JP3205943B2 - Ti-rare earth element-N-based ultra-hard compound film and method of forming the same - Google Patents

Ti-rare earth element-N-based ultra-hard compound film and method of forming the same

Info

Publication number
JP3205943B2
JP3205943B2 JP13399192A JP13399192A JP3205943B2 JP 3205943 B2 JP3205943 B2 JP 3205943B2 JP 13399192 A JP13399192 A JP 13399192A JP 13399192 A JP13399192 A JP 13399192A JP 3205943 B2 JP3205943 B2 JP 3205943B2
Authority
JP
Japan
Prior art keywords
film
substrate
rare earth
earth element
hard compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13399192A
Other languages
Japanese (ja)
Other versions
JPH05330956A (en
Inventor
裕昌 王
中哉 千田
正道 松浦
Original Assignee
日本真空技術株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本真空技術株式会社 filed Critical 日本真空技術株式会社
Priority to JP13399192A priority Critical patent/JP3205943B2/en
Publication of JPH05330956A publication Critical patent/JPH05330956A/en
Application granted granted Critical
Publication of JP3205943B2 publication Critical patent/JP3205943B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5053Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials non-oxide ceramics
    • C04B41/5062Borides, Nitrides or Silicides
    • C04B41/5068Titanium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、Ti−希土類元素−N
系超硬質化合物膜およびその形成方法に関し、更に詳し
くは、金属産業や、機械・装置産業で使用する工具や、
各種装置に用いられる構成部品や、摺動材料表面上にコ
ーティング膜を形成し、材料表面の硬度、耐摩耗性、お
よび摺動特性の性能を改善したTi−希土類元素−N系
超硬質化合物膜および該膜をイオンミキシング法を用い
て形成する方法に関する。
The present invention relates to a Ti-rare earth element-N
Regarding the system-based super-hard compound film and the method for forming the same, more specifically, tools used in the metal industry, the machine and equipment industries,
Ti-rare earth element-N-based ultra-hard compound film with improved hardness, abrasion resistance and sliding characteristics of the material surface by forming a coating film on the component parts used for various devices and the sliding material surface And a method for forming the film using an ion mixing method.

【0002】[0002]

【従来の技術】従来、この種の金属等の基板上に形成さ
れた硬質・耐摩耗性および摺動性コーティング膜として
は、PVD法、或いはCVD法により基板上に形成され
たTi−N、Ti−C等の化合物の薄膜が知られてい
る。
2. Description of the Related Art Conventionally, as a hard / wear-resistant and slidable coating film formed on a substrate of this kind of metal or the like, Ti-N, PVD or CVD formed on the substrate has been used. Thin films of compounds such as Ti-C are known.

【0003】これらTi−N、Ti−C等の化合物の薄
膜はほとん同様の方法で形成されるが、前記方法のう
ち、PVD法コーティングの代表例として、従来より広
く行われているホローカソード放電(HCD)−イオン
プレーティング法による基板上へのTi−N膜の形成の
場合について説明すれば次のようになる。
[0003] Thin films of these compounds such as Ti-N and Ti-C are formed by almost the same method. Among the above-mentioned methods, a typical example of the PVD coating is hollow cathode discharge, which has been widely used. The case of forming a Ti—N film on a substrate by the (HCD) -ion plating method will be described as follows.

【0004】先ず、PVD法に用いる装置について説明
する。図8はHCDイオンプレーティング装置を示すも
のであり、図中、aは真空成膜室を示し、該真空成膜室
a内は真空ポンプbに接続されている。また、cはコー
ティングに供される主として金属材料製の基板、dは金
属蒸発源ハース、eは蒸発させる金属材(ここではT
i)、fはホローカソード電子銃、gはホローカソード
電子銃fと金属蒸発源ハースdに電圧を印加する放電用
電源、hは電子ビーム、iはN2ガスを流すノズル、j
は一部イオン化されたN2ガス、kは基板cに電圧を印
加するバイアス電源を示す。
[0004] First, an apparatus used in the PVD method will be described. FIG. 8 shows an HCD ion plating apparatus, in which a denotes a vacuum film forming chamber, and the inside of the vacuum film forming chamber a is connected to a vacuum pump b. Further, c is a substrate mainly made of a metal material to be provided for coating, d is a metal evaporation source hearth, and e is a metal material to be evaporated (here, T
i) and f are hollow cathode electron guns, g is a discharge power supply for applying a voltage to the hollow cathode electron gun f and the metal evaporation source hearth d, h is an electron beam, i is a nozzle for flowing N 2 gas, j
Denotes a partially ionized N 2 gas, and k denotes a bias power supply for applying a voltage to the substrate c.

【0005】次に、前記図8に示す装置を用いて、基板
c上にTi−N系化合物の被膜mを被覆形成する方法に
ついて説明する。
Next, a method for forming a coating m of a Ti—N compound on a substrate c using the apparatus shown in FIG. 8 will be described.

【0006】先ず、真空成膜室a内を真空ポンプbで真
空排気した後、ホローカソード電子銃fに放電用Arガ
スを流しながら、ホローカソード電子銃fとハースdと
の間に数10〜数100Vの直流電圧を放電用電源gよ
り印加して両者間f,dに放電を行う。
First, after evacuating the inside of the vacuum film forming chamber a by the vacuum pump b, the Ar gas for discharge is supplied to the hollow cathode electron gun f, and a few tens of minutes are inserted between the hollow cathode electron gun f and the hearth d. A DC voltage of several hundred volts is applied from a discharge power source g to discharge between f and d.

【0007】そのとき、ホローカソード電子銃f内での
ホローカソード放電により生成する多量の電子ビームh
は金属蒸発源ハースd内の金属材e(Ti)に照射さ
れ、その電子衝撃による加熱により、金属材eのTiは
溶融され、Ti中性ビーム(Ti蒸気)を発生する。こ
のTi中性ビーム(Ti蒸気)は電子ビームhおよびホ
ローカソード放電により形成されるArイオンとの衝撃
により、その一部がイオン化されるようになる。その
際、基板cには数10Vの負の直流バイアス電圧がバイ
アス電源kによって印加されているので、イオン化され
たTiイオンビームは加速され、Ti中性ビーム(Ti
蒸気)と共に、基板cに入射して、基板cの表面にTi
膜を形成する。
At this time, a large amount of electron beams h generated by hollow cathode discharge in the hollow cathode electron gun f
Is irradiated to the metal material e (Ti) in the metal evaporation source hearth d, and the Ti of the metal material e is melted by heating by electron impact to generate a Ti neutral beam (Ti vapor). A part of the Ti neutral beam (Ti vapor) is ionized by bombardment with the electron beam h and Ar ions formed by hollow cathode discharge. At this time, since a negative DC bias voltage of several tens of volts is applied to the substrate c by the bias power source k, the ionized Ti ion beam is accelerated, and a Ti neutral beam (Ti
Together with the vapor) and enters the substrate c, and Ti
Form a film.

