hydrogen storage amount measurement and a device equipped with the same. To a hydrogen storage device.

【0002】[0002]

【従来の技術】従来、水素の貯蔵方法としては、水素吸
蔵合金貯蔵タンクの内部に水素吸蔵合金を貯蔵し,水素
吸蔵合金に水素を吸蔵させることにより水素を貯蔵する
方法が有る。ところで、水素吸蔵合金貯蔵タンク内の水
素吸蔵合金に吸蔵されている水素吸蔵量を測定する場
合,換言すれば,水素吸蔵合金貯蔵タンク内における水
素貯蔵量を測定する場合には、水素吸蔵合金内の水素吸
蔵量と水素平衡圧力(タンク内圧力)との間における特
性(図5参照)を利用して水素貯蔵量を測定するのが一
般的となっている。
2. Description of the Related Art Conventionally, as a method of storing hydrogen, there is a method of storing hydrogen by storing a hydrogen storage alloy in a hydrogen storage alloy storage tank and causing the hydrogen storage alloy to store hydrogen. By the way, when measuring the amount of hydrogen occluded in the hydrogen storage alloy in the hydrogen storage alloy storage tank, in other words, when measuring the amount of hydrogen storage in the hydrogen storage alloy storage tank, the amount of hydrogen stored in the hydrogen storage alloy is determined. It is a common practice to measure the amount of hydrogen stored using the characteristic (see FIG. 5) between the hydrogen storage amount and the hydrogen equilibrium pressure (tank pressure).

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
水素貯蔵量測定装置では、図5に示す特性を利用して水
素貯蔵量を測定しているが、水素吸蔵合金内の水素吸蔵
量と水素平衡圧力とが比例関係に無いため、水素貯蔵量
を水素平衡圧力から高精度で測定することができず、従
って水素貯蔵量測定値に信頼性が無い等の問題があっ
た。
However, in the conventional hydrogen storage amount measuring apparatus, the hydrogen storage amount is measured by using the characteristics shown in FIG. 5, but the hydrogen storage amount and the hydrogen equilibrium in the hydrogen storage alloy are measured. Since the pressure is not proportional to the pressure, the hydrogen storage amount cannot be measured with high accuracy from the hydrogen equilibrium pressure, and thus there is a problem that the measured value of the hydrogen storage amount is not reliable.

【0004】[0004]

【発明の目的】本発明は、上記従来例の有する不都合を
改善し、特に水素吸蔵合金貯蔵タンク内における水素貯
蔵量の測定精度を向上させることにより、水素貯蔵量の
測定値の信頼性を向上させた水素貯蔵量測定装置及びこ
れを装備した水素貯蔵装置の提供を目的とする。
An object of the present invention is to improve the reliability of the measured value of the hydrogen storage amount by improving the disadvantages of the prior art described above, and in particular, by improving the measurement accuracy of the hydrogen storage amount in the hydrogen storage alloy storage tank. It is an object of the present invention to provide a hydrogen storage amount measuring device and a hydrogen storage device equipped with the same.

【0005】[0005]

【課題を解決するための手段】本発明は、水素吸蔵合金
を貯蔵したタンク本体部を有する水素貯蔵装置に付設さ
れ、水素吸蔵合金の水素吸蔵量に応じた体積変化に基づ
き前記水素貯蔵装置内の水素貯蔵量を測定する水素貯蔵
量測定装置において、前記タンク本体部内に環境要因等
の変動に対して形状が変化しない物性を有するフィルタ
を介して埋設され前記水素吸蔵合金と同一組成の測定用
水素吸蔵合金を収納した収納部と、該収納部内の測定用
水素吸蔵合金に弾性部材を介して当接状態に配設された
光ファイバ部と、該光ファイバ部へ光を入射させる光源
部とを備え、該光源部から前記光ファイバ部内への光の
入射に伴い当該光ファイバ部内で屈折して出射してくる
光を検出し該検出光の光量に応じた電圧を出力する光電
変換部を具備する構成としている。これにより、前記目
的を達成しようとするものである。
SUMMARY OF THE INVENTION The present invention is directed to a hydrogen storage device having a tank main body storing a hydrogen storage alloy, wherein the hydrogen storage device is provided with a hydrogen storage alloy. In the hydrogen storage amount measuring device for measuring the hydrogen storage amount, for measuring the same composition as the hydrogen storage alloy embedded in the tank body through a filter having a physical property that does not change its shape with respect to changes in environmental factors and the like A storage unit that stores the hydrogen storage alloy, an optical fiber unit disposed in contact with the measurement hydrogen storage alloy in the storage unit via an elastic member, and a light source unit that causes light to enter the optical fiber unit. A photoelectric conversion unit that detects light that is refracted and emitted within the optical fiber unit with the incidence of light from the light source unit into the optical fiber unit and outputs a voltage corresponding to the amount of detected light. Have We are trying to be. This aims to achieve the above object.