【0008】基板c上にTi−N膜mを形成する場合
は、ノズルiよりN2ガスをTiイオンビームおよびT
i中性ビームの照射と同時に流すが、このN2ガスはT
i蒸気と同じようにその一部がイオン化され、基板cの
表面にN2中性ビームと共に入射し、そこで同時に入射
するTiイオンビームおよびTi中性ビームと反応し
て、Ti−N膜mを形成するようになる。
When forming a Ti—N film m on a substrate c, an N 2 gas is supplied from a nozzle i through a Ti ion beam and a T
i The N 2 gas flows at the same time as the irradiation of the neutral beam.
As in the case of the i-vapor, a part thereof is ionized and is incident on the surface of the substrate c together with the N 2 neutral beam, where it reacts with the simultaneously incident Ti ion beam and Ti neutral beam to form the Ti—N film m. Will be formed.

【0009】[0009]

【発明が解決しようとする課題】PVD法、またはCV
D法により形成された基板c上の膜mの硬度としては、
ヴィッカース硬度(Hv)においてTi−N膜で約22
00、Ti−C膜で約3700となっている。また、形
成されたTi−N膜と基板の間、Ti−C膜と基板の間
の密着性を考えると、形成されたTi−N膜やTi−C
膜は基板の表面上に単に堆積するか、或いはバイアスに
よるイオン衝撃や熱拡散によって基板表面層と僅かなミ
キシングが行われているかである。そのため、Ti−N
膜やTi−C膜と基板との密着性は余りよくない。
SUMMARY OF THE INVENTION PVD method or CV
The hardness of the film m on the substrate c formed by the method D is as follows.
About 22 Vickers hardness (Hv) for Ti-N film
00, about 3700 for the Ti-C film. Considering the adhesion between the formed Ti—N film and the substrate and between the Ti—C film and the substrate, the formed Ti—N film and the Ti—C
The film simply deposits on the surface of the substrate or is slightly mixed with the substrate surface layer by ion bombardment or thermal diffusion by bias. Therefore, Ti-N
The adhesion between the film or the Ti-C film and the substrate is not very good.

【0010】図8に示す従来装置により基板c上にTi
−N膜mをコーティングを行った試料は図9(A)に示
す模式図のように基板c上にTi−N膜mが明確な界面
を境にして堆積している。そして、図9(A)示の試料
に対し、摩擦・摺動相手材を押し付けた際、基板c上の
Ti−N膜mが硬く、かつTi−N膜mの密着性が小さ
い場合は図9(B)に示すようにTi−N膜mの一部が
基板cの表面から剥離し、耐摩耗性、摺動性膜として機
能しない。図9(B)中、nは摩擦・摺動相手材を示
し、実際の使用時には相手材、膜の引っ掻き、或いは摩
擦・摩耗試験時の相手材(圧子)に相当するものであ
る。
[0010] The conventional apparatus shown in FIG.
In the sample coated with the -N film m, the Ti-N film m is deposited on the substrate c with a clear interface as shown in the schematic diagram of FIG. Then, when a friction / sliding partner material is pressed against the sample shown in FIG. 9A, the Ti-N film m on the substrate c is hard and the adhesion of the Ti-N film m is small. As shown in FIG. 9 (B), a part of the Ti—N film m is separated from the surface of the substrate c and does not function as a wear-resistant and slidable film. In FIG. 9 (B), n represents a friction / sliding partner material, which corresponds to a partner material, a scratch of a film in actual use, or a partner material (indenter) in a friction / wear test.

【0011】このように、工具材または精密機器の摺動
部品等への耐摩耗性膜、および摺動性膜のコーティング
を考えた場合、コーティング膜層の硬質化、並びに膜の
剥離を抑える意味で、コーティング膜の基板への密着性
の改善により工具、部品の寿命、性能を向上させること
が必要となる。
As described above, when coating a wear-resistant film and a slidable film on a tool material or a sliding part of a precision instrument or the like, the meaning of hardening the coating film layer and suppressing peeling of the film is considered. Therefore, it is necessary to improve the life and performance of tools and components by improving the adhesion of the coating film to the substrate.

【0012】本発明の目的は、従来用いられているコー
ティング材料のTi−N膜、Ti−C膜以上の硬度、摺
動特性を有するTi−希土類元素−N系超硬質化合物お
よび、基板上への密着性に優れたTi−希土類元素−N
系超硬質化合物膜の形成方法を提供することにある。
An object of the present invention is to provide a Ti-rare earth element-N-based super-hard compound having hardness and sliding characteristics higher than those of a conventionally used coating material such as a Ti-N film and a Ti-C film, and a method of forming the same on a substrate. Ti-rare earth element-N with excellent adhesion
An object of the present invention is to provide a method for forming a super hard compound film.

【0013】[0013]

【課題を解決するための手段】本発明者らは、前記目的
を達成すべく鋭意検討した結果、化学結合論(改訂版)
[ポーリング著、小泉正夫訳、共立出版(株) 196
2年5月20日改定1刷発行]に記載されている原子半
径(一重結合半径)に着目した。
Means for Solving the Problems The present inventors have conducted intensive studies to achieve the above object, and as a result, have found that the chemical bonding theory (revised version)
[Pauling, Translated by Masao Koizumi, Kyoritsu Shuppan Co., Ltd. 196
Attention was paid to the atomic radii (single bond radii) described in “May 20, 20th Revised 1st Issue”.

【0014】更に詳細に述べると、希土類元素はその原
子半径がTi等の遷移金属に比べて大きい、その値はT
i:1.32Åに対し例えばDy:1.60Å、Y:
1.62Åである。
More specifically, a rare earth element has a larger atomic radius than a transition metal such as Ti, and its value is T
i: 1.32 °, for example, Dy: 1.60 °, Y:
1.62 °.

【0015】Ti−N結晶マトリックス中のTiサイト
に希土類元素を置換させた場合は、半径の大きな原子の
存在による格子歪みによりTi−X−N(Xは固溶元
素、ここでは希土類元素)の硬度の増加が期待できる。
When a rare earth element is substituted for a Ti site in a Ti—N crystal matrix, Ti—X—N (X is a solid solution element, in this case, a rare earth element) due to lattice distortion due to the presence of an atom having a large radius. An increase in hardness can be expected.

【0016】一方、添加元素が置換型の固溶をするかど
うかは一般に、経験的に与えられるヒューム・ロザリー
則[Hume-Rothery's Rule ]に従うとされている。
On the other hand, whether or not an additive element forms a substitutional solid solution generally follows the Hume-Rothery's Rule, which is empirically given.

【0017】そして、縦軸に電気陰性度、横軸に原子半
径をとったTi−M系(Mは希土類元素、遷移金属元素
を表す)のダーケン・ガリープロット[Darken-Gurry's
polt ]を示す図(図中、Lnはランタノイド元素を示
す)、詳しくは、図1によると、Ti(Tiの原子半径
は1.32Å、電気陰性度は1.4である)を中心とす
る円がこのヒューム・ロザリー則による固溶範囲(Ti
との差が原子半径で±15%以内、電気陰性度で±0.
4%以内)であり、本発明でTi−Nに含ませる元素と
して挙げている希土類元素は電気陰性度においてほぼ範
囲内に入るものの、原子半径では+方向に範囲を超える
もの(約+20%)となっている。従ってこのような希
土類元素を含有するTi−X−N非平衡化合物(Xは希
土類元素を表す)となって、硬度の高いコーティング膜
を形成することが出来ることを知見した。
[0017] A Darken-Gurry's plot [Darken-Gurry's plot] of a Ti-M system (M represents a rare earth element or a transition metal element) with the electronegativity on the vertical axis and the atomic radius on the horizontal axis
(Ln represents a lanthanoid element in the figure). More specifically, according to FIG. 1, the center is Ti (the atomic radius of Ti is 1.32 °, and the electronegativity is 1.4). The circle is the solid solution range (Ti
Within ± 15% in atomic radius and ± 0.
Within 4%), the rare earth elements listed as the elements to be included in Ti-N in the present invention fall within the range of the electronegativity, but exceed the range in the + direction in the atomic radius (about + 20%). It has become. Therefore, it has been found that a Ti—X—N non-equilibrium compound containing such a rare earth element (X represents a rare earth element) can form a coating film with high hardness.

【0018】本発明のTi−希土類元素−N系超硬質化
合物膜およびその形成方法は、前記知見に基づいてなさ
れたものであり、Ti−希土類元素−N系超硬質化合物
膜は、基板上に形成されたTi−N系超硬質化合物から
成る薄膜において、前記硬質化合物の薄膜はTiおよび
Nから成る組成物中に希土類元素を0.5〜20原子%
含有した化合物の薄膜であることを特徴とする。
The Ti-rare earth element-N-based ultra-hard compound film and the method of forming the same according to the present invention have been made based on the above findings. In the formed thin film made of a Ti-N-based superhard compound, the hard compound thin film contains 0.5 to 20 atomic% of a rare earth element in a composition of Ti and N.
It is a thin film of the compound contained.

【0019】そして、TiおよびNから成る組成物中に
含有せる希土類元素量を0.5〜20原子%としたの
は、含有量が0.5原子%に満たない場合は固溶による
硬化が不十分なためであり、また含有量が20原子%を
超えた場合は得られる化合物膜の硬度が飽和してくるた
めである。
The reason why the content of the rare earth element contained in the composition comprising Ti and N is set to 0.5 to 20 atomic% is that when the content is less than 0.5 atomic%, hardening due to solid solution occurs. This is because the hardness is insufficient, and when the content exceeds 20 atomic%, the hardness of the obtained compound film becomes saturated.

【0020】Ti−希土類元素−N系超硬質化合物膜の
形成方法は、金属蒸発源からの蒸気金属およびイオンビ
ーム源からの高速イオンビームを基板に照射して、該基
板上に超硬質化合物膜を形成させるイオンミキシング法
であって、超硬質化合物を構成するTi、Nおよび希土
類元素のうち1種または複数の元素をイオンビームと
し、残りの元素を金属蒸気、或いはこれら元素を含むガ
スのビームを該基板に複合照射して超硬質化合物膜を形
成することを特徴とする。
A method for forming a Ti-rare earth element-N type ultra-hard compound film is to irradiate a substrate with a vapor metal from a metal evaporation source and a high-speed ion beam from an ion beam source to form an ultra-hard compound film on the substrate. Of one or more of Ti, N and rare earth elements constituting an ultra-hard compound as an ion beam, and the remaining element as a metal vapor or a beam of a gas containing these elements. Is applied to the substrate to form a super-hard compound film.

【0021】[0021]

【作用】希土類元素はTiに比して原子半径が大きいか
ら、TiおよびNから成る組成物中に希土類元素を新た
に含有させることにより合成される化合物の結晶格子に
歪みが生じて硬度が増加する。
The rare-earth element has a larger atomic radius than Ti, so that the addition of the rare-earth element in the composition of Ti and N causes a distortion in the crystal lattice of the compound synthesized, increasing the hardness. I do.

【0022】イオンビームからの高速イオンビームを基
板に照射することにより、基板表面上の合金元素は高エ
ネルギーに励起された非平衡状態からクエンチングさ
れ、非平衡化合物が合成される。
By irradiating the substrate with a high-speed ion beam from the ion beam, alloy elements on the substrate surface are quenched from the non-equilibrium state excited with high energy, and a non-equilibrium compound is synthesized.

【0023】また、Ti、N、希土類元素のうち1つ、
或いは複数の元素をイオンビームの形で基板上へ照射す
ることにより、Ti−希土類元素−N化合物膜と基板の
間の界面部分でTi、N、希土類元素および基板構成元
素がイオン照射衝撃により結合の切断、原子のノックオ
ン注入、熱的効果等のミキシング作用を受け、分解・再
結合を行い、基板と化合物膜の元素が互いに連続的に混
ざり合い、基板と化合物膜とを強固につなぐ界面ミキシ
ング層を形成する。この界面ミキシング層の存在により
基板と化合物膜の密着性は向上する。
Also, one of Ti, N, and rare earth elements,
Alternatively, by irradiating a plurality of elements onto the substrate in the form of an ion beam, Ti, N, the rare earth element, and the constituent elements of the substrate are combined by the ion irradiation impact at the interface between the Ti-rare earth element-N compound film and the substrate. Interfacial mixing, in which the elements of the substrate and the compound film are continuously mixed with each other due to the mixing effects of cutting, atom knock-on injection, thermal effects, etc. Form a layer. Due to the presence of the interface mixing layer, the adhesion between the substrate and the compound film is improved.

【0024】[0024]

【実施例】以下添付図面に従って本発明の実施例につい
て説明する。
Embodiments of the present invention will be described below with reference to the accompanying drawings.