【0006】[0006]

【作用】本発明によれば、水素貯蔵装置内の水素貯蔵量
を測定する場合には、光源部から光ファイバ部へ光を入
射させる。この時、収納部内に収納された測定用水素吸
蔵合金の水素吸蔵量に応じた体積変化に伴い、弾性部材
は変形するが、フィルタは環境要因等の変動に対して形
状が変化しない物性を有するため変形しない。これによ
り、弾性部材の変形が光ファイバ部へ伝えられ、光ファ
イバの屈折率が変化する結果、光ファイバ部へ入射して
きた光は、光ファイバの屈折率の変化に応じて屈折して
出射し光電変換部により検出される。これに伴い、光電
変換部は、検出光の光量に応じた電圧を出力する。即
ち、測定用水素吸蔵合金粒子の体積変化を光電変換部の
出力電圧変化として検出することができるため、該出力
電圧変化から光ファイバつぶれ量を,該算定結果から光
ファイバつぶれ量と比例関係にある体積膨張率を,該算
定結果から体積膨張率と比例関係にある水素吸蔵量を順
次算定することが可能となる。従って、水素貯蔵装置内
の水素吸蔵合金と測定用水素吸蔵合金との体積比率が判
明すれば、水素貯蔵装置内の水素貯蔵量を高精度で測定
することが可能となり、この結果、水素貯蔵量の測定値
の信頼性を向上させることができる。
According to the present invention, when measuring the amount of hydrogen stored in the hydrogen storage device, light is incident on the optical fiber from the light source. At this time, the elastic member is deformed in accordance with the volume change according to the hydrogen storage amount of the hydrogen storage alloy for measurement stored in the storage portion, but the filter has physical properties such that the shape does not change in response to changes in environmental factors and the like. It does not deform. As a result, the deformation of the elastic member is transmitted to the optical fiber portion, and the refractive index of the optical fiber changes. As a result, the light incident on the optical fiber portion is refracted and emitted according to the change in the refractive index of the optical fiber. It is detected by the photoelectric conversion unit. Accordingly, the photoelectric conversion unit outputs a voltage corresponding to the amount of the detection light. That is, since the volume change of the hydrogen storage alloy particles for measurement can be detected as a change in the output voltage of the photoelectric conversion unit, the amount of crushed optical fiber is calculated from the change in output voltage, and the calculated result is proportional to the amount of crushed optical fiber. It is possible to sequentially calculate a certain volume expansion coefficient and a hydrogen storage amount proportional to the volume expansion rate from the calculation result. Therefore, if the volume ratio between the hydrogen storage alloy in the hydrogen storage device and the hydrogen storage alloy for measurement is known, the hydrogen storage amount in the hydrogen storage device can be measured with high accuracy, and as a result, the hydrogen storage amount Can improve the reliability of the measured values.

【0007】[0007]

【実施例】以下、本発明の水素貯蔵量測定装置及びこれ
を装備した水素貯蔵装置を適用してなる実施例を図面に
基づいて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which a hydrogen storage amount measuring apparatus of the present invention and a hydrogen storage apparatus equipped with the same will be described below with reference to the drawings.

【0008】図1は本実施例における水素貯蔵量測定装
置を装備した水素吸蔵合金貯蔵タンクの要部の構成図で
あり、水素吸蔵合金貯蔵タンク1のタンク本体部1Aに
は、多量の燃料用水素吸蔵合金粒子2が貯蔵されてい
る。水素吸蔵合金貯蔵タンク1の外壁部3の開口部に
は、中央部分に穴部4を有する取付部材5がボルト6,
7により固定されており、外壁部3と取付部材5との間
は、水素ガス漏洩防止用Oリング8,9によりシールさ
れている。取付部材5の下面部には、石英ガラス10が
配設されており、取付部材5と石英ガラス10との間
は、水素ガス漏洩防止用Oリング11,12によりシー
ルされている。
FIG. 1 is a structural view of a main part of a hydrogen storage alloy storage tank equipped with a hydrogen storage amount measuring device according to the present embodiment. The hydrogen storage alloy particles 2 are stored. At the opening of the outer wall 3 of the hydrogen storage alloy storage tank 1, a mounting member 5 having a hole 4 at the center is provided with bolts 6,
The space between the outer wall 3 and the mounting member 5 is sealed by O-rings 8 and 9 for preventing leakage of hydrogen gas. A quartz glass 10 is disposed on the lower surface of the mounting member 5, and the space between the mounting member 5 and the quartz glass 10 is sealed by O-rings 11 and 12 for preventing hydrogen gas from leaking.