【0025】図2は本発明のTi−希土類元素−N系超
硬質化合物膜の形成を実施するための膜形成装置の1例
を示すもので、図中、1は真空成膜室であり、真空成膜
室1は真空ポンプ2に圧力調整バルブ3を介して接続さ
れている。また、4はコーティングを施す金属製、セラ
ミックス製の基板、5は基板4を保持する基板ホルダ
ー、6は金属蒸発源ハース、7はTi金属蒸気(中性ビ
ーム)、8はイオン源およびイオン加速器、9はイオン
ビーム、10はガス流量調整器、11はガス導入ノズ
ル、12はガスビーム、13は蒸発させるTi金属、1
4は基板加熱用ヒーターを示す。
FIG. 2 shows an example of a film forming apparatus for forming a Ti-rare earth element-N-based ultra-hard compound film of the present invention. In the drawing, reference numeral 1 denotes a vacuum film forming chamber; The vacuum film forming chamber 1 is connected to a vacuum pump 2 via a pressure adjusting valve 3. Reference numeral 4 denotes a metal or ceramic substrate to be coated, 5 a substrate holder for holding the substrate 4, 6 a metal evaporation source hearth, 7 a Ti metal vapor (neutral beam), 8 an ion source and an ion accelerator. , 9 is an ion beam, 10 is a gas flow controller, 11 is a gas introduction nozzle, 12 is a gas beam, 13 is Ti metal to be evaporated, 1
Reference numeral 4 denotes a substrate heating heater.

【0026】次に、前記装置を用いて基板上にTi−希
土類元素−N系超硬質化合物膜の形成の具体的実施例を
比較例と共に説明する。
Next, a specific example of forming a Ti-rare earth element-N-based ultra-hard compound film on a substrate using the above-described apparatus will be described together with a comparative example.

【0027】実施例1 本実施例では基板4を直径40mm×厚さ5mmの鋼材(J
IS−SUS−440C,H RC >60)とし、Tiお
よびNに含有する希土類元素をジスプロシウム(Dy)
とした。
Embodiment 1 In this embodiment, the substrate 4 is made of steel (J) having a diameter of 40 mm and a thickness of 5 mm.
IS-SUS-440C, H RC> 60), and the rare earth element contained in Ti and N is dysprosium (Dy)
And

【0028】先ず、真空成膜室1内の空気を真空ポンプ
2により排出して圧力を10- 5Paの高真空度に設定
した。そして真空成膜室1内にガス流量調整器10で流
量を2.0SCCMに調整したNH3ガスをガス導入ノズル
11よりガスビーム12として導入し、圧力調整バルブ
3の開度を調整して真空成膜室1内の圧力を4×10-
4Paに維持した。
[0028] First, a pressure of 10 air vacuum deposition chamber 1 is discharged by a vacuum pump 2 - was set to a high vacuum degree of 5 Pa. Then, NH 3 gas whose flow rate has been adjusted to 2.0 SCCM by the gas flow controller 10 is introduced as a gas beam 12 from the gas introduction nozzle 11 into the vacuum film forming chamber 1, and the opening of the pressure control valve 3 is adjusted to form a vacuum. The pressure in the membrane chamber 1 is 4 × 10
It was maintained at 4 Pa.

【0029】基板加熱用ヒーター14で基板ホルダー5
に保持された鋼製の基板4を加熱して300℃に維持し
た。この状態で電子ビーム加熱により金属蒸発源ハース
6内のTi金属13を溶融、蒸発させ、Ti金属蒸気
(中性ビーム)7として基板4上に照射した。
The substrate holder 5 is heated by the substrate heating heater 14.
The substrate 4 made of steel held at a temperature of 300 ° C. was heated and maintained at 300 ° C. In this state, the Ti metal 13 in the metal evaporation source hearth 6 was melted and evaporated by electron beam heating, and was irradiated onto the substrate 4 as Ti metal vapor (neutral beam) 7.

【0030】それと同時にイオン源およびイオン加速器
8から引き出されたジスプロシウム(Dy)のイオンビ
ーム9を基板4上に照射した。尚、Ti金属13の基板
4表面への蒸着速度は2.0Å/秒とした。また、ジス
プロシウム(Dy)のイオンビームのエネルギーは30
keV、電流密度は5.6μA/cm2とした。
At the same time, the substrate 4 was irradiated with an ion beam 9 of dysprosium (Dy) extracted from the ion source and the ion accelerator 8. The deposition rate of the Ti metal 13 on the surface of the substrate 4 was 2.0 ° / sec. The energy of the dysprosium (Dy) ion beam is 30.
KeV and the current density were 5.6 μA / cm 2 .

【0031】前記条件の操作を基板4上に形成されるT
i−Dy−N系超硬質化合物の薄膜15が1μmとなる
まで継続して行った(図7(A)参照)。
The operation under the above conditions is performed by using T
The process was continued until the thin film 15 of the i-Dy-N-based super-hard compound became 1 μm (see FIG. 7A).

【0032】形成されたTi−Dy−N系超硬質化合物
膜の結晶構造をX線回析で調べたところTi−Nに近い
格子定数を有するTi−Nと同一の結晶系(NaCl
型)の多結晶であった。
When the crystal structure of the formed Ti-Dy-N-based ultra-hard compound film was examined by X-ray diffraction, the same crystal system (NaCl) as Ti-N having a lattice constant close to that of Ti-N was obtained.
Type).

【0033】また、Ti−Dy−N系超硬質化合物膜の
NaCl型結晶(200)面のX線回析角より求めた結
晶の格子定数の結果を図3にプロット記号Aとして示し
た。尚、図3における横軸の原子比は膜組成よりEPM
Aで求めたDy/Ti+Dyとした。
The results of the lattice constant of the Ti—Dy—N ultrahard compound film obtained from the X-ray diffraction angle of the NaCl type crystal (200) plane are shown as plot symbol A in FIG. The atomic ratio on the horizontal axis in FIG.
Dy / Ti + Dy determined in A.

【0034】また、Ti−Dy−N化合物が(Ti 1-
x、Dy x)N y「式中、x=Dy/(Ti+Dy)原子
比、 y=0.67〜1.13を表わす」の形をとり、D
yが結晶中のTiサイトに理想的に置換されたと仮定し
た場合の格子定数の値(ベガース則による)を図3中に
特性値線Gとして示した。
The Ti-Dy-N compound is (Ti 1-
x, Dy x) N y "where x = Dy / (Ti + Dy) atomic ratio, y = 0.67 to 1.13"
The characteristic value line G in FIG. 3 shows the value of the lattice constant (according to Beggers law) assuming that y was ideally substituted for the Ti site in the crystal.

【0035】また、形成されたTi−Dy−N系超硬質
化合物膜のヴィッカース硬度(Hv)をヴィッカース硬
度試験機で測定し、その結果を図4にプロット記号Aで
示した。尚、図4における横軸の原子比は膜組成よりE
PMAで求めたDy/Ti+Dyとした。
The Vickers hardness (Hv) of the formed Ti-Dy-N-based ultra-hard compound film was measured by a Vickers hardness tester, and the result is shown by plot symbol A in FIG. The atomic ratio on the horizontal axis in FIG.
Dy / Ti + Dy determined by PMA.

【0036】また、形成されたTi−Dy−N系超硬質
化合物膜の真空中での摩擦・摩耗試験を行い、その測定
結果を図5に曲線Hとして示した。尚、摩擦・摩耗試験
は試験試料を回転させ、回転中心から一定の距離の円周
部分に相手材ボールを押し付ける一般にピンオンディス
ク法と称される試験法で行い、回転運動時の試料−相手
材間の摩擦係数の変化、および円周摩擦トラック部の摩
耗度合により摩擦・摩耗特性を評価する。試験条件は相
手材はφ7mmのSUS440C鋼(H RC >60)、回
転中心からの距離は7.25mm、運動線速度は9.1m
/分、押し付け荷重514gとした。
A friction / wear test was performed on the formed Ti-Dy-N-based ultra-hard compound film in a vacuum, and the measurement result is shown as a curve H in FIG. The friction / wear test is performed by rotating the test sample and pressing a mating ball against a circumferential portion at a fixed distance from the center of rotation, which is generally called a pin-on-disk method. The friction and wear characteristics are evaluated based on the change in the coefficient of friction between the materials and the degree of wear of the circumferential friction track. The test conditions were SUS440C steel of φ7mm (HRC> 60), the distance from the center of rotation was 7.25mm, and the linear velocity of motion was 9.1m.
/ Min, and a pressing load of 514 g.

【0037】また、Ti−Dy−N系超硬質化合物膜の
真空中での摩擦・摩耗試験の試験開始後64分経過した
ときの摩擦トラックの断面形状を図6(A)に曲線Iと
して示し、また同曲線Iの縦軸変化状態を拡大し、これ
を図6(B)に曲線Jとして示した。
FIG. 6 (A) shows the cross-sectional shape of the friction track at 64 minutes after the start of the friction / wear test in vacuum of the Ti-Dy-N-based ultra-hard compound film. Further, the vertical axis change state of the curve I is enlarged, and this is shown as a curve J in FIG.

【0038】実施例2〜5 NH3ガスの流量を2.0〜6.0SCCM、Dyイオン電
流密度を13.0〜23.0μA/cm2、Ti蒸着速度
を1.3〜3.0Å/秒の条件範囲でTi、Dy、Nの
入射比を変えた以外は前記実施例1と同様の方法で基板
4上にTi−Dy−N系超硬質化合物膜15を形成し、
これを実施例2,3,4,5とした。
Examples 2 to 5 The NH 3 gas flow rate was 2.0 to 6.0 SCCM, the Dy ion current density was 13.0 to 23.0 μA / cm 2 , and the Ti deposition rate was 1.3 to 3.0 ° / cm. A Ti-Dy-N-based ultra-hard compound film 15 was formed on the substrate 4 in the same manner as in Example 1 except that the incident ratio of Ti, Dy, and N was changed in the condition range of seconds.
This was made into Examples 2, 3, 4, and 5.

【0039】形成された各実施例のTi−Dy−N系超
硬質化合物膜のNaCl型結晶(200)面のX線回析
角より結晶の格子定数を実施例1と同様の方法で求め、
その結果を図3に実施例2をプロット記号B、実施例3
をプロット記号C、実施例4をプロット記号D、実施例
5をプロット記号Eとして示した。
From the X-ray diffraction angle of the NaCl-type crystal (200) plane of the Ti-Dy-N-based ultra-hard compound film of each of the formed examples, the lattice constant of the crystal was determined in the same manner as in Example 1.
The results are shown in FIG.
Is shown as plot symbol C, Example 4 is shown as plot symbol D, and Example 5 is shown as plot symbol E.

【0040】また、形成された各実施例のTi−Dy−
N系超硬質化合物膜のヴィッカース硬度(Hv)を実施
例1と同様の方法で測定し、その結果を図4に実施例2
をプロット記号B、実施例4をプロット記号D、実施例
5をプロット記号Eとして示した。
Further, the Ti-Dy-
The Vickers hardness (Hv) of the N-based ultra-hard compound film was measured by the same method as in Example 1, and the result was shown in FIG.
Is shown as plot symbol B, Example 4 is shown as plot symbol D, and Example 5 is shown as plot symbol E.

【0041】尚、実施例1〜5におけるNH3ガス流量
(SCCM)、Dyイオン電流密度(μA/cm2)、T
i蒸着速度(Å/秒)の各条件を示すと下記表1の通り
である。
The NH 3 gas flow rate (SCCM), Dy ion current density (μA / cm 2 ), T
Table 1 shows the conditions of the i deposition rate (Å / sec).

【0042】[0042]

【表1】 [Table 1]

【0043】比較例1 図8に示す従来HCDイオンプレーティング装置を用い
て基板(直径40mm×厚さ5mmの鋼材[JIS−SUS
−440C,H RC >60])c上に膜厚1μmのTi
−N膜mを形成し、形成されたTi−N膜mのNaCl
型結晶(200)面のX線回析角より結晶の格子定数を
実施例1と同様の方法で求め、その結果を図3にプロッ
ト記号Fとして示した。
Comparative Example 1 Using a conventional HCD ion plating apparatus shown in FIG. 8, a substrate (steel material having a diameter of 40 mm and a thickness of 5 mm [JIS-SUS
-440C, HRC> 60]) 1 μm thick Ti on c
-N film m is formed, and NaCl of the formed Ti-N film m is formed.
The lattice constant of the crystal was determined from the X-ray diffraction angle of the type crystal (200) plane in the same manner as in Example 1, and the result is shown as plot symbol F in FIG.

【0044】また,形成されたTi−N膜のヴィッカー
ス硬度(Hv)を実施例1と同様の方法で測定し、その
結果を図4にプロット記号Fとして示した。
The Vickers hardness (Hv) of the formed Ti—N film was measured by the same method as in Example 1, and the result is shown as plot symbol F in FIG.

【0045】また、形成されたTi−N膜の真空中での
摩擦・摩耗試験を実施例1と同様の方法で行い、その測
定結果を図5に曲線Sとして示した。また、摩擦・摩耗
試験終了(試験終了時間は64分)時点における摩擦ト
ラックの断面形状を図6(C)に曲線Tとして示した。
Further, a friction / wear test in vacuum of the formed Ti—N film was performed in the same manner as in Example 1. The measurement result is shown as a curve S in FIG. Further, the cross-sectional shape of the friction track at the end of the friction / wear test (the test end time is 64 minutes) is shown as a curve T in FIG. 6C.