【0009】更に、取付部材5の下面部には、石英ガラ
ス10を支持するための支持部材13が配設されてお
り、石英ガラス10と支持部材13との間は、水素ガス
漏洩防止用Oリング14,15によりシールされてい
る。支持部材13の下面部には、焼結フィルタ16が配
設されており、焼結フィルタ16は、フィルタ押え部材
17及びネジ18,19により支持部材13へ固定され
ている。この場合、焼結フィルタ16は、燃料用水素吸
蔵合金粒子2と測定用水素吸蔵合金粒子23とが略同程
度の温度環境となるように、例えば銅等を主とした熱伝
導性が良好な材料から構成されている。
Further, a support member 13 for supporting the quartz glass 10 is disposed on the lower surface of the mounting member 5, and a gap between the quartz glass 10 and the support member 13 for preventing hydrogen gas leakage is provided. Sealed by rings 14,15. A sintered filter 16 is provided on the lower surface of the support member 13, and the sintered filter 16 is fixed to the support member 13 by a filter pressing member 17 and screws 18 and 19. In this case, the sintered filter 16 has good thermal conductivity mainly composed of, for example, copper so that the temperature environment of the hydrogen storage alloy particles 2 for fuel and the hydrogen storage alloy particles 23 for measurement are substantially the same. It is composed of materials.

【0010】焼結フィルタ16の内部中央には、光ファ
イバ20と光ファイバ外周部を被覆するゴム21とから
成るゴム被覆ファイバ部22が配設されており、焼結フ
ィルタ16の内周部とゴム被覆光ファイバ部22の外周
部とにより区画された収納部1Bには、水素吸蔵合金貯
蔵タンク1内の水素貯蔵量を測定する際のサンプルとな
る少量の測定用水素吸蔵合金粒子23が貯蔵されてい
る。測定用水素吸蔵合金粒子23は、物性(例えばチタ
ン鉄系等),水素吸蔵放出特性,体積膨張特性が燃料用
水素吸蔵合金粒子2と同一のものとなっている。
A rubber-coated fiber portion 22 composed of an optical fiber 20 and a rubber 21 for coating the outer peripheral portion of the optical fiber is provided at the center of the inside of the sintered filter 16. A small amount of hydrogen storage alloy particles 23 for measurement serving as a sample when measuring the amount of hydrogen stored in the hydrogen storage alloy storage tank 1 is stored in the storage section 1B partitioned by the outer periphery of the rubber-coated optical fiber section 22. Have been. The hydrogen storage alloy particles for measurement 23 have the same physical properties (for example, titanium iron-based), hydrogen storage / release characteristics, and volume expansion characteristics as those of the hydrogen storage alloy particles for fuel 2.

【0011】この場合、測定用水素吸蔵合金粒子23の
体積膨張率は、最大で30〜40%程度と極めて大きい
ため、測定用水素吸蔵合金粒子23をゴム被覆光ファイ
バ部22のゴム21で弾性的に支持するようになってい
る。また、測定用水素吸蔵合金粒子23が水素を放出し
た場合は、測定用水素吸蔵合金粒子23自体は収縮する
が、ゴム被覆光ファイバ部22のゴム21は充分な弾力
性を持つため、ゴム21は元の形状に戻るようになって
いる。
In this case, since the volume expansion coefficient of the hydrogen-absorbing alloy particles for measurement 23 is extremely large at a maximum of about 30 to 40%, the hydrogen-absorbing alloy particles for measurement 23 are elastically deformed by the rubber 21 of the rubber-coated optical fiber portion 22. It has come to support. When the hydrogen-absorbing alloy particles 23 for measurement release hydrogen, the hydrogen-absorbing alloy particles 23 for measurement contract themselves, but the rubber 21 of the rubber-coated optical fiber portion 22 has a sufficient elasticity. Returns to its original shape.