【0046】図3から明らかなように本発明の実施例の
格子定数の実測値と、ベガーズ則による格子定数の予測
値(図3の特性値線G)とほぼ一致していることが分か
った。これに対し従来法による比較例1の格子定数値は
4.24Åであった。
As is apparent from FIG. 3, it was found that the measured value of the lattice constant of the embodiment of the present invention almost coincides with the predicted value of the lattice constant according to the Beggers law (characteristic value line G in FIG. 3). . On the other hand, the lattice constant value of Comparative Example 1 according to the conventional method was 4.24 °.

【0047】また、図4から明らかなように本発明実施
例ではTi−Dy−N系超硬質化合物中のDyの含有量
の増加と共に、ヴィッカース硬度(Hv)が増加し、最
大では硬度が4000を超えるのに対し、比較例1では
硬度が1800と低かった。従って、Ti−Nから成る
組成物中に希土類元素を含有せしめることにより得られ
る膜の硬度を増加させ得ることが分かった。
Further, as is apparent from FIG. 4, in the embodiment of the present invention, the Vickers hardness (Hv) increases as the content of Dy in the Ti-Dy-N-based super-hard compound increases, and the maximum hardness is 4000. On the other hand, in Comparative Example 1, the hardness was as low as 1800. Therefore, it was found that the hardness of a film obtained by adding a rare earth element to a composition comprising Ti-N can be increased.

【0048】また、図5および図6から明らかなように
本発明実施例では摩擦・摩耗試験時間182分に至るま
で摩擦係数は0.04前後と低い値を示し、しかも試料
表面の磨耗は殆ど観察されず、図6(B)のように試料
表面の荒れは500〜1000Å程度あり、Ti−Dy
−N系超硬質化合物膜の膜厚1μm(10000Å)に
比べ小さく、基板は殆ど摩耗していないのに対し、比較
例1では摩擦・摩耗試験初期より摩擦係数は0.6と大
きく、しかも試験開始後47分で摩擦係数に大きな変化
が認められ、試験時間64分で試験を中止せざるを得
ず、しかも図6(C)で明らかなように比較例1は試験
時間64分では摩擦トラックにTi−N化合物膜は存在
せず、基板が深く摩耗を受けている様子が観察された。
従って、本発明実施例ではTi−Nから成る組成物中に
希土類元素を含有せしめることにより得られる膜は耐摩
耗性に優れていることが分かった。
As is clear from FIGS. 5 and 6, in the embodiment of the present invention, the friction coefficient shows a low value of about 0.04 up to the friction / wear test time of 182 minutes, and the wear of the sample surface is almost zero. It was not observed, and the roughness of the sample surface was about 500 to 1000 ° as shown in FIG.
The film thickness of the -N-based super-hard compound film is smaller than 1 μm (10000 °), and the substrate is hardly worn, whereas the coefficient of friction in Comparative Example 1 is as large as 0.6 from the initial stage of the friction / wear test. At 47 minutes after the start, a large change was observed in the friction coefficient, and the test had to be stopped at the test time of 64 minutes. Furthermore, as apparent from FIG. No Ti-N compound film was present, and it was observed that the substrate was deeply worn.
Therefore, in the examples of the present invention, it was found that a film obtained by incorporating a rare earth element into a composition composed of Ti-N has excellent wear resistance.

【0049】前述のように本発明実施例で作成されたT
i−Dy−N系超硬質化合物膜は膜自体の高い硬度、お
よび基板に対する高い密着性に起因する耐剥離性によ
り、平滑な摩擦・摺動面が得られて、優れた耐摩擦・摩
耗性を備えていることが分かった。
As described above, the T generated in the embodiment of the present invention is used.
The i-Dy-N-based super-hard compound film has a high hardness of the film itself and a peeling resistance due to a high adhesion to the substrate, so that a smooth friction and sliding surface can be obtained, and excellent friction and abrasion resistance is obtained. It was found to have.

【0050】このことを図7[図7(A)は実施例1で
作成されたTi−Dy−Nコーティング試料の基板4と
Ti−Dy−N化合物膜15の模式図、図7(B)はT
i−Dy−N化合物膜15に摩擦・摩耗相手材17を押
し付けた状態を表す模式図]と関係づけて述べる。
This is shown in FIG. 7 [FIG. 7 (A) is a schematic view of the substrate 4 and the Ti-Dy-N compound film 15 of the Ti-Dy-N coating sample prepared in Example 1, and FIG. Is T
A schematic diagram showing a state in which the friction / wear partner 17 is pressed against the i-Dy-N compound film 15].

【0051】図7(A)から明らかなように基板4とT
i−Dy−N系超硬質化合物膜15との界面はイオン照
射によるミキシング効果により、基板4とTi−Dy−
N系超硬質化合物膜15の元素が互いに連続的に混ざり
合い、基板4とTi−Dy−N系超硬質化合物膜15と
を強固につなぐ界面ミキシング層16が形成されている
様子が分かる。
As is clear from FIG. 7A, the substrate 4 and T
The interface between the substrate 4 and the Ti-Dy-N-based ultra-hard compound film 15 is caused by the mixing effect of ion irradiation.
It can be seen that the elements of the N-based super-hard compound film 15 are continuously mixed with each other, and that the interface mixing layer 16 that firmly connects the substrate 4 and the Ti-Dy-N-based super-hard compound film 15 is formed.

【0052】また、図7(B)から明らかなように図9
(B)の従来のTi−N化合物膜とは異なり基板4上に
形成されたTi−Dy−N系超硬質化合物膜15は硬
く、かつ基板への膜の密着性が大きいから、Ti−Dy
−N系超硬質化合物膜15に摩擦・摩耗相手材17が強
く押し付けられてもTi−Dy−N系超硬質化合物膜1
5は基板4より剥離することがなく、Ti−Dy−N系
超硬質化合物膜の平坦性が保たれて、耐摩耗性、摺動性
に優れていることが分かる。
As is clear from FIG. 7B, FIG.
Unlike the conventional Ti-N compound film of (B), the Ti-Dy-N-based ultra-hard compound film 15 formed on the substrate 4 is hard and has high adhesion of the film to the substrate.
Even when the friction / wear partner 17 is strongly pressed against the -N-based super-hard compound film 15, the Ti-Dy-N-based super-hard compound film 1
5 shows that the Ti-Dy-N-based ultra-hard compound film is not peeled off from the substrate 4 and the flatness of the film is maintained, so that it is excellent in wear resistance and slidability.

【0053】前記実施例では含有させる希土類元素とし
てDyを用いたが、本発明はこれに限定されるものでは
なく、イットリウム(Y)、ランタン(La)、ネオジ
ム(Nd)、ガドリニウム(Gd)等の希土類元素を含
有せしめるようにしてもよい。
In the above embodiment, Dy was used as a rare earth element to be contained. However, the present invention is not limited to this, and yttrium (Y), lanthanum (La), neodymium (Nd), gadolinium (Gd), etc. May be included.

【0054】また、前記実施例中、基板に照射するイオ
ンビームとしてDy +、中性ビームとしてTiガス、ガ
ス(分子)ビームとしてNH3ビームを用いたが、本発
明はこれに限定されるものではなく、イオンビームとし
てはTi +、N +、N2+ 、希土類元素イオン、また、
中性ビームとしてはDy等の希土類元素、N原子或いは
Nラジカルビーム、また、ガスビームとしてはTiCl
4、TiBr4、TiI4 、N2ガスが挙げられ、また、
基板に照射する際には夫々単独で、或いは複数の混合ビ
ームで、必要に応じて前記イオンビーム、或いは前記中
性ビーム、或いは前記ガスビームの何れかと組合わせた
複合ビームで照射するようにしてもよい。
In the above embodiment, Dy + was used as the ion beam for irradiating the substrate, Ti gas was used as the neutral beam, and NH 3 beam was used as the gas (molecular) beam. However, the present invention is not limited to this. Instead, as ion beams, Ti +, N +, N 2 +, rare earth element ions,
Rare earth elements such as Dy, N atoms or N radical beams as neutral beams, and TiCl
4 , TiBr 4 , TiI 4 , and N 2 gas.
When irradiating the substrate, each may be used alone or with a plurality of mixed beams, and, if necessary, the composite beam combined with any one of the ion beam, the neutral beam, or the gas beam. Good.

【0055】[0055]

【発明の効果】このように本発明のTi−希土類元素−
N系超硬質化合物膜によるときは、TiおよびNから成
る組成物に含まれる原子半径の大きな希土類元素によっ
て結晶格子に歪みが生じて、Ti−希土類元素−N非平
衡化合物となって、従来のTi−N系化合物膜に比し
て、硬度が増加すると共に、基板に対し優れた密着性を
有するので、該超硬質化合物膜が形成された基板は、そ
の摩擦摺動および耐摩耗性に優れる等の効果がある。
As described above, the Ti-rare earth element of the present invention
In the case of using an N-based super-hard compound film, the crystal lattice is distorted by a rare-earth element having a large atomic radius contained in the composition composed of Ti and N, and becomes a Ti-rare earth element-N non-equilibrium compound. Compared with the Ti-N-based compound film, the hardness is increased and the substrate has excellent adhesion to the substrate. Therefore, the substrate on which the super-hard compound film is formed has excellent friction sliding and abrasion resistance. And so on.

【0056】また、本発明のTi−希土類元素−N系超
硬質化合物膜の形成方法によるときは、超硬質化合物を
構成するTi、Nおよび希土類元素の一部をイオンビー
ムの形で基板上に照射し供給するようにしたので、基板
上に形成される化合物元素は高エネルギーに励起された
非平衡状態よりクェンチされ、基板上に非平衡化合物の
Ti−希土類元素−Nを合成出来、また、イオンビーム
によりTi−希土類元素−N化合物膜と基板との界面部
分において、膜構成元素および基板構成元素との間で激
しいミキシングが生じ、このミキシングにより該化合物
膜と基板の界面部分では膜構成元素と基板構成元素が互
いに連続的に混ざり合い、両者を強固につなぐ界面ミキ
シング層が形成されるから、従来法に比して硬度が高
く、基板に対し密着性に優れた超硬質化合物膜を基板上
に極めて容易に形成する方法を提供出来る効果がある。
When the method of forming a Ti-rare earth element-N super hard compound film of the present invention is used, a part of Ti, N and the rare earth element constituting the super hard compound are deposited on the substrate in the form of an ion beam. Since irradiation and supply are performed, the compound element formed on the substrate is quenched from the non-equilibrium state excited by high energy, and the non-equilibrium compound Ti-rare earth element -N can be synthesized on the substrate. Due to the ion beam, intense mixing occurs between the film constituent element and the substrate constituent element at the interface between the Ti-rare earth element-N compound film and the substrate. This mixing causes the film constituent element at the interface part between the compound film and the substrate. And the constituent elements of the substrate are continuously mixed with each other to form an interfacial mixing layer that firmly connects the two with each other. There is an effect that can provide a method of very easily forming a good ultrahard compound film on the substrate.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 Ti−M(Mは希土類元素および遷移金属元
素を表す)系のダーケン・ガリープロット図、
FIG. 1 is a Daken-Garry plot of a Ti-M (M represents a rare earth element and a transition metal element) system,

【図2】 本発明のTi−希土類元素−N系超硬質化合
物膜の形成を実施するための装置の1例の概略説明図、
FIG. 2 is a schematic explanatory view of one example of an apparatus for forming a Ti-rare earth element-N-based ultra-hard compound film of the present invention;

【図3】 本発明実施例および比較例で形成された膜の
原子比(Dy/Ti+Dy)と格子定数との関係を示す
特性値図、
FIG. 3 is a characteristic value diagram showing a relationship between an atomic ratio (Dy / Ti + Dy) and a lattice constant of films formed in Examples of the present invention and Comparative Examples.

【図4】 本発明実施例および比較例で形成された膜の
原子比(Dy/Ti+Dy)とヴィッカース硬度の関係
を示す特性値図、
FIG. 4 is a characteristic value diagram showing a relationship between an atomic ratio (Dy / Ti + Dy) and Vickers hardness of films formed in Examples of the present invention and Comparative Examples.

【図5】 本発明実施例および比較例で形成された膜試
料のピンオンディスク摩擦試験の試験時間と摩擦係数と
の関係を示す特性線図、
FIG. 5 is a characteristic diagram showing a relationship between a test time and a coefficient of friction of a pin-on-disk friction test of the film samples formed in Examples of the present invention and Comparative Examples,

【図6】 本発明実施例および比較例で形成された膜試
料のピンオンディスク摩擦試験時の同一時間経過後の摩
擦試験試料の摩擦・摩耗トラックの断面図であり、
(A),(B)は本発明実施例、(C)は比較例、
FIG. 6 is a cross-sectional view of a friction / wear track of a friction test sample after a lapse of the same time in a pin-on-disk friction test of the film samples formed in Examples of the present invention and Comparative Examples;
(A) and (B) are examples of the present invention, (C) is a comparative example,

【図7】 本発明実施例で形成された膜と基板の模式図
であり、(A)は膜形成後の模式図、(B)は膜に相手
材を押し付けて摩擦・摺動状態時の模式図
FIGS. 7A and 7B are schematic diagrams of a film and a substrate formed in an example of the present invention, wherein FIG. 7A is a schematic diagram after film formation, and FIG. Pattern diagram

【図8】 従来のTi−N系化合物膜の形成を実施する
ための装置の概略説明図、
FIG. 8 is a schematic explanatory view of an apparatus for forming a conventional Ti—N-based compound film,

【図9】 従来法装置で形成された膜と基板の模式図で
あり、(A)は膜形成後の模式図、(B)は膜に相手材
を押し付けて摩擦・摺動状態時の模式図。
9A and 9B are schematic diagrams of a film and a substrate formed by a conventional method apparatus, wherein FIG. 9A is a schematic diagram after the film is formed, and FIG. 9B is a schematic diagram of a mating material pressed against the film in a friction / sliding state. FIG.