【0012】他方、水素吸蔵合金貯蔵タンク1の外部に
は、例えば半導体レーザ等を使用した光源24と、該光
源24の出力光を反射すると共にゴム被覆光ファイバ部
22からの屈折光を透過させるハーフミラー25と、該
ハーフミラー25の透過光の光量に応じた電圧を水素貯
蔵量測定部(図示略)へ出力する光電変換素子26とが
配設されている。
On the other hand, outside the hydrogen storage alloy storage tank 1, a light source 24 using, for example, a semiconductor laser or the like, reflects the output light of the light source 24 and transmits the refracted light from the rubber-coated optical fiber section 22. A half mirror 25 and a photoelectric conversion element 26 that outputs a voltage corresponding to the amount of light transmitted through the half mirror 25 to a hydrogen storage amount measuring unit (not shown) are provided.

【0013】即ち、上述したゴム被覆光ファイバ部2
2,光源24,ハーフミラー25,光電変換素子26,
水素貯蔵量測定部等が水素貯蔵量測定装置を構成してい
る。
That is, the rubber coated optical fiber section 2 described above
2, light source 24, half mirror 25, photoelectric conversion element 26,
The hydrogen storage amount measurement unit and the like constitute a hydrogen storage amount measurement device.

【0014】次に、上記の如く構成した本実施例の動作
を説明する。
Next, the operation of the embodiment constructed as described above will be described.

【0015】水素吸蔵合金貯蔵タンク1のタンク本体部
1Aに貯蔵してある多量の燃料用水素吸蔵合金粒子2の
水素吸蔵量,換言すれば,タンク本体部1A内の全水素
貯蔵量を測定すべく、光源24から光を出力させると、
出力光はハーフミラー25で反射された後、水素吸蔵合
金貯蔵タンク1の取付部材5の穴部4を通り、石英ガラ
ス10を透過した後、ゴム被覆光ファイバ部22の光フ
ァイバ20内へ入光する。
The amount of hydrogen occlusion of a large amount of the hydrogen storage alloy particles 2 for fuel stored in the tank main body 1A of the hydrogen storage alloy storage tank 1, that is, the total hydrogen storage amount in the tank main body 1A is measured. Therefore, when light is output from the light source 24,
The output light is reflected by the half mirror 25, passes through the hole 4 of the mounting member 5 of the hydrogen storage alloy storage tank 1, passes through the quartz glass 10, and enters the optical fiber 20 of the rubber coated optical fiber 22. Light.

【0016】他方、水素吸蔵合金貯蔵タンク1の焼結フ
ィルタ16とゴム被覆光ファイバ部22との間の収納部
1Bに貯蔵されている測定用水素吸蔵合金粒子23は、
水素吸蔵量に応じて体積が膨張しており、その体積膨張
はゴム被覆光ファイバ部22のゴム21へ伝えられる。
これにより、ゴム被覆光ファイバ部22の光ファイバ2
0は、ゴム21の変形に応じて屈折率が変化するため、
「つぶれ量」が変化する。
On the other hand, the hydrogen storage alloy particles 23 for measurement stored in the storage section 1B between the sintered filter 16 and the rubber-coated optical fiber section 22 of the hydrogen storage alloy storage tank 1 are:
The volume is expanded in accordance with the hydrogen storage amount, and the volume expansion is transmitted to the rubber 21 of the rubber-coated optical fiber portion 22.
Thereby, the optical fiber 2 of the rubber coated optical fiber section 22 is
0 indicates that the refractive index changes according to the deformation of the rubber 21.
The “crush amount” changes.

【0017】従って、ゴム被覆光ファイバ部22の光フ
ァイバ20内へ入光した光は、光ファイバ20の「つぶ
れ量」に応じて屈折した後、元の経路を通り、ハーフミ
ラー25を透過した後、光電変換素子26へ入光する。
これにより、光電変換素子26は、透過光の光量に応じ
た電圧を上述した水素貯蔵量測定部へ出力する。
Therefore, the light entering the optical fiber 20 of the rubber-coated optical fiber section 22 is refracted according to the “crush amount” of the optical fiber 20, passes through the original path, and passes through the half mirror 25. Thereafter, light enters the photoelectric conversion element 26.
As a result, the photoelectric conversion element 26 outputs a voltage corresponding to the amount of transmitted light to the above-described hydrogen storage amount measurement unit.

【0018】この後、水素貯蔵量測定部は、図2の光電
変換素子出力電圧−光ファイバつぶれ量特性に基づき、
光電変換素子26の出力電圧に対応した「光ファイバつ
ぶれ量」を算定する。更に、図3の光ファイバつぶれ量
−体積膨張率特性に基づき、「光ファイバつぶれ量」に
対応した測定用水素吸蔵合金粒子23の「体積膨張率」
を算定する。更に、図4の体積膨張率−水素吸蔵量特性
に基づき、測定用水素吸蔵合金粒子23の「体積膨張
率」に対応した「水素吸蔵量」を算定する。そして、水
素吸蔵合金貯蔵タンク1内における燃料用水素吸蔵合金
粒子2の量と,測定用水素吸蔵合金粒子23の量との比
率に基づき、燃料用水素吸蔵合金粒子2に吸蔵されてい
る水素吸蔵量,換言すれば,水素吸蔵合金貯蔵タンク1
内に残存している水素貯蔵量を算定する。
Thereafter, the hydrogen storage amount measuring unit calculates the output voltage of the photoelectric conversion element and the amount of crushed optical fiber shown in FIG.
The “optical fiber crush amount” corresponding to the output voltage of the photoelectric conversion element 26 is calculated. Further, based on the optical fiber crushing amount-volume expansion coefficient characteristic of FIG. 3, the "volume expansion coefficient" of the hydrogen storage alloy particles 23 for measurement corresponding to the "optical fiber crushing amount".
Is calculated. Further, the “hydrogen storage amount” corresponding to the “volume expansion coefficient” of the hydrogen storage alloy particles for measurement 23 is calculated based on the volume expansion coefficient-hydrogen storage amount characteristic of FIG. Then, based on the ratio of the amount of the hydrogen storage alloy particles for fuel 2 in the hydrogen storage alloy storage tank 1 to the amount of the hydrogen storage alloy particles for measurement 23, the hydrogen occlusion stored in the hydrogen storage alloy particles for fuel 2 is performed. Quantity, in other words, hydrogen storage alloy storage tank 1
Calculate the amount of hydrogen storage remaining in

【0019】上述したように、本実施例によれば、測定
用水素吸蔵合金粒子23の体積膨張を光電変換素子26
の出力電圧変化として検出し、該出力電圧変化から光フ
ァイバつぶれ量を算定し、該光ファイバつぶれ量から比
例関係にある測定用水素吸蔵合金粒子23の体積膨張率
を算定し、該体積膨張率から比例関係にある測定用水素
吸蔵合金粒子23の水素吸蔵量を算定するため、水素吸
蔵合金貯蔵タンク1内の水素貯蔵量を高精度で測定する
ことが可能となり、従って、水素貯蔵量の測定値の信頼
性を向上させることができる。
As described above, according to this embodiment, the volume expansion of the hydrogen storage alloy particles 23 for measurement is measured by the photoelectric conversion element 26.
, The amount of optical fiber collapse is calculated from the output voltage change, the volume expansion rate of the measuring hydrogen storage alloy particles 23 in a proportional relationship is calculated from the amount of optical fiber collapse, and the volume expansion rate is calculated. Calculates the hydrogen storage amount of the hydrogen storage alloy particles for measurement 23 in a proportional relationship from the above, so that the hydrogen storage amount in the hydrogen storage alloy storage tank 1 can be measured with high accuracy, and therefore, the measurement of the hydrogen storage amount The reliability of the value can be improved.

【0020】また、本実施例によれば、焼結フィルタ1
6内部に貯蔵した燃料用水素吸蔵合金粒子2の内周側を
ゴム被覆光ファイバ部22で弾性的に支持した構造とし
ているため、燃料用水素吸蔵合金粒子2に対する特別な
支持機構が不要となり、コストの低減を図ることができ
る。
Further, according to the present embodiment, the sintered filter 1
6 has a structure in which the inner peripheral side of the hydrogen storage alloy particles for fuel 2 stored inside is elastically supported by the rubber-coated optical fiber portion 22, so that a special support mechanism for the hydrogen storage alloy particles for fuel 2 becomes unnecessary. Cost can be reduced.

【0021】また、本実施例によれば、光電変換素子2
6の出力電圧に基づき水素貯蔵量を測定する構成として
いるため、即ち、測定箇所に機械的な部分が無いため、
構成を簡易化することができる。
According to this embodiment, the photoelectric conversion element 2
6, the hydrogen storage amount is measured based on the output voltage, that is, since there is no mechanical part at the measurement point,
The configuration can be simplified.

【0022】[0022]

【発明の効果】以上説明したように、本発明の水素貯蔵
量測定装置及びこれを装備した水素貯蔵装置によれば、
タンク本体部内に環境要因等の変動に対して形状が変化
しない物性を有するフィルタを介して埋設され測定用水
素吸蔵合金を収納した収納部と、測定用水素吸蔵合金に
弾性部材を介して当接状態に配設された光ファイバ部
と、光ファイバ部へ光を入射させる光源部と、光ファイ
バ部内で屈折して出射してくる光の光量に応じた電圧を
出力する光電変換部とを具備した構成としているため、
測定用水素吸蔵合金粒子の体積変化を光電変換部の出力
電圧変化として検出することが可能となり、これによ
り、出力電圧変化から光ファイバつぶれ量を,該算定結
果から光ファイバつぶれ量と比例関係にある体積膨張率
を,該算定結果から体積膨張率と比例関係にある水素吸
蔵量を順次算定できるため、水素貯蔵装置内の水素吸蔵
合金と測定用水素吸蔵合金との体積比率が判明すれば、
水素貯蔵装置内の水素貯蔵量を高精度で測定することが
可能となり、従って、水素貯蔵量の測定値の信頼性を向
上させることができるという、顕著な効果を奏すること
ができる。
As described above, according to the hydrogen storage amount measuring apparatus and the hydrogen storage apparatus equipped with the same according to the present invention,
The storage unit that stores the hydrogen-absorbing alloy for measurement embedded in the tank body through a filter that has physical properties that do not change in shape due to environmental factors, etc., and abuts on the hydrogen-absorbing alloy for measurement via an elastic member. An optical fiber unit disposed in a state, a light source unit for making light incident on the optical fiber unit, and a photoelectric conversion unit for outputting a voltage corresponding to the amount of light refracted and emitted in the optical fiber unit are provided. Configuration,
The change in volume of the hydrogen storage alloy particles for measurement can be detected as a change in the output voltage of the photoelectric conversion unit, whereby the amount of crushed optical fiber is calculated from the change in output voltage, and the calculated result is proportional to the amount of crushed optical fiber. Since a certain volume expansion coefficient can be sequentially calculated from the calculation result, the hydrogen storage amount proportional to the volume expansion coefficient, if the volume ratio between the hydrogen storage alloy in the hydrogen storage device and the hydrogen storage alloy for measurement is known,
The hydrogen storage amount in the hydrogen storage device can be measured with high accuracy, and therefore, a remarkable effect that the reliability of the measured value of the hydrogen storage amount can be improved can be achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を適用した本実施例の水素貯蔵量測定装
置を装備した水素吸蔵合金貯蔵タンクの要部の構成を示
す断面図である。
FIG. 1 is a cross-sectional view showing a configuration of a main part of a hydrogen storage alloy storage tank equipped with a hydrogen storage amount measuring device of the present embodiment to which the present invention is applied.

【図2】光電変換素子出力電圧と光ファイバつぶれ量と
の関係を示す説明図である。
FIG. 2 is an explanatory diagram showing a relationship between a photoelectric conversion element output voltage and an optical fiber crushing amount.

【図3】光ファイバつぶれ量と体積膨張率との関係を示
す説明図である。
FIG. 3 is an explanatory diagram showing a relationship between an optical fiber crushing amount and a volume expansion coefficient.

【図4】体積膨張率と水素吸蔵量との関係を示す説明図
である。
FIG. 4 is an explanatory diagram showing a relationship between a volume expansion coefficient and a hydrogen storage amount.

【図5】水素平衡圧力と水素吸蔵量との関係を示す説明
図である。
FIG. 5 is an explanatory diagram showing a relationship between a hydrogen equilibrium pressure and a hydrogen storage amount.

【符号の説明】[Explanation of symbols]

1 水素吸蔵合金貯蔵タンク 1A タンク本体部 1B 収納部 2 燃料用水素吸蔵合金貯蔵粒子 16 フィルタとしての焼結フィルタ 20 光ファイバ 21 弾性部材としてのゴム 22 光ファイバ部としてのゴム被覆光ファイバ部 23 測定用水素吸蔵合金貯蔵粒子 24 光源部としての光源 25 ハーフミラー 26 光電変換部としての光電変換素子 DESCRIPTION OF SYMBOLS 1 Hydrogen storage alloy storage tank 1A Tank main body 1B Storage part 2 Hydrogen storage alloy storage particles for fuel 16 Sintered filter as filter 20 Optical fiber 21 Rubber as elastic member 22 Rubber coated optical fiber as optical fiber 23 Measurement Storage particles for hydrogen storage alloy 24 Light source as light source unit 25 Half mirror 26 Photoelectric conversion element as photoelectric conversion unit

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01N 21/00 - 21/61 F02M 21/02 F17C 11/00 Continuation of front page (58) Fields investigated (Int. Cl. 7 , DB name) G01N 21/00-21/61 F02M 21/02 F17C 11/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 水素吸蔵合金を貯蔵したタンク本体部を
有する水素貯蔵装置に付設され、水素吸蔵合金の水素吸
蔵量に応じた体積変化に基づき前記タンク本体部内の水
素貯蔵量を測定する水素貯蔵量測定装置において、 前記タンク本体部内に環境要因等の変動に対して形状が
変化しない物性を有するフィルタを介して埋設され前記
水素吸蔵合金と同一組成の測定用水素吸蔵合金を収納し
た収納部と、該収納部内の測定用水素吸蔵合金に弾性部
材を介して当接状態に配設された光ファイバ部と、該光
ファイバ部へ光を入射させる光源部とを備え、 該光源部から前記光ファイバ部内への光の入射に伴い当
該光ファイバ部内で屈折して出射してくる光を検出し該
検出光の光量に応じた電圧を出力する光電変換部を具備
したことを特徴とする水素貯蔵量測定装置。
1. A hydrogen storage device which is attached to a hydrogen storage device having a tank main body storing a hydrogen storage alloy and measures a hydrogen storage amount in the tank main body based on a volume change according to a hydrogen storage amount of the hydrogen storage alloy. In the quantity measuring device, a storage unit containing a hydrogen storage alloy for measurement having the same composition as the hydrogen storage alloy embedded in the tank main body through a filter having physical properties that do not change in shape due to fluctuations in environmental factors and the like. An optical fiber portion disposed in contact with the hydrogen-absorbing alloy for measurement in the storage portion via an elastic member, and a light source portion for making light incident on the optical fiber portion; Hydrogen storage, comprising: a photoelectric conversion unit that detects light that is refracted and emitted within the optical fiber unit in response to light entering the fiber unit and outputs a voltage corresponding to the amount of the detected light. Measuring device.
【請求項2】 水素吸蔵合金を貯蔵すると共に、水素吸
蔵合金の水素吸蔵量に応じた体積変化に基づき水素貯蔵
量を測定する水素貯蔵量測定機能を備えた水素貯蔵装置
において、 燃料用水素吸蔵合金を貯蔵したタンク本体部と、該タン
ク本体部内に環境要因等の変動に対して形状が変化しな
い物性を有するフィルタを介して埋設され前記燃料用水
素吸蔵合金と同一組成の測定用水素吸蔵合金を収納した
収納部と、該収納部内の測定用水素吸蔵合金に弾性部材
を介して当接状態に配設された光ファイバ部とを備え、 該光ファイバ部内へ光を入射させる光源部と、該光源部
から前記光ファイバ部内への光の入射に伴い当該光ファ
イバ部内で屈折して出射してくる光を検出し該検出光の
光量に応じた電圧を出力する光電変換部とを装備し、 該光電変換部の出力電圧に基づき前記測定用水素吸蔵合
金の体積膨張率を算定し,該体積膨張率に基づき前記測
定用水素吸蔵合金の水素吸蔵量を算定し,該水素吸蔵量
と前記測定用及び燃料用水素吸蔵合金の体積比率とに基
づき前記燃料用水素吸蔵合金の水素吸蔵量を算定し,該
水素吸蔵量に基づき前記タンク本体部内の水素貯蔵量を
算定する水素貯蔵量算定部を具備したことを特徴とする
水素貯蔵装置。
2. A hydrogen storage device having a hydrogen storage amount measuring function for storing a hydrogen storage alloy and measuring a hydrogen storage amount based on a volume change according to the hydrogen storage amount of the hydrogen storage alloy, comprising: A hydrogen storage alloy for measurement having the same composition as that of the hydrogen storage alloy for fuel, which is embedded through a tank main body storing the alloy and a filter having a physical property that does not change its shape with respect to fluctuations in environmental factors and the like in the tank main body. A light source unit that includes an optical fiber unit disposed in contact with the measurement hydrogen storage alloy in the storage unit via an elastic member, and that causes light to enter the optical fiber unit; A photoelectric conversion unit that detects light emitted from the light source unit after being refracted in the optical fiber unit as light enters the optical fiber unit from the light source unit and outputs a voltage corresponding to the amount of the detected light. The photoelectric conversion The volume expansion coefficient of the hydrogen storage alloy for measurement is calculated based on the output voltage of the exchange unit, and the hydrogen storage amount of the hydrogen storage alloy for measurement is calculated based on the volume expansion coefficient. A hydrogen storage amount calculation unit for calculating the hydrogen storage amount of the fuel hydrogen storage alloy based on the volume ratio of the fuel hydrogen storage alloy and calculating the hydrogen storage amount in the tank body based on the hydrogen storage amount; A hydrogen storage device characterized by the above-mentioned.
JP06288593A 1993-02-26 1993-02-26 Hydrogen storage measuring device and hydrogen storage device equipped with the same Expired - Fee Related JP3206195B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06288593A JP3206195B2 (en) 1993-02-26 1993-02-26 Hydrogen storage measuring device and hydrogen storage device equipped with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06288593A JP3206195B2 (en) 1993-02-26 1993-02-26 Hydrogen storage measuring device and hydrogen storage device equipped with the same

Publications (2)

Publication Number Publication Date
JPH06249777A JPH06249777A (en) 1994-09-09
JP3206195B2 true JP3206195B2 (en) 2001-09-04

Family

ID=13213166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06288593A Expired - Fee Related JP3206195B2 (en) 1993-02-26 1993-02-26 Hydrogen storage measuring device and hydrogen storage device equipped with the same

Country Status (1)

Country Link
JP (1) JP3206195B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000081404A (en) * 1998-06-29 2000-03-21 Equos Research Co Ltd Hydrogen quantity measuring device
US7254983B2 (en) 2001-10-16 2007-08-14 Hera Usa Inc. Fuel gauge for hydrogen storage media
CH700974A2 (en) * 2009-05-08 2010-11-15 Empa Optical hydrogen sensor for detecting atomic hydrogen absorbed.
CN107543033A (en) * 2017-09-29 2018-01-05 吉林科领科技有限公司 A kind of metal hydride hydrogen storage unit

Also Published As

Publication number Publication date
JPH06249777A (en) 1994-09-09

Similar Documents

Publication Publication Date Title
US4437761A (en) Refractive index temperature sensor
WO1988004126A1 (en) Optical micropressure transducer
AU630798B2 (en) Fiber optic liquid leak detector
CN111272331A (en) Optical fiber air pressure sensor and system based on surface plasmon resonance
Libo et al. Fiber-optic diaphragm pressure sensor with automatic intensity compensation
JP3206195B2 (en) Hydrogen storage measuring device and hydrogen storage device equipped with the same
JPH0311644B2 (en)
JP2000321030A (en) Rotor thrust measurement and balance control using fiber-optic sensor
JPS59105517A (en) Fiber optic sensor for measuring physical quantity
JP2009053045A (en) Optical fiber hydrogen sensor and hydrogen detection system using the same
CN208860519U (en) Push-pull type optical fiber differential pressure pickup
US20060070446A1 (en) Pressure gauge
Guo et al. Measuring the absolute sticking probability at desorption temperatures
CN110389122A (en) A kind of fluorescence enhancement type all-fiber hydrogen sensor based on Meta Materials
Pettit et al. Specular reflectance loss of solar mirrors due to dust accumulation
CN116412944B (en) Ultra-high-sensitivity optical fiber F-P cavity pressure sensing structure
RU2354946C1 (en) Device for measuring small fluctuations of pressure of media
CN114034355B (en) Liquid level sensor and liquid level sensing system
JP2534606B2 (en) pressure switch
JP2001033325A (en) Optical pressure sensor
JPH102809A (en) Pressure detector
EP0522989B1 (en) Device to optoelectronically detect the quantity of liquid in a container
CN113218564A (en) Optical cavity air pressure sensor
JPH0772080A (en) Gas detector
CN116358700A (en) Laser power measuring device and method based on micro-cantilever device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010605

LAPS Cancellation because of no payment of annual fees