【符号の説明】[Explanation of symbols]

1 真空成膜室、 4 基板、6 金
属蒸発源ハース、 7 Ti金属蒸気(中性
ビーム)、8 イオン源およびイオン加速器、 9 イ
オンビーム、10 ガス導入ノズル、 11
ガスビーム、12 ガスビーム、 1
3 Ti金属、15 Ti−希土類元素−N系化合物
膜。
REFERENCE SIGNS LIST 1 vacuum deposition chamber, 4 substrate, 6 metal evaporation source hearth, 7 Ti metal vapor (neutral beam), 8 ion source and ion accelerator, 9 ion beam, 10 gas introduction nozzle, 11
Gas beam, 12 gas beam, 1
3 Ti metal, 15 Ti-rare earth element-N based compound film.

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C04B 41/80 - 41/91 C23C 14/00 - 14/58 Continuation of front page (58) Field surveyed (Int. Cl. 7 , DB name) C04B 41/80-41/91 C23C 14/00-14/58

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 基板上に形成されたTi−N系超硬質化
合物から成る薄膜において、前記硬質化合物の薄膜はT
iおよびNから成る組成物中に希土類元素を0.5〜2
0原子%含有した化合物の薄膜であることを特徴とする
Ti−希土類元素−N系超硬質化合物膜。
1. A thin film of a Ti—N-based ultra-hard compound formed on a substrate, wherein the thin film of the hard compound is T
0.5 to 2 rare earth elements in a composition comprising i and N
A Ti-rare earth element-N-based ultra-hard compound film, which is a thin film of a compound containing 0 atomic%.
【請求項2】 金属蒸発源からの蒸気金属およびイオン
ビーム源からの高速イオンビームを基板に照射して、該
基板上に超硬質化合物膜を形成させるイオンミキシング
法であって、超硬質化合物を構成するTi、Nおよび希
土類元素のうち1種または複数の元素をイオンビームと
し、残りの元素を金属蒸気、或いはこれら元素を含むガ
スのビームを該基板に複合照射して超硬質化合物膜を形
成することを特徴とするTi−希土類元素−N系超硬質
化合物膜の形成方法。
2. An ion mixing method for irradiating a substrate with a vapor metal from a metal evaporation source and a high-speed ion beam from an ion beam source to form an ultra-hard compound film on the substrate. One or more of the constituent Ti, N and rare earth elements are used as an ion beam, and the remaining elements are combined with a metal vapor or a beam of a gas containing these elements to form an ultra-hard compound film. Forming a Ti-rare earth element-N-based ultra-hard compound film.
JP13399192A 1992-05-26 1992-05-26 Ti-rare earth element-N-based ultra-hard compound film and method of forming the same Expired - Lifetime JP3205943B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13399192A JP3205943B2 (en) 1992-05-26 1992-05-26 Ti-rare earth element-N-based ultra-hard compound film and method of forming the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13399192A JP3205943B2 (en) 1992-05-26 1992-05-26 Ti-rare earth element-N-based ultra-hard compound film and method of forming the same

Publications (2)

Publication Number Publication Date
JPH05330956A JPH05330956A (en) 1993-12-14
JP3205943B2 true JP3205943B2 (en) 2001-09-04

Family

ID=15117835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13399192A Expired - Lifetime JP3205943B2 (en) 1992-05-26 1992-05-26 Ti-rare earth element-N-based ultra-hard compound film and method of forming the same

Country Status (1)

Country Link
JP (1) JP3205943B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7033682B1 (en) * 2001-12-28 2006-04-25 Ues, Inc. Coating solutions for titanium and titanium alloy machining
CN1325212C (en) * 2002-01-31 2007-07-11 三菱麻铁里亚尔株式会社 Coated cutting tool member having hard coating layer and method for forming the hard coating layer on cutting tool
JP5438665B2 (en) * 2010-02-16 2014-03-12 株式会社神戸製鋼所 Hard film covering member, jig and tool, and target

Also Published As

Publication number Publication date
JPH05330956A (en) 1993-12-14

Similar Documents

Publication Publication Date Title
Nakamura et al. Applications of wear-resistant thick films formed by physical vapor deposition processes
Randhawa Cathodic arc plasma deposition technology
Hirvonen et al. Present progress in the development of low friction coatings
CN111945111B (en) Composite coating deposited on surface of cubic boron nitride cutter and deposition method
CN212335269U (en) Composite coating deposited on surface of cubic boron nitride cutter and vacuum coating device
JP2941850B2 (en) Wear-resistant coating film and method for forming the same
US20060016914A1 (en) Coated nozzle for laser cutting
JP3980053B2 (en) Manufacturing method of hard material layer
CN109023264B (en) High-hardness TiCN nano composite film and preparation method and mold thereof
JP3205943B2 (en) Ti-rare earth element-N-based ultra-hard compound film and method of forming the same
Wolf et al. Ion beam assisted deposition for metal finishing
JPH07268607A (en) Article having diamondlike carbon thin film and its production
GB2385062A (en) Method of Applying Hard Coatings
JPH04221057A (en) Formation of wear resistant hard coating film
JP3758248B2 (en) Method for forming compound thin film
JPS61195971A (en) Formation of wear resisting film
JP2875892B2 (en) Method of forming cubic boron nitride film
JP4174841B2 (en) Abrasion resistant coating
JPH0250983B2 (en)
JP2624561B2 (en) Amorphous hard carbon film coated diamond tool
JP2006169614A (en) Metal-diamond-like-carbon (dlc) composite film, forming method therefor and sliding member
JPS5918475B2 (en) coated high speed steel
JP2002047557A (en) Cr-CONTAINING TITANIUM NITRIDE FILM
JP3572240B2 (en) Method and apparatus for physically modifying a conductive member
JPH08104976A (en) Hard coating film, and its production and vapor deposition of hard coating device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 11

EXPY Cancellation because of completion of